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Abstract—Protein production in gene networks relies on
the availability of resources necessary for transcription and
translation, which are found in cells in limited amounts. As
various genes in a network compete for a common pool of
resources, a hidden layer of interactions among genes arises.
Such interactions are neglected by standard Hill-function-based
models. In this work, we develop a model with the same
dimension as standard Hill-function-based models to account
for the sharing of limited amounts of RNA polymerase and
ribosomes in gene networks. We provide effective interaction
graphs to capture the hidden interactions and find that
the additional interactions can dramatically change network
behavior. In particular, we demonstrate that, as a result of
resource limitations, a cascade of activators can behave like an
effective repressor or a biphasic system, and that a repression
cascade can become bistable.

I. INTRODUCTION

Context dependence, the unintended interactions among
genetic circuits and host factors, is a current challenge in
the analysis and design of biomolecular networks [1]. Such
unintended interactions hinder our ability to predict design
outcomes, which often leads to lengthy and ad hoc design
processes. Therefore, much research has sought to better
understand and mitigate context dependence [1], [2]. In
this paper, we are concerned with the context dependence
problem arising from the limitations of cellular resources.
In particular, we study gene transcription networks, where
genes are transcribed by RNA polymerase (RNAP) into
mRNA, and mRNA is translated by ribosomes into proteins.
Proteins can be transcription factors (TFs) that regulate
each other by binding to the promoter site of a gene, which
would either activate or repress its ability to recruit RNAP
for transcription. The total amount of RNAP and ribosomes
is limited and all genes simultaneously compete for these
resources [3]. This limitation has been largely neglected
so far, due to the small scale and simplicity of circuits
considered. In larger circuits, however, the competition for
limited resources has been shown to introduce interactions
in gene expression levels even in the absence of explicit
regulatory links [4].

In this paper, we consider general gene transcription
networks and develop a modeling framework to predict
the effective interactions arising from limitations in RNAP
and ribosome availability. Related theoretical works have
recently appeared that study resource sharing problems in
biomolecular networks. De Vos et al. analyze the response
of network flux toward changes in total competitors
(mRNAs) and common targets (ribosomes) [5]. Yeung et al.
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illustrate, using tools from dynamical systems, that resource
sharing leads to non-minimum phase zeros in the transfer
function of a linearized genetic cascade circuit [6]. Gyorgy
et al. develop the notion of realizable region for steady state
gene expression under resource limitations [7]. Hamadeh et
al. analyze and compare different feedback architectures to
mitigate resource competition [8].

Our work focuses on the idea of effective interactions to
help illustrate how sharing of RNAP and ribosomes alters
the dynamics of a general gene transcription network. For
example, when a TF activates the production of protein
x1, more RNAP is recruited to produce a larger number of
mRNA m1. Increased m1 further increases the demand for
ribosomes to produce x1. Both effects decrease the amount
of resources available to produce other protein species (for
example, protein x2) in the network. This waterbed effect
creates an effective inhibition of protein x2 and can be
incorporated into an interaction graph, which is commonly
used to describe transcriptional regulation interactions
(activation/repression) among TFs.

Here, we propose a general model based on deterministic
reaction rate equations and ODEs in a resource limiting
environment. The model is able to account for resource
limitations while maintaining the same dimension as the
standard Hill-function-based models [2], [9]. Employing
this model, we provide simple rules to identify the hidden
interactions due to resource limitations, and the resulting
effective interactions in the network. We apply our results to
two-stage activation and repression cascades and illustrate
how the hidden interactions can dramatically change
system’s behavior. In an activation cascade, resource
sharing can completely invert the desired steady state
I/O response or lead to biphasic behavior, while in a
two-stage repression cascade, resource limitations can lead
to bistability.

This paper is organized as follows. In Section II, we
give a motivating example. In Section III, we introduce our
general modeling framework. In Section IV, we illustrate
the effective interaction graph of a general gene network.
The activation and repression cascade examples are in
Section V. We discuss the limitations of our approach
and provide directions for future investigation in Section VI.

II. A MOTIVATING EXAMPLE

Cascade circuits are one of the most common network
motifs in both natural and synthetic gene networks due to
their ability to amplify signals and achieve “switch-like”
behavior [9]. In Fig. 1, we consider a simple two-stage
activation cascade composed of gene 1 and gene 2. Protein
u is the input TF that binds with promoter p1 to activate
the production of protein x1. Protein x1 is an activator for
the output protein (x2). The structure of this motif can be



Fig. 1. A simplified diagram of a two-stage activation cascade. A limited
amount of RNAP and ribosomes is shared between the two stages for the
transcription of mRNAs (m1 and m2), and translation of proteins (x1 and
x2), respectively.

represented by the interaction graph as u→ x1 → x2. The
dynamics of binding reactions and mRNA dynamics are
often neglected because they are much faster than protein
dynamics [2], [9]. We use u, x1 and x2 to represent the
concentration of u, x1 and x2, respectively. In a standard
model, we use Hill functions to describe gene activation,
thus we have:

ẋ1 =
α0 + α( uk1 )n

1 + ( uk1 )n
− γ1x1,

ẋ2 =
β0 + β(x1

k2
)m

1 + (x1

k2
)m

− γ2x2,
(1)

where α0 and β0 are the basal production rate constants; α
and β are the production rate constants with activation; k1
and k2 are the dissociation constants of activators u and x1

binding with their respective promoters, γ1 and γ2 are the
dilution/degradation rate of the proteins, and n and m are
the cooperativity coefficients. Solving for the steady state of
(1) gives a monotonically increasing I/O response (Fig. 2A).

To examine whether the standard model in (1) is a good
representation of system response under resource limita-
tions, we simulate the system with a mechanistic model
that explicitly accounts for the usage of RNAP and ribo-
somes, and for their conservation law (listed in Section III).
Surprisingly, simulation of this mechanistic model reveals
that the steady state I/O response can be biphasic (Fig.
2B). With reference to Fig. 2A, decrease of steady state
expression of x2 with u at high input level in Fig. 2B can
be explained by the following resource sharing mechanism.
When promoter p1 and mRNA m1 have much stronger
ability to sequester resources than promoter p2 and mRNA
m2, as we increase u, the production of protein x1 sequesters
resources from the production of protein x2, decreasing the
amount of free resources available to produce x2. When this
effective repression is stronger than the activation x1 → x2,
x2 decreases with u.

This paper is aimed to obtain an explicit model, with the
same dimension as the standard model in (1), that predicts
such effective interactions due to resource limitations.

III. GENERAL MODELING FRAMEWORK

A. Gene Expression in a Transcriptional Component

We consider a transcriptional component as a node in
the gene network [10]. A transcriptional component takes a
number of TFs to bind with its gene promoter pi and triggers
a series of chemical reactions to produce a TF xi as output.
The input TFs can either activate or repress the expression
of gene i by changing the binding strength of pi with RNAP.
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Fig. 2. x̄2 is the steady state concentration of protein x2. (A) According to
the standard model, steady state output x̄2 increases with input u. (B) How-
ever, simulation using ODEs (2) to (8) and conservation of resources shows
that system response can be biphasic. Simulation parameters in the standard
model in equation (1): α0 = β0 = 1 (hr)−1; α = β = 100 (hr)−1;
k1 = k2 = 10 (nM)2, γ1 = γ2 = 1 (hr)−1 and n = m = 2. Simulation
parameters in the full mechanistic model are in Table II.

Since most gene promoters take at most two input TFs [2]
[9], we consider a node i taking two input TFs (x1 and x2)
that form complexes with pi. The reactions are:

pi + n · x1

k+
1



k−1

c1i , pi + n · x2

k+
2



k−2

c2i ,

c1i + n · x2

k+
12



k−12

c12i , c2i + n · x1

k+
21



k−21

c12i ,

where n1 and n2 are the cooperativities of x1 and x2 binding
with pi, respectively. The promoter pi and the promoter/TF
complexes (c1i , c

2
i , c

12
i ) recruit free RNAP (y) to form an

open complex for transcription. The reactions are given by:

pi + y
a
′



d′

Ci, cji + y
aj


dj

Cj
i (j = 1, 2, 12).

These transcriptionally active complexes can then be tran-
scribed into mRNA (mi), with reactions given by:
Ci

α0−→ pi + y + mi, Cj
i

αj−→ cji + y + mi (j = 1, 2, 12).

Translation is initiated by ribosomes (z) binding with the
ribosome binding site (RBS) on mRNA mi to form a
translationally active complex Mi, which is then translated
into protein xi. Meanwhile, mRNA and proteins are also
diluted/degraded. The reactions are:

mi + z
κ+



κ−

Mi, Mi
θi−→ mi + z + xi,

mi
δi−→ ∅, Mi

ωi−→ z, xi
γi−→ ∅.

Consequently, we have the following ODEs in node i:
ċji = k+j pix

nj

j − k
−
j c

j
i − ajyc

j
i + djC

j
i + αjC

j
i , (2)

ċ12i = k+12c
1
ix
n2
2 − k

−
12c

12
i + k+21c

2
ix
n1
1 − k

−
21c

12
i

−a12c12i y − d12C12
i + α12C

12
i , (3)

Ċi = a
′
piy − d

′
Ci − α0Ci, (4)

Ċki = akyc
k
i − dkCki − αkCki , (5)

ṁi = α0Ci + α1C
1
i + α2C

2
i + α12C

12
i

−δimi − κ+miz + κ−Mi + θiMi, (6)
Ṁi = κ+miz − κ−Mi − θiMi − ωiMi, (7)
ẋi = θiMi − γixi, (8)

where indices j = 1, 2 and k = 1, 2, 12. Since DNA
concentration is conserved [9], we have

pi,T = pi + Ci +
∑

j=1,2,12

(cji + Cji ), (9)

where pi,T is the total concentration of gene i. Given that
the binding reactions and mRNA dynamics are much faster
than protein production and degradation [9], we can set (2)
to (7) to quasi-steady state (QSS) to simplify our analysis.



We first obtain the QSS concentration of complexes formed
with pi:

c1i =
pix

n1
1

k1i
, c2i =

pix
n2
2

k2i
, c12i =

pix
n1
1 xn2

2

k1i k
12
i

+
pix

n1
1 xn2

2

k2i k
21
i

,

Ci =
piy

K ′i
, Cji =

cjiy

Kj
i

(j = 1, 2, 12), (10)

where dissociation constants are defined as:

K ′i =
d′ + α0

a′
, Kj

i =
dj + αj
aj

, kji =
k−j

k+j
(j = 1, 2, 12).

Here, K ′i is the basal dissociation constant of promoter
pi with RNAP y, Kj

i is the dissociation constant of pro-
moter/TF complex cji with y, and kji is the dissociation
constant of TF xj binding with pi. A smaller dissociation
constant indicates stronger binding. When node i takes
only one input, for simplicity, we write Ki for K1

i and
ki for k1i . To obtain the QSS concentration of mRNA
complexes, we further assume that the transcription rates
are independent of how transcriptions are initiated and thus
α0 = α1 = α2 = α12. We can then substitute (10) into the
QSS of ODEs (6) and (7) and obtain
Mi =

αi
δi

z

κi
(Ci +

∑
j

Cji ) =
αipi,T
δi

z

κi

y

K ′i
Fi(ui), (11)

where vector ui = [x1, x2]T and index j = 1, 2, 12.
κi = (κ− + θi + ωi)/κ

+ is the dissociation constant of mi

binding with ribosomes z. A smaller κi indicates stronger
RBS strength. Fi(ui) : R2 7→ R is the Hill function derived
by substituting (10) into the DNA conservation law in (9)
and solving for Ci+C1

i +C2
i +C12

i . Assuming that the free
amount of RNAP and ribosomes are limited, in particular,

y � Ki,K
′
i and z � κi, (12)

Fi(ui) can be written as:

Fi(ui) =
1 + a1ix

n1
1 + a2ix

n2
2 + a3ix

n1
1 xn2

2

1 + b1ix
n1
1 + b2ix

n2
2 + b3ix

n1
1 xn2

2

, (13)

where

a1i =
K ′i
K1
i k

1
i

, a2i =
K ′i
K2
i k

2
i

, a3i =
K ′i
K12
i

(
1

k1i k
12
i

+
1

k2i k
21
i

)
,

b1i =
1

k1i
, b2i =

1

k2i
, b3i =

1

k1i k
12
i

+
1

k2i k
21
i

. (14)

Situations in (12), where resources are limited, are described
in the Appendix. Finally, we combine equation (11) and (8)
to obtain the dynamics of xi:

ẋi =
αiθipi,T

δi
· y
K ′i
· z
κi
· Fi(ui)− γi · xi. (15)

Since y and z are shared among all nodes in the network,
their free concentrations y, z need to be determined from
the network context. This is the aim of the next subsection.

B. Resource Sharing in Gene Networks

A gene network N is composed of N nodes and L
external TF inputs (v1, · · · , vL). The concentration of the
external inputs can be represented by v = [v1, · · · , vL]T and
the state of the network is represented by the concentrations
of output proteins of each node x = [x1, · · · , xN ]T . The set
of all TFs in the network is X = {x1, · · · , xN, v1, · · · , vL},
and we use ξ = [xT ,vT ]T to represent the vector of their
concentrations. Nodes can be connected by transcriptional
regulation interactions where protein xj can either activate

Fig. 3. In this example network, x = [x1, · · · , x5]T and v =
[v1, v2, v3]T . X = {x1, · · · x5, v1, v2, v3}. Using node 1 as an example,
we have U1 = {x5, v1}, u1 = [x5, v1]T . A constant amount of RNAP
and ribosomes are available for nodes 1 to 5. Links between nodes indicate
transcriptional regulation interactions, where “→” is an activation and “a”
is a repression.

or repress the production of xi by binding to its promoter. We
call xi as a target of xj and xj as a parent of xi. We denote
by Ui ⊆ X the set of all parents of xi. Their concentrations
are given by a vector ui = Qi · ξ, where elements in Qi are
defined as:

qjk =

{
1, if ξk is the jth input to node i,
0, otherwise.

(16)

Fig. 3 illustrates an example gene network. To determine
the effect of RNAP and ribosome limitations on the gene
network, we account for the fact that the total amount of
resources available to network N is constant [3]:

yT = y +

N∑
i=1

yi, zT = z +

N∑
i=1

zi, (17)

where yT and zT represent the total amount of RNAP and
ribosomes, respectively. We let yi and zi denote the RNAP
and ribosomes bound to (used by) node i, thus yi = Ci +
C1
i +C2

i +C12
i , and zi = Mi. According to (11), we have:

yi = pi,T
y

K
′
i

Fi(ui), zi =
αipi,T
δi

y

K ′i

z

κi
Fi(ui). (18)

Combining equation (17) and (18), we obtain:

y =
yT

1 +
N∑
i=1

[
pi,T

K
′
i

Fi(ui)]

, z =
zT

1 + y
N∑
i=1

[
αipi,T
δiK′iκi

Fi(ui)]

.

Hence,
y · z =

yT · zT

1 +
N∑
i=1

pi,T

K
′
i

· (1 + αi

κiδi
yT ) · Fi(ui)

. (19)

Substituting (19) into (15), the dynamics of xi are given by:

ẋi =
TiFi(ui)

1 +
N∑
k=1

JkFk(uk)

− γixi, (20)

where Ji and Ti are lumped parameters defined as:

Ji :=
pi,T
K
′
i

· (1 +
αi
κiδi

yT ), Ti := yT zT pi,T ·
θiαi
K
′
iκiδi

. (21)

Fi(ui) is the only element in equation (20) that reflects
transcriptional regulations on node i. According to equation
(13), the form of Fi(ui) is the same as those of the standard
Hill functions described in [2] and [9]. Note that Fi(ui) ≡ 1
when ui = 0, hence, according to (15), Ti represents the
“baseline” gene expression of node i, because Ti is the
production rate of xi when ui = 0, y = yT and z = zT .



C. Ji as a Measure of Resource Usage by Node i

Ji is a constant for node i that defines its “baseline”
resource usage when ui = 0. We take Ji as a measure of
resource usage by node i because the expression in (19)
implies the “conservation law” for y · z:

yT · zT = y · z︸︷︷︸
free resources

+

N∑
i=1

(Ji · Fi(ui) · y · z)︸ ︷︷ ︸
resource used by node xi

. (22)

Furthermore, the only difference between our modified
model in equation (20) and the standard no-resource-sharing
model in [2] and [9] is the denominator term D = 1 +
N∑
k=1

JkFk(uk). The following claim shows that when re-

sources used by every node in N are negligible, the resource
usage measure Ji � 1.

Claim 1: For every ui, if yi � y and zi � z for all
i = 1, · · · , N , then Ji � 1 for all i = 1, · · · , N .

Proof: Using equation (18), yi � y for every ui is
equivalent to pi,TFi(ui)/K

′

i � 1 for every ui. Thus, we
must have pi,T /K

′

i � 1. Similarly, zi � z for every ui
requires αipi,T y

δiK′iκi
� 1. Since yi � y for all i, y ≈ yT .

Therefore, αipi,T yT
δiK′iκi

� 1 and Ji � 1 for all i.

This claim shows that when resource usage is negligible in
the network, 0 < Ji � 1 (i = 1, · · · , N) and the modified
model reduces back to the standard model in [2] and [9]:

ẋi = TiFi(ui)− γixi. (23)
Equation (21) indicates that a node i is a strong resource

sink when ui = 0 (Ji is large) if its (i) copy number
is large; (ii) basal RNAP sequestering capability is strong
(small K ′i); (iii) transcription rate constant is large; (iv)
ribosome sequestering capability is strong (small κi); (v)
mRNA degradation rate is low and (vi) the total amount of
RNAP is large. Conditions (i) and (ii) are associated with
the pi,T /K ′i term in equation (21), and describe the node’s
capability to sequester RNAP. Conditions (iii) to (vi) are the
contributions from the (αiyT )/(κiδi) term and characterize
the node’s capability to sequester free ribosomes.

IV. EFFECTIVE INTERACTIONS DUE TO
RESOURCE LIMITATIONS

Directed edges, such as those in Fig. 3, have been used
to represent transcriptional regulation interactions, where
one TF binds with the promoters of its targets to regulate
the target’s production [9]. Here, we mathematically define
the standard to draw interaction graphs and illustrate that
resource limitations lead to effective interactions in gene
networks that do not rely on TF regulation.

Definition 1: Let the dynamics of xi be given by
ẋi = Gi(ξ) − γi · xi. We draw the interaction graph from
TF ξj to xi based on the following rules:

• If ∂Gi

∂ξj
≡ 0 for all ξj ∈ R+, then there is no

interaction from ξj to xi;

• If ∂Gi

∂ξj
≥ 0 for all ξj ∈ R+ and ∂Gi

∂ξj
6= 0 for some

ξj , then ξj activates xi and we draw ξj → xi;

• If ∂Gi

∂ξj
≤ 0 for all ξj ∈ R+ and ∂Gi

∂ξj
6= 0 for some

ξj , then ξj represses xi and we draw ξj a xi.

• If ∂Gi

∂ξj
> 0 for some ξj ∈ R+ and ∂Gi

∂ξj
< 0 for

some other ξj , then the regulation of ξj on xi is
undetermined and we draw ξj( xi;

Based on Definition 1, for the standard model in equation
(23), Gi(ξ) = TiFi(Qiξ) = TiFi(ui), and therefore there
is a link from ξj to xi if and only if ξj ∈ Ui. In our modified
model in equation (20), instead we have

Gi(ξ) =
TiFi(Qi · ξ)

1 +
N∑
k=1

JkFk(Qk · ξ)

=
TiFi(ui)

1 +
N∑
k=1

JkFk(uk)

,

which implies that the dynamics of xi may be influenced by
TFs that do not belong to its parents Ui.

In what follows, we discuss the effective interactions
from ξj ∈ χ to protein xi when (i) xi is the only target
of ξj, (ii) xi is one of the multiple targets of ξj, and (iii) xi

is not a target of ξj. We do not require xi 6= ξj and assume
that a TF cannot be both an activator and a repressor. When
xi is the only target of ξj, the following claim shows that
resource limitations do not alter the activation/repression of
xi by ξj in the interaction graph.

Claim 2: If ξj ∈ Ui and ξj /∈ Uq for all (q 6= i). Then
we have sign[∂Gi(ξ)/∂ξj ] = sign[∂Fi(Qiξ))/∂ξj ].

Proof: According to equation (20),

∂Gi(ξ)

∂ξj
=

positive︷︸︸︷
∂Gi
∂Fi

·∂Fi(Qiξ)

∂ξj
⇒ sign

(
∂Gi
∂ξj

)
= sign

(
∂Fi
∂ξj

)
.

Remark 1: In the case where ξj ∈ U1, · · · ,Uk (k ≥ 2), the
effective interactions from ξj to its targets are undetermined.
For example, if ξj represses x1 and x2 simultaneously, the
effective interaction from ξj to x1 is given by

∂G1(ξ)

∂ξj
=
∂G1

∂F1︸︷︷︸
positive

·

transcriptional repression︷ ︸︸ ︷
∂F1(Q1ξ)

∂ξj︸ ︷︷ ︸
negative

+

hidden activation︷ ︸︸ ︷
∂G1

∂F2︸︷︷︸
negative

· ∂F2(Q2ξ)

∂ξj︸ ︷︷ ︸
negative

.

As sign(∂G1/∂ξj) cannot be determined, the effective in-
teraction from ξj to x1 is undetermined.

When ξj is not a parent of xi, the following claim shows
ξj is an effective repressor for xi if ξj is an activator.
Conversely, ξj is an effective activator for xi if it is a
repressor.

Claim 3: If ξj /∈ Ui but ξj ∈ Uk for some k 6= i, then
we have sign[∂Gi(ξ)/∂ξj ] = −sign[∂Fk(Qkξ)/∂ξj ].

Proof: Since ξj /∈ Ui, ∂Gi/∂Fk < 0 for all k.
∂Gi(ξ)

∂ξj
=
∑
k

∂Gi
∂Fk︸︷︷︸

negative

·∂Fk(Qkξ)

∂ξj
.

Therefore, sign(∂Gi/∂ξj) = −sign(∂Fk/∂ξj).

The effective interactions for the above three cases are
summarized in Table I, with illustrative examples given in
each case. For any index i, j ∈ {1, · · · , N}, a black solid
line from node j to node i represents ∂Fi(Qiξ)/∂ξj , the
interaction due to transcriptional regulation, while a red
dashed line represents any hidden (additional) interactions
arising from ∂Gi(ξ)/∂ξj .



TABLE I. EFFECTIVE INTERACTIONS WITH RESOURCE LIMITATIONS

Fig. 4. In addition to the regulatory transcriptional activations (solid
lines) captured by the ideal model in equation (1) (A), resource limitations
introduce two hidden repressions (dashed lines) into the system: repression
from input u to output x2 and negative auto-regulation of x1 (B).

V. APPLICATION TO ACTIVATION AND
REPRESSION CASCADES

A. Two-stage Activation Cascade

We first revisit the motivating example in Section II. u
is the input and x1 and x2 are the two TFs cascaded by
transcriptional regulation interactions (Fig. 4A). According
to (20), the dynamics of the system can be written as:

ẋ1 =
T1F1(u)

1 + J1F1(u) + J2F2(x1)︸ ︷︷ ︸
G1(u,x1)

−γ1x1,

ẋ2 =
T2F2(x1)

1 + J1F1(u) + J2F2(x1)︸ ︷︷ ︸
G2(u,x1)

−γ2x2.
(24)

From (13) and (14) we have:

F1(u) =
1 + a11u

n

1 + b11u
n
, F2(x1) =

1 + a12x
m
1

1 + b12x
m
1

.

From Claim 3, since u is an activator, there is a hidden
repression from u to x2. Similarly, there is a hidden neg-
ative auto-regulation on x1. These hidden interactions are
represented by dashed lines in Fig. 4B. From Claim 2, since
u and x1 both have only one target, we draw u → x1

and x1 → x2 in Fig. 4B. The effective interaction graph
of the activation cascade becomes that of an incoherent
feed-forward loop (IFFL) [9]. The steady state I/O response
of an IFFL can, depending on parameters, be qualitatively
characterized by monotonically increasing, monotonically
decreasing or biphasic functions [9] [11]. We show the
simulation of steady state response of activation cascades
in Fig. 5. Decreasing steady state response occurs when
(a) resources are limited (large DNA copy number) and
(b) x1 has stronger resource sequestering capability than
x2 (stronger RBS). The numerical result is in agreement
with the following analytical results providing sufficient
conditions for different steady state I/O responses.

Claim 4: If node 1 and 2 have the same DNA copy
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Fig. 5. Numerical simulation of dx̄2/du for different DNA copy numbers
and relative ribosome binding strengths (κ2/κ1). The uncolored region
indicates dx̄2/du > 0 for all simulated u (monotonically increasing
response). The region with red dots represent parameters where dx̄2/
du becomes negative at high input levels (biphasic response), and the
region with blue dots represent parameters that give dx̄2/du < 0 for all
input levels (monotonically decreasing response). Simulation parameters
are shown in Table II

numbers p1,T = p2,T = pT , and transcription rate constants
α1 = α2 = α, then in a two-stage activation cascade the
slope of the steady state I/O response dx̄2/du satisfies:

1) dx̄2/du > 0 for all u > 0 if (a) K1 � pT and (b)
κ1 · δ1 � α · yT ;

2) dx̄2/du < 0 for all u > 0 if (a) pT � K
′

2 > K2 �
K
′

1 > K1 and (b) α · yT � δ2 · κ2 � δ1 · κ1;
3) dx̄2/du > 0 when u → 0 and dx̄2/du < 0 when

u → ∞ if (a) K
′

1 � pT ≥ K2 � K1 and (b)
κ2 · δ2 > κ1 · δ1 � α · yT .

The proof consists of solving the steady state concentration
of the output x̄1 and x̄2 from (24), and then apply the
parameter conditions to simplify their expressions.

B. Two-stage Repression Cascade

A two-stage repression cascade consists of two repres-
sors: TF u is the repressor for protein x1, and x1 is a
repressor for output protein x2 (Fig. 6A). A repressor inhibits
the production of its target by binding with its promoter
region, thus inhibiting RNAP (y) recruitment. A repression
cascade is expected to have a unique steady state and a
monotonically increasing I/O response [9]. Here, we apply
our modified model to investigate its behavior under resource
limitations. In our model, the inputs to the two nodes are
U1 = u and U2 = x1, respectively. Using the results in (20),
the two-stage repression cascade can be modeled as:

ẋ1 =
T1F1(u)

1 + J1F1(u) + J2F2(x1)︸ ︷︷ ︸
G1(u,x1)

−γ1x1,

ẋ2 =
T2F2(x1)

1 + J1F1(u) + J2F2(x1)︸ ︷︷ ︸
G2(u,x1)

−γ2x2.
(25)

For simplicity, we assume that the repressors are not leaky
such that when u or x1 are bound to the promoters of their
targets, y can not bind with the promoters. From (14) and
(13), we have:

F1(u) =
1

1 + 1
k1
un
, F2(x1) =

1

1 + 1
k2
xm1

.

From Claim 3, we find that there is a hidden activation
of x2 by u and a hidden positive auto-regulation on x1.
Positive feedback loops like the one in Fig. 6B have been



Fig. 6. In addition to transcriptional repressions (solid lines) in (A),
resource limitations introduce two hidden activations (dashed lines) into
the system (B): activation from u to x2 and positive auto-regulation of x1.

closely related to bistable behaviors theoretically [12], and
bimodal reporter gene distributions experimentally [13]. In
order to determine whether the repression cascade can
display bistability because of this positive auto-regulation,
we perform nullcline analysis. The two nullcline equations
of the nonlinear system (25) at equilibrium x̄ = [x̄1, x̄2]T

and constant input ū (and thus, constant F1(ū)) are given
by:

T1F1(ū)

1 + J1F1(ū) + J2F2(x̄1)
− γ1x̄1 = 0, (26)

T2F2(x̄1)

1 + J1F1(ū) + J2F2(x̄1)
− γ2x̄2 = 0. (27)

Equation (26) is a single variable equation of x̄1, and
equation (27) defines a unique x̄2 for every x̄1. Therefore,
the number of equilibria of this nonlinear system is solely
determined by equation (26) which can be re-written as:

h1(x̄1) =
T1F1(ū)

1 + J1F1(ū) + J2F2(x̄1)
= h2(x̄1) = γ1x̄1.

(28)
Since h1(x̄1) is an increasing Hill function and h2(x̄1) is
an increasing linear function, they can have either 1 or 3
intersections when the cooperativity m > 1. Particularly,
when there exists x̄11 < x̄21 < x̄31 satisfying h1(x̄k1) = h2(x̄k1)
(k = 1, 2, 3), x̄11 and x̄31 are locally stable nodes and x̄21 is a
saddle point.

Now we seek to obtain parameter conditions that give
rise to a bistable repression cascade. To do this, we utilize
the following claim showing that the nonlinear repression
cascade is bistable if and only if its linearized system is
unstable at some equilibrium.

Claim 5: For a given input u∗, let x∗ be one of the cor-
responding equilibria. The nonlinear system (25) is bistable
if and only if −γ1 + ∂G1

∂x1

∣∣∣
x∗,u∗

> 0 for some (x∗, u∗).

Proof: (sketch) Note that λ1 = −γ1 + ∂G1

∂x1

∣∣∣
x∗,u∗

and

λ2 = −γ2 < 0 are the two eigenvalues of the linearization
of nonlinear system (25) at (x∗, u∗). The linearized system
is unstable if and only if λ1 > 0.
(⇒) When the nonlinear system is bistable at input u∗,
according to our nullcline analysis, there are 3 equilibria:
2 stable nodes and a saddle point. Linearizing the system
around the saddle point yields an unstable linearized system.
(⇐) We let H(x1, u) = G1(x1, u) − γ1x1, at fixed
u = u∗, with abuse of notation, we write H(x1) =
H(x1, u

∗). H(x1) is continuously differentiable and solution
to H(x1) = 0 entirely determines the number of equilibria.
When λ1(x∗1, u

∗) = H ′(x∗1) > 0, since H(x∗1) = 0, by
continuity, there exists ε > 0 such that H(x1 − ε) < 0 and
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Fig. 7. (A): Dots indicate paramters that admit three solutions to equation
(28), and thus lead to bistability in some input ranges. Bistability occurs
when node 2 has strong capability to sequester resources (high copy number
and ribosome binding strength). (B): When simulation starts from no
induction (u0 = 0) and full induction (u0 = 1(µM)), system steady state
response show hysteresis. Simulation parameters for both cases are shown
in Table II.

H(x1 + ε) > 0. Also, when x1 = 0, H(0) = G1(0) > 0,
and when x1 → ∞, H(x1) → −∞. According to the
intermediate value theorem, there exist a x∗−1 such that
0 < x∗−1 < x1 − ε and satisfies H(x∗−1 ) = 0. Similarly,
there exists a x∗+1 such that x1 + ε < x∗+1 and satisfies
H(x∗+1 ) = 0. Since there are at most three zeros to the
equation H(x1) = 0, H ′(x∗−1 ) and H ′(x∗+1 ) are negative,
and thus they are stable.

Remark 2: To obtain a bistable cascade, we need

λ1 = −γ1+
∂G1

∂x1
= −γ1−

T1J2F1(u∗)
∂F2(x

∗
1)

∂x1

[1 + J1F1(x∗1) + J2F2(x∗2)]2
> 0.

(29)
Partial differentiation of λ1 with respect to J2 shows that
λ1 monotonically increases with J2 when J2F2(x∗) > 1 +
J1F1(u∗). Therefore, we can observe a bistable repression
cascade if we increase the resource sequestering capability of
node 2 (J2F2(x∗)) and decrease that of node 1 (J1F1(u∗)).
Physically, these conditions increase the amount of resources
released by node 2 upon repression from x1, which ef-
fectively “activates” the production of x1, promoting the
hidden positive auto-regulation (Fig. 7A). Full mechanistic
model simulation using ODEs and resource conservations in
Section III confirms that this deterministic system is bistable
in some parameter and input ranges (Fig. 7B). Conversely,
from (29), we can remove bistability by adding a sufficiently
strong negative auto-regulation to node 1 such that ∂G1/
∂x1 < γ1, which ensures monostability.

Resource-limitation-induced bistability can potentially
explain the experimental results in [14]. The authors ob-
served bimodal distribution of protein concentrations at
the output of a repression circuit, which disappears when
negative auto-regulation is added to the cascade. However,
bimodal distribution can stem from a number of other
sources in addition to deterministic bistability, such as tran-
scriptional and translational bursts [15]. Further theoretical
and experimental work is required to verify the source of
bimodality in this experiment.

VI. DISCUSSION AND CONCLUSION

In this work, we have developed a general modeling
framework to describe the dynamics of gene networks in
a resource-limited environment. The model reveals a hidden
layer of interactions among nodes in the network, which
have been largely neglected so far but will become more
relevant when resources are limited. Such hidden interac-



TABLE II. SIMULATION PARAMETERS (i = 1, 2)

yT zT p1,T p2,T K′1 K′2 K1 K2 δi = ωi γi θi αi n m k1 k2 κ1 κ2

Unit nM µM nM nM µM µM µM µM hr−1 hr−1 hr−1 hr−1 - - nMn nMm µM µM
Fig.2 500 1 50 50 5× 104 104 0.1 10 10 1 500 200 2 4 10 1000 1 100
Fig.5 100 1 - - 200 100 1 1 10 1 200 200 2 4 100 100 - 10

Fig.7A 500 1 50 - 2 0.2 × × 20 2 200 200 2 4 100 100 100 -
Fig.7B 50 0.5 50 200 2 0.1 × × 20 5 100 350 1 4 10 1 10 1

tions can alter the steady state I/O response or stability of
a network, as we have demonstrated in the examples of
activation and repression cascades. Experimental validation
of our results is currently underway in our lab.

A real cell system has a number of additional compli-
cations that are not included in our model. Firstly, recent
evidence suggests that resources are not distributed evenly
in cells [16]. How spatial distribution of resources changes
our current results need to be investigated. Secondly, when
exogenous circuits are overly activated, living cells tend to
reduce the production of ribosomal proteins and produce
heat shock proteins [16]. The redistribution of cellular
resources under these conditions involves some regulation
mechanisms that are still unknown and not accounted for
in this resource conservation model. Moreover, although the
key limiting factors appeared to be RNAP and ribosome
[17], [18], resource sharing occurs at all levels of protein
production. For instance, it is well known that RNAP
compete for σ-factors [5]. Finally, when molecular counts
are too low, instead of using ODE models, it is necessary
to adopt stochastic modeling [2]. In future work, we will
analyze to what extent these additional considerations need
to be factored into the model.

Acknowledgement: We thank Eduardo D. Sontag, Ab-
dullah Hamadeh, Hsin-Ho Huang and Andras Gyorgy for
helpful discussions and suggestions.

APPENDIX

The dissociation constant of T7 RNAP binding with pro-
moter is K = 220[nM] [19]. T7 RNAP has stronger binding
with promoters than other RNAP species [20], therefore,
K � 220 [nM]. Furthermore, since y < yT ≈ 100[nM]
[3], we can assume y � K. Physically, this corresponds
to the fact that promoters are rarely occupied by RNAP,
which is common in experiments. For instance, Chrchward
et al. find that DNA template is in excess of free RNAP in
constitutively expressing lac genes [18]. The free amount of
ribosome in E. coli is estimated to be z < zT ≈ 1000[nM]
[3] at low growth rate of 1 doubling/hr, and a typical value
of RBS dissociation constant is κ ≈ 5000[nM] [21], which
suggests z � κ. These assumptions are closer to reality
when the network is larger in scale, and thus resources
become more scarce.

REFERENCES

[1] S. Cardinale and A. P. Arkin, “Contextualizing context for synthetic
biology- identifying causes of failure of synthetic biological sys-
tems,” Biotechnol. J., vol. 7, pp. 856–866, 2012.

[2] D. Del Vecchio and R. M. Murray, Biomolecular Feedback Systems.
Princeton University Press, 2014.

[3] H. Bremer and P. P. Dennis, “Modulation of chemical composition
and other parameters of the cell by growth rate,” in Escherichia coli
and Salmonella: Cellular and Molecular Biology, F. C. Neidhardt,
Ed. ASM Press, 1996.

[4] T. H. Segall-Shapiro, A. J. Meyer, A. D. Ellington, E. D. Sontag,
and C. A. Voigt, “A resource allocator for transcription based on a
highly fragmented T7 RNA polymerase,” Mol. Syst. Biol., vol. 10,
p. 742, 2014.

[5] D. De Vos, F. J. Bruggeman, H. V. Westerhoff, and B. M. Nakker,
“How molecular competition influences fluxes in gene expression
networks,” PLoS ONE, vol. 6, no. 12, p. e28494, 2011.

[6] E. Yeung, J. Kim, and R. M. Murray, “Resource competition as a
source of non-minimum phase behavior in transcription-translation
systems,” in Proceedings of the 52nd IEEE Conference on Decision
and Control, 2013, pp. 4060–4067.

[7] A. Gyorgy and D. Del Vecchio, “Limitations and trade-offs in gene
expression due to competition for shared cellular resources,” in
Proceedings of the 53rd IEEE Conference on Decision and Control,
2014.

[8] A. Hamadeh and D. Del Vecchio, “Mitigation of resource compe-
tition in synthetic genetic circuits through feedback regulation,” in
Proceedings of the 53rd IEEE Conference on Decision and Control,
2014.

[9] U. Alon, An Introduction to Systems Biology: Design Principles of
Biological Circuits. Chapman & Hall/CRC Press, 2006.

[10] A. Gyorgy and D. Del Vecchio, “Modular composition of gene
transcription networks,” PLoS Comput. Biol., vol. 10, no. 3, 2014.

[11] D. Kim, Y.-K. Kwon, and K.-H. Cho, “The biphasic behavior of
incoherent feed-forward loops in biomolecular regulatory networks,”
Bioessays, vol. 30, no. 11-12, pp. 1204–1211, 2008.

[12] R. Thomas, “On the relation between the logical structure of systems
and their ability to genegene multiple steady states or sustained
oscillations,” Springer Series in Synergetics, vol. 9, pp. 180–193,
1981.

[13] E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman, and A. van
Oudenaarden, “Multistability in the lactose utilization network of
Escherichia coli,” Nature, vol. 427, pp. 737–740, February 2004.

[14] Y. Dublanche, K. Michalodimitrakis, N. Kümmerer, M. Foglierini,
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