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Abstract— This tutorial paper presents an introduction to
systems and synthetic molecular biology. It provides an intro-
duction to basic biological concepts, and describes some of the
techniques as well as challenges in the analysis and design of
biomolecular networks.

I. I

Biologists have long employed phenomenological and
qualitative models in order to help discover the components
of living systems and to describe their behaviors. On the
other hand, the analysis in living organisms of the dynamical
properties of complex molecular reaction networks com-
posed of interacting genes, mRNA, proteins, and metabolites
requires a more quantitative and systems-level knowledge.
Thus, in recent years the field of systems biology has
emerged, whose focus is the quantitative analysis of cell
behavior, with the goal of unraveling the basic dynamic
processes, feedback control loops, and signal processing
mechanisms underlying life,

Complementary to systems biology is the engineering dis-
cipline of synthetic biology. The goal of synthetic biology [3]
is to extend or modify the behavior of organisms, and control
them to perform new tasks. Through the de novo construction
of simple elements and circuits, the field aims to foster
an engineering discipline for obtaining new cell behaviors
in a predictable and reliable fashion. The ultimate goal is
to develop synthetic circuitry to be employed in targeted
drug design, in the construction of molecular computers,
and in other applications. In the process, synthetic biology
plays a role in improving the quantitative and qualitative
understanding of basic natural phenomena, since one ap-
proach to the testing of mathematical models of biological
systems is to design and construct instances of the system in
accordance to hypothesized models. Discrepancies between
expected behavior and observed behavior highlight either
research issues that need more studying, or knowledge gaps
and inaccurate assumptions in models.

While tools from controls and dynamical systems theory,
such as systems identification and robustness analysis, have
been put to great use in systems biology for the analysis of
naturally occurring biological systems, the use of this theory
for the design of synthetic biological circuits is still emerg-
ing. The pioneering work of several biologists and physicists
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[4], [5], [8], [10] shows the potential and the need for
such tools when tackling the challenges of biological design.
The experimental results of [5] and of [20] on a negatively
auto-regulated gene agree with the mathematical predictions
obtained by using straightforward feedback control analysis.
However, more complicated systems such as the oscillators
built in [8] and in [4] do not provide experimental results
that match well the theoretical predictions. In particular,
intrinsic and extrinsic noise sources [21] seem to disrupt
the oscillating behavior of the repressilator [8]. In [4],
the oscillations are only damped, which suggests that the
parameters of the constructed system may not be inside the
theoretically computed range of parameters that guarantee
oscillations. From these results, the need emerges for robust,
model based design.

Control and systems theory have much to offer to synthetic
biology. But, conversely, one may look forward to technolo-
gies inspired by biological research: evolution has resulted
in systems that are highly fault-tolerant, nonlinear, feedback-
rich, and truly hybrid in the sense that the digital information
encoded in DNA controls chemical concentrations in cells.
Advances in genomic research are continually adding to de-
tailed knowledge of such systems architecture and operation,
and one may reasonably argue that they will constitute a rich
source of inspiration for innovative solutions to problems of
control and communication engineering, as well as sensor
and actuator design and integration.

This paper is organized as follows. In Section II, the
basics on living organisms and on gene expression are
introduced. In Section III, the basic control mechanisms
of gene expression are introduced as they are among the
key elements on which synthetic biological design relies.
In Section IV, we introduce the modeling formalism used
to describe the behavior of average molecule quantities.
Synthetic biological design heavily relies on such models.
In Section V, some analysis tools are reviewed. In Section
VI, we briefly review the basic technology that has enabled
the development of synthetic biology in the past few years.
In Section VII, we provide an overview of the main network
motifs that have been designed and built in living cells. In
Section VIII, we discuss the fundamental issue of modular
design, and propose a technique that, in principle, may be
used in order to achieve modularity.

II. F   
A. Prokaryotes, Eukaryotes, Archaea, and Viruses

At the highest level, biologists classify life forms into
prokaryotes, eukaryotes, and archaea. Prokaryotes are or-
ganisms whose cells do not have a nucleus nor other well-
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defined compartments; their genetic information is stored in
chromosomes (typically circular) as well as in smaller circu-
lar DNA molecules called plasmids. Eukaryotes have cells
with organized compartments; their genetic material is stored
in chromosomes (typically linear) that lie in the nucleus.
Most prokaryotes, with few exceptions, are unicellular, and
most are bacteria. Escherichia coli is an example bacterium.
Eukaryotes might be unicellular (e.g., yeast) or multicellular
(e.g., plants and animals). Archaea were proposed as a
third life form in the mid-1970s, and they share many
characteristics with both prokaryotes and eukaryotes.

Eukaryotic cells are enclosed in a plasma membrane,
which is made up of lipids and also contains proteins and
carbohydrates, and acts as a protective barrier and gatekeeper,
permitting only selected chemicals to enter and leave the cell.
(In addition to membranes, plant cells also have a rigid cell
wall.) Their interior is called the cytoplasm, and many types
of organelles (specialized compartments) the cell (mitochon-
dria, responsible for energy production through metabolism,
and containing a very small amount of DNA; chloroplasts for
photosynthesis; ribosomes, responsible for protein synthesis,
and made up themselves of proteins and RNAs; endoplasmic
reticulum; and so forth). The cytoskeleton, made up of
microtubules and filaments, gives shape to the cell and plays
a role in intracell substance transport. Prokaryotic cells, on
the other hand, are surrounded by a membrane and cell wall,
but do not contain the usual organelles.

Viruses consist of protein-coated DNA or RNA, and are
not usually classified as living organisms, because they
cannot reproduce by themselves, but rather require the ma-
chinery of a host cell in order to replicate. In particular,
bacteriophages (λ-phage and 434-phage are two examples)
are viruses that infect bacteria.

B. Gene expression
Research in molecular biology, genomics, and proteomics

has produced, and will continue to produce, a wealth of data
describing the elementary components of intracellular net-
works as well as detailed mappings of their pathways and en-
vironmental conditions required for activation. The genome,
that is to say, the genetic information of an individual, is
encoded in double-stranded deoxyribonucleic acid (DNA)
molecules, which are arranged into chromosomes. It may
be viewed as a “parts list” which describes all the proteins
that are potentially present in every cell of a given organism.
Genomics research has as its objective the complete decoding
of this information, both the parts common for a species as
a whole and the cataloging of differences among individual
members. The key paradigm of molecular biology: “DNA
makes RNA, RNA makes protein, and proteins make the
cell” is called the central dogma of molecular biology (Crick,
1958). See Figure 1. A separate process, replication, occurs
more rarely, and only when a cell is ready to divide (S phase
of mitosis, in eukaryotes), and results in the duplication of
the DNA, one copy to be part of each of the two daughter
cells. The term gene expression refers to the process by
which genetic information is ultimately transformed into

Fig. 1. Central dogma of molecular biology: Gene expression.

working proteins. The main steps are transcription from
DNA to RNA, translation from RNA to linear amino acid
sequences, and folding of these into functional proteins, but
several intermediate editing steps usually take place as well.
(Sometimes the term “gene expression” is used only for
the transcription part of this process.) At any given time,
and in any given cell of an organism, thousands of genes
and their products (RNA, proteins) actively participate in an
orchestrated manner.

The DNA molecule is a double-stranded helix made of a
sugar-phosphate backbone and nucleotide bases (Figure 2).
Each strand carries the same information, which is encoded
in the 4-letter alphabet {A,T,C,G} (the nucleotides Adenine,
Thymine, Cytosine, and Guanine), in a “complementary”
form (A in one strand corresponds to T in the other, and
C to G). The two strands are held together by hydrogen
bonds between the bases, which gives stability but can be
broken-up for replication or transcription. One describes the
letters in DNA by a linear sequence such as:

gcacgagtaaacatgcacttcccaggccacagcagcaag...

and genes (instructions that code for proteins) are substrings
of the complete DNA sequence. (Besides genes, there are
regulatory and start/stop regions that help delimit genes as
well as determine if and when they should be “active”. In
addition, there are also regions that have other roles, such
as coding for RNA that may not lead to proteins.) Because
of its double-stranded nature, DNA is chemically stable, and
serves as a good depository of information. One might think
of DNA storage as a “hard disk” in a vague computing
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Fig. 2. DNA helix.

analogy. The “read-out” of genetic information (bringing-
in the instructions into working memory for execution, in
our computer analogy) begins when DNA information is
transcribed letter by letter into “RNA language.” Ribonucleic
acid (RNA) is a nucleic acid very similar to DNA, but less
stable than DNA, and almost exclusively found in single-
stranded form (with exceptions such as the RNA in some
viruses). RNA language is basically the same as DNA’s, with
the minor (for us) detail that in RNA, the amino acid thymine
is replaced with uracil, symbolized by the letter U. This
process is known as transcription. The “copying-machine” is
called RNA polymerase. A polymerase is, generally speaking,
an enzyme - a type of protein that acts as a catalyst - that
helps in the synthesis of nucleic acids. RNA polymerase is,
thus, a polymerase that helps make RNA, more precisely
messenger RNA (mRNA). A promoter region is a part of
the DNA sequence of a chromosome that is recognized
by RNA polymerase. In prokaryotes, the promoter region
consists of two short sequences placed respectively 35 and 10
nucleotides before the start of the gene. Eukaryotes require
a far more sophisticated transcriptional control mechanism,
because different genes may be only active in particular cells
or tissues at particular times in an organism’s life; promoters
act in concert with enhancers, silencers, and other regulatory
elements.

C. Proteins: the control elements
Proteins are the primary components of living systems.

Among other roles, they form receptors that endow the cell
with sensing capabilities, actuators that make muscles move
(myosin, actin), detectors for the immune response, enzymes
that catalyze chemical reactions, and switches that turn genes
on or off. They also provide structural support, and help in
the transport of smaller molecules, as well as in directing the
breakdown and reassembly of other cellular elements such as

lipids and sugars. Ultimately, one might say that cell life is
about proteins and how and when they are produced. After
transcription, translation is the next step in the process of
protein synthesis and it is performed by the ribosomes. The
information in the mRNA is read, and proteins are assembled
out of amino acids (with the help of transfer RNA (tRNA),
which help bring in the specific amino acids required for each
position). RNA language is translated into protein language
by a mapping from strings written in the RNA alphabet Σn =
{U,A,G,C} into strings written in the amino acid alphabet:

Σa = {A,R,D,N,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V}.

Every sequence of three letters in the RNA alphabet Σn is
replaced by a single letter in the alphabet Σa. The genetic
code explains how triplets of bases map into individual
amino acids [1]. The shape of a protein is what largely
determines its function, because proteins interact with each
other, and with DNA and metabolites, through lego-like
fitting of parts in lock and key fashion, transfer of small
molecules, or enzymatic activation. Therefore, the eluci-
dation of the three-dimensional structure of proteins is a
central goal in biochemical research; this subject is studied in
the fields of proteomics and structural biology. The Protein
Data Bank (http://www.rcsb.org/index.html) based at Rutgers
University, USA, serves as an online catalog of protein struc-
tures. Sometimes, protein structure can be gleaned through
physical methods, such as X-ray crystallography or NMR
spectroscopy. Very often, however, the structure of a protein
P can only be estimated, based upon a comparison with
an homologous protein Q whose structure has been already
determined (as chemists say, “solved”). One says that P
and Q are homologous if they are, in an appropriate sense,
close in amino acid sequence, or equivalently, in the DNA
sequences for the genes coding for P and Q. One measure of
closeness is Hamming distance (by how many “letters” do P
and Q differ?), but more sophisticated measures used in prac-
tice include allowance for deletions and insertions of letters
in P and Q. The rationale behind homology-based protein
shape determination is that homologous proteins probably
share a common evolutionary or developmental ancestry, and
hence perform similar functions. Mathematical methods of
computational biology (bioinformatics) play a central role
in homology approaches; the critical assessment of structure
prediction methods (CASP) competition compares methods
from different researchers. Yet another set of techniques for
elucidating the shape of proteins from their description as a
linear sequence of amino acids is that of energy minimization
methods. One views the protein-folding process as a gradient
dynamical system, of which steady states are the stable
configurations. This method is very difficult to apply, because
of the complexity of the energy function, but has been useful
for comparatively small proteins.

After translation, proteins are typically subjected to post-
translational modifications, such as the addition of phosphate
or methyl groups, or, in eukaryotic cells, ubiquitination,
the process by which a protein is inactivated by attaching
ubiquitin to it. Ubiquitin is a protein whose function is to
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mark other proteins for proteolysis (degradation), a process
which occurs at the proteasome. One of the key properties of
proteins is that their shape (conformation) can be modified
in a predictable fashion, as the consequence of interactions
with other molecules. One often says that the protein has
been “activated” as a result of such an interaction.

III. B     
The cell is an integrated device made of thousands of

interacting proteins. For example, the bacterium Escherichia
coli is a cell that contains about 4, 000 different types of
proteins. Each protein is a nano-meter size machine that
carries out specific control tasks in a precise fashion. For
example, when the cell is damaged, repair proteins are
produced. When sugar is sensed, the cell produces proteins
that can transport sugar, etc. The cell continuously monitors
its internal state and decides which proteins are needed
and when. This complex monitoring and control mechanism
occurs mainly through transcription networks. In these net-
works, special proteins called transcription factors are usually
designed to transit rapidly between active and inactive states.
Each active transcription factor can bind to the DNA to
regulate the rate at which some target genes are transcribed
into messenger RNA (mRNA), which is then translated into
protein. This protein can in turn act in the environment by
regulating the transcription of other genes. The fundamental
building-block of a transcription network is then the process
of transcriptional regulation.

A. Transcriptional regulation
The interaction between transcription factors and genes is

described by the phenomenon of transcriptional regulation.
The rate at which the gene is transcribed is controlled by
the promoter, a regulatory region of DNA that precedes the
gene (Figure 3). RNA polymerase binds a defined site (a
specific DNA sequence) at the promoter. The quality of
this site specifies the transcription rate of the gene (the
sequence of the site determines the chemical affinity of
RNA polymerase to the site). RNA polymerase acts on all
of the genes. However, each transcription factor modulates
the transcription rate of a set of target genes. Transcription
factors affect the transcription rate by binding specific sites
on the promoter region of the regulated genes (Figure 3).
When bound, they change the probability per unit time that
RNA polymerase binds the promoter region. Transcription
factors thus affect the rate at which RNA polymerase initiates
transcription. A transcription factor can act as a repressor
when it prevents RNA polymerase from binding to the
promoter site. A transcription factor acts as an activator if it
facilitates the binding of RNA polymerase to the promoter.
Usually, if the transcription factor X is an activator for the
expression of the protein Y , the interaction is denoted by
“X → Y”. If, instead X is a repressor for the expression of
Y , one denotes this interaction by “X a Y”. Transcription
factors are themselves proteins encoded by genes that may
be regulated by other transcription factors. These forms of
interaction form a transcription network.

X → Y

promoter

gene Y

mRNA Translation

Y

Transcirption

RNA polymerase

X

X

X binding site

Increased transcription

Y

DNA

Fig. 3. Transcriptional regulation. Each gene is preceded by a regulatory
region on the DNA called promoter. The promoter contains a specific
site (DNA sequence) that can bind RNA polymerase. An activator X is a
transcription factor that binds to a specific site on the promoter and increases
the rate at which RNA polymerase binds its own site to initiate transcription.

Transcription networks are characterized by a strong sepa-
ration of timescales: the binding of the transcription factor to
the DNA promoter site reaches the equilibrium in seconds,
while transcription and translation of the target gene takes
minutes to hours. Thus, the dynamics describing the binding
and unbinding of the transcription factor to its site can be
considered at steady state when compared to the dynamics
that describes the transcription and translation processes.

IV. M  
A. The Hill function

For the sake of designing simple networks of activation
and repression interactions, ordinary differential equations
describing the rate at which protein and mRNA concentra-
tions change in time are often employed. Let us consider first
the rate of production of protein Y controlled by a single
transcription factor X. When X regulates Y , the number of
molecules of protein Y produced per unit time is a function
of the concentration of X in its active form. With abuse of
notation, we denote this concentration by X. Thus,

rate of production of Y = f (X).

The regulation function f (X) is usually a monotonic function.
It is an increasing function when X is an activator, and a
decreasing function when X is a repressor (Figure 4). A
function that well describes the regulation function is the
Hill function. The Hill function can be derived by considering
the equilibrium binding of the transcription factor to its site
on the promoter. This is possible by virtue of a singular
perturbation argument due to the separation of timescales, as
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Fig. 4. Hill function for an activator (left side plot) and for a repressor (right side plot).

explained in Section III. The Hill function for an activator
(X −→ Y) is thus given by

f (X) = βXn

Kn + Xn (Hill function for activator),

and it is depicted in the left side plot of Figure 4. The Hill
function has three parameters: K, β, and n. The parameter K
is the activation coefficient and defines the concentration of X
needed to significantly activate expression. From Figure 4, it
is clear that half-maximal expression is reached when X = K.
The value of K is related to the chemical affinity between X
and its site on the promoter. The parameter β is the maximal
expression level of the promoter. Maximal expression is
reached at high activator concentrations because at high con-
centrations X binds to the promoter with higher probability.
The Hill coefficient n establishes how close the Hill function
is to a step function. Typically, n is between 1 and 4. The
Hill coefficient is often called the degree of cooperativity
of the reaction, as it often arises from molecular reactions
that involve multiple (“cooperating”) copies of the protein
X. When n = 1, a Hill function is also called a Michaelis-
Menten function. For n = 1, the graph is hyperbolic, but for
n > 1 it takes a sigmoidal of S-shaped form. For a repressor
(X a Y), the Hill function becomes

f (X) = β

1 + ( X
K )n

(Hill function for repressor),

and it is shown in the right side plot of Figure 4.
Many genes also have a non-zero minimal expression

level, the basal expression level called also leakiness. This
can be taken into account by adding a term β0 to the Hill
function.

We just described how the Hill function can model the
regulation of a gene by a single transcription factor. However,
several genes can be regulated by multiple transcription
factors, some of which may be activators and some may be
repressors [2]. There are a number of different forms for the
regulation function depending on the number of its inputs
and on whether they activate or repress. For example, for

the case in which Y is activated by A, i.e., A → Y and it is
repressed by R, i.e., R a Y , then we may have

f (A,R) =
β( A

KA
)n + β0

1 + ( A
KA

)n + ( R
KR

)m
, (1)

in which the parameters KA and KR are the activation coeffi-
cient and the repressor coefficient for A and R, respectively.
The term β0 is the basal expression rate that occurs when no
activator and no repressor are present.

A transcriptional network is composed of multiple edges
with activation or repression functions between several
species.

B. Dynamics of simple gene regulation
In the simple transcriptional activation X → Y or re-

pression X a Y described by the transcriptional regulation
function f (X), there are two main dynamic steps involved:
transcription and translation. Protein production is balanced
by two processes, degradation and dilution. Degradation
occurs when the protein is destroyed by specialized proteins
in the cell that, for example, recognize a specific part of
the protein and destroy it. Dilution is due to the reduction
in concentration of the protein due to the increase of cell
volume during growth. In a similar way, mRNA production
is also balanced by dilution and degradation processes. Thus,
the dynamics of gene regulation is often well captured by the
following ordinary differential equations:

dmY
dt = f (X) − α1mY

dY
dt = γ mY − α2Y, (2)

in which mY denotes the concentration of mRNA translated
by gene Y , the constants αi’s incorporate the dilution and
degradation processes, and γ is a constant that establishes
the rate at which the mRNA is translated. Usually, the value
of α1 is about 10 times larger than α2, that is, the mRNA
is degrading much faster than the protein itself. Therefore,
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often it is possible to consider the first of the equations (2)
at the equilibrium by singular perturbation arguments.

V. A    
As the number of species involved in the network of

activations and repressions increases, the dynamics of the
overall system becomes potentially more complex and harder
to analyze. Thus, research has largely focused on designing
subsystems that serve as building blocks for the entire
network, and on establishing rules for interconnections. The
ultimate goal is that of predicting the behavior of the entire
network from the behavior of the component blocks. This
approach is a standard one in the design and fabrication
of electronic circuitry. In particular, researchers in the field
of synthetic biology have mainly focused on designing and
fabricating self-repression modules [5], mutual repression
modules [10], and oscillator modules [4], [8]. Before going
into the details of each of these already fabricated modules,
we first concentrate on the main features of their behaviors.
The first type of module is characterized by a unique stable
state, the second one by multiple attracting states, and the
third one by stable limit cycles. These three types of behavior
are intimately linked, and often give rise to each other as we
now discuss.

Uniqueness of steady states, and global asymptotic stabil-
ity, are quite common among simple biochemical reactions,
although it is not always easy to prove theorems insuring
this behavior. Systems with multiple attractors arise in many
forms, a typical one of which is the interaction between
two processes, such as formation and degradation, each of
which by itself would lead to global stability. Relaxation, or
hysteresis-driven, oscillators are those in which to a system
with multiple attractors one adds a slow parameter adapta-
tion law. Other oscillators arise through a Hopf bifurcation
phenomenon, which consist basically of an unstable linear
oscillator combined with nonlinear terms that prevent escape
to infinity, and thus confine trajectories in systems whose
linearization has been made unstable by means of negative
feedback loops. The transitions (bifurcations) between qual-
itative behaviors such as mono and multiple-stability, or the
onset of oscillations, are phenomena which frequently arise
when parameters in systems are modified.

It is especially relevant to understand how the parameters
can be tuned so as to obtain a desired behavior when one
wants to build a synthetic circuit with prescribed behavior.
A parameter can be, for example, the promoter affinity, the
decay constant of a protein or of an mRNA molecule, and
the Hill coefficient. We briefly discuss in Section VI how one
can control the value of these parameters in the biological
substrate.

For example, consider the simple activation network X →
Y . If we model the dynamics of the protein, only, considering
the mRNA dynamics to be at the equilibrium, we obtain that

Ẏ = βX
K + X − αY,

for the case in which the cooperativity is equal to one, that is,
n = 1. The first term is the Michaelis-Menten formation term.

Let X be at a constant value X0, then the concentration Y(t)
will, from any initial condition Y(0), converge to the steady
state Y0 =

(β/α)X
K+X . In a typical set of experiments, a biologist

will set the concentration of the inducer X to a given value
X0, let the system relax to the corresponding steady state Y0,
and repeat for various values of X0, thus obtaining a plot of
Y0 against different such X0. The corresponding plot is as the
left side plot of Figure 4 for n = 1. We will call this graph,
using control-theory terminology, the steady state response
to step inputs, where we think of X0 as the magnitude of a
constant input applied to the system. The response in this
example is graded in the sense that it is proportional to the
parameter X0 , at least over a large range of values of X0, even
though it eventually saturates. It is said to be a hyperbolic
response, in contrast to a sigmoidal response as in the left
side plot of Figure 4 for n > 1.

Sigmoidal responses are characteristic of many signaling
cascades, which display what biologists call an ultrasensitive
response to inputs. If the purpose of a signaling pathway
is to decide whether a gene should be transcribed or not,
depending on some external signal sensed by a cell, for
instance the concentration of a ligand as compared to some
default value, such a binary response is required. Cascades
of enzymatic reactions can be made to display ultrasensitive
response, as long as at each step there is a Hill coefficient n >
1 [13], because the derivative of a composition of functions
f1 f2... fk is, by the chain rule, a product of derivatives of
the functions making up the composition (thus, the slopes
get multiplied, and a steeper nonlinearity is produced). In
this manner, a high effective cooperativity index may in
reality represent the result of composing several reactions,
perhaps taking place at a faster time scale, each of which
has only a mildly nonlinear behavior. Synthetic cascades of
transcriptional activation have been designed and fabricated
to obtain this type of behavior [3].

We mentioned that systems with multiple attractors some-
times arise through the interaction of formation and degrada-
tion/dilution processes. For example, consider now the case
in which Y = X, that is, Y is activating its own transcription:

Ẏ = βYn

Kn + Yn − αY.

We plot in Figure 5, both the first term in blue (formation
rate) for n = 1 and for n > 1, and the second one
in red (decay rate). Let us analyze the solutions of the
differential equation. In the first case, n = 1, for small Y
the formation rate is larger than the decay rate, while for
large Y the decay rate exceeds the formation rate; thus,
the concentration Y(t) converges to a unique intermediate
value. In the second case, however, the situation is more
interesting: for small Y the degradation rate is larger than
the formation rate, so the concentration Y(t) converges to a
low value, but, in contrast, for large Y the formation rate is
larger than the degradation rate, and so the concentration Y(t)
converges to a high value instead. In summary, two stable
states are created, one low and one high, by this interaction of
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Fig. 5. Bistability arises from high Hill coefficients.

formation and decay, if one of the two terms is sigmoidal.
(There is also an intermediate, unstable state.) These facts
are elementary, but they serve to motivate a theory based
upon monotone systems [24], which provides a far-reaching
generalization. Whether, under feedback, a mono-stable or a
multi-stable system results, depends thus on the shape of the
transcription regulation curves, which in turn is determined
by the numerical values of the parameters. For example, the
hyperbolic case corresponds to n = 1, while n > 1 tends to
generate multi-stability as shown in Figure 5.

VI. E    
The discovery of mathematical logic in gene regulation

[17] and the early achievements in genetic engineering in the
1970s, such as recombinant DNA technology, set the stage
for today’s synthetic biology. Recent advances in molecular
biology provide the ability to translocate and fuse promoters,
operators, binding sites, and genes in almost any fashion
on a size-wise-compatible plasmid. Most importantly, a key
enabler to synthesize DNA in amounts large enough to be
used for transfection (or transformation) and for various
measurement procedures has been the Polymerase Chain
Reaction (PCR). This molecular biology technique allows
a small amount of DNA to be amplified exponentially. As
PCR is an in vitro technique, it can be performed without
restrictions on the form of DNA, and it can be extensively
modified to perform a wide array of genetic manipulations.

Another key enabling technology has been the devel-
opment of in vivo measurement techniques that allow to
measure the amount of protein produced by a target gene
X. For instance, green fluorescent protein (GFP) is a protein
with the property that it fluoresces in green when exposed to
UV light. It is produced by the jellyfish Aequoria victoria,
and its gene has been isolated so that it can be used as
a reporter gene. The GFP gene is inserted (cloned) into
the chromosome, adjacent to or very close to the location
of gene X, so both are controlled by the same promoter
region. Thus, gene X and GFP are transcribed simultaneously
and then translated, so by measuring the intensity of the

GFP light emitted one can estimate how much of X is
being expressed. Other fluorescent proteins, such as yellow
fluorescent protein (YFP) and red fluorescent protein (RFP)
are genetic variations of the GFP.

Just as fluorescent proteins can be used as a read out of
a circuit, inducers function as external inputs that can be
used to probe the system. Inducers function by disabling
repressor proteins. Repressor proteins bind to the DNA
strand and prevent RNA polymerase from being able to
attach to the DNA and synthesize mRNA. Inducers bind
to repressor proteins, causing them to change shape and
making them unable to bind to DNA. Therefore, they allow
transcription to take place. Two commonly used inducers
are IPTG and aTc. Isopropyl-β-D-1-thiogalactopyranoside
(IPTG) induces activity of beta-galactosidase, which is an
enzyme that promotes lactose utilization, through binding
and inhibiting the lac repressor. The anhydrotetracycline (atc)
binds the wild-type repressor (TetR) and prevents it from
binding the Tet operator.

For engineering a system with prescribed behavior, one
has to be able to change the physical component features
so as to change the values of the parameters of the model.
This is now possible. For example, the binding affinity
(K in the Hill function model) of a transcription factor
to its site on the promoter can be affected by single or
multiple base pairs substitutions. The protein decay rate
(constant α2 in equation (2)) can be increased by adding
degradation tags at the end of the gene expressing protein
Y (http://parts.mit.edu/registry/index.php/Help:Tag). (Degra-
dation) Tags are genetic additions to the end of a sequence
which modify expressed proteins in different ways such
as marking the protein for faster degradation. Promoters
that can accept multiple input transcription factors (called
combinatorial promoters) to implement regulation functions
such as the one in equation (1) can be easily obtained by
combining the operator sites of several simple promoters [4].
For example, the operators OR1 − OR2 from the λ promoter
of the λ bacteriophage can be used as binding sites for the
λ transcription factor [19]. Then, the pair OR2 − OR1 from
the 434 promoter from the 434 bacteriophage [6] can be
placed at the end of the OR1 − OR2 sequence from the λ
promoter. Depending on the relative positions of these sites
and on their distance from the RNA polymerase binding site,
the 434 transcription factor may act as a repressor as when
this protein is bound to its OR2 − OR1 sites it prevents the
polymerase to bind, while the λ transcription factor may act
as an activator.

The “cut and paste” procedure described in the previ-
ous paragraph is called cloning [1]. Cloning of any DNA
fragment involves four steps: fragmentation, ligation, trans-
fection, and screening/selection. The DNA of interest is
first isolated. Then, a ligation procedure is employed in
which the amplified fragment is inserted into a vector. The
vector (which is frequently circular) is linearized by means
of restriction enzymes that cleave it at target sites called
restriction sites. It is then incubated with the fragment of
interest with an enzyme called DNA ligase. After ligation,
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c) Relaxation oscillator d) Repressilator

Fig. 6. Transcriptional network modules that have been fabricated in
bacteria Escherichia coli. The self-repression circuit a) has been designed
and analyzed by [5], the toggle switch b) has been designed and analyzed
by [10], the relaxation oscillator has been designed and analyzed by [4],
and the repressilator d) has been designed and analyzed by [8].

the vector with the insert of interest is transformed into
cells by means of electroporation, for example. Finally,
the transformed cells are cultured. These procedures are of
very low efficiency and hence there is a need to identify
the cells that have been successfully transformed with the
vector construct containing the desired insertion sequence.
Modern cloning vectors include thus antibiotic resistance
markers, which allow only cells in which the vector has been
transformed, to survive and grow.

VII. S : A , 
,  

Enabled by the recent technological developments briefly
summarized in Section VI, a number of simple synthetic
circuits with prescribed behaviors have been built in E.
coli. The basic motifs are shown in Figure 6. Naturally
occurring transcriptional networks are very complex, how-
ever biologists have been discovering recurrent patterns of
interconnection that appear frequently. These patterns are
called motifs [16]. Mutations in the DNA sequence that may
create or delete some of the network connections happen
at very high rates. This suggests that if a network motif
appears in a natural network more often than in a randomly
generated network, evolution must have selected it based on
some advantage it gives to the organism. If the motif did
not offer selective advantage, it would have been washed
out. Thus, synthetic biologists have been focusing mainly on
synthetically reproducing these network motifs to study their
behavior in isolation with the hope to (1) understand their
role and features and to (2) create a number of understood
building blocks that can be interconnected to create more
complex networks with predictable behavior. At the heart of
this approach is the concept of modularity, which we describe
in Section VIII.

A. Self repressed gene
Negative autoregulation occurs when a transcription factor

A represses its own transcription (diagram a) of Figure 6).
The dynamics of A is then described by (neglecting the
mRNA dynamics)

dA
dt =

β

1 + (A/K)n − αA.

This system has been fabricated and two major findings
resulted from the measurements: negative autoregulation
speeds the response time [20], and negative autoregulation
promotes robustness to fluctuations in production rates [5].
By using standard linear control theory, one can immediately
predict that an increased negative feedback increments the
robustness of the equilibrium point with respect to fluc-
tuations. The interesting part is that this result has been
confirmed by experiments performed on a simple negative
feedback loop cloned on a plasmid and then transformed
inside a bacterium. This fact is encouraging, as it means that
the adopted modeling framework may be good enough to
suggest design guidelines for circuitry to be implemented in
the biological substrate.

B. Toggle switch
A genetic toggle switch (diagram b) of Figure 6) is a

bistable system in which reliable switches between the two
steady-states are induced through an input signal. Any such
genetic toggle switch typically needs particular behavioral
characteristics in order to be considered a true “memory
component”. First, the toggle switch must exhibit bistability
over a wide range of parameter values (transcriptional rates,
translational rates, decay constants, etc.) that tend to fluctuate
in a living cell. Second, the two steady-states must be
highly tolerant of random fluctuations in molecular-species
concentrations, so that noise-induced transitions between the
two states are virtually non-existent [10].

One approach to constructing bistable systems was dis-
cussed theoretically in Section V: bistability can be accom-
plished with a single auto-activating gene with a positive
feedback loop.

A different approach to bistability employs two repressible
promoters that mutually repress each other. Neglecting the
mRNA dynamics, this type of toggle switch can be modeled
by the following equations

dA
dt =

β1

1 + (B/K1)n − α1A

dB
dt =

β2

1 + (A/K2)n − α2B.

The nullcline for the first equation is shown in red in Figure
7, while the nullcline for the second equation is shown in
blue in Figure 7.

Within appropriate parameter ranges, one unstable and two
stable steady-states exist for the system (see Figure 7). At
the stable steady-states, one of the repressors is dominant
over the other, while the other repressor is shut down.

WeC05.1

1584



0 2 4 6 8 10 12
0

2

4

6

8

10

12

Concentration of A

Co
nc

en
tra

tio
n 

of
 B

High state
(stable)

Low state
(stable)

Unstable state

Fig. 7. Set of equilibria of the toggle switch of diagram b) of Figure 6.

A switch of the dominance-toggle is induced by externally
repressing the dominant repressor, let us say B, so it cannot
bind any longer to the target promoter for the other gene,
let us say A. The effect is to boost the expression of the
formerly low-expressed repressor A, which thus returns to
its higher constitutive expression rate (set B = 0 in the
equation for dA/dt). This method will allow A to now grow
in concentration uninhibited, and eventually repress its target
promoter (B), which will cause the two repressors to switch
relative concentrations. At that time a state transition to the
other steady-state has taken place, and this must remain
permanent until the next intentional signal that indicates
a transition back again. The external repressing of B is
experimentally accomplished by means of an inducer. An
inducer (section VI) is a molecule (such as IPTG) which
binds to the repressor protein B and disables its repressing
function, rendering it incapable of binding to DNA. Two
inducers are used, one for each of A and B, so as to be able
to switch back and forth.

There is experimental evidence that bistable systems made
up of two mutually repressing genes are more robust than
those made up of a single auto-activating gene, and are
therefore better candidates for toggle switches. In addition,
there is a good supply of well-characterized repressible genes
that may be used as components, compared to activable
genes. For induction purposes (switching to a different steady
state), it appears to be easier to switch the former type
of system, simply by repressing each of the repressors
separately by means of an inducer.

C. Relaxation oscillator

An implementation of the simple motif shown in diagram
c) of Figure 6 was proposed in [4]. The system generates
relaxation oscillations by virtue of the competition arising
between the strong self-activation of gene A and the tran-
scriptional repression of A due to the transcription factor B.
The system can be described by the following model (again

A concentration

B
co

nc
en

tra
tio

n

dB/dt = 0

dA/dt = 0
S

Fig. 8. Nullclines for the equations (3). The equilibrium S is unique when
dA/dt = 0 is given by the black plot. There are multiple equilibria when
dA/dt = 0 is given by the red plot.

neglecting the mRNA dynamics):
dA
dt =

β1An + β0

1 + (A/K1)n + (B/K2)m − α1A

dB
dt =

β2An + β′0
1 + (A/K1)n − α2B, (3)

in which the Hill coefficients are greater than 2. Since
the model is two-dimensional, one can apply the Poincaré-
Bendixson Theorem. It is thus possible to determine the
parameter range that guarantees the existence of a periodic
solution just by computing the parameter range that guaran-
tees a unique and unstable (not a saddle) equilibrium point.
From Figure 8, it appears that there is one equilibrium when
the nullcline dA/dt = 0 is given by the black plot. Such an
equilibrium S can be seen to be unstable for α1 sufficiently
larger that α2. If instead β1 is too large compared to β2,
the configuration of the nullcline dA/dt = 0 is given by the
red plot of Figure 8. Thus, one cannot infer that the ω-limit
set will be given by periodic solutions as there are multiple
equilibria some of which are stable and some are unstable.

The data obtained by the experiments in [4] show damped
almost sinusoidal oscillations. The fact that the oscillations
are damped means that the equilibrium point is stable (other
behaviors are ruled out by the Poicaré-Bendixson Theorem).
To make the equilibrium point unstable, one can increase α1
with respect to α2 by adding a degradation tag to the gene
of A. Since the oscillations are almost sinusoidal, the system
could be operating in the proximity of a Hopf bifurcation.
In such a case, increasing α1 with respect to α2 would
increase the real part of the pair of eigenvalues that cross
the imaginary axis, making the equilibrium point unstable
[7].

D. Repressilator
Elowitz and Leibler [8] constructed the first operational

oscillatory genetic circuit consisting of three repressors ar-
ranged in ring fashion, and coined it the “repressilator” (See
diagram d) of Figure 6). The repressilator exhibits sinusoidal,
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limit cycle oscillations in periods of hours, which are slower
than the cell-division life cycle. Therefore, the state of the
oscillator is transmitted between generations from mother to
daughter cells. In the repressilator, the protein lifetimes are
shortened to approximately two minutes (close to mRNA
lifetimes). Thus, the dynamical behavior of the repressilator
is driven by mRNA and protein dynamics and it can be
described after re-arranging the parameters by:

dmA
dt =

β1

1 + (C/K1)n + β0 − α1mA

dA
dt = γ1(mA − A)

dmB
dt =

β1

1 + (A/K1)n + β0 − α1mB

dB
dt = γ1(mB − B)

dmC
dt =

β1

1 + (B/K1)n + β0 − α1mC

dC
dt = γ1(mC −C),

in which it is assumed that the three components are equal.
Since the regulation functions have all negative slope, and
there is an odd number of them in the loop, there is
only one equilibrium. One can then invoke Mallet-Paret’s
Theorem [15] or Hastings’ Theorem [12] to conclude that
if the equilibrium point is unstable, the ω-limit set of any
bounded trajectory is a periodic orbit [9]. Thus, one can
search for parameter values to guarantee the instability of
the equilibrium point. This procedure was followed by [8]
in the design of the repressilator.

VIII. M   
The fundamental systems engineering paradigm is that of

larger systems made up of simpler components, intercon-
nected according to well-defined rules. This idea permits the
recursive verification of important properties through the use
of standard analysis tools, for example the study of stability
by means of passivity, small-gain, or input to state stability.
It also allows the synthesis of larger systems from well-
characterized and validated components.

Similarly, one of the important themes in current molecu-
lar biology and especially synthetic biology [3], [11], [14], is
that of understanding and engineering cell behavior in terms
of cascades and feedback interconnections of elementary
modules. Cells themselves can be seen as composed of a
large number of subsystems, involved in various processes
such as cell growth and maintenance, division, and death.
The hope is that one should be able to decompose into such,
hopefully simpler, subsystems, and then study the emergent
properties of interconnections. Similarly, for purposes of
design, it is desirable to be able to build complicated circuitry
on the basis of a number of characterized components or
motifs.

Underlying the use of modularity is the principle that the
input/output (dynamic) behavior of components should not
change when components are connected together. It has been
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Fig. 9. Module 3 is the feedback interconnection of modules 1
and 2. The green plots denote characterization data obtained by
experiments. The black plots on the right side of module 3 are the
same as the ones on the right side of modules 1 and 2, but plotted on
the same axis. If the input/output steady state behavior of modules
1 and 2 is not affected by their interconnection, the equilibrium
value of A and B in module 3 (green spot in the plot on the right
of module 3) should be close to the intersection point of the black
curves.

frequently observed, on the other hand, that many natural
and engineered systems cannot be neatly decomposed into
subsystems with “inputs” and “outputs”, see for instance the
discussion in [25]. In practice, in order to enforce modular-
ity, one must insert active mechanisms such as operational
amplifiers, in order to buffer and otherwise prevent “back
effects” from downstream elements.

The issue of how modules should be delimited in a
biomolecular network remains an unanswered question (see
[3], [22], [23] for discussion). As in engineering applications,
there are two main issues that arise when dealing with this
problem: in analysis, checking modularity, and in design,
enforcing modularity.

A. Checking modularity
It is easier to discuss the questions that arise here by an

informal simple example. Suppose that two subsystems A
and B have been characterized, perhaps describing concen-
trations of two proteins, and an output signal from A is also
viewed as a signal (activating) for B, and, conversely. an
output signal from B is a repressing input signal for A. We
may ask how the dynamical behavior of the feedback loop in
Figure 9(3) relates to that of the individual components. The
simplest such question concerns the location of steady states
of the feedback system. Mathematically, one proceeds as
follows. We consider the subsystem B as having an external
input signal that can be manipulated (and which we denote
as A in Figure 9(1)), and we consider the subsystem A as
driven by an external input (B in Figure 9(2)). We would
expect that graphing the equilibrium input/output responses
of each of the individual systems (recall the discussion in
Section V) the intersection of the two plots will predict
the location of the equilibrium of the feedback composition.
To experimentally check this prediction, one must carry out
several experiments, for the individual subsystems as well
as for the closed-loop; for example, the latter is obtained
by directly measuring the equilibrium concentration of both
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A and B in the interconnection. A key point is what the
input and output signals of the modules are. In this case, we
have considered protein concentrations as inputs and outputs.
“Opening the loop” in such systems is not a trivial matter,
and might involve genetic engineering intervention, such as
replacing a wild-type gene by a mutant that is not subject
to repression (for A) or activation (in the case of B). An
example of this approach can be found in [18], where a cell-
cycle relaxation oscillator was broken down so as to expose
an underlying bistable subsystem.

B. Enforcing modularity
A basic feature of modules is that their input-output

behavior should not change when several modules are in-
terconnected.

To illustrate the difficulties that may arise in attempting
modular design in synthetic biology, let us consider the
following typical situation. Suppose that a synthetic oscillator
has been designed, which involves a negative feedback loop
involving the genes coding for three proteins X, Y , and W.
We would like to use the periodic behavior generated by this
oscillator as a “clock signal” that times the behavior some
other downstream module. Let us say that this downstream
module is driven by the level of another protein, Z. For
concreteness, let us say that the feedback loop for the
oscillator is given by Y → W a X → Y , and that we wish
to use the protein X as a transcription factor regulating the
expression of the gene that codes for Z. Thus, one module
consists of X, Y , and W with X considered as an “output”
signal, and a second module consists of X, Z (and possibly
other proteins), with the protein X considered as an “input”
signal.

Intuitively, the interconnection of the two modules should
be achieved by simply putting both genes on the same
plasmid or chromosome. However, there is a major problem
with this idea: since we have in the same environment (the
given cell) both X → Y and X → Z, the promoters of Y
and of Z will be in competition for X. In other words, the
protein X is a physical object, which can be bound either to
the promoter of Z or to the promoter of Y , but not to both
simultaneously. Unless X is kept at a saturation level (which
it cannot be, since the whole purpose is for X to oscillate),
this competition will mean that the effective rate of binding
to the promoter of Y will change, and hence the behavior
of the oscillator will be disrupted. In electrical engineering
terms, the “load” on the system has not been considered in
the design of the oscillator.

One solution to this problem would be to design a feed-
back control system, similar to an integral controller in an
engineering system, that automatically adjusts the oscillator
amplitude and frequency so as to compensate for the different
possible “loads”. Another solution, proposed here, is to
create a mechanism that in effect decouples the connections
X → Y and X → Z. We proceed as follows.

We introduce a new protein, X2, which does not bind to
the promoter region for Y , and modify the promoter for Z in
such a manner that X2 binds to it but X does not. We now

gene of X2gene of X1

X1 X2

gene of Y

YX1

X2
Z

gene of Z

Fig. 10. Enforcing modularity by preventing competitivity.

splice a gene for X2 next to X, which we denote as X1 in
Figure 10, in such a manner that both X1 and X2 are under
the control of the same promoter (repressed by W).

The net effect of this construction is that, since X1 binds
only to the promoter of the gene of Y , and X2 binds only to
the promoter of the gene of Z, we eliminated the competition
problem that we had initially. The oscillator’s characteristics
will not change in any way depending on the presence or
absence of the second module (driven by X2).

IX. R  C

We presented an introduction to general concepts in
molecular biology and synthetic biology, and discussed a
number of appealing dynamics and system-theoretic ques-
tions. The rapidly developing field is tremendously exciting,
and full of opportunities and challenges. The reader will,
hopefully, take on some of the latter. We refer the reader
to [24] for a discussion of theoretical challenges in control
and systems theory raised by research in systems biology.
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