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Abstract

Using tools from dynamical systems and systems iden-
tification we develop a framework for the study of de-
composition of human motion. The objective is un-
derstanding human motion by decomposing it into a
sequence of elementary building blocks, which we refer
to as movemes, which belong to a known alphabet of
dynamical systems. We develop classification and seg-
mentation algorithms with error analysis and we test
them on human drawing data.

1 Introduction

Building systems that can detect and recognize human
actions and activities is an important goal of modern
engineering. Applications range from human-machine
interfaces to security to entertainment. A fundamen-
tal problem in detecting and recognizing human action
is one of representation. Our point of view is that
human activity should be decomposed into building
blocks which belong to an “alphabet” of elementary ac-
tions; for example the activity “answering the phone”
could be decomposed into the sequence “step-step-step-
reach-lift”, where “step”, “reach” and “lift” may not
be further decomposed. We refer to these primitives
of motion as movemes. Our aim is then to build an
alphabet of movemes which one can compose to rep-
resent and describe human motion similar to the way
phonemes are used in speech. The word “moveme”
intended as primitive of motion was invented by [2].
They studied periodic or stereotypical motions such
as walking or running where the motion is always the
same and therefore their movemes, like the phonemes,
were repeatable segments of trajectory. [7] studied mo-
tions that were parametrized by an initial condition
and a target. They proposed that movemes ought to
be parametrized by goal and style parameters. Their
moveme models are phenomenological and non-causal.

In [4] the authors defined movemes in terms of causal
dynamical systems and developed an elementary off-
line segmentation algorithm for 2D motion, based on

an alphabet of two movemes, and activities composed
at most of two movemes. In this paper we attempt
to develop off-line classification and segmentation algo-
rithms, which, based on an alphabet of movemes, find
the sequence of switching times between movemes and
their class in a trajectory composed by a sequence of an
unspecified number of movemes. The dynamical sys-
tems representation for describing human motion and
the segmentation idea are not novel, some sample cita-
tions include [13, 11, 12]. Our contribution lies mainly
in the detailed treatment of the error of the algorithms
proposed, which is possible thanks to the dynamical
systems framework used.

In Section 2 we recall some basic definitions and in-
troduce the classification problem. In Section 3 and
4 we set up the segmentation problem. The problem
of segmenting data streams originating from different
unknown or partially known processes which alternate
in time is a general problem of interest to various ar-
eas, see for example [8, 9, 6]. We propose a solution
to the problem in our particular scenario in which each
one of the segments has been generated from the per-
turbed version of a linear dynamical system belonging
to a finite known set of possible linear models. By
using system identification techniques [10, 14] and pat-
tern recognition techniques [1, 15] we develop an off-line
segmentation and classification algorithm and provide
an analytical error analysis. In Section 5 we show the
results of the algorithm on the segmentation and clas-
sification problem of human drawing data.

2 Dynamical Definition of Moveme

We recall in this section a relaxed version of the defini-
tion of moveme already presented in [4], we introduce
the model class, and we set the classification problem.

2.1 Definitions and properties
Let M(Θ) denote a linear time invariant (LTI) system
class parameterized by Θ ∈ E, E a linear space, and let
U denote a class of inputs. Let y(t) = Y (M(Θ)|u,x0)(t),
for t ≥ t0, denote the output of M(Θ) once parameter



Θ ∈ E, input u ∈ U , and initial conditions x0 have
been chosen. Let θ ∈ E′ ⊂ E be a parameter lying in
a subspace of E, and define a map Υ : E → E′. We
write θ = Υ(Θ) to represent the transformation from
Θ ∈ E to the reduced set of parameters θ ∈ E′.

Definition 2.1 Let M1 = {M(Θ)|θ ∈ C1} and M2 =
{M(Θ)|θ ∈ C2} denote two subsets in M with Cj ⊂ E′

for j = 1, 2. M1 and M2 are said to be dynamically
independent if

(i) the class of systems M and the class of inputs
U are such that

Y (M(Θ1)|u1,x0)(t) = Y (M(Θ2)|u2,x0)(t), ∀t ≥ t0

if and only if (Θ1, u1) = (Θ2, u2) for u1 ∈ U and
u2 ∈ U ;

(ii) the sets C1 and C2 are non empty, bounded,
and have trivial intersection, i.e. C1

⋂
C2 = {∅}.

Each of the elements of a set M of mutually dynami-
cally independent model sets is called a moveme.
In this paper, we choose our model class M and input
u as asymptotically stable linear systems driven by a
unit step input with full state output:

ẋ = Ax + b

y = x , (1)

where A ∈ Rn×n, x = (x1, ..., xn) ∈ Rn, b ∈ Rn, so that
Θ = (A|b) ∈ E = Rn×(n+1) and θ = A ∈ E′ = Rn×n,
with Υ(A|b) = A.

Assumption 2.1 Given x(t) as the output of model
(1) we assume that the initial condition x0 is such
that for any v ∈ Rn+1, vT x(t) = 0, t ∈ [t1, t2], t2 >
t1 =⇒ v = 0, where x = (xT , 1)T .

According to this assumption there is a one-one corre-
spondence between x(t) and parameters (A|b) of model
(1), so that we have the following lemma whose proof
can be found in [3].

Lemma 2.1 Let x(t) and z(t) be generated by two LTI
systems

ẋ = A1x + b1 ż = A2z + b2 (2)

and let Assumption 2.1 hold. Then z(t) = x(t) for all
t if and only if (A1|b1) = (A2|b2).

Thus, by this lemma, property (i) of Definition 2.1 is
satisfied by our choice of M and U . Property (ii) is
verified if we choose for example Cj , j = 1, ...,m as
balls in Rn×n with centers Aj

c ∈ Rn×n, j = 1, ...,m,
and radii rj , such that:

Cj = Brj (A
j
c) , j = 1, ...,m

Cj
⋂

Ck = {∅}, j (= k
(3)

where m is the number of movemes and the matrix
norm is the Frobenius norm. Given any signal x(t) we
can determine a good representative of such a signal in
the class of models (1) by minimizing the cost function
(see for example [10]):

(Â|b̂) = arg min(A|b)
1
2

∫ T

t0

(ẋ − (A|b)x)T (ẋ − (A|b)x)dt

(4)
with x = (xT , 1)T , so to get the estimate of x in model
class (1) as ˙̂x = Âx̂ + b̂ with x̂(t0) = x(t0). In the
case in which x(t) has been generated by (1), by virtue
of Assumption 2.1 it is easy to check that (4) leads
to (Â|b̂) = (A|b), so that if A ∈ Cj , for some j ∈
{1, ...,m} we can classify x(t) as output of moveme M j

just by finding k ∈ {1, .., j, ..m} such that Â ∈ Ck.
The solution is unique because of trivial intersection
between sets as specified in (3). The following section
addresses the same classification problem when x(t) has
been generated by a perturbed version of system (1).

2.2 Classification Problem
Let the signal x(t) be generated by

ẋ = (Aj
c + δU)x + b + d(t)

y = x .
(5)

with A = Aj
c + δU with U a unit norm matrix and

Aj
c center of Cj , for some j ∈ {1, ...,m} and d(t) is a

bounded realization of white noise. Under what condi-
tions on A and d(t) can we still classify x(t) as output of
moveme M j? The answer is provided by the following
lemma whose proof is in [3].

Lemma 2.2 Let x(t), t ∈ [t0, T ] be generated by (5),
where Aj

c is the center of Cj for some j ∈ {1, ...,m} as
in (3). Let Â be the least squares estimate according to
(4). There exist positive constants d and δ such that if
δ ≤ δ and ‖d(t)‖ ≤ d, then

argk∈{1,...j,...m}{‖Â − Ak
c‖ ≤ rk} = j.

In this section we have recalled the definition of
moveme and introduced the classification problem. In
the next section we use these notions to develop the
segmentation algorithm.

3 Problem Statement

Consider the sequence of systems for i = 0, ..., l
{

ẋ = (Ai + δUi)x + bi + d(t) t ∈ [τi−1, τi)
ẋ = (Ai+1 + δUi+1)x + bi+1 + d(t) t ∈ (τi, τi+1]

(6)
with x ∈ Rn, Ai ∈ Rn×n an unknown matrix whose
value can take place in the set of known Hurwitz ma-
trices {A1

c , ..., A
m
c }, which are centers of the sets defined
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Figure 1: Signal considered for computation of approxi-
mation and parametric errors (one component
shown) and estimated signal x̂ (dashed line).

in (3), i.e. Cj = Brj (Aj
c) with Cj

⋂
Ck = {∅} for j (= k,

bi ∈ Rn unknown constant vectors, Ui ∈ Rn×n norm
one matrices (according to Frobenius norm), δ ∈ R
modeling uncertainty with |δ| ≤ δ, d(t) realization of
white noise such that ‖d(t)‖ ≤ d, τi unknown switching
times with τ0 known starting time and τl known ending
time. Consider also the related nominal system:

{
ẋ = Aix + bi t ∈ [τi−1, τi)
ẋ = Ai+1x + bi+1 t ∈ (τi, τi+1]

(7)

with interconnection condition

ẋ(τ−i )T ẋ(τ+
i )

‖ẋ(τ−i )‖‖ẋ(τ+
i )‖

≤ ρ0 < 1 . (8)

where we define

ẋ(τ−i ) = lim
τ→τ−

i

ẋ(τ), ẋ(τ+
i ) = lim

τ→τ+
i

ẋ(τ).

The interconnection condition gives a bound on
the discontinuity in the trajectory’s derivative at the
switching points. We wish to obtain sufficient con-
ditions on noise level and parameter uncertainty that
allow off-line determination of the sequence of times
{τ1, ..., τl−1} and the sequence of matrices {A1, ..., Al}
from the observation of state x. If we have a good
guess of the switching times, then we can apply Lemma
2.2 so to solve the classification problem in each in-
terval between two switching times. We thus focus
our attention on the segmentation part of the prob-
lem. We use an iterative approach in which at each
iteration we look for the maximizer of a function de-
fined on [t0, tM ] where tM = τl and t0 is a starting
time which coincides with τ0 at the first iteration. We
want to show the maximizer of such function falls in an
interval I around the first switching time encountered
after t0; moreover this interval should shrink down to
the switching point when noise and parameter uncer-
tainty go to zero. To define such a function we define
three quantities for system (6): the approximation er-
ror, the parametric error, and the transition factor at

time τ . The least squares estimate for x(t), t ∈ [t0, τ ],

from (4) is (Â|b̂)(τ, t0) =
[∫ τ

t0
ẋ xT dt

] [∫ τ
t0

x xT dt
]−1

,

which generates the system ˙̂x = Â(τ, t0)x̂ + b̂(τ, t0),
with x̂(t0) = x(t0). This situation is depicted in Figure
1, where we report the candidate segmentation time τ ,
the switching time τi, the portion of signal under study
composed by the sequence of two movemes (solid line
between t0 and τ), the estimated trajectory (dashed
line). We define the parametric error at time τ as

ep(τ, t0) = min
j=1,...,m

‖Â(τ, t0) − Aj
c‖, (9)

the approximation error at time τ as

ea(τ, t0) =
1

τ − t0

∫ τ

t0

(x − x̂)T (x − x̂)dt , (10)

and the transition factor is defined as

Tr(τ) = 1
2

(
1 − ẋav(τ−)T ẋav(τ+)

‖ẋav(τ−)‖‖ẋav(τ+)‖

)
(11)

with ẋav(τ−) := 1
∆τ

∫ τ
τ−∆τ ẋ(t)dt and ẋav(τ+) :=

1
∆τ

∫ τ+∆τ
τ ẋ(t)dt, where ∆τ is a positive constant de-

pending on perturbation level that will be determined
later. Our choice for the function to be maximized is

W (τ, t0) =
exp(−ep(τ,t0)

2

σ2 )Tr(τ)
a + ea(τ, t0)

, τ ∈ (t0, tM ] (12)

where a is an arbitrarily small positive constant to pre-
vent the denominator from being zero. By maximiz-
ing function W (τ) we look for the value of τ that has
small approximation error, small parametric error, and
a high transition factor. Expression (11) involves in-
tegration over time ∆τ to attenuate the effect of noise
and its expression for system (7) is obtained by letting
∆τ → 0. In such a case we find that Tr(τi) ≥ (1−ρ0)/2
and for τ (= τi, Tr(τ) = 0. The idea of the transi-
tion factor term is to preserve this property as much
as possible in the perturbed case so that all the times
τi +∆τ ≤ τ ≥ τi+1 −∆τ and t0 < τ ≤ τi −∆τ are pe-
nalized with respect to time τi. We also choose to min-
imize ep(τ, t0) so to reduce the effect of perturbation
on the parameter estimates. Alternatively, one could
constrain the estimates Â to lie in a ball around Ai, but
we do not know the value of Ai a priori, we just know
that it belongs to a set of possible values. Therefore we
decide to minimize the distance of Â from the closest
point Aj at time τ according to a Gaussian metric.

4 Main Result

Consider the sequence of dynamical systems, for t ∈
[τ0, τl], switching at unknown times {τ1, ..., τl−1} de-
fined in (6). We make a number of assumptions on the
nominal system (7) and its perturbation:



Assumption 4.1 The ith segment is of class j, with
j unknown. In formulas we have (Ai + δUi) ∈ Cj ,
and Ai = Aj

c ∈ {A1
c , ..., A

m
c } for some j and the set

of known Hurwitz matrices, {A1
c , ..., A

m
c }, is such that

Cj = Brj (Aj
c) with Cj

⋂
Ck = {∅} for j (= k.

Assumption 4.2 δ ∈ R represents modeling uncer-
tainty with |δ| ≤ δ, and d(t) is realization of white
noise such that ‖d(t)‖ ≤ d.

Assumption 4.3 The nominal system
{

ẋ = Aix + bi t ∈ [τi−1, τi)
ẋ = Ai+1x + bi+1 t ∈ (τi, τi+1]

satisfies the interconnection condition

ẋ(τ−i )T ẋ(τ+
i )

‖ẋ(τ−i )‖‖ẋ(τ+
i )‖

≤ ρ0 < 1 .

Assumption 4.4 The state x(t) of the nominal sys-
tem is such that vT x(t) = 0, t ∈ [t1, t2], t2 > t1 =⇒
v = 0, where x = (xT , 1)T .

Theorem 4.1 Consider the sequence of dynamical
systems given in (6) subject to Assumptions 4.1 to 4.4.
Let the function W (τ, t0) be defined as

W (τ, t0) =
exp(−ep(τ,t0)

2

σ2 )Tr(τ)
a + ea(τ, t0)

, τ ∈ (t0, tM ]

for t0 = τi−1 and tM = τl. Then there exist bounds
δ∗ and d∗ such that if δ ≤ δ∗ and d ≤ d∗ the function
W (τ, t0) admits its global maximizer τ̂i for τ̂i ∈ I =
[τi−∆τ, τi +∆τ+] where I contracts to τi as δ → 0 and
d → 0. Moreover the estimated class ĵ of the segment
in [t0, τ̂i] is equal the class of ith segment generated by
system (6).

The proof of this theorem relies on the following lem-
mas. In what follows we omit the dependence on t0.

Lemma 4.1 Consider system (7). There exists k1 > 0
such that

‖(Â|b̂)(τ) − (Ai|bi)‖2 ≥ k1(τ − τi)2 , τi < τ < τi+1.

Lemma 4.2 Consider system (7) and ea(τ) as defined
in (10), there exists k2 > 0 such that

ea(τ) ≥ k2‖(Â|b̂)(τ) − (Ai|bi)‖2 , τi < τ < τi+1.

Lemma 4.3 Let A and A1 be Hurwitz matrices and
consider the pair of systems

ẋ = Ax + b (13)
ż = A1z + b1 + d(t) (14)

with x and z in Rn, A, A1 ∈ Rn×n, b and b1 in Rn,

‖d(t)‖ ≤ d and ‖(A|b) − (A1|b1)‖ ≤ δ. Then if x(0) =
z(0) there exist k3 > 0 and k4 > 0 such that

‖x − z‖2 ≤ k3δ + k4d ∀t ≥ 0. (15)

Lemma 4.4 Let ep(τ) and ea(τ) denote parametric
errors and approximation errors given in expressions
(9) and (10) for the sequence of dynamical systems (6).
Let e0

p(τ) and e0
a(τ) denote parametric errors and ap-

proximation errors for the related nominal system (7).
Then there exist constants kp > 0 and ka > 0 such that

e0
p(τ) −∆ ≤ ep(τ) ≤ e0

p(τ) +∆ (16)
e0
a(τ) − ε ≤ ea(τ) ≤ e0

a(τ) + ε (17)

with ∆ = kp(d + d
2
+ d

3
+ δ + δ

2
+ δ

3
) and ε = ka(d +

d
2

+ d
3

+ d
4

+ δ + δ
2

+ δ
3

+ δ
4

+ δ
6
).

Lemma 4.5 Let the transition factor be given by (11)
for system (6). There exist positive constants c1 and
c2 such that if

∆τ = −c1 ln
(

1 − 2β
1 − β

)
(18)

then the transition factor is such that

Tr(τ) ≤ c2β, τi−1 +∆τ ≤ τ ≤ τi −∆τ,(19)

Tr(τ) ≥ 1 − ρ0 − ϕ

2
, τ = τi, (20)

for all i, where β and ϕ are perturbation dependent
quantities and go to zero as the perturbation goes to
zero.

The proof of the theorem and of the lemmas can be
found in [3, 5].

Note that the assumption that t0 = τi−1 is valid only
at the first iteration in which t0 = τ0. Then we find
the maximizer τ̂1 of W (τ) for τ ∈ (τ0, τl) which lies
in an interval I = [τ1 − ∆τ, τ1 + ∆τ+] around τ1 and
is an estimate of the first switching time τ1. Then we
have to set t0 for the second iteration so that the first
switching point encountered after t0 is τ2. In order
to do this we set t0 = τ̂1 + ∆τ so that we make sure
that the first switching time encountered is τ2 and not
τ1 again. In fact if the maximization process of W
takes place with t0 > τi and in the worst case scenario
with t0 = τi + ∆τ + ∆τ+ nothing changes as long as
T −(∆τ +∆τ+) > 2∆τ that implies an other condition
on the noise level, which added to the ones found in
Theorem 4.1 give new values for d∗ and δ∗.

Remark 4.1 Assume that in the expression of W (τ)
given in (12) we add a factor s(τ) with the properties
that s(τ) ∈ [ 1

K , 1) for all τ , K ≥ 1 and s(τ) ≥ 1− ν for
τi−1 < τ ≤ τi, with ν , 1. Then the proof of Theorem
4.1 proceeds at the same way with minor modifications
(see [3] for details.)



5 Algorithm Implementation

The segmentation algorithm was implemented in MAT-
LAB 6.0 in the case of planar motion modeled by the
discrete time version of

Ẋ =
(

Ax 0
0 Ay

)
X + b, Ax,y =

(
0 1

a1,x,y a2,x,y

)

(21)
where X = (x, ẋ, y, ẏ)T , with xy coordinates in the
plane, and b = (0, bx, 0, by)T . The interconnection con-
dition that holds in this case is by replacing ẋ in equa-
tion (8), with (ẋ, ẏ)T (which does not affect result of
Lemma 4.5.) The function W (τ) takes the form

W (τ) = e

(
− (ea(τ)−ec

a)2

σ2
a

)
Tr(τ)e(−ē2

p(τ))s(τ)p(τ)
a + ea(τ)

(22)

The term exp(− (ea(τ)−ec
a)2

σ2
a

) represents a Gaussian dis-
tribution of the approximation error around a mean
value that can be obtained by processing part of the
data. The parametric error ep takes into account also
possible non-spherical shapes of the distribution of the
parameters around the centers. Using the same no-
tation as used for defining ep it can be written as
e2
p(τ) = minj(Â − Aj)TΣ−1

j (Â − Aj)/
√

det(Σj). The
term s(τ) satisfies the properties described in Remark
4.1, which can be used to include additional infor-
mation other than that derived from the dynamical
parameters. Its choice will be described in the ex-
periment section. Since pauses occur for the draw-
ing tasks described in the next section and must be
taken into account by the algorithm, we introduce
p(τ) = k/(pause length). Such a term penalizes seg-
ments containing pauses, which are not supposed to
take place in a moveme.

The time t0 that is the starting point of each itera-
tion is obtained as explained at the end of the proof of
Theorem 4.1. The way we implement this is by taking
into account that the end of each segment reaches a
steady state with poor amount of signal. We estimate
the length of the signal after τ̂i that has a poor con-
tent of information: this gives an estimate of the time
interval we have to add to τ̂i in order to find a point t0
which lies in the following segment.

The segmentation algorithm can be summarized as:

(i) initialization: t0 = τ0, tM = τl, i = 1;

(ii) maximize W (τ) for τ ∈ (t0, tM ]:
τ̂i = maxτ∈(t0,tM ]W (τ);

(iii) compute class j of the segment found:
j = argk∈{1,...,m}(‖Â(τ̂i) − Ak

c‖) ≤ rk;

(iv) compute ∆τ ;

(v) t0 = τ̂i +∆τ ;

(vi) i = i + 1;

(vii) go to (ii);

where we recall that τ0 and τl are the starting and
ending points of the data stream. Note that the number
l of segmenting points does not need to be known a
priori, only tl = tM is supposed to be known.

6 Experimental Results

To test our approach, we studied a 2D drawing task
in which a set of shapes were drawn by five different
subjects using a computer mouse.

6.1 Experimental setup
Our subjects drew using the XPaint program on a PC
running Red Hat Linux 7.2 with a screen measuring
1600× 1200 pixels and a working window of 700× 500
pixels. The user left the trace of the trajectory in the
working window only when the left mouse button was
pressed. For acquiring x and y time traces we imple-
mented a C routine which was activated in the back-
ground at the beginning of each experimental session
and sampled the (x, y) position of the pointer every-
where on the screen at the rate of 100 Hz and a spa-
tial resolution of one pixel. The routine makes use of
XWindow libraries and captures the pointer position
through the function “XQueryPointer” which is called
by a timer every 10 ms and gives the coordinates in pix-
els with respect to the upper left corner of the screen.
Every 30 minutes the data was saved into files by means
of a parallel process. The data so obtained consists of
an array with three columns containing time, x position
at that time, y position at the same time. The time in-
terval between one sample and the following one turned
out to be mostly constant except for slight variations
every once in a while due to higher priority of other
processes. In order to have constant sampling time the
data was processed through an algorithm that linearly
interpolates data in the regions in which the time inter-
val is not exactly 10 ms. Pixelization of the coordinates
does not heavily affect the data since the trajectories
under study are usually more than 50 pixels long.

We defined 4 different drawings by means of proto-
types: car, sun, ship, and house. Each of the 5 sub-
jects was shown the prototypes and was asked to repro-
duce them on a 700× 500 pixel canvas; the dimensions
of each drawing could be chosen arbitrarily according
to the ones with which the user was more comfort-
able, the only specification was to reproduce the pro-
totypes with as high fidelity as possible in a reasonable
amount of time. Each subject drew 10-20 examples for
each shape. In order to accomplish each drawing task



the user had to perform a sequence of actions such as
“reach a point A” and “draw a line up to point B”.
These actions are the ones that we will consider as can-
didates for being elementary motions and then defining
a pair of movemes. The idea is then to use the result
of Theorem 4.1 so as to find the sequence of reach and
draw movements that the user did in order to accom-
plish the task and the switching times between one and
the other.

6.2 Classification
To obtain reach and draw dynamical parameters ac-
cording to model (21), 140 examples of reach trajecto-
ries were captured from a video game implemented in
MATLAB 6.0, and 140 examples of draw trajectories
were segmented out from cars and houses of 2 of the
subjects. By proceeding with standard pattern recog-
nition techniques (see [1] for example), we trained a
Gaussian classifier on this data. Since our data set con-
tains also circular shapes like the wheels of the cars, we
also introduced a circle class beyond the reach and draw
classes. The dynamical model by which we represent
such a class is the coupled version of system (21):

Ẋ =
(

Ax Cx

Cy Ay

)
X + b, Cx,y =

(
0 0

c1,x,y c2,x,y

)

(23)
so that we have 8 parameters for classification. We
considered an additional parameter that is the value of
ω/T where ω is the principal frequency estimated and
T is the duration of the trajectory: we expect for a
circle that to be about 2π. We then trained a Gaus-
sian classifier in R9 on a training set composed of 101
examples derived from the wheels of the cars. The cu-
mulative training and testing errors for the three-class
classification problem are respectively 3.4% and 4.6%,
when testing was performed on a test set (deriving
from different subjects) of 323 additional reach exam-
ples, 118 additional draw examples, and 124 examples
of the wheels of the cars and suns of two other sub-
jects. These classification errors increase if we choose
dynamical models different from model (21) for reach
and draw: we tried first, second, third and fourth or-
der coupled and decoupled dynamical systems, and in
all the cases the classification performance was worse.
This justifies the choice of (21) to represent reach and
draw movemes.

6.3 Segmentation algorithm performance
We implemented the proposed segmentation algorithm
in MATLAB on the data acquired as described in
the previous sections considering a number of three
movemes: the reach, the draw, and the circle movemes.

For improving the performance we introduced in the
expression of W given by (22) the term s(τ), which
takes explicitly xy coupling information into account.
The need for introducing this term comes from the fact

A
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Figure 2: The coupling parameters (diamonds) obtained
for the vertical and horizontal draws separately
and the coupling parameters (stars) obtained
for angles AOB.

that system (21), chosen for representing the movemes,
can approximate with acceptable approximation errors
angles (shown as AOB in Figure 2) in xy plane, while
having parameters that are still classified as reach or
draw. Then the estimated parameters of system (21)
for a given trajectory do not contain information to
discriminate between one draw and an angle, and this
is due to the absence of any xy coupling information.
Such information would discriminate quite clearly be-
tween the single draw case and the angle of the kind
of AOB shown in Figure 2: for approximating an xy
trajectory with the simplest system containing xy cou-
pling, such as

(
ẋ
ẏ

)
=

(
d1 c1

c2 d2

) (
x
y

)
+ b, (24)

we obtain estimated coupling terms (ĉ1, ĉ2)T = ĉ that
are close to zero for the angle and bounded away from
zero for the single draw, as shown in Figure 2. Thus we
choose a shaping term in the expression (22), for the
reach and the draw classes, of the form

s(τ) =
1

1 + L exp(−(ĉ − c)TΣ−1
c (ĉ − c))/

√
det(Σc)

,

with L ≥ 1, where c and Σc are obtained by means of
a learning phase in which we train the Gaussian clas-
sifier, exp(−(z − c)TΣ−1

c (z − c))/
√

det(Σc), on a set of
about 25 examples of angles. The value of Σc turns out
to be very small resulting in a very narrow Gaussian
around the mean as we can deduce form the concen-
trated cluster of angle’s parameters of Figure 2. Thus
angles will be penalized with a value of s(τ) << 1 for
L big. By simple computation we can show that s(τ)
satisfies the conditions of Remark 4.1.

Since in our data set some squares (windows of the
houses) have rounded angles and look very similar to
circles, we obtained a slight performance improvement
by introducing a higher level step in the algorithm, in



which we decide if a segment detected as a circle is more
likely to be a square. At each iteration in which a circle
is detected, to decide if the data segmented as a circle
is more likely to be a square, we run the segmentation
algorithm again on that data without the circle clas-
sifier (that is by assuming that the data is a sequence
of reaches or draws or both). Then if the algorithm
segments it into a sequence of draws, we compute the
likelihood of each draw that has been detected as the
product exp

(
− (ea(τ)−ec

a)2

σ2
a

)
exp(−ē2

p(τ)), which is the
part of (22) that quantifies how good the detected seg-
ment is as representative of its class. We then average
the likelihood of all the detected draws and compare
it to a threshold obtained by preprocessing some of
the squares and some of the circles (about 10 examples
each). This higher level process does not affect perfor-
mance drastically, but turns out to be helpful in 3–4
cases in which the windows of the houses have not evi-
dent corners. For minimizing the algorithmic time, we
set tM a priori to be t0 plus the maximum duration of
a segment that in our case turned out to be 500 time
steps.

The algorithm takes as input the signal (x(t), y(t)) and
gives as outputs a sequence of segmentation points and
the classification of the trajectory between two detected
segmentation points. The algorithm performance was
computed by assuming a ground truth: we expected
to detect a segmentation point at the beginning and
at the end of each moveme and also we expected each
one of them to be properly classified. Then the algo-
rithm error was computed as the sum of classification
error (i.e., a trajectory which is correctly segmented
but wrongly classified) and segmentation error (i.e., a
trajectory which is over segmented, or a missed segmen-
tation point). An estimate of such an error was com-
puted on segmentation results on cars, ships, houses
sequences deriving from two subjects each. The error
estimate is reported in Table 1, which was obtained by
counting the total number of segmentation points de-
tected (denominator) and the number of segments that
were clearly mis-classified or mis-segmented (numera-
tor).

Table 1: Algorithm error

class. error segm. error cum. error

CAR 112
1333 = 8.4% 20

1333 = 1.5% 9.9%

HOUSE 108
1050 = 10.29% 23

1050 = 2.19% 12.48%

SHIP 99
1093 = 9.06% 3

1093 = 0.27% 9.3%

The average error is about 10.5%. We report some
pictures (Figures 3, 4, 5), which show the segments

classified as reach, the segments classified as draws, the
ones classified as circles and the unclassified ones. The
little circles represent the segmentation points that the
algorithm found.
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Figure 3: Segmentation results on 4 houses of subject 3.
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Figure 4: Segmentation results on 4 cars of subject 1.
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Figure 5: Segmentation results on 4 ships of subject 1.

6.4 Categorization
To illustrate a possible usage of the output of the seg-
mentation algorithm, we want to recognize what is the
category (car, house, ship) of a certain drawing based
on the number of reach, draw and circles that accord-
ing to the segmentation algorithm composes it. To this



aim we associate to each sequence corresponding to
one of the three shapes the vector of natural numbers
(R,D,C)T , which are the number of reaches, draws
and circles detected. We then train a Gaussian classi-
fier with the (R,D,C)T vectors of 15 cars (as drawn
by one subject), 9 houses (from two subjects), and 4
ships (from two subjects), and obtain 0% training er-
ror. The test is performed on the remaining 53 ships
(from three subjects), 36 houses (from three subjects),
31 cars (from two different subjects) and we obtain
5.4% test error, which is quite small since we based
our discrimination just on the basis of the number of
movemes and not on their order.

7 Conclusions

We have addressed the classification and segmentation
problems and proposed an algorithm with error anal-
ysis. The experimental results show that the segmen-
tation and classification performance of the proposed
algorithm is about 90% on our data set. We finally
show, with an example, that the output of the seg-
mentation algorithm can be used to solve higher level
tasks like discriminating between activities composed
by movemes and found an error on our data set of about
5% when using a simple-minded recognition strategy.

Future directions include the exploration of 3D motion
of the human body, generalization of the current algo-
rithms to the on-line case, and set up a possible solution
to the prediction problem. We are also interested in
exploring the use of dynamical event constraints to im-
prove the quality and robustness of segmentation and
classification algorithms. For example we know that
in the sequence “step-step-reach-lift” for answering the
phone, it is not possible to lift the phone before having
reached it. These kinds of constraints could be em-
bedded in a model which gives a structure to the way
in which movemes are composed. Future theory direc-
tions include the observability and estimation problems
of hybrid systems.
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