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A Separation Principle for a Class of Hybrid Automata on a Partial Order

Domitilla Del Vecchio, Michael Malisoff and Rajeev Verma

Abstract— We consider a parallel composition of two order
preserving hybrid automata with imperfect state information.
We show that the order preserving properties of the dynamics
lead to a separation principle between state estimation and
control under safety specifications. We provide a dynamic
feedback algorithm that is guaranteed to terminate and whose
complexity scales with the number of continuous variables.

1. INTRODUCTION

This note considers the dynamic feedback problem for
hybrid automata with imperfect state information under
safety specifications. There is an extensive literature on static
control synthesis under safety specifications [2], [10], [12]
and state estimation [1], [3], [5], [9] for hybrid systems. The
control problem under safety specifications can be addressed
by computing the set of states that lead to an unsafe config-
uration independently of an input choice, called the capture
set. Then, a static feedback is computed that guarantees
that the state never enters the capture set. Computational
constraints usually limit the system to four or five continuous
variables and to two or three discrete states. Furthermore, the
usual algorithms are not guaranteed to terminate [10].

Initial work on safety control of hybrid systems with
imperfect or partial state information can be found in [6]—
[8]. In [6], a controller that relies on a state estimator is
proposed for finite state systems. The results are extended to
rectangular hybrid automata with imperfect state information.
The proposed algorithm has exponential complexity in the
size of the system, owing to the need for computing the
capture set. In [8], a partial order approach for the design of
computationally efficient state estimation and control algo-
rithms was proposed. However, [8] only considered discrete
dynamic feedback, and it did not provide an algorithm for
computing the capture set. Initial results on the efficient
computation of this set for block triangular order preserving
hybrid automata in discrete time are in [7]. However, no
separation principle was stated and the algorithms only
provide over-approximations of the capture set.

In this note, we consider the parallel composition of two
hybrid automata whose flows preserve a predefined ordering
on the state and input sets. This structure is motivated by
the modeling of the dynamics of agents evolving on pre-
specified paths in a network of routes. This is the case,
for example, for the dynamics of vehicles along their lanes.
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In these systems, conflicts arise at intersections, mergings,
traffic circles, etc. Therefore, an unsafe set is well represented
by a box in the position space. We show that the capture set
is the intersection of a finite number of capture sets obtained
with inputs fixed at the corners of the feasible set of inputs.
This implies that the state feedback controller that keeps the
state out of the capture set never switches on the boundary
of the capture set, and that it always lies on the corners
of the feasible input set. Since our control algorithm also
terminates, we provide a class of hybrid automata for which
the control synthesis problem is decidable. The structure of
the capture set allows us to obtain the dynamic feedback
control map by basically just replacing the state by its
estimate in the formula for the static feedback map. This is
a separation principle between state estimation and control.

II. PRELIMINARIES: PARTIAL ORDERS AND CLASS OF SYSTEMS

A partial order [4] is a set P with a partial order relation
“<”, denoted by (P,<). For all x,w € P, the sup{x,w},
denoted x Y w, is the smallest element that is larger than both
x and w. The inf{x, w}, denoted x A w, is the largest element
that is smaller than both x and w. If S C P, \/ S = sup S
and AS :=inf S. If a partially ordered set (X, <) is such
that x Aw € X and x v w € X for all x,w € X, then (X, <)
is a lattice. An interval sublattice of (P, <) is a lattice given
by [L,U]={we P|L<w<U} for some L,U € P.

Let (P, <) and (Q, <) be partially ordered sets. A map f :
P — Q is an order preserving map provided x < w —
f(x) < f(w). If (Z, <) is another partial order, then a function
f 1 PxQ — Z is called order preserving with respect to the
x variable if x — f(x,¥) is order preserving for each y € Q;
order preserving with respect to y is defined analogously. The
power set of a set S (denoted by 2%) is the set of all subsets
of S, ordered by inclusion. This partial order is denoted by
(25,C). We always use the partial order (R?, <) defined by:
w < z if and only if w; < z; for all i € {1,...,d}.

Let U be any compact set and ¥ () denote the set of all
piecewise continuous functions u : R — . We establish the
partial order (F(U),<) by defining u® < u® provided that
() < uP(?) for all 1 € R, for all u?,u® € F(U).

Definition 1: A hybrid automaton (with input and imper-
fect state information) is a tuple H = (X,Q, U, O, f,R, h),
in which the set X of continuous variables is a subset
of a Euclidean space, Q is a finite set of modes, U is a
continuous set of inputs, O is a continuous set of outputs,
f:XXQXU - X is a vector field, R : X X U — Q is the
mode reset map, and h : O — 2% is the output map.

The mode reset map R is defined as R(x, u) := g if (x,u) €
Dom(g), in which Dom : Q — 2*¥*¥ is a map that attaches to
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a mode the set of continuous states and inputs in which the
mode holds. We assume that | J,eq Dom(g) = X XU and that
Dom(g*) N Dom(g") = 0 for all g* # ¢°. This guarantees that
at any point (x,u) in the continuous set of state and input
variables, there is always a unique mode that holds. When
X C R? for some d, we have % = f(x,q,u), in which x =
(x1, ..., xg) and thus f(x, g, u) = (fi(x, g, u), ..., fa(x, g, u)) with
fi(x, R(x,u),u) € R. For an output measurement z € O, the
function &(z) returns the set of all possible continuous states
that may have generated such an output measurement. We
refer to the set /(z) as the set of continuous states compatible
with output observation z.

Let z : [0,00) — O denote any output signal of H. Let
Fu(O) denote the set of all possible output measurements z :
[0, 00) — O from H obtained using a given input u € 7 (U).
We use ¢ — ¢(¢, x,u) to denote the flow (or trajectory) of
H starting at initial condition x € X at initial time zero,
when input signal u is applied to H. When u is a constant,
say u(f) = u € U, we write ¢(t, x, i) to mean ¢(t, x, u). Since
there is no continuous state reset, the flow is continuous with
respect to time. We also use the notation ¢, _,,(f, x,u) to
denote the time evolution of any subset {wy,...,w;} of the
continuous variables x;.

Consider the partial order on a Euclidean space defined
by componentwise ordering and the partial order (¥ (U), <).

Definition 2: We say that H = (X,Q,U,O, f,R,h) is
order preserving provided there exist constants u,, uy € R
and a positive constant y such that the following hold:

1) U = [um,um] CR;
(i) The flow ¢(t, x,u) is order preserving with respect
to the x variable and with respect to the u variable;
(i) fi(x, R(x,u),u) =y for all (x,u) € X X U,
(iv) For all z € O, h(z) = [AN(2), VA(z)] C X.

A sufficient condition for item (ii) is that for all (x,u) €
X X U, the function f(x, R(x,u),u) is order preserving with
respect to the x variable and with respect to u [11].

The motivation for order preserving hybrid automata
comes from modeling the longitudinal dynamics of vehicles
that are constrained to given paths. In these cases, (i)
models the fact that the amount of throttle and braking (or
jerk) is physically bounded; (ii) models the fact that larger
acceleration inputs lead to larger longitudinal speeds and
larger longitudinal displacements; and (iii) can model the
physical constraint that vehicles cannot move in reverse.

Example 1: Let p € R represent the coordinate of a
vehicle along its lane. The longitudinal dynamics of the
vehicle can be modeled as p = [R*/(J,, + MROI(f, —
Jorake = %= CpAyU* — Crp Mg — Mgsin(6roaq)), in which R
is the tire radius, J,, is the wheel inertia, M is the mass of
the vehicle, f,, = 7,R where 7, is the drive shaft output
torque, fprqke iS the brake force, p,; is the air density, Cp
is the drag coeflicient, Ay is the projected front area of the
vehicle, U is the longitudinal vehicle velocity, C,, is the
rolling resistance coefficient, g is the gravity constant, and
0r0qq 1s the road gradient [13]. For automatic driving, f,, and
Jorake are control inputs to the longitudinal dynamics of the
vehicle. Set the total force F = f,, — forake, 0 = [R*/(Jyy +

MRZ)](—'%CDAJ”UZ - C,Mg), b = R?/(J,, + MR?), and
0roaa = 0. Assuming that all of the parameters are exactly
known, ¢ is also known to the on-board vehicle controller
as the vehicle is aware of its own longitudinal velocity U.
Thus, one can set F = (u —0)/b to get the vehicle model

X1 = X2, X2 = u, (1)

in which we set x; = p, so the continuous set of variables
is X C [0,00)%. The flow of these dynamics preserves the
ordering with respect to the (x;, x;) and the u variables.

Definition 3: Let H; = (X;,Q;,U;,0;, f;,Ri, h;) for i €
{1,2} be hybrid automata. Their parallel composition H =
Hi||H; is the hybrid automaton H = (X,Q, U, O, f,R,h), in
which X = X XX5, Q = Q| X@Qy, U = U1 XxU>, O = O, X0,
f =1, /2), R=(Ri,Ry), and h = (hy, ho).

In this note, we focus on the safety control of the par-
allel composition of order preserving hybrid automata with
imperfect state information. We only consider the case of
two parallel order preserving automata, but our results can
be generalized to an arbitrary number of parallel automata.

III. SAFETY CONTROL WITH IMPERFECT STATE INFORMATION

Given a hybrid automaton H = (X,Q, U, O, f,R, h) and
a set of states B C X, consider the problem of designing
a controller that, on the basis of the output measurements,
prevents the state from entering B. We refer to B as a bad set.
Let &(z, 2%, u, z) € 2X denote the set of all possible continuous
states at time ¢ given an initial set of possible states %0 € 2%,
input u, and output signal z. We call % the state estimate,
and we denote it by x(f) when %%, u, and z are clear.

Problem 1: (Dynamic Feedback Safety Control Problem)
Given a hybrid automaton H = (X, Q, U, O, f, R, h), compute

W os %0 €2X | Ju e F(U) such that Yz € F,(0)
and V¢ > 0, we have #(, 2%, u,z2) N B =0

and a function g : W — 2U such that £, 2%, w,z)NB =0
for all convex sets 2° € W, all ¢ > 0, and all z € F(O) when
u € ¥(U) is chosen to satisfy u(r) € g(&(r)) for all r > 0.

This problem can be interpreted as one of finding a
winning strategy for the control, which plays against the
environment. The control map g is determined using W. The
computation of this set is in general hard; the complexity can
be exponential in the size of the system [6]. Additionally, the
known algorithms for its computation are not guaranteed to
terminate. We solve Problem 1 for the parallel composition
of two order preserving hybrid automata by showing that for
such a class, a separation principle between state estimation
and control design holds. We first define the following safety
control problem with perfect state information:

Problem 2: (Static Feedback Safety Control Problem)
Given a hybrid automaton H = (X,Q, U, O, f,R,h) with
O = X and h(z) = z, compute

Woe 1" € X [T u e F(U) such that
1 Vt>0,we have ¢(t,x% u) ¢ B
(called the escape set) and a function g : W — 2¥ such that

#(t,x°,u) ¢ B for all x° € W and all z > 0 when u € F(U)
is chosen to satisfy u(r) € g(¢(r, x°, uw)) for all r > 0.
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We define the separation principle between state estima-
tion and control in the context of this note as follows, where
we use V;’s to denote the admissible control values and the
sets S, ; to specify where these values occur:

Definition 4: We say that the (set-based) separation prin-
ciple holds for H = (X,Q,U,O, f,R,h) provided there
exists a finite index set 7, an integer M, and subsets
SitseesSimsWins... . Wiy € X and V; € U for each i € T
so that (i) the piecewise defined feedback [g(p) := V; if
(PnNnSi; #0)APNW,; = 0) for all j] solves Problem
1 and (ii) the piecewise defined feedback [g(p) := V; if
(peSijA(p¢ W, for all j] solves Problem 2.

Definition 4 means that given a static feedback map g that
solves Problem 2, a dynamic feedback map g that solves
Problem 1 is obtained by replacing the state by the state
estimate and membership by set intersection. Hence, if a
separation principle holds, then the dynamic feedback safety
control problem is no harder than the static one. As we
explain next, the sets §; ; and W; ; determine the escape set
W and can be computed with linear complexity algorithms.

IV. SorLuTioN To PROBLEMS 1-2 AND THE SEPARATION PRINCIPLE

Consider H = H,||H,, in which the H;’s are order
preserving hybrid automata with input sets [u;,,, u; p]. Let
xi = (Xi1, ..., Xin;) € X; € R" denote the continuous state of
H;. Given open intervals 7; = (L;, U;) for constants L;, U; € R
with L; < U; for i € {1,2}, the bad set B is defined by

B={xeX|xy el fori=1,2}. 2)

The choice of a B that only restricts the x;;’s is motivated
by the modeling of conflicts between vehicles at traffic
intersections, railway/highway crossings, railway mergings,
traffic circles, etc. In these cases, x;; typically represents the
position of a vehicle along its route, as illustrated by Example
1 for the case of vehicles driving in their lanes.

Our proof of a separation principle relies on the notion
of the capture set C = {x € X | Yu € F(U), At >
0 s.t. ¢(t,x,u) € B} = X\ W. It is the set of all states
x such that independently of the input u, the flow takes the
system from x to B in finite time. The static control map that
solves Problem 2 prevents a state outside C from entering
C. Let x = (x1,x2) € X with x; = (X1, ..., Xip,) for i = 1,2.
Let up := (U1 m, u2.m) and uc := (u1,m, U2.m), SO Up, Uc € U=
U, X U,. Define Cp = {x € X | At = 0 s.t. (¢, x,up) € B}
and Cc ={xe X |t > 0 s.t. ¢(t, x,uc) € B}.

Theorem 1: C = Cz N Cc.

To show Theorem 1, we first prove:

Lemma 1: Let x° € X be given. Set Rc(x%) =
UI‘ZO ¢X1,|,X2.1 (t’ xo’ MC)’ RB(xO) = UtZO ¢X1,|»X2.1 (t’ xO, MB)’ and
R(x%) = {(x1,1,x21) € R* | Apy, p2 € R such that (x;;,p)) €
Re(x), (x11,p2) € Rp(x®) and p; < xp; < pa). Then,
Gy, (1, X%, 0) € R(X0) for all > 0 and all u € F(U).

Proof: Fix u = (uy,uz) € F(U). For each xp, > x‘l)’l,
we can use (iii) from Definition 2 for H; to find a 7 > 0
such that ¢, (7, x°, u1 p) = X}, since fi1 > y everywhere.
Similarly, let # > 0 be such that ¢,, , (7, Ouy) = xT,l’ and set
x’il = ¢y, (7, X9, up). Since ¢x,, 1s strictly increasing in time,

&, (2, xo,ul,M) < xh for all + < 7, and ¢y, (¢, Oy < xh
for all # < 7. Since the flow is order preserving with respect
to the input, we know that if 0 <7 < 7, then ¢, (7, x°,uy) <
by (1, X0 w1 ) < xj,. This gives 7 > 7. Hence, by the
order preserving property of the flow with respect to the
input and its increasing property in the x,; coordinate,
p1 = ¢xz_1(f’ xO, uZ,m) < ¢xz_1(f’ xO, uZ) < ¢xz71 (f" xO, uZ) = x;,l'
Hence, any (x}, x3) € Upo ¢(2, x%,u) admits p; < x5, such
that (XT,I’ p1) € Rc(x9). Analogous reasoning (that considers
times ¢t > 7 and ¢t > 7 instead of below these values, with
the roles of m and M interchanged, and then concludes that
7 <1) provides py > xj, satisfying (x} |, p2) € Rp(x’). W
Proof: (Theorem 1). The inclusion C € Cg N C¢ is
immediate from the definitions of these sets. To show that
CsNCc CC,let 2% € CcenNCp and u € F(U) be
given. Then there are times 7 > 0 and 7 > 0 such that
= ¢x1.1,x271 ( XO’ uc) € I1xIrandc := ¢X1.1,Xz.1(f"x0’ up) €
I, X T,. By the definitions of Rc(x”) and Rp(x"), we have
¢1 € Rp(x®) and ¢, € Re(x0). By Lemma 1, ¢y, x,, (2, ) e
R(x®) for any u € F(U) and ¢t > 0. Let A(x") denote the
subset of R(x") bounded by Rc(x°), Rp(x"), and the segment
connecting ¢; with c;. The flow ¢, x,, (7, x°, u) starts inside
A(x°), but since [|¢y, ,.x,, (% x°, 0)]| = oo (by condition (iii)
from Definition 2), it must exit A(x°). Since the flow is
continuous in time, there is a time at which ¢, ., (z, 2 u)
crosses Rp(x%), Re(x%), or the segment connecting ¢; with ¢;.
However, by Lemma 1, the flow cannot cross Rz(x")URc(x?).
Therefore, it must cross the segment connecting c¢; with
c>, which must lie in the convex set 7; X 7,. Therefore,
[N (A XY, u) must enter 7| x 7,. Hence, C2CsNCc. W
In all of what follows, we assume that the flow of H
is continuous with respect to initial conditions. Note for
later use that since B is open, both C¢ and Cp are open.
A consequence of Theorem 1 is that a static control map
g : X\ C — 2Y that solves Problem 2 is given by

g(x) :={up} if x ¢ Cp, or {uc} otherwise. 3)

A less restrictive map, which enforces a safe control input
only on the boundary of C is given by

{up} if xeCc N x€0Cp
{uc} if xeCgp A x€dCc

g(x) = [xeCcAx¢Cc 4)
tuc, ug} lf{/\xec_’g/\xﬁé(]g}

otherwise.

Therefore, we can solve Problem 2 by simply computing C¢
and Cp. The controller (4) never switches on dC. We next
show that for order preserving hybrid automata, computing
Cp and Cc is also sufficient to solve Problem 1.

Theorem 2: Let £ C X be a convex set of continuous
states. Then, the following are equivalent: (i) There exists an
input u € ¥ (U) such that ¢(¢, x,u) N B = 0 for all t > 0 and
i) xNCp=0o0r xNCc = 0.

Proof: For any not necessarily convex set * C X, if
XNCp = 0, then ¢(z, X, up)NB = 0 for all r > 0, and similarly
for Cc. This follows from the definitions of Cp and Cc. We
thus focus on showing that if *NCp # 0 and XNC¢ # 0, then
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there is no u € F(U) such that ¢(¢, X,u)NB = ( for all ¢ > 0.
If x;,; > U, then for all u € ¥(U), all x,, and all r > 0, we
know that ¢(t, x,u) ¢ B, by condition (iii) from Definition
2. Hence, we may assume that x;; < U; for all x € %;
otherwise, replace X with the convex set {x € & | x;; < U;}
without relabeling. Let M eCcniand X € Cgn R, and
suppose u € F(U) is such that ¢(f,x,u) N B = @ for all
t > 0. Then, ¢y, v, (tc,x°, uc) € Iy x I, for some 7c > 0
and ¢y, , »,, (5, 10, up) € IxTI, for some tz > 0. This implies
that Re(x%) N B # 0 and Rp(x°) N B # 0.

It follows from Lemma 1 that for all u € ¥ () and all
t > 0, any (¥1,1,%21) € U0 @xpyox, (8 1%, w) is such that
for (X11,p1) € Rc(x%) we have that X21 = p1- Choose any
(¥11,p1) € 1 X I)N Rc(xY). There always exists an Xy |
such that (¥1,1, X2,1) € U0 @x11.00, (&, ), by property (iii)
from Definition 2 and the fact that X;; > X0 i1 fori = 1,2.
Since (%11, p1) € I1 x I, it must be that X, ; € 7. However,
because ¢y, x,, (1, XY, u) does not intersect 7| x I, for any f,
(%1.1,%2.1) € I1 X I,, which in turn implies that %,; > Ua,
because X, > p;. Similar arguments show that there is a
x5, such that (%11, % ) € Upo Gy, (0 i°,u) and ¥, < Lo,
based on considering points ()’c'l!l,p’l) e (I} x I,) N Rp(x9).

Any other point x € X must be such that when
¢, (t, x,u) € I either ¢, (¢, x,u) > Uy or ¢, (¢, x,u) < L,
(since ¢y, ,.x,,(#, x,u) never enters I X I). Therefore, % is
partitioned into two sets. For one of these sets, (x; 1, x2,1) will
be taken above 7 XJ,, while for the other set it will be taken
below 7| x 7, by the same control input u that keeps X outside
B. Thus, we have the disjoint union £ = Xapove U Xpetow. More
precisely, any x* € Xgpope admits X € 7| and ¥y > U,
for which (X1,1,%2,1) € U0 @x,1.0, (¢ X%, 0). Similarly, any
x* € Zpeiow admits ¥, € I, and %, < L, for which
(%11, %21) € U,Zocpxl.],m(t,x”,u). As we showed in the
previous paragraph, Xgpove and Xpejo, are both nonempty. We
show that this leads to a contradiction.

Since % is convex, the segment § joining any pairs x* €
Rabove and X2 € Fpeiow 1S again in X. Also, since the first
component f;; for H; is bounded below by a positive
constant, we can find a constant « > 0 so that each point z € §
admits a unique time #(z) € [0, «] so that ¢, ,(#(z), z,u) = U;.
Since the flow map is jointly continuous in time and the
initial state, one readily shows that each constant y > 0
admits a constant A(u) > 0 so that sup{|#(z) — #(Z')| : 2,7’ €
Sz = Z|l € A(u)} < . Choose a constant §. > 0 so that
sup{ley,, (t1,21,W) — ¢y, (2,22, W] : 11,10 € [0,k];21,20 €
St — | £ dslla — 2l £ 6. £ (Uz = Lp)/2, and
choose z,,z, € § so that z, € ZXupoves b € Xpelow, and
lza — zoll < min{d., A(S.)}. By our choice of 8., we conclude
that |@y,, (8(za), Za, W) = ¢y, (1(20), 26, W] < (U2 — L2)/2. Since
&x,,(8(24),2a,0) = Uy and ¢y, (t(zp), 2p,u) < Ly, this is a
contradiction. This contradiction came from assuming that
there is an input signal u that keeps ¢(¢, X,u) N B = 0 at all
t > 0. Therefore such an input signal cannot exist. [ ]

Theorem 2 shows that a convex set £° C X intersects both
Cp and Cc, if and only if each u admits an x € £° and a
time #* > 0 such that ¢(t*, x,u) € B. This in turn is true if
and only if each input u admits an output z and a time ¢*

such that £(t*, 2%, u,z) N B # 0, i.e., 20 € 2X\ W.

Theorem 3: (Solution to Problem I) Consider the hybrid
automaton H = H;||H,, in which H; and H, are order
preserving hybrid automata. A convex set £ € 2X is in W
if and only if XNCp = 0 or XNC¢ = 0. Furthermore, assume
that the initial state estimate £° € W is convex. Then, we
can solve Problem 1 using the map g : W — 2 defined by
&(X) ={up} it N Cp =0 and g(%) = {uc} otherwise.

Theorem 3 follows from the remarks before the theorem,
and because if 2°NCp = 0, then ug will keep x(t) outside Cp
for all ¢. Similarly, if £° NCp is not empty and £° € W, then
°NCc = 0. Thus, uc will be applied as long as £(1)NCp # 0,
which will keep %(¢) outside Cc. If X(#) NCp becomes empty
again, then we fall back into the first case.

Corollary 1: (Separation between state estimation and
control) For a hybrid automaton H = H,||H, with order
preserving hybrid automata H; and bad set B given by (2),
a separation principle holds.

This corollary follows immediately from our Definition 4
for the separation principle, the map g in Theorem 3 and the
static control map g in (3). A less restrictive alternative to
the g(X) given in Theorem 3 that applies safe control inputs
only when the set X hits the boundary of C¢ or of Cp is:

{ug} if(XNCc#0) A (XNOICg # 0)
{uc} if(XANCp#0) A (RN ICc # 0)
2(®) = @ENCc#0)AGENCe=0) (5)
{uc,ug} if
/\(xﬁCB FOAEXRNCE=0)
Uu otherwise.

This map is the extension of (4) to the case of partial
information. Even if restrictive, the map in Theorem 3
guarantees that any convex set £ that starts in W (and that
therefore by definition admits a control signal that keeps it
outside B at all time) will never intersect B.

V. ALGORITHM IMPLEMENTATION

We next provide an algorithm for the symbolic compu-
tation of the sets Cp and C¢, which has linear complexity
with the number of continuous variables. Set U¢c = {u =
(uy, up) lu; € {ujm, uj p} constant}, i.e., the set of all constant
inputs that lie at the corners of the feasible set of inputs
U = [urm uim] X [uam, uzm]. With a view towards digi-
tal implementation, we illustrate our algorithm in discrete
time. We assume that for each hybrid automaton H;, the
first component f;; of f; does not depend on x;; and the
discrete state reset map R; also does not depend on x;;.
This structure is satisfied, e.g., by chains of integrators and
feedback linearizable systems after feedback linearization. It
can model the longitudinal dynamics of vehicles, as well as
mode transitions induced by speed and acceleration changes.

Set ki = (xi2,...,%in) for i = 1,2. For any variable
v, let v/ denote its value at step k + 1 and v its value
at step k. Letting AT > 0 denote the discretization time,
the discrete time version of the dynamics of each H; we
consider is x/ o= X+ Fi (X, u;), x = F;(X;,u;), where

1l(x1, l) - f l(xl’R (-xl’ 1))AT and F(-xl’ 1) and Fl l(xl’ 1)
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are order preserving in X; and u;. Independently of the form
of the Fi(x;,u;)’s, the key feature that allows the symbolic
computation of the C,.’s is the structure of the discrete
time dynamics. Set F(%,u;) := X and F’'(xX,up) =
Fi(FlI.(()_C,’, Ml‘), I/l[) for k = 0, 1, e

Proposition 1: Set Lf.‘()‘c,-, u;) = L,-—Z’;;(l] F,'yl(F;.i()_C,', u;), U;)
and UX(%;, ) = U = $420 Fia(FJ(%i,up), u;) for each k € N
and i € {1,2}. Then,

Cuc ={x € X | Tk 2 0 with LK, ui0) < xi1 < US(Ei, i 0) Vi

for each uc = (Ltlyc, szc) e Ue.
Proof: The proof proceeds by iteratively computing the
sets of points that are taken to B in k steps. For each i € {1, 2},
we have {xi | xl’.yl (S I,} = {Xi | Li - F[,l()_Ci,I/l[) < xi1 <
U; - F,',l()_c,', Ml‘)}. The set {X[ | Lil()_C[, Mi) < Xxi1 < Ul.l()_C[, Mi)} is
the set of all points x; = (x;1,X;) € X; that are mapped to
7; in one step. Then, one computes the set of all points that
are mapped to {x; | L! (X, u;) < x;1 < U}(X;,u;)} in one step,
which is the set of all points that are mapped to 7; in two
steps. This set is given by {x; | L] (¥}, ;) < X, < UNE, up)),
which is equal to {x; | LII(F,()_C,, u;), u;) < Xi1 + Fiyl()_C,', u;) <
Ul-l(F,'()_Ci,M,'),M,')}. This leads to {X,’ | Li - F,’Yl()_C,',M,') -
Fir(Fi(xi, ui), ui) < xi1 < Uy = Fi (X, u;) — Fif(Fi(X3, w), u;))
Proceeding inductively shows that if the set that is mapped
to Z; in k steps is given by {x; | L¥(%;, u;) < xi1 < UK(X;, up)},
then the set that is mapped to J; in k + 1 steps is given by
{xi | LECF(Xi, wi), wi) = Fig (X, ui) < xiy < UN(F(X3,u), ui) —
Fii(%up)) = {x; | LY (R u) < xiy < URN(X;, u)). Since
this holds for any u € U, the result follows. [ ]
Since the dynamics of the system are order preserving with
respect to the state, we can construct a state estimator that
keeps track of only the lower and upper bounds of the current
system states as opposed to keeping track of the entire set of
current system states. Let us denote the update laws of hybrid
automaton Hl‘ by F[(Xi, qi, I/l[) = ()C,',l + Fi,l()_c,', I/l[), F[()_C[, Ml‘))
for i € {1,2}. Let v&; and At; denote the upper and lower
bounds, respectively, of the set of possible current states ;.
Let z; be an output measurement of hybrid automaton H;
and let hi(z;) = [M(z:), vhi(z;)]. Then a state estimator that

updates \&; and A%; is given by

% = \/ Fi(\/%i, qi, ui) A \Jhi(z})
4i€4i
Ni = /\ Fi( N\, i ui) v Ni(z)), (6)
9i€q;i

where @,’ = {6], S Qi | Ax; € [AR, V&] such that (xi,u;) €
Dom(g;)}. To implement the dynamic feedback, one needs to
check whether the set [Af, \&] intersects the sets C,. given
in Proposition 1.

Using the structure of the sets C,,. in Proposition 1 and the
order preserving property of the dynamics, it is possible to
show that if [A%, v&] N C,. = O then applying uc guarantees
that [\, \&'] N Cy. = 0 (see [7] for details). Because the
functions F;(X;, u;) and F;(X;,u;) are order preserving in the
argument ¥;, the functions L¥(%;, u;) and U¥(%;, u;) are order
reversing in X; for i = 1,2. Hence, a sufficient condition

Uy
24 i,
N
b / A
= 7 i\ B |
N
/ # S
L2}

1,1 vehicle to-vehicle
and vehicle'to
infrastructure
communication

Position uncertainty z2

Fig. 1. Vehicles converging toward a traffic intersection. The bad
set is defined to be the set of all vehicle 1/vehicle 2 configurations
in which the vehicles are both in the red area.

guaranteeing that [A%; 1, \&11 N (LY, uic), UMK, uic)) = 0
for all k and all (¥, X,) satisfying % € [AX;, \;] is that for
i=1,2,

| Nens Vi | O (LEO\ B i), USAS wi0)) = 0 Yk ()
Also, because F;; is bounded below by a positive con-
stant (by condition (iii) from Definition 2), the sequences
{Lf()"c[, ui)l=1 and {U;‘()"c[, uj)h>1 are strictly decreasing to
—oo. Therefore, condition (7) does not need to be checked
for an infinite number of k; it is enough to reach the smallest
k for which (Afi1, At1) 2 (UKL une), US (AR, u2.0))-
This guarantees termination of the dynamic algorithm that
computes the control map.

VI. AppLicATION EXAMPLE

Consider the problem of designing a safety controller for
two communicating vehicles converging to a traffic intersec-
tion subject to state uncertainty (Figure 1). The longitudinal
dynamics of each vehicle is modeled as in equation (1).
Hence, in terms of our earlier notation, n; = n, = 2. To
satisfy speed limitations and to prevent a vehicle from going
in reverse, we model each of the two vehicles as a hybrid
automaton with three modes, as shown in Figure 2, in which
uj € [uim,uin], i € {1,2}. The system of two vehicles
converging to the intersection is thus given by the parallel
composition of two equal hybrid automata as in Figure 2.
It can be verified that each of the two hybrid automata is
order preserving and that it is continuous with respect to
initial conditions. The measurement model is chosen such
that z; € [x; — A, x; + A] for i € {1,2} in which A € R? is a
bounded uncertainty. The algorithms of Section V can thus
be implemented to symbolically compute the sets Cc and
Cp, and to compute the state estimate in equations (6).

Figure 3 shows the capture set in three dimensions. Figure
4 shows an execution of the controlled system when we
apply the dynamic feedback in equation (5). The algorithm
is simulated on a 2 Ghz Pentium Core Duo machine using
Matlab. It takes 6 seconds for the simulation to run 400 time
iterations. While the case in which one vehicle is closer to
the intersection and running at higher speed than the other
is trivially solved by having it cross the intersection first
to prevent a collision (assuming the system configuration is
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Fig. 2. Hybrid automaton modeling the longitudinal dynamics of
a vehicle approaching a traffic intersection.
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Fig. 3. Capture set in (x; 1, X21, X12) space for a constant x,,. The
bad set B is such that L; = 500 and U; = 550 for i € {1, 2}. The pink
and blue surfaces represent the boundary of the set Cc, while the
yellow and green surfaces represent the boundary of the set Cp. All
of the surfaces extend to —oo in the (x;, x,,;) plane. The capture
set C is the set bounded by the yellow and blue surfaces.

outside of the capture set), the case in which it is closer
but running at lower speed than the other is non-trivial. This
case is automatically resolved by our algorithm as the capture
set depends on the speeds: for the same position pair, two
different speed pairs can result in different precedence rules
for the vehicles. These rules must be strictly respected in
order to maintain safety.

The only approximation introduced for obtaining linear
complexity in the number of variables occurs when (7) is
used to check intersection between the state estimate set and
Cp and Cc. The plots of Figure 4 show that the estimated
set and thus the state is taken very close to B. Hence, the
dynamic control algorithm as a whole is tight. This contrasts
with [7], where the dynamic control algorithms lead to quite
conservative dynamic controllers.

VII. CONCLUSIONS

We proved a separation principle between state estimation
and safety control for hybrid automata with imperfect state
information whose flows preserve the ordering with respect
to the state and the input. This led to a dynamic control algo-
rithm that has linear complexity in the number of continuous
variables and that is guaranteed to terminate. We applied the
algorithm to a collision avoidance problem.

5 600 time =0 6007 time = 15
3 ol
g 500 —
T 400 400 .
300 oo 300 350 400 450 500 550
300 350 400 450 500 550
S 600 | time = 30 600" time = 45
2 500 ] 500 1l
5 400 I 400 *
300 300
300 350 400 450 500 550 300 350 400 450 500 550
S 600 time = 60 600" time = 75
2 500 ] 500 < il
V_ *
& 400 400
300 300
300 350 400 450 500 550 300 350 400 450 500 550
% 600 time = 90 6007 time = 105
g 500 (T 5 M=
= 400 400
.
300 300
300 350 400 450 500 550 300 350 400 450 500 550
< 600f time = 120 600 time = 135 *
Qo
T 500 [ —
5 400 400
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300 350 400 450 500 550 300 350 400 450 500 550
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Fig. 4. The plots show the behavior of the system trajectory in
the positions plane. The yellow set represents a slice of the set Cp
in the position plane for the current speeds of the vehicles. The
blue set represents a slice of the set C¢ in the position plane for
the current speeds of the vehicles. The star represents the position
(x1,1,x21) and the red rectangle around it the uncertainty as given
by the state estimator. The bad set B is the black box.
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