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Abstract— We analyze a model for the activator-repressor
oscillator motif proposed as a fundamental oscillating motif in
the literature of biological rhythms. We show that incorporating
the m-RNA dynamics in the model, we can obtain a much richer
dynamical behavior with respect to the behaviors observed in
the literature when only protein dynamics were modeled. The
proposed analysis also leads to biochemical parameter relation-
ships that guarantee stable oscillations. These relationships can
be used as design guidelines for the construction of synthetic
activator-repressor oscillators.

I. I

Oscillations play a fundamental role in cell physiology.

The cell cycle in which cells periodically duplicate their

genome and divide is an important oscillator [11]. Another

example is the circadian clock, a very robust and accurate

biochemical circuit that produces oscillations with the period

of one day. This particular clock is also a remarkable

example of an adaptive system, which can be entrained

to follow daily variations such as temperature and light.

Genetic oscillator motifs based on the interaction of a

small set of molecular components have been shown to

appear recurrently in the regulation of the cell cycle [1].

In particular, oscillator motifs involving an autocatalytic

element competing with a repressor have been shown to

play a key role in the regulation of the cell cycle of the

Xenopus laevis embryos [10]. Thus, synthetic biologists have

attempted to understand the properties of a small circuit

motif composed of a composite negative feedback loop and

a positive autoactivation loop (see Figure 1), by constructing

an instance of it to be tested in isolation [2]. We will refer

to this oscillator motif as activator-repressor oscillator.

In this paper, we consider an instance of such a mo-

tif in which the repression occurs through transcriptional

regulation and we propose two different models: a two-

dimensional ordinary differential equation model and a four-

dimensional ordinary differential equation model. In the two-

dimensional model, the m-RNA dynamics are neglected as

they are considered to be faster than the protein dynamics.

These m-RNA dynamics are instead explicitly considered in

the four-dimensional model. The objective of our analysis

is to determine the range of dynamical behaviors of the

two models of the proposed topology when the biochemical

parameters are varied. On the one hand, the results of

this analysis can be employed to guide the design and

fabrication of a synthetic clock in vivo. On the other hand, the

obtained results are useful to establish whether the proposed

oscillator motif and related models are descriptive enough

to capture phenomena that are experimentally observed in

natural clocks and whether previously unseen behaviors can
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Fig. 1. Activator-repressor oscillator motif.

be predicted.

The activator-repressor topology here considered, has been

already modeled by a second order model neglecting the m-

RNA dynamics in [6]. In such a work, the authors conclude

that oscillations appear only when a clear separation of time-

scales between the activator and the repressor dynamics is

present. In this paper, we show that this requirement is not

needed if the m-RNA dynamics are also modeled. For the

four-dimensional model, we show that a stable limit cycle

appears any time the separation of time-scales between the

activator and the repressor reaches a threshold value, which

can be close to one, and which depends on the speed of

the m-RNA dynamics. Such a threshold value is determined

by a Hopf bifurcation, which is supercritical when the m-

RNA dynamics is sufficiently fast compared to the protein

dynamics and subcritical when protein and m-RNA dynamics

evolve on comparable time-scales.

In this paper, we also show that the four-dimensional

model exhibits a transition from simple to complex oscilla-

tory behavior [5], which has not been recorded before. This

transition occurs as the separation of time scales between

the protein and the m-RNA dynamics decreases, and thus

as the four-dimensional model becomes far apart from the

two-dimensional one. In particular, two types of complex

oscillatory behaviors are found: (a) the coexistence of a

stable equilibrium point and a stable periodic orbit (hard

excitation situation [8]) and (b) the coexistence of two

stable periodic orbits (birhythmicity [4]). The birhythmicity

phenomenon does not appear to be practically relevant as the

parameter range in which two stable orbits coexist is so small

to be numerically impossible to set a parameter value inside

it. The hard excitation situation occurs for small time-scale

separation between m-RNA dynamics and protein dynamics

and for parameter values that are numerically appreciable.

This phenomenon is practically relevant especially because it

has been shown to be the potential cause of circadian rhythm

suppression [8]. In fact, in presence of a stable equilibrium

point and of a stable periodic orbit, small external perturba-

tions (such as light) can cause the system to move into the
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basin of attraction of the stable equilibrium point. The system

will thus stop oscillating until a new perturbation appears that

will move the system back in the region of attraction of the

periodic orbit.

Finally, by confronting our parametric analysis with the

experimental data provided in [2], which shows almost

sinusoidal damped oscillations, we can obtain a qualitative

understanding of where the biochemical parameters of the

system in [2] lie in parameter space.

This paper is organized as follows. In Section II, we in-

troduce the system and the fourth order dynamical model. In

Section III, we determine the range of dynamical behaviors

for the case in which the system admits one equilibrium

point only. By using bifurcation analysis, two key parameters

are varied: the time-scale difference between the activator

and the repressor and the time-scale difference between the

protein and m-RNA dynamics. In Section IV, we determine

conditions on all the biochemical parameters that guarantee

the existence of a unique equilibrium point. Finally, for

the two-dimensional model, we determine analytic sufficient

conditions for the existence of a stable periodic orbit.

II. A F- DM

Consider the activator-repressor diagram shown in Figure

1. Let rA and rB represent the concentration of m-RNA of

the activator and of the repressor, respectively. Let A and

B denote the protein concentration of the activator and of

the repressor, respectively. Then, we consider the following

four-dimensional model describing the rate of change of the

species concentrations:

ṙA = −δ1/ǫ rA + F1(A, B)

Ȧ = ν(−δAA + k1/ǫ rA)

ṙB = −δ2/ǫ rB + F2(A)

Ḃ = −δBB + k2/ǫ rB, (1)

in which the parameter ν regulates the difference of time-

scales between the repressor and the activator dynamics, ǫ is

a parameter that regulates the difference of time-scales be-

tween the m-RNA and the protein dynamics. The parameter

ǫ determines how close the model (1) is to a two-dimensional

model in which the m-RNA dynamics are considered at the

equilibrium. Thus, ǫ is a singular perturbation parameter.

Model (1) is not exactly in singular perturbation form. To

take it to singular perturbation form, one can consider the

change of variables rA = rA/ǫ and rB = rB/ǫ, so that model

(1) becomes

ǫṙA = −δ1 rA + F1(A, B)

Ȧ = ν(−δAA + k1 rA)

ǫṙB = −δ2 rB + F2(A)

Ḃ = −δBB + k2 rB. (2)

We choose to consider the form (1) for performing paramet-

ric analysis because for system (2) the Floquet exponents

[7] of the periodic orbits are very small so that there are

numerical problems when trying to determine the stability

of the periodic orbits. The functions F1 and F2 are the Hill

functions as, for example, found in [1]. These are given by

F1(A, B) =
K1An

+ KA0

1 + γ1An + γ2Bn
and F2(A) =

K2An
+ KB0

1 + γ4An
,

in which K1 and K2 are the maximal transcription rates, while

KA0 and KB0 are the maximal transcription rates when no

activator is present. The parameters 1/γi are the activation

coefficients and are related to the affinity of the protein to

the promoter site. The Hill coefficient n is chosen here to be

n = 2. A justification of this choice can be found in Section

IV.

The system can have 1, 3, and 5 equilibria. The values

of ǫ and of ν do not affect the number of equilibria, while

the values of the other parameters are the ones that control

this number. The set of values of Ki, ki, δi, γi, δA, δB that

allow the existence of a unique equilibrium is determined

in Section IV. In the sequel, we assume that the values

of Ki, ki, δi, γi, δA, δB have been chosen so that there is a

unique equilibrium and we study the occurrence of periodic

solutions as the difference in time-scales between protein

and m-RNA, ǫ, and the difference in time-scales between

activator and repressor, ν, are changed.

III. B A   F-M

In this section, the values of Ki, ki, δi, γi, δA, δB are set to

constant values that guarantee that the system has a unique

equilibrium. The specific values that we consider are δA =

δB = 1, K1 = K2 = 4 ∗ 104, δ1 = δ2 = 1, k1 = k2 = 0.01,

KA0 = 4, KB0 = 0.4. The range of dynamical behaviors is

explored by using bifurcation analysis as ν and ǫ are changed.

We let 1/ǫ vary in the range [1, 1000], in which, ǫ =

1 corresponds to equal time-scales for protein and m-RNA

dynamics, while 1/ǫ = 1000 corresponds to large separation

of time-scales between protein and m-RNA dynamics. For

1/ǫ = 1000, the system in equations (1) behaves as a two-

dimensional system in which the first and the third equations

in (1) are considered at the equilibrium.

For each value of 1/ǫ, we performed a bifurcation analysis

with bifurcation parameter ν. By computing the linearization

of the system at its unique equilibrium, we varied ν and

determined that a Hopf bifurcation occurs. In fact, as ν

increases over a threshold value, two of the eigenvalues of

the linearization cross the imaginary axis, while the other two

eigenvalues maintain negative real parts. We then computed

the Floquet exponent of the periodic orbit originating from

Hopf bifurcation by using the algorithm suggested in [7]. If

the Floquet exponent is negative, the periodic orbit is stable

and a supercritical Hopf bifurcation occurs. If the Floquet

exponent is positive, the periodic orbit is unstable and the

Hopf bifurcation is subcritical. We summarize in Table I our
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Fig. 2. In each diagram, the horizontal axis corresponds to the value of ν. The vertical axis indicates the amplitude of the periodic orbit. The magenta
trait corresponds to the maximal amplitude, while the blue trait corresponds to the minimal amplitude. The tick line denotes a stable orbit, while the thin
line denotes an unstable orbit. The left-side plot is representative of diagrams occurring for ǫ−1 > 100 (in particular, it corresponds to ǫ−1

= 150) and
Hopf bifurcation occurs for ν = 0.974. The plot in the middle is representative of diagrams occurring for 20 ≤ ǫ−1 ≤ 100 (in particular, it corresponds to
ǫ−1
= 50) and Hopf bifurcation occurs for ν = 0.9092. The right-side plot is representative of diagrams occurring for ǫ−1 < 20 (in particular, it corresponds

to ǫ−1
= 10) and Hopf bifurcation occurs for ν = 0.6637. The acronym CF denotes cyclic fold bifurcation.

findings.

Table I

ǫ−1 ν∗ β2 Hopf Bifurcation

1000 1.00635 −1.28 ∗ 103 supercritical

800 1.00635 −814.85 supercritical

600 1.003 −448.51 supercritical

400 0.998 −191.72 supercritical

300 0.9930 −103.86 supercritical

200 0.9838 −43.02 supercritical

100 0.9573 −8.85 supercritical

90 0.9518 −6.87 supercritical

70 0.936 −3.69 supercritical

50 0.9092 −1.51 supercritical

20 0.7939 −0.0321 supercritical

10 0.6637 +0.05 subcritical

1 0.2466 +0.0014 subcritical

In Table I, ν∗ denotes the value of ν at which a Hopf

bifurcation occurs for the values of ǫ specified in the first

column. From the table, we note that a stable limit cycle

arises from Hopf bifurcation (supercritical case) for sufficient

separation of time-scales between the m-RNA and the protein

dynamics. When this separation of time scales is not large

enough the periodic orbit originating from Hopf bifurcation

is unstable (subcritical case). Despite this result, numerical

simulation with Matlab did not show a small amplitude

sinusoidal limit cycle for ǫ−1 ∈ [20, 100] even for values of

ν−ν∗ of the order of 10−14. Only large amplitude relaxation-

type oscillations were exhibited. To clarify this point, we

computed bifurcation diagrams using AUTO continuation

software [3] with ν as bifurcation parameter for the values

of ǫ−1 ∈ [1, 1000]. The continuation of the periodic orbit

arising at the Hopf bifurcation gives rise to fundamentally

three types of diagrams depending on the range of ǫ−1 values.

These are shown in Figure 2. From the left-side plot of Figure

2 (ǫ−1 > 100), we deduce that a supercritical Hopf bifurcation

is the only bifurcation involving the periodic orbit. This

agrees with Table I and with simulation results showing a

small amplitude almost sinusoidal limit cycle for values of

ν close to the bifurcation value. The plot in the middle and

the right-side plot show cyclic fold bifurcations. Cyclic fold

bifurcations are saddle nodes of periodic orbits [9] and occur

when an unstable orbit crashes against a stable one and they

disappear. The cyclic fold bifurcations CF10 and CF11 occur

so close to the Hopf bifurcation of the equilibrium point, that

AUTO was unable to distinguish between them and the Hopf

bifurcation.

By Table I, we know that almost in correspondence of

CF10 there is a supercritical Hopf bifurcation and almost in

correspondence of CF11 there is a subcritical Hopf bifurca-

tion. Taking this in formation into account, the qualitative

bifurcation diagrams corresponding to the cases in Figure

2 can be drawn as in Figure 3. In the middle plot of

Figure 3 (20 ≤ ǫ−1 ≤ 100), the values of ν at which Hopf

bifurcation occurs and at which the cyclic fold bifurcation

CF10 occurs are so close that it is numerically impossible

to pick a value of ν between them. Therefore, the small

sinusoidal orbit arising from Hopf bifurcation, even if stable,

will never be observed in simulation or in the biological

setting. Instead, only large amplitude relaxation oscillations

originating from the cyclic fold bifurcation C20 will be

observed. This phenomenon occurs because a saddle node

bifurcation of the periodic orbit occurs extremely close to

a supercritical Hopf bifurcation. A similar phenomenon is

also present for ǫ−1 < 20, in which a cyclic fold bifurcation

CF11 is extremely close to a subcritical Hopf bifurcation.

In this case, a small amplitude almost sinusoidal limit cycle

is observed in simulation, despite the Hopf bifurcation is

subcritical, because the cyclic fold bifurcation is very close

to the Hopf bifurcation point. In the middle plot of Figure
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1/ǫ ∈ (100, 1000]

SupHB

CF20

CF20

SubHB

CF11

CF11CF10

CF10
SupHB

1/ǫ ∈ [20, 100] 1/ǫ ∈ [1, 20)

Fig. 3. Bifurcation diagrams with ν (on the horizontal axis) as bifurcation parameter as ǫ−1 changes in the specified intervals. The amplitude of A is
displayed. Solid lines denote stable equilibrium points, while dashed lines denote unstable equilibrium points. Solid thick lines denote the amplitude of
a stable periodic orbit, while dashed thick lines denote the amplitude of an unstable periodic solution. The upper branches denote the largest amplitude,
while the lower branches denote the smallest amplitude of the periodic orbit. SupHB denotes a supercritical Hopf bifurcation, SubHB denotes a subcritical
Hopf bifurcation, and CF denotes a cyclic fold bifurcation.

3, we notice that there are values of ν for which a stable

equilibrium point and a stable orbit coexist and values of

ν for which two stable orbits coexist. The interval of ν

values for which two stable orbits coexist is too small to

be able to numerically set ν in such an interval. Thus,

this interval is not practically relevant. The values of ν

for which a stable equilibrium and a stable periodic orbit

coexist is instead relevant. This situation corresponds to the

hard excitation condition and occurs for realistic values of

the separation of time-scales between protein and m-RNA

dynamics. Therefore, this simple oscillator motif described

by a four-dimensional model can capture the features that

lead to the long term suppression of circadian rhythms

by external inputs. Birhythmicity is also possible even if

practically not relevant due to the numerical difficulty of

moving the system to one of the two periodic orbits. More

investigation is required to determine what features of the

system cause a cyclic fold bifurcation to occur at almost the

same value of a Hopf bifurcation. This would also shed light

into what features may lead the system to exhibit practically

relevant birhythmicity.

All of these results are summarized by Figure 4. According

to this figure, the region of the parameter space in which the

system exhibits almost sinusoidal damped oscillations is on

the left-hand side of the curve corresponding to the Hopf

bifurcation. Therefore, the data of [2] may correspond to a

system whose operating parameters are such that ν is on the

“left” of the curve corresponding to the Hopf bifurcation.

As a consequence, increasing the separation of time-scales

between the activator and the repressor, ν, should lead to a

stable relaxation-type large amplitude limit cycle.

IV. A T-M

In this section, we consider the limit for ǫ → 0 in

equations (2) and consider the resulting second order model:

Ȧ = ν(−δAA + f1(A, B))

Ḃ = −δBB + f2(A), (3)

in which f1(A, B) = (k1/δ1)F1(A, B) and f2(A) =

(k2/δ2)F2(A). We next establish parameter conditions for

which we can guarantee that there is a unique equilibrium

and that it is unstable and not locally a saddle. Thus, by

Poincarè-Bendixson Theorem we can infer that for such a

parameter set, the ω-limit set of the system is a periodic

orbit.

A. Conditions for the existence of a unique and unstable

equilibrium

Let K̄1 = K1(k1/(δ1δA)), K̄A0 = KA0(k1/(δ1δA)), K̄2 =

K2(k2/(δ2δB)), K̄B0 = KB0(k2/(δ2δB)) and let

f (A, B) := ν(−δAA + f1(A, B)) and g(A, B) := −δBB + f2(A).

(4)

Then, the nullcines are given by f (A, B) = 0 and g(A, B) = 0,

which define B as a function of A in the following way:

f (A, B) = 0 =⇒ B =

(

K̄1An
+ K̄A0 − A(1 + γ1An)

γ2A

)1/n

(5)

g(A, B) = 0 =⇒ B =
K̄2An

+ K̄B0

1 + γ3An
, (6)

where the Hill coefficient n is a variable parameter.

Proposition 1: If n = 1, system (3) admits a unique stable

equilibrium point. If n = 2, system (3) admits a unique

equilibrium point if the following parameter relations are

verified

0 < K̄A0 ≤
K̄3

1

27γ2
1

, M ≤
K̄2A2

M
+ K̄B0

1 + γ3A2
M

, m ≥
K̄2A2

m + K̄B0

1 + γ3A2
m

,

(7)

in which

Am =
K̄1

6γ1

(

1 − (cos(φ/3) −
√

3sin(φ/3))
)

AM =
K̄1

6γ1

+
K̄1

3γ1

cos(φ/3)

φ = atan



































√

27K̄A0

4γ2
1

(
K̄3

1

γ2
1

− 27K̄A0)

K̄3
1

4γ3
1

− 27 K̄A0

2γ1



































, (8)
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Fig. 4. Range of dynamical behaviors as the parameters ǫ−1 and ν are varied. The trajectories in the plots are the projections in the A, B plane.

m =

√

K̄1A2
m + K̄A0 − Am(1 + γ1A2

m)

γ2Am

,

M =

√

K̄1A2
M
+ K̄A0 − AM(1 + γ1A2

M
)

γ2AM

.

For n = 2, the unique equilibrium point is unstable (not a

saddle) if

ν ≥ δB

∂ f1
∂A
|S − δA

. (9)

Proof: We consider the linearized system of (3) at the

equilibrium S . The linear approximation at S is given by the

matrix

JF(S ) =

( ∂ f

∂A

∂ f

∂B
∂g

∂A

∂g

∂B
,

)

,

in which the partial derivatives are computed at the equilib-

rium S . For an unstable node or spiral to occur, it is sufficient

that

(i) trace(JF(S )) > 0, and (ii) det(JF(S )) > 0.

Case 1: n = 1. The nullcline f (A, B) = 0 has always negative

slope, and therefore we always have only one equilibrium.

We next show that such an equilibrium is always stable.

Expression (5) with n = 1 leads to

dB

dA
| f (A,B)=0 =

−γ1γ2A2 − K̄A0γ2

(γ2A)2
< 0.

Since dB/dA| f (A,B)=0 = −(∂ f /∂A)/(∂ f /∂B) by the implicit

function theorem and since ∂ f /∂B < 0, it must be that

∂ f /∂A < 0. As a consequence, trace(JF(S )) < 0 because
∂g

∂B
= −δB < 0. To show that both eigenvalues of JF(S ) are

negative, we are left to show that det(JF(S )) > 0. This is

readily seen to be true as we have that

dB

dA
|g(A,B)=0 = −

∂g/∂A

∂g/∂B
>

dB

dA
| f (A,B)=0 = −

∂ f /∂A

∂ f /∂B
< 0,

thus implying that
∂ f

∂A

∂g

∂B
− ∂ f

∂B

∂g

∂A
= det(JF(S )) > 0.

Case 2: n = 2. Figure 5 shows the only possible con-

figuration of the nullclines in which (a) we have a unique

equilibrium and (b) the nullclines are intersecting with the
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Fig. 5. Nullclines and the values AM , Am, M, and m.

same positive slope. The plots imply that

dB

dA
|g(A,B)=0 = −

∂g/∂A

∂g/∂B
>

dB

dA
| f (A,B)=0 = −

∂ f /∂A

∂ f /∂B
> 0,

and thus that
∂ f

∂A

∂g

∂B
− ∂ f

∂B

∂g

∂A
= det(JF(S )) > 0. By rela-

tions (4), we have that ∂g/∂A = ∂ f2/∂A, ∂g/∂B = −δB,

∂ f /∂A = ν(−δA + ∂ f1/∂A), and ∂ f /∂B = −|∂ f1/∂B|. If at the

equilibrium point S the nullcline f (A, B) = 0 has negative

slope, S is stable, as we have shown for the case n = 1.

Therefore, we examine what additional conditions should be

enforced to guarantee that the equilibrium point is unstable

when the nullclines intersect both with positive slopes. Since

condition (ii) is verified by the condition that the nullclines

cross with positive slopes, we are left to provide conditions

for which (i) is also true. To have that trace(JF(S )) > 0, we

require that ν(
∂ f1
∂A
−δA)−δB > 0, which is verified if condition

(9) holds.

We next determine sufficient conditions on the parameters

for having one crossing and such that the slopes of the

two nullclines at the crossing are both positive (and thus

(ii) is verified). This is performed by simple geometric

considerations. For this purpose, consider Figure 5. The

values Am and AM of the location of the minimum and

maximum of f (A, B) = 0 can be computed by computing

the derivative with respect to A of expression

B2
=

K̄1A2
+ K̄A0 − A(1 + γ1A2)

γ2A

obtained by (5) and equating it to zero, as the square

root function is monotone. This way, we find a third order

polynomial that has two positive roots if 0 < K̄A0 ≤
K̄3

1

27γ2
1

,

otherwise it has one positive and two complex roots. These

roots are given by relations (8) and they are shown in Figure

5. Thus, by looking at the same figure, one deduces that if

conditions (7) are satisfied, we have on equilibrium point

only, and (ii) is verified.

Note that conditions (7) implicitly depend on δA, δB,

δ1, and δ2. These conditions are imposed on the seven

parameters K̄1, K̄2, K̄A0, K̄B0, γ1, γ2, and γ3. Once values

for these parameters are set, one can use condition (9) to

determine the value of ν. For having one equilibrium point

only, we have to require that the activator transcription rate

that is proportional to K̄A0, must be sufficiently smaller

then the maximal expression rate of the activator, which is

proportional to K̄1. Also, K̄A0 must be non-zero. Also, in

case K̄1 >> K̄A0, one can verify that AM ≈ K̄1/2γ1 and thus

M ≈ K̄1/2
√
γ1γ2. As a consequence, conditions (7) require

also that if K̄1/γ1 increases then so must do K̄2/γ3. This

qualitatively implies that the maximal expression rate of the

repressor divided by its protein and m-RNA decay rates must

be larger than he maximal expression rate of the activator

divided by its protein and m-RNA decay rates. Finally,

Am ≈ 0, and m ≈
√

K̄A0/γ2Am. As a consequence, conditions

(7) also imply that the smaller K̄A0 becomes, the smaller K̄B0

must be. Condition (9) requires that ν must be sufficiently

large. This last requirement matches the results obtained in

Section II, in which stable oscillations are predicted to appear

every time ν becomes larger than the Hopf bifurcation value.

V. C

We have presented the analysis of a two-dimensional
and a four-dimensional model of an activator-repressor gene
oscillator, which has been proposed to be a fundamental
motif in natural biological clocks. We have shown that
incorporating the m-RNA dynamics in the model, we can
obtain richer dynamical behavior, which was not previously
observed in the two-dimensional models proposed in the
literature. The parameter space that leads to stable limit
cycles results from the proposed analysis.

VI. A
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