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Abstract— We address the problem of predicting whether a
driver facing the yellow-light-dilemma will cross the intersection
with the red light. Based on driving simulator data, we propose
a stochastic hybrid system model for driver behavior. Using
this model combined with Gaussian process estimation and
Monte Carlo simulations, we obtain an upper bound for the
probability of crossing with the red light. This upper bound
has a prescribed confidence level and can be calculated quickly
on-line in a recursive fashion as more data become available.
Calculating also a lower bound we can show that the upper
bound is on average less than 3% higher than the true
probability. Moreover, tests on driving simulator data show that
99% of the actual red light violations, are predicted to cross on
red with probability greater than 0.95 while less than 5% of
the compliant trajectories are predicted to have an equally high
probability of crossing. Determining the probability of crossing
with the red light will be important for the development of
warning systems that prevent red light violations.

I. INTRODUCTION

In 2012 approximately 2.36 million people were injured
in motor vehicle traffic crashes, about 30% of these injuries
happened on or near signaled intersections [1]. Statistics
show that driver distraction or inattention is the most preva-
lent contributing factor for all crashes at signaled intersec-
tions [2]. In [3], experiments have shown that using an on-
board warning system, red light running could be reduced by
77%. Our objective is to design safety systems that are able
to predict the probability of a red light violation. This ability
will be used to issue warnings and if necessary, take control
over the vehicle to prevent red light violations. In [4], [5],
[6] safety systems were proposed for intersections without
signals and by representing driver inputs as a disturbance. In
this paper we present a combined experimental/theoretical
study where suitably designed experiments in the driving
simulator are used to create a stochastic model of driver
behavior near signalized intersections. Considering the sit-
uation when the traffic light changes from green to yellow
upon intersection approach (yellow-light-dilemma), we use
this model to compute the probability of the driver being on
the intersection while the traffic light is red.

Classification of driver behavior is an active area of
research and several different approaches, mainly using
machine learning techniques, have been proposed, see for
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instance [7], [8], [9] and the references therein. Most of these
studies try to predict specific driving actions, such as turning
left, going straight or stopping. In [7] the focus is on the
prediction of traffic light violations and in [9] the authors
suggest two methods to predict whether a driver is going to
stop after observing a switch of the traffic light from green
to yellow.

In this paper, instead, we seek to estimate the actual
probability of reaching some given state (stochastic reach-
ability problem). Moreover, we provide a complete model
of driving behavior near intersections, which may be used
for other purposes, including the design of safety-enforcing
supervisors.

Stochastic reachability problems have been studied in the
stochastic hybrid systems literature, see [10], [11], [12],
[13]. Exact computation of reach probabilities remains a
challenging problem but Monte Carlo methods have proven
to be efficient, see [11].

By modeling driver behavior near intersections as a
stochastic hybrid system, we make use of the existing
stochastic reachability literature in order to formally define
the probability of crossing on red. This probability is then
computed by a combined Bayesian filter and Monte Carlo
simulation approach. Tests on driving simulator data show
the accuracy of the computed crossing probability. The
method therefore provides a quantification of the danger
instead of just a binary output (safe, dangerous).

In Section II, we state the problem and introduce the math-
ematical model. Then, in Section III, we present our solution
algorithm and in Section IV we provide the experimental
results.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first describe the intersection scenarios that we are
considering and then introduce the mathematical model.

A. Application

When the traffic light changes from green to yellow, the
driver has to decide whether he wants to brake or continue
and try to make it through the intersection before the traffic
light turns red. This is known as the yellow-light-dilemma.
The question that we address is: What is the probability that
the driver is going to be on the intersection while the traffic
light is red? We shall call this the crossing probability.

The intersection scenarios that we consider start when the
traffic light switches from green to yellow. The vehicle state
x = (p, v) ∈ R×R+ is given by the vehicle position p ∈ R,
which represents the signed distance of the center of gravity



of the subject vehicle to the intersection center and the
subject vehicle’s longitudinal speed v ∈ R+ (Figure 1). We

Fig. 1. Intersection with coordinate system.

assume that the vehicle state x is measured. In practice, this
implies that the subject vehicle is equipped with differential
GPS and a map of the area. In order to be able to estimate the
crossing probability we make the additional assumption that
the durations of the yellow and red light, denoted respectively
by τy and τr, are known. The infrastructure should therefore
be able to communicate these durations to the vehicle (V2I
communication).

Figure 2 shows speed over position trajectories for dif-
ferent drivers once a yellow light is observed. We see
clearly four different dynamical behaviors based on the
driver’s intended driving maneuver (action), namely coasting,
braking, accelerating and waiting for the green light. That is,
a different dynamical system belongs to each driver’s action.

Fig. 2. Driver trajectories after observing a traffic light change.

Based on Figure 2, we seek a driver model with the
following properties: 1) drivers have a finite set of basic
actions that they can perform such as braking, coasting
and waiting; 2) each basic action has its corresponding
stochastic continuous dynamics; 3) the action intended by the
driver is not directly observable. The framework of (general)
stochastic hybrid systems [12] is adapted to build a driver
model that satisfies these requirements. The next section
introduces the mathematical definition of such a model.

B. Hybrid system model

We introduce here the stochastic hybrid system model
and state some of its properties. A detailed treatment of the
subject can be found for instance in [12].

a) State space: Hybrid systems have continuous states,
that is, states that evolve according to a differential equation
and discrete states, called modes, that evolve according to
discrete transitions.

Let n ∈ N be given. The set of modes is denoted by Q and
we define the set-valued map X : Q Rn which assigns to
each mode q ∈ Q an open set in Rn. With this we define
the hybrid state space,

X(Q,X ) :=
⋃
q∈Q
{q} × X (q).

A hybrid state (q, x) =: s ∈ X(Q,X ) is a tuple formed by
the mode q ∈ Q and a continuous state x ∈ X (q). Here S
denotes the closure of the set S .

b) Formal definition and properties: Let T > 0 be a
finite constant and m ∈ N. Denote by {Wt}t∈[0,T ] the m-
dimensional standard Brownian motion, see for instance [14,
Ch. 2]. A property used in this paper is that its increments
are independent, normally distributed and have zero mean.

Definition 1: A (linear) stochastic hybrid system is a
collection H = (Q,X , A, b, σ,R, Init, x0) where Q and
X : Q Rn are as above, x0 ∈ Rn is the initial continuous
state, A : Q→ Rn×n and σ : Q→ Rn×m are matrix-valued
maps, b : Q → Rn is a vector-valued map, R : Q → [0, 1]
is the transition measure and Init : Q → [0, 1] is the initial
probability distribution on the modes.

The linear stochastic hybrid system defined here is a
special case of a general stochastic hybrid system, see for
instance [12, Def. 4.1], where dynamics are linear and only
the modes can have jumps.

Definition 2: A stochastic process {s(t)}t∈[0,T ] =
{(q(t),x(t))}t∈[0,T ] is an execution of a stochastic hybrid
system H if there exist stopping times T 0 = 0 ≤ T 1 ≤
· · · ≤ T k ≤ · · · ≤ T such that for each k ∈ {0, 1, . . . },

(i) s(0) = (q0, x0), where q0 is a Q-valued random
variable with probability distribution Init;

(ii) q(T k+1) = qk+1, where qk+1 is a Q-valued random
variable distributed according to R;

(iii) For all t ∈ [T k, T k+1)], where “)]” is closed when
T k+1 = T and open otherwise, q(t) ≡ qk;

(iv) For all t ∈ ]T k, T k+1], x(t) is the solution of

dx(t) = (A(qk)x(t) + b(qk)) dt+ σ(qk)dWt;

(v) T k+1 = inf
{
t ∈ ]T k, T ]

∣∣ x(t) ∈ ∂X (qk)
}

.
Throughout the paper H = (Q,X , A, b, σ,R, Init, x0)

represents a stochastic hybrid system which satisfies the stan-
dard assumptions [15, Assumption 1-3]. Other than regularity
assumptions on the dynamics that are satisfied in the linear
case, these assumptions demand that the executions have
non-Zeno dynamics.

Definition 3: Let C ∈ Rn×1 be given and {s(t)}t∈[0,T ]

be an execution of H . An output of H corresponding to



{s(t)}t∈[0,T ] and C is the stochastic process defined by
y(t) = Cx(t) for all t ∈ [0, T ].

Definition 4: A mode q ∈ Q is stationary if A(q) =
b(q) = σ(q) = 0.

Fact 1 ([15]): Every stochastic hybrid system H has an
execution that is a strong Markov process (see [14, p. 81]
for a definition).

Let q ∈ Q be given and recall that the fundamental matrix
Φq : [0, T ]→ Rn×n of the ODE ẋ = A(q)x+ b(q) is

Φq(t) := eA(q)t =

∞∑
i=0

(A(q)t)
i

i!
. (1)

Fact 2: Let q ∈ Q and x ∈ X (q). Then, the stochastic
process {xq(t, x)}t∈[0,T ] satisfying xq(0, x) = x and

dx(t, x) = (A(q)x(t, x) + b(q)) dt+ σ(q)dWt, (2)

is given for all t ∈ [0, T ] by the stochastic integral

xq(t, x) = Φq(t)

(
x+

∫ t

0

Φ−1
q (s)b(q)ds

)
+ Φq(t)

∫ t

0

Φ−1
q (s)σ(q)dWs. (3)

Moreover, {xq(t, x)}t∈[0,T ] is a diffusion, i.e., time-
homogenous and strongly Markovian with continuous sam-
ple paths. Finally, the stochastic process {Eq(t)}t∈[0,T ] de-
fined by

Eq(t) := Φq(t)

(∫ t

0

Φ−1
q (s)σ(q)dWs

)
, (4)

is a Gaussian process, where for all t, t′ ∈ [0, T ], E(Eq(t)) =
0 and the covariance function Σq(t, t′) is given by

Σq(t, t′) :=∫ min{t,t′}

0

(
Φq(t− s)σ(q)σ(q)T Φq(t′ − s)T

)
ds. (5)

For a proof of these results see for instance [14] and [16].
The deterministic part of (3) is denoted by:

ϕq(t, x) := Φq(t)

(
x+

∫ t

0

Φ−1
q (s)b(q)ds

)
. (6)

C. Problem formulation

We assume the following data is available at all time.
Data: For S ∈ [0, T ] and Nq ∈ N, ∀q ∈ Q, we have
• It = [S, T ] – time interval;
• Iy = [ymin, ymax] – target set for the output;
• For each q ∈ Q, {eq1(t), . . . , eqNq (t)}t∈[0,T ] is a set of

observed sample paths of Nq independent stochastic
processes distributed as {Eq(t)}t∈[0,T ].

We impose the following assumptions on H .
Assumption 1: (i) There exists a stationary mode q̄ ∈ Q

and X (q̄) = Rn; (ii) For all q ∈ Q the transition measure
is given by R(q) = 1{q̄}(q), where 1S(·) is the indicator
function of the set S; (iii) There exists a set T ⊂ Rn such
that ∂X (q) = T for all q ∈ Q \ q̄.

The assumption implies that when the continuous state enters
T , then it must transit to the stationary mode q̄. Moreover,
there are no transitions out of the stationary mode.

Problem 1: Let α > 0, n ∈ N, C ∈ Rn×1 and the above
data be given. Moreover, let {s(t)}t∈[0,T ] be an execution of
H and {y(t)}t∈[0,T ] the output corresponding to C. Finally,
let x(t0) = x0, . . . ,x(tN ) = xN be measurements of the
continuous state trajectory, where 0 = t0 < t1 < · · · < tN <
T . Find a 1− α confidence upper bound for the probability

PN := Pr(y(INt ) ∩ Iy 6= ∅ |
x(t0) = x0, . . . ,x(tN ) = xN ), (7)

where INt := It ∩ [tN , T ].
Determining a 1−α confidence upper bound implies that

we seek an algorithm that will produce with probability
1 − α an upper bound for the true probability PN . With
an analogous approach we can find a 1 − α confidence
lower bound to verify the tightness of the upper bound. The
motivation for solving Problem 1 is to assess the risk of the
output entering the set Iy . Taking an upper bound guarantees
that this risk is not underestimated.

D. Illustration with application

Consider the application described in Section II-A. The
time interval of interest is from the moment when the traffic
light switches to yellow until it becomes green again. Hence
T := τy+τr and time 0 is when the traffic light turns yellow.
Modes represent the basic driver actions braking, coasting
and waiting. Accelerating is not relevant to the model as it
occurs after time T . Thus the set of modes is Q = {1, 2, 3},
where 1 stands for braking, 2 for coasting, and 3 for waiting.
It is clear that waiting is a stationary mode. To determine the
hybrid state space we have to consider that cars should not
have negative speed and there should be a mode transition
from braking to waiting when the car reaches zero speed.
Recalling that the vehicle state x = (p, v) is given by position
p and speed v, we define X : Q R2:

X (q) :=

{
R× ]0,+∞[ if q = {1, 2},
R2 if q = 3.

For the longitudinal dynamics we consider a second-order
model. Thus for q ∈ {1, 2}, we have

A(q) =

(
0 1
aq1 aq2

)
, b(q) =

(
0
bq

)
, σ(q) =

(
0
σq

)
, (8)

which also implies that we consider a one-dimensional
standard Brownian motion. The Brownian motion models the
uncertainty in the driver behaviors by introducing a random
deviation from the nominal acceleration profile. We describe
in Section IV-B how the parameters can be identified from
data. The initial distribution of the modes Init also has to
be learned from data. The transition measure R is defined
by Assumption 1.

Consider now the problem of estimating the crossing
probability. The intersection is given by the interval [dl, du],
see Figure 1. Thus we set ymin := dl − df and ymax =



du + dr, where df and dr represent the distance from the
vehicle’s center of gravity to the vehicles front, respectively
to its rear. Setting S := τy , It = [S, T ] are the times when
the traffic signal is red. With these definitions, the car is on
the intersection if its position p is in the interval Iy . Hence
we set C = (1, 0).

III. PROBLEM SOLUTION

Next we propose an algorithm to solve Problem 1. We
start with a lemma that allows to decompose the problem
into a mode estimation and a simpler reachability problem.
Then we address these sub-problems.

A. Problem decomposition

Lemma 3.1: Let (ti, xi), i ∈ {0, . . . , N}, be as in Prob-
lem 1. Assume that (ti, Cxi) /∈ It × Iy for all i. Then

PN =
∑
q∈Q

(
Pr(q(0) = q | x(tN ) = xN , . . .x(t0) = x0)·

· Pr(y(INt ) ∩ Iy 6= ∅ | q(tN ) = q,x(tN ) = xN )
)
, (9)

if xN /∈ T and otherwise PN = 1Iy (CxN ).
To simplify the notation we abbreviate Pr(q(0) = q |

x(tN ) = xN , . . .x(t0) = x0) by Pr(q(0) = q | xN , . . . , x0).
Proof: By Assumption 1, if xN ∈ T then q(tN ) = q̄

and PN = 1Iy (CxN ) follows from the stationarity of q̄.
Consider now the case when xN /∈ T . Then, by As-

sumption 1, we have that tN < inf {t ∈ ]0, T ] | x(t) ∈ T },
that is, no mode transition has occurred yet. In particular
q(tN ) = q(0). This leads to

PN =
∑
q∈Q

Pr(q(0) = q | xN , . . . , x0)·

· Pr(y(INt ) ∩ Iy 6= ∅ | q(tN ) = q, xN , . . . , x0).

We then obtain (9) by using the Markov property of the
execution {(q(t),x(t))}t∈[0,T ], see Fact 1.

B. Mode estimation

Motivated by Lemma 3.1 we start by solving:
Problem 2: Let x0, . . . , xN be as in Problem 1 and as-

sume that xN /∈ T . For all q ∈ Q compute the probability

P ∗N (q) := Pr (q(0) = q | xN , . . . , x0) . (10)
The problem is solved by using Bayes’ theorem. Denote

by fqi,j the joint density function of the random variables
x(ti),x(ti+1), . . . ,x(tj) given q(0) = 0, that is,

fqi,j(x) = fx(ti),x(ti+1),...,x(tj)(x | q(0) = q).

Analogously, for i ∈ {1, . . . , N}, define

fqi (x) = fx(ti)(x | q(0) = q).

Fix an arbitrary q ∈ Q. By Bayes’ formula we have then

P ∗N (q) =
fq1,N (x1, . . . , xN )Init(q)∑

q̃∈Q f
q̃
1,N (x1, . . . , xN )Init(q̃)

. (11)

Recursive computation of (11) is achieved by the follow-
ing update formulas which exploit the Markov property of
executions, see Fact 1.

Update Formulas: For all q ∈ Q we have that

P ∗1 (q) =
fq1 (x1)Init(q)∑

q̃∈Q f
q̃
1 (x1)Init(q̃)

. (12)

Moreover for all N > 1,

P ∗N (q) =
fqN (xN | xN−1)P ∗N−1(q)∑

q̃∈Q f
q̃
N (xN | xN−1)P ∗N−1(q̃)

. (13)

C. Stochastic reachability of an interval

Let α ∈ ]0, 1[ be as in Problem 1 and define

α̃ := 1− r−1
√

1− α, (14)

where r is the number of modes. We solve the following
problem:

Problem 3: For q ∈ Q arbitrary, using the data provided
in Section II-C, find a 1− α̃ confidence upper bound for the
probability

PN (q) := Pr(y(INt ) ∩ Iy 6= ∅ | q(tN ) = q,x(tN ) = xN ).
Notice that for given N ∈ N and q ∈ Q \ q̄, equations

(12)-(13) provide an exact formula for the probability P ∗N (q).
Moreover, by solving Problem 3 we obtain a 1−α̃ confidence
upper bound for the probability PN (q), denoted by uqN (α̃).
The probability that uqN (α̃) ≥ PN (q) for all q ∈ Q \ q̄ is
then (1 − α̃)r−1 = 1 − α. Since PN (q̄) = 1Iy (CxN ), we
have in this case the exact bound

uq̄N (α̃) = 1Iy (CxN ). (15)

Consequently, by Lemma 3.1, a 1−α confidence upper bound
for the probability PN , is given by

∑
q∈Q P

∗
N (q)uqN (α̃).

To solve Problem 3 for q ∈ Q \ q̄, we use Nq sample
paths of the process {y(t)}t∈[0,T ] and then estimate for what
fraction of the sample paths there exists a time in INt for
which the sample path takes values in Iy . By (3), we know
that

x(t) = ϕq(t− tN , xN ) + Eq(t− tN ), ∀t ∈ [tN , T
1],

where T 1 = inf {t ∈ [tN , T ] | x(t) ∈ T }. As ϕq(t−tN , xN )
is a deterministic function, we have that defining for all i ∈
{1, . . . , Nq} the functions

xqi (t) := ϕq(t− tN , xN ) + eqi (t), ∀t ∈ [tN , T ],

{xqi (t)}i∈{1,...,N
q}

t∈[tN ,T ] is a set of observed sample paths of inde-
pendent processes distributed as {ϕq(t− tN , xN ) + Eq(t−
tN )}t∈[tN ,T ]. This leads to the corresponding set of observed
stopping times T 1

i := inf {t ∈ [tN , T ] | xqi (t) ∈ T }. Finally,
since by Assumption 1 q(t) = q̄, for all t ≥ T 1, we infer
that by defining

yqi (t) :=

{
Cxqi (t) if t < T 1

i

Cxqi (T 1
i ) otherwise,

{yqi (t)}i∈{1,...,N
q}

t∈[tN ,T ] is a set of observed sample paths of

independent random processes {yq
i (t)}i∈{1,...,N

q}
t∈[tN ,T ] identically

distributed as {y(t)}t∈[tN ,T ] given that s(tN ) = (q, xN ).



Let us now associate with each of the random processes
{yq

i (t)}i∈{1,...,N
q}

t∈[tN ,T ] a Bernoulli variable

Y q
i :=

{
1 if yq

i (It) ∩ Iy 6= ∅,
0 otherwise.

(16)

Since the processes {yq
i (t)} are independent and identically

distributed, the same is true for Y q
i . Moreover, PN (q) =

Pr(Y q
i = 1) for all i. It is well known that the sum Zq :=∑Nq

i=1 Y
q
i has the binomial distribution B(Nq, PN (q)). Set

for all i ∈ {1, . . . , Nq},

γqi :=

{
1 if yqi (INt ) ∩ Iy 6= ∅,
0 otherwise.

The values γqi correspond to realizations of Y q
i , hence zq :=∑Nq

i=1 γ
q
i is a realization of Zq .

Providing a 1− α̃ confidence upper bound for the parame-
ter P of the distribution B(Nq, P ) from a given observation
is a standard statistical problem. For this study, we use the
classical Clopper-Pearson confidence interval [17]. Hence a
1− α̃ confidence upper bound for PN (q) is given by,

uqN (α̃) = Beta (1− α̃; zq + 1, Nq − zq) , (17)

where Beta(κ; υ, ν) is the κ-quantile from a beta distribution
with shape parameters υ and ν.

D. Solution algorithm

Using the results of the previous sections, we provide an
algorithm to solve Problem 1.

Algorithm 1: 1. Let N = 0, t0 = 0 and the initial state
x0 be observed. We define α̃ as in (14) and initialize
P ∗0 (q) := Init(q), for all q ∈ Q. By (9) we have that
P̄0 :=

∑
q∈Q P

∗
0 (q)uq0(α̃), where uq0(α̃) is defined by (15)

and (17), is a 1− α confidence upper bound for P0.
2. For N → N + 1, let tN+1 ∈ ]tN , T ] be the current

time and x(tN+1) = xN+1 the new state observation.
If xN+1 ∈ T or tN+1 = T , then PN+1 = 1Iy (CxN+1)
and the algorithm stops. Otherwise P ∗N+1(q) is obtained
from (12)-(13) and P̄N+1 :=

∑
q∈Q P

∗
N+1(q)uqN+1(α̃),

where uqN+1(α̃) is defined by (15) and (17). P̄N+1 is a
1− α confidence upper bound for PN+1. Repeat step 2.

IV. APPLICATION

A. Experimental setup

We use driving simulator data that was gathered at the
University of Michigan Transportation Research Institute
(UMTRI), see Figure 3. There were 24 subjects in this exper-

Fig. 3. Driving simulator at UMTRI where experiments were conducted

iment. Twelve were under age 30 and 12 were older than 60.

Within each age group there was an equal number of men
and women. Each subject drove two test blocks, each block
consisting of 70 intersections 200m apart. The subjects were
instructed not to turn at any of the intersections (to make
motion sickness less likely and simplify construction of the
virtual world). In some intersections, the traffic light would
remain green, in others it would turn to yellow and for some
it would already be red upon approach. All intersections were
crosses, with a single lane in each direction and in each
intersection scenario there were up to four cars in addition
to the subject vehicle.

In order to prevent excess speed, there was always a
lead vehicle present, that is, a vehicle driving in front of
the subject vehicle. The lead vehicle would however always
cross the intersection when the traffic light changed to
yellow, leaving the decision of whether to comply with the
signal completely to the subject. Notice that the behavior of
other traffic participants was not taken into account in the
prediction (no vehicle-to-vehicle communication).

For our purpose, mainly intersections where the traffic
light changed to yellow were of interest. In total, we consid-
ered 1, 534 such intersection approaches. The signal change
to yellow would occur at three possible values for the time
to intersection (TTI), which is the distance to the stop line
divided by the current speed. Those values were respectively,
2.8s, 3.5s and 4.2s. The smaller TTI the faster subjects had
to make a decision.

The data set provided by UMTRI includes position, speed
and acceleration measurements for the subject vehicle as well
as the traffic light information. Measurements were taken at
a frequency of 60Hz.

B. System identification

This section is concerned with the identification of the
model parameters A, b, σ and Init from data. Since we
used standard methods, we mainly provide references to the
relevant literature.

As a first step, we divided the data into a training and a
test set, both containing 767 intersection approaches. Only
the training data was used for parameter identification. The
separation into training and test data sets was done in a
way that kept the ratios between male and female, old and
young drivers, unchanged. Moreover, there was no overlap
in subjects.

The training data was then further divided by identifying
the trajectories belonging to the same mode. For all q ∈
{1, 2}, the parameters aq1, aq2 and bq characterizing the maps
given in (8) can then be identified in the same way as this was
done in [18], i.e., by solving the least square optimization
problem [18, (4)]. As a result we found the parameters a1

1 =
−0.04, a1

2 = −0.27, b1 = −10.23, a2
1 = −0.003, a2

2 = 0.04
and b2 = −2.12.

The parameter σq defined in (8) is a so-called hyperpa-
rameter of a Gaussian process. Hyperparameters of Gaussian
processes are classically estimated with a maximum likeli-
hood method, see [19, Ch. 5]. The resulting parameters are
σ1 = 2.54 and σ2 = 0.66.



Consider next the problem of identifying the initial distri-
bution Init. Let {s(t)}t∈[0,T ] = {(q(t), p(t), v(t))}t∈[0,T ] be
a hybrid state trajectory from the training set. As described
in Section IV-A, experiments were performed with the traffic
light changing at three values for TTI, i.e. p(0)/v(0) ∈
{2.8, 3.5, 4.2} =: I . Define Ĩnit : Q× I → [0, 1],

Ĩnit(q, τ) :=
# training trajectories s.t. (q(0), p(0)

v(0) ) = (q, τ)

# of training trajectories
.

Then, using this and the law of large numbers, we have
the estimator Înit(q; p0, v0) := Ĩnit(q, p0/v0) for the initial
distribution Init of the hybrid system with initial state x0 =
(p0, v0). In particular, we found that Ĩnit(1, 4.2) = 0.93,
Ĩnit(1, 3.5) = 0.81, Ĩnit(1, 2.8) = 0.47, Ĩnit(2, τ) =

1− Ĩnit(1, τ) for all τ ∈ I and finally Ĩnit(3, τ) = 0 for all
τ ∈ I . These values show that less drivers will brake when
time to intersection decreases.

When the traffic light changes the driver’s reaction to the
light switch is not reflected immediately in position and
speed measurements. Therefore we start Algorithm 1 only 2s
after the light change. The 2s value corresponds to the 90%
quantile of the cumulative human response time distribution,
see [20]. Response time was defined as the time from the
moment the risk is presented to the driver until the driver
input starts, see the SAE J2944 standard.

C. Experimental results

In this section, we provide results obtained from Al-
gorithm 1. The algorithm was implemented in MATLAB
and run on a 2.6GHz dual-core computer. To compute the
mode update, notice that in our application for N ≤ 20,
Pr(∃t ∈ [0, tN ],x(t) ∈ T | q(0) = q) ≈ 0 for all q ∈ Q.
This is because the 2s corresponding to N = 20 are too short
to decelerate the car to zero speed with a normal braking
maneuver. Hence fqi (x) ≈ fxq(ti)(x), for all i ∈ {1, . . . , N},
which is a Gaussian density. Thus computing the mode
update using (12)-(13) only requires to evaluate Gaussians
and takes less than 0.3ms. Computing uqN (α̃), takes less than
5ms. A full iteration of Algorithm 1 is performed in less than
10ms. All results were obtained by running the algorithm on
the 767 intersection approaches of the test data set and with
parameter α = 0.05. 478 of these approaches comply with
the traffic light, the remaining 289 are violating trajectories.

The purpose of Algorithm 1 is to assess the risk that a car
will cross on red by providing an 1 − α confidence upper
bound. Using an analogous procedure as to compute the
upper bound P̄N , we can compute a corresponding 1 − α
confidence lower bound, that we denote by P̃N . It follows
that

∣∣P̄N − PN

∣∣ ≤ P̄N− P̃N with probability 1−2α. Table I
shows the average difference P̄N − P̃N as a function of the
number of observations N . Measurements were taken at a
frequency of 10Hz and the average is taken over all 767
trajectories from the test set.

Table I shows that prediction accuracy increases slowly
with the number of measurements and that independent of
the number of measurements N , P̄N − PN is on average

TABLE I
TIGHTNESS OF UPPER BOUND P̄N

Number of observations N

1 5 10 15

Avg. of P̄N − P̃N 0.023 0.021 0.021 0.02

less than 0.023. The standard deviation is always less than
4 ∗ 10−4. This bound is theoretical in the sense that it is
based on the theoretical result that for all q, P ∗N (q) is the
actual probability of mode q. It is, however, confirmed by
our experiments. We ran Algorithm 1 on each test trajectory
and made predictions at a frequency of 10Hz, which led to a
total of 14, 623 predictions, of which at most 20 were taken
from the same trajectory. In 98% of the 5, 301 cases when
P̄N was larger than 0.95, the vehicle would actually cross
on red. Similarly, in less than 1% of the 7, 979 cases when
P̄N was lower than 0.05, the vehicle would cross on red.

A crucial question from an application point of view is
how many observations are needed to predict a traffic light
violation with high probability, assuming there will be one.
To be more precise, call a prediction decisive when the cross-
ing probability is above 0.95 and then define the detection
rate at a given time as the percentage of traffic light violating
trajectories that have gotten a decisive prediction at that
time. Table II compares the detection rates for the algorithm
if we take measurements and update the probability at 5,
10 and 30Hz respectively. Data was obtained by running
the algorithm on all 289 traffic light violating intersection
approaches.

TABLE II
DETECTION RATES OF RED CROSSING TRAJECTORIES

Elapsed time in seconds

0.033 0.067 0.1 0.2 0.4

Detection rate 30Hz 51 80 92 99 99
Detection rate 10Hz – – 84 96 99
Detection rate 5Hz – – – 92 98

As the results in Table II show, the traffic light violations
are detected by the algorithm in most cases in less than 0.2s.

In the recent paper [7] the problem of detecting traffic light
violations was studied. In order to give traffic participants
time to react, it was required that warnings are given (if
necessary) before TTI becomes smaller than a lower bound
TTImin > 0, see Section IV-A. We use the same values as
in [7], i.e., TTImin ∈ {1s, 1.6s, 2s}, corresponding to the
human response time distribution percentiles 45%, 80% and
90% respectively, see [20]. Table III shows the result for our
red light crossing prediction. We say that crossing is detected
at time TTImin whenever it has a decisive prediction. In
addition to detection rate, the table shows the percentage of
compliant trajectories that were classified as crossing, these
are called false positives. Finally, the last row shows the
percentage of violating trajectories within the trajectories that



were classified as dangerous, this is called the percentage of
justified warnings. As in [7], position measurements were
taken at 10Hz during a maximum of 2s or until the bound
on TTI was reached. To allow the drivers to respond to the
yellow light before TTI would become smaller than TTImin,
we used only the 204 trajectories where the traffic light
changed when TTI was 4.2s. 27 of these trajectories were
traffic light violations.

TABLE III
DETECTION AND FALSE POSITIVE RATES AT CRITICAL TTI VALUES

TTImin

1s 1.6s 2s

% Detected actual crossing 96 96 81
% Falsely detected crossing 0 2 4
% Justified warnings 100 87 76

We see in Table III that the detection rate is high, even
with the largest TTImin, while unjustified warnings remain
on an acceptable level (24%).

A major difference in our scenario compared to [7] is
that we start the algorithm when the traffic light turns
yellow. Consequently, the time window until TTImin varies
from case to case, while in [7] the number of observations
available to perform the classification was fixed. Moreover,
we consider a scenario with a traffic light change while in [7]
there is always a red light. The detection rate in this study
is at least 10% higher in all cases, the false positive rate is
always below the 5% of [7] and even in the worst case we
have 76% justified warnings, while even in the best case in
[7] it is only 63%1.

In [9] the authors proposed two algorithms to predict
whether a car would cross after observing a yellow light. The
methods were compared with those of [7]. For TTImin = 1s
the detection rate in [9] is 100%, however for the other two
cases our detection rate is at least 5% higher and we have
lower false positive rates in all cases. Finally, notice that the
methods in [7] and [9] use also acceleration measurements
while Algorithm 1 does not.

V. CONCLUSIONS

We studied the dilemma a driver is facing when the traffic
light changes to yellow. Our objective was to determine an
upper bound on the crossing probability, having a prescribed
confidence level. The algorithm presented here is based
on a stochastic hybrid system model with hidden modes
and uses Gaussian process theory to estimate the mode
online using measurements of the continuous state only.
For testing we used 767 intersection approaches recorded
during experiments in a driving simulator. We find that the
percentage of actual crossing trajectories within the set of
trajectories that were predicted to cross with a probability
smaller than 0.05 was 1%. Similarly, the percentage of actual
crossing trajectories within the set of trajectories that were

1This value is inferred from [7, Table IV] and the fact that there were
8, 000 compliant and 800 violating trajectories [7, Section V].

predicted to cross with probability larger than 0.95 was 98%.
Moreover, the percentage of crossing trajectories that were
predicted to cross with probability larger than 0.95 within the
set of all actual crossing trajectories is 99%. These results
show the accuracy of the predictions and that in most cases
crossing trajectories can be identified.

An important direction for future research is the use of
the constructed model to design warning/override systems to
prevent red light violations and warn other traffic participants
of dangerous situations.
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