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Abstract— We consider a class of stochastic differential equa-

tions in singular perturbation form, where the drift terms are

linear and diffusion terms are nonlinear functions of the state

variables. In our previous work, we approximated the slow

variable dynamics of the original system by a reduced-order

model when the singular perturbation parameter ✏ is small. In

this work, we obtain an approximation for the fast variable

dynamics. We prove that the first and second moments of the

approximation are within an O(✏)-neighborhood of the first and

second moments of the fast variable of the original system. The

result holds for a finite time-interval after an initial transient

has elapsed. We illustrate our results with a biomolecular

system modeled by the chemical Langevin equation.

I. INTRODUCTION

Systems with multiple time-scales can be written in singu-
lar perturbation form, where the dynamics are separated into
slow and fast, with a small parameter ✏ capturing the sepa-
ration in time-scales. The analysis of singularly perturbed
systems consists of obtaining a reduced-order model that
approximates the dynamics of the system when the time-
scale separation is large. In the deterministic setting, the
main method used to obtain the reduced system is given
by Tikhonov’s theorem, which gives a set of reduced-order
differential equations that approximate the slow variable
dynamics, and a set of algebraic equations that approximate
the fast variable dynamics [1], [2]. Another method that is
used to analyze systems with multiple time-scales is the
averaging principle, which gives a reduced-order model that
approximates the dynamics of the slow variables [3].

Singular perturbation techniques have also been developed
for stochastic systems with multiple time-scales [4], [5], [2],
[6]. However, these methods are not applicable to systems
where the diffusion term of the fast variable is nonlinear,
and is of the order

p
✏, as seen, for example in biomolecular

systems modeled by the chemical Langevin equation [7].
Averaging methods for stochastic differential equations have
also been developed, and they can be applied to the case
where the diffusion term is on the order of

p
✏ [8], [3]. How-

ever, the averaging methods only provide an approximation
to the slow variable dynamics.

In our previous work, we considered a class of singularly
perturbed stochastic differential equations with linear drift
terms and nonlinear diffusion terms [9]. We obtained a
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reduced-order model that approximates the slow variable
dynamics of the original system and we proved that the
first and second moments of the reduced system are within
an O(✏)-neighborhood of the first and second moments of
the original system, for a finite time interval. This result
was extended in [10] to prove that all the moments of
the reduced system are within an O(✏)-neighborhood of
the corresponding moments of the original system, for a
finite time interval. Although, the above works provide
an approximation to the slow variable dynamics, in many
applications it is necessary to obtain an approximation for
the fast variable in order to analyze the statistical properties
of the system, such as the mean and the variance. In fact, in
many biomolecular applications, the variables in the system
may be affected by both slow and fast reactions, and thus
the system is represented in singular perturbation form after
using a coordinate transformation [11]. Therefore, to analyze
the properties of the variables of interest, it is necessary to
have a fast variable approximation. Hence, in this work, we
obtain an approximation for the fast variable dynamics of the
original system in the form of an algebraic expression of the
reduced slow variable dynamics. We prove that the first and
second moments of the approximation are within an O(✏)-
neighborhood of the first and second moment dynamics of
the fast variable of the original system. The result holds for
a finite time interval, after a short transient has elapsed.

This paper is organized as follows. In Section I, we intro-
duce the class of systems considered. In Section II, we define
the fast variable approximation and derive the moments of
the approximation. In Section III, we prove that the first
and second moments of the fast variable approximation are
within an O(✏)-neighborhood of those of the original system.
The results are illustrated with an example in Section V.

II. SYSTEM MODEL

Consider the singularly perturbed stochastc system

ẋ = f
x

(x, z, t) + �
x

(x, z, t)�
x

, x(0) = x
0

(1)
✏ż = f

z

(x, z, t, ✏) + �
z

(x, z, t, ✏)�
z

, z(0) = z
0

(2)

where x 2 D
x

⇢ Rn and z 2 D
z

⇢ Rm are the slow and fast
variables, respectively. �

x

is a d
x

-dimensional white noise
process and let �

f

be a d
f

-dimensional white noise process.
Then, �

z

is a (d
x

+ d
f

)-dimensional white noise process.
We assume that the system (1) - (2) satisfies the following
assumptions.

Assumption 1: The functions f
x

(x, z, t) and f
z

(x, z, t, ✏)
are affine functions of the state variables x and z, i.e., we
can write f

x

(x, z, t) = A
1

x + A
2

z + A
3

(t), where A
1

2



Rn⇥n, A
2

2 Rn⇥m and A
3

(t) 2 Rn and f
z

(x, z, t, ✏) =
B

1

x + B
2

z + B
3

(t) + ↵(✏)(B
4

x + B
5

z + B
6

(t)), where
B

1

, B
4

2 Rm⇥n, B
2

, B
5

2 Rm⇥m, B
3

(t), B
6

(t) 2 Rm.
Also, we have that A

3

(t) and B
3

(t) are continuously differ-
entiable functions, and ↵(✏) is a continuously differentiable
function with ↵(0) = 0.

Assumption 2: The matrix-valued functions �
x

(x, z, t)
and �

z

(x, z, t, ✏) are such that, there exist continuously
differentiable functions �(x, z, t) : Rn⇥Rm⇥Rn ! Rn⇥n,
⇤(x, z, t, ✏) : Rn ⇥ Rm ⇥ R ⇥ R ! Rm⇥m, ⇥(x, z, t, ✏) :
Rn ⇥ Rm ⇥ R⇥ R ! Rm⇥n, that satisfy

�
x

(x, z, t)�
x

(x, z, t)T = �(x, z, t), (3)
�
z

(x, z, t, ✏)�
z

(x, z, t, ✏)T = ✏⇤(x, z, t, ✏), (4)
�
z

(x, z, t, ✏)[ �
x

(x, z, t) 0 ]T = ⇥(x, z, t, ✏), (5)

where the elements of �(x, z, t), ⇤(x, z, t, ✏), ⇥(x, z, t, ✏)
are affine functions of x and z, i.e., we can write
E[�(x, z, t)] = �(E[x],E[z], t), E[⇤(x, z, t, ✏)] =
⇤(E[x],E[z], t, ✏), and E[⇥(x, z, t, ✏)] = ⇥(E[x],E[z], t, ✏).
Also, we have that lim

✏!0

⇤(x, z, t, ✏) < 1 and
lim

✏!0

⇥(x, z, t, ✏) = 0 for all x, z and t.
Assumption 3: The matrix B

2

is Hurwitz.

We assume that a unique, well-defined solution exists for
the system (1) - (2), for a finite time-interval. The sufficient
conditions for existence of a unique solution is given in [12],
which consists of Lipschitz continuity and bounded growth
conditions. The class of systems that satisfy Assumption
2, includes the case where the diffusion term is a square-
root function of the state variables that may not satisfy the
Lipschitz continuity condition. In this case, the sufficient
conditions in [13] can be used to verify the existence of
a unique solution.

III. FAST VARIABLE APPROXIMATION

In [9], we defined the reduced system which was shown
to approximate the slow variable dynamics, as

˙̄x = f
x

(x̄, �
1

(x̄, t), t) + �
x

(x̄, �
1

(x̄, t), t)�
x

, x̄(0) = x
0

, (6)

where

�
1

(x, t) = �B�1

2

(B
1

x+B
3

(t)), (7)

is the solution to f
z

(x, z, t, 0) = B
1

x+B
2

z+B
3

(t) = 0. We
then quantified the error in the slow variable approximation
using the first and the second moments and obtained the
results summarized here in Theorem 1. First, consider the
following function definitions for suitable constant matrices
a 2 Rn , b 2 Rn⇥n, c 2 Rm, d 2 Rm⇥m, and e 2 Rm⇥n.

g
1

(a, �
1

(a, t), t) = A
1

a+A
2

�
1

(a, t) +A
3

(t),

g
2

(a, b, �
1

(a, t), �
2

(a, b, t), t) = A
1

b+A
2

�
2

(a, b, t) + bAT

1

+A
3

(t)aT + �
2

(a, b, t)TAT

2

+ aA
3

(t)T + �(a, �
1

(a, t), t),

g
3

(a, c, t, ✏) = B
1

a+B
2

c+B
3

(t)

+ ↵(✏)(B
4

a+B
5

c+B
6

(t)),

g
4

(a, b, c, d, e, t, ✏) = eBT

1

+ dBT

2

+ cB
3

(t)T

+ ↵(✏)(eBT

4

+ dBT

5

+ cB
6

(t)T ) +B
1

eT + ⇤(a, c, t, ✏)

+B
2

d+B
3

(t)cT + ↵(✏)(B
4

eT +B
5

d+B
6

(t)cT ),

g
5

(a, b, c, d, e, t, ✏) = ✏(eAT

1

+ dAT

2

+ cA
3

(t)T ) +B
1

b+B
2

e

+B
3

(t)aT +⇥(a, c, t, ✏) + ↵(✏)(B
4

eT +B
5

d+B
6

(t)cT ),

Theorem 1: Consider the original system in (1) - (2) and
the reduced system in (6). Under Assumptions 1 - 3, the
commutative diagram in Figure 1 holds. Furthermore, there
exists t

1

> 0 such that

kE[x̄(t)]� E[x(t)]k = O(✏), t 2 [0, t
1

],

kE[x̄(t)x̄(t)T ]� E[x(t)x(t)T ]k
F

= O(✏), t 2 [0, t
1

],

where k.k
F

is the Frobenius norm.
In [9] we illustrate via an example that, although

�
1

(x̄(t), t) provides a good approximation when it is used
in the slow variable dynamics, it does not provide a good
approximation of the fast variable, in contrast to the deter-
ministic case. To illustrate this further, consider the following
example as in [9].

ẋ = �a
1

x+ a
2

z, (8)
ż = �z + v

1

p
✏�, (9)

where a
1

> 0. We have that z = �
1

(x, t) = 0, and the
reduced system is given by

˙̄x = �a
1

x̄.

Calculating the second moment dynamics of x and z in the
system (8) - (9), we obtain

E[x(t)2] = a2
2

v2
2

✏

2a
1

(1 + a
1

✏)
, (10)

E[z(t)2] = v2
1

2
. (11)

We also have that the E[x̄(t)2] = 0 and E[�
1

(x̄(t), t)2] = 0.
Therefore, we see that when ✏ = 0, kE[x(t)2]�E[x̄(t)2]k = 0

but kE[z(t)2] � E[�
1

(x̄(t), t)2]k = v

2

1

2

. Thus, z = �(x̄(t), t)
does not approximate the fast variable dynamics well.

In this work, we seek an approximation to the fast variable
in the form

z̄(t) = �
1

(x̄(t), t) + g(x̄(t), t)N, (12)

where N 2 Rd is a random vector whose components are
independent standard normal random variables, and g(x̄, t) :
Rn ⇥ R ! Rm⇥d is a suitable function. We call equation
(12), the reduced fast system. We aim at determining the
function g(x̄, t) such that the first and second moments of
z(t) in (1) - (2) are well approximated by the first and second
moments of z̄(t) in (12). To this end, define the functions
 , �

2

and �
3

for a 2 Rn and b 2 Rn⇥n such that

 (a, t) =

Z 1

0

e(B2

v)⇤(a, �
1

(a, t), t, 0)e(B
T

2

v)dv, (13)

�
2

(a, b, t) = �B�1

2

(B
1

b+B
3

(t)aT ), (14)
�
3

(a, b, t) = ��
2

(a, b, t)BT

1

(B�1

2

)T

� �
1

(a, t)B
3

(t)T (B�1

2

)T +  (a, t). (15)



Original System

ẋ = f

x

(x, z, t) + �

x

(x, z, t) �

x

✏ż = f

z

(x, z, t, ✏) + �

z

(x, z, t, ✏) �

z

˙

x̄ = f

x

(x̄, �

1

(x̄, t), t) + �

x

(x̄, �

1

(x̄, t), t) �

x

✓
d

dt

E[x̄]
d

dt

E[x̄x̄T

]

◆
=

✓
g

1

(E[x̄], �
1

(E[x̄], t), t)
g

2

(E[x̄],E[x̄x̄T

], �

1

(E[x̄], t), �
2

(E[x̄],E[x̄x̄T

], t), t)

◆

d

dt

0

BBBB@

E[x]
E[xxT

]

✏E[z]
✏E[zzT

]

✏E[zxT

]

1

CCCCA
=

0

BBBB@

g

1

(E[x],E[z], t)
g

2

(E[x],E[xxT

],E[z],E[zxT

], t)

g

3

(E[x],E[z], t, ✏)
g

4

(E[x],E[xxT

],E[z],E[zzT

],E[zxT

], t, ✏)

g

5

(E[x],E[xxT

],E[z],E[zzT

],E[zxT

], t, ✏)

1

CCCCA

Moments of the Original System Moments of the Reduced System

Reduced System

✏ ! 0

Fig. 1: Setting ✏ = 0 in the moment dynamics of the original system yields the moment dynamics of the reduced system.

We now make the following claim:
Claim 1: Let g(x, t) satisfy the Lyapunov equation

g(x̄, t)g(x̄, t)TBT

2

+B
2

g(x̄, t)g(x̄, t)T = �⇤(x̄, �
1

(x̄, t), t, 0).
(16)

Then, the first and second moments of z̄(t) defined in (12)
can be written in the form

E[z̄(t)] = �
1

(E[x̄(t)], t), (17)
E[z̄(t)z̄(t)T ] = �

3

(E[x̄(t)],E[x̄(t)x̄(t)T ], t). (18)
Proof:

From equation (12), we have

E[z̄] = E[�
1

(x̄, t) + g(x̄, t)N ].

Employing the linearity of the expectation operator and of
the function �

1

(x̄, t), we have

E[z̄] = �
1

(E[x̄], t) + E[g(x̄, t)N ].

Since N is a random vector whose components are standard
normal random variables, we have that E[N ] = 0. As the
function g(x̄, t) and the random vector N are independent,
we further obtain

E[z̄] = �
1

(E[x̄], t).

Similarly, the second moment of the reduced fast variable
can be calculated using (12) as

E[z̄z̄T ] = E[(�
1

(x̄, t) + g(x̄, t)N)(�
1

(x̄, t) + g(x̄, t)N)T ],

= E[�
1

(x̄, t)�
1

(x̄, t)T ] + E[�
1

(x̄, t)NT g(x̄, t)T ]

+ E[g(x̄, t)N�
1

(x̄, t)T ] + E[g(x̄, t)NNT g(x̄, t)T ].
(19)

Let G(x̄, t) = g(x̄, t)N�
1

(x̄, t)T and write �
1

(x̄, t) =
[�

1

(x̄, t)
1

, . . . , �
1

(x̄, t)
m

]T , g(x̄, t) = [g(x̄, t)
ik

] for i 2
{1,m}, k 2 {1, d} and N = [N

1

, . . . , N
d

]. Then, the entries
of G(x̄, t) can be written as

G(x̄, t)
ik

=
mX

j=1

�
1

(x̄, t)
k

g(x̄, t)
ij

N
j

,

i 2 {1,m} and k 2 {1, d}

As the functions �
1

(x̄, t) and g(x̄, t) are independent from
N , taking the expectation yields

E[G(x̄, t)
ik

] =
mX

j=1

E[�
1

(x̄, t)
k

g(x̄, t)
ij

]E[N
j

].

Since N
j

is a standard normal random variable we have that
E[N

j

] = 0 for all j. Therefore, we have E[G(x̄, t)] = 0.
Similarly, we have that �

1

(x̄, t)NT g(x̄, t)T = G(x̄, t)T , and
E[G(x̄, t)T ] = 0. Thus, we obtain

E[�
1

(x̄, t)NT g(x̄, t)T ] = E[g(x̄, t)N�
1

(x̄, t)T ]T = 0. (20)

Let H(x̄, t) = g(x̄, t)NNT g(x̄, t)T . The entries of
H(x̄, t) can be expressed as

H(x̄, t)
ik

=
mX

l=1

mX

j=1

g(x̄, t)
ik

g(x̄, t)
ij

N
j

N
l

.

Since �
1

(x̄, t) and g(x̄, t) are independent from N , taking
the expectation, we have

E[H(x̄, t)
ik

] =
mX

l=1

mX

j=1

E[g(x̄, t)
ik

g(x̄, t)
ij

]E[N
j

N
l

].

As N
j

are independent normal random variables, we have
that E[N

l

N
j

] = E[N
l

]E[N
j

] = 0, for all l 6= j. When l = j,
we have that N

l

N
j

= N2

j

, which yields E[N2

j

] = var(N
j

) =
1. Then, we obtain

E[H(x̄, t)
ik

] =
mX

j=1

E[g(x̄, t)
ik

g(x̄, t)
ij

],

which results in

E[H(x̄, t)] = E[g(x̄, t)NNT g(x̄, t)T ] = E[g(x̄, t)g(x̄, t)T ].
(21)

Substituting (20) and (21) into (19) yields

E[z̄z̄T ] = E[�
1

(x̄, t)�
1

(x̄, t)T ] + E[g(x̄, t)g(x̄, t)T ]. (22)

From (16), we have that

E[g(x̄, t)g(x̄, t)T ]BT

2

+B
2

E[g(x̄, t)g(x̄, t)T ] =
� ⇤(E[x̄], �

1

(E[x̄], t), t, 0).



for which, under Assumption 3, the unique solution is given
by

E[g(x̄, t)g(x̄, t)T ] =
Z 1

0

e(B2

v)⇤(E[x̄], �
1

(E[x̄], t), t, 0)e(B
T

2

v)dv =  (E[x̄], t),
(23)

where  is defined in (13).
Therefore, using that �

1

(x, t) = �B�1

2

(B
1

x+B
3

(t)), and
substituting (23) into (21) leads to

E[z̄z̄T ] = E[(�B�1

2

(B
1

x̄+B
3

(t)))(�B�1

2

(B
1

x̄+B
3

(t)))T ]

+  (E[x̄], t),

which, using (14) and (15) can be rewritten as

E[z̄z̄T ] = ��
2

(E[x̄],E[x̄x̄T ], t)BT

1

(B�1

2

)T

� �
1

(E[x̄], t)B
3

(t)T (B�1

2

)T +  (E[x̄], t),
= �

3

(E[x̄],E[x̄x̄T ], t).

From Theorem 1 we have that the first and second
moment dynamics for the fast variables of the original
system E[z(t)], E[z(t)z(t)T ] and the dynamics of the mixed
moments E[z(t)x(t)T ] are given by

✏
dE[z]
dt

= g
3

(E[x],E[z], t, ✏), (24)

✏
dE[zzT ]

dt
= g

4

(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ✏),

(25)

✏
dE[zxT ]

dt
= g

5

(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ✏).

(26)

Now, we analyze the moment dynamics for the fast vari-
able of the original system, that is E[z(t)] and E[z(t)z(t)T ],
when ✏ = 0.

Claim 2: Setting ✏ = 0, in the moment dynamics (24) -
(26), results in

E[z(t)] = �
1

(E[x(t)], t), (27)
E[z(t)z(t)T ] = �

3

(E[x(t)],E[x(t)x(t)T ], t). (28)
Proof:

Setting ✏ = 0 in (24) - (25), we obtain

B
1

E[x] +B
2

E[z] +B
3

(t) = 0, (29)
B

1

E[xxT ] +B
2

E[zxT ] +B
3

(t)E[xT ] = 0. (30)

Under Assumption 3, we have that the unique solutions to
equations (29) - (30) is given by

E[z] = �B�1

2

(B
1

E[x] +B
3

(t)) = �
1

(E[x], t), (31)
E[zxT ] = �B�1

2

(B
1

E[xxT ] +B
3

(t)E[xT ])

= �
2

(E[x],E[xxT ], t). (32)

We have that equation (31) is in the form of equation (27),
proving the first equality.

Setting ✏ = 0 in (26), we obtain

E[zzT ]BT

2

+B
2

E[zzT ] = �E[zxT ]BT

1

� E[z]B
3

(t)T

�B
1

E[xzT ]�B
3

(t)E[zT ]� ⇤(E[x],E[z], t, 0).

Using the expressions E[z] = �
1

(E[x], t) and E[zxT ] =
�
2

(E[x],E[xxT ], t) from (31) - (32), we have that

E[zzT ]BT

2

+B
2

E[zzT ] = ��
2

(E[x],E[xxT ], t)BT

1

� �
1

(E[x], t)B
3

(t)T �B
1

�
2

(E[x],E[xxT ], t)T

�B
3

(t)�
1

(E[x], t)T � ⇤(E[x], �
1

(E[x], t), t, 0). (33)

The equation (33) takes the form of the Lyapunov equa-
tion,

ATP + PA = �Q,

with

P = E[zzT ],
Q(E[x],E[xxT ], t) = �

2

(E[x],E[xxT ], t)BT

1

+ �
1

(E[x], t)B
3

(t)T +B
1

�
2

(E[x],E[xxT ], t)T

+B
3

(t)�
1

(E[x], t)T + ⇤(E[x], �
1

(E[x], t), t, 0),
A = BT

2

.

Therefore, under Assumption 3, there exists a unique solution
E[zzT ] = h(E[x],E[xxT ], t), to equation (33). To prove that
h(E[x],E[xxT ], t) = �

3

(E[x],E[xxT ], t), we substitute (14)
into (33), and simplifying further we obtain

� �
2

(E[x],E[xxT ], t)BT

1

� �
1

(E[x], t)B
3

(t)T

+  (E[x], t)BT

2

�B
1

�
2

(E[x],E[xxT ], t)T

�B
3

(t)�
1

(E[x], t)T +B
2

 (E[x], t)
= ��

2

(E[x],E[xxT ])BT

1

� �
1

(E[x], t)B
3

(t)T

�B
1

�
2

(E[x],E[xxT ], t)T �B
3

(t)�
1

(E[x], t)T

� ⇤(E[x], �
1

(E[x], t), t, 0).

Canceling the common terms on both sides finally yields

 (E[x], t)BT

2

+B
2

 (E[x], t) = �⇤(E[x], �
1

(E[x], t), t, 0).
(34)

From the definition of  in (13), we have that  (E[x], t) =R1
0

e(B2

v)⇤(E[x], �
1

(E[x], t), t, 0)e(BT

2

v)dv, which is the
unique solution to the Lyapunov equation in (34), under
Assumption 3. Therefore we have shown that E[zzT ] =
�
3

(E[x],E[xxT ], t) is the unique solution to (33).

IV. MAIN RESULT

In this section, we quantify the error between the moments
of the fast variable of the original system given by (24) and
(25) and moments of the reduced fast system given by (17)
- (18). To this end, we have the following Lemma, which
is an extension to the results in the commutative diagram in
Figure 1.

Lemma 1: Under Assumptions 1 - 3, the commutative
diagram in Figure 2 holds.

Proof: Proof follows from Theorem 1, Claim 1 and
Claim 2.
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x
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x

˙
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x
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1
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x
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1
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x

✓
d

dt

E[x̄]
d
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]

◆
=

✓
g

1
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1

(E[x̄], t), t)
g

2
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], �

1

(E[x̄], t), �
2

(E[x̄],E[x̄x̄T

], t), t)

◆

d

dt

0

BBBB@

E[x]
E[xxT

]

✏E[z]
✏E[zzT

]

✏E[zxT

]

1

CCCCA
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0

BBBB@

g

1

(E[x],E[z], t)
g

2

(E[x],E[xxT

],E[z],E[zxT

], t)

g

3

(E[x],E[z], t, ✏)
g

4

(E[x],E[xxT

],E[z],E[zzT

],E[zxT

], t, ✏)

g

5
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],E[z],E[zzT

],E[zxT

], t, ✏)

1

CCCCA

Moments of the Original System Moments of the Reduced System

Reduced System

✏ ! 0
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1

(x̄, t) + g(x̄, t)N

✓ E[z̄]
E[z̄z̄T

]

◆
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✓
�

1
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�
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(E[x̄],E[x̄x̄T
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◆
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z
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z

Fig. 2: Setting ✏ = 0 in the moment dynamics for the fast variable of the original system yields the moment dynamics of the reduced
fast system.

Theorem 2: Consider the original system in (1) - (2) and
the reduced fast system in (12). Under Assumptions 1 - 3
there exists ✏⇤ > 0, t

1

, t
b

> 0 with t
1

> t
b

such that for
✏ < ✏⇤ we have
kE[z̄(t)]� E[z(t)]k = O(✏), t 2 [t

b

, t
1

],

kE[z̄(t)z̄(t)T ]� E[z(t)z(t)T ]k
F

= O(✏), t 2 [t
b

, t
1

],
(35)

where k.k
F

is the Frobenius norm.

Proof: As the moment dynamics are deterministic, the
results in (35) can be proven by applying the Tikhonov’s
theorem to the moment dynamics of the original system and
moment dynamics of the reduced system given in Figure
2. To this end, we first prove that the assumptions of the
Tikhonov’s theorem in [1] are satisfied.

In order to ensure the global exponential stability of the
boundary layer dynamics for the moments of the original
system, we define the error variables

b
1

:= E[z]� �
1

(E[x], t),
b
2

:= E[zxT ]� �
2

(E[x],E[xxT ], t),

b
3

:= E[zzT ]� �
3

(E[x],E[xxT ], t). (36)

Letting ⌧ := t/✏ denote the time variable in the fast time
scale, it was shown in [9] that the boundary layer dynamics
of b

1

and b
2

, given by
db

1

d⌧
= B

2

b
1

,
db

2

d⌧
= B

2

b
2

,

are globally exponentially stable under Assumption 3. Next
we analyze the boundary layer dynamics of b

3

. From (36)
the derivative of the variable b

3

with respect to time t is given
by

✏
db

3

dt
= ✏

dE[zzT ]
dt

� ✏
@�

3

(E[x],E[xxT ], t)
@t

� ✏
@�

3

(E[x],E[xxT ], t)
@E[x]

dE[x]
dt

� ✏
@�

3

(E[x],E[xxT ], t)
@E[xxT ]

dE[xxT ]
dt

(37)

Writing ⌧ = t/✏, and using equation (25), the dynamics
of b

3

in the fast timescale ⌧ are given by

db
3

d⌧
= g

4

(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ✏)

� @�
3

(E[x],E[xxT ], t)
@E[x]

dE[x]
d⌧

� @�
3

(E[x],E[xxT ], t)
@⌧

� @�
3

(E[x],E[xxT ], t)
@E[xxT ]

dE[xxT ]
d⌧

, (38)

in which we have from Figure 2, that the moments of the
original system satisfy

dE[x]
d⌧

= ✏g
1

(E[x],E[z], t), (39)

dE[xxT ]
d⌧

= ✏g
2

(E[x],E[xxT ],E[z],E[zxT ], t). (40)

Using equation (15), we have that
@�

3

(E[x],E[xxT ], t)
@⌧

= ✏B�1

2

dB
3

(t)
dt

E[xT ]BT
1

(B�1

2

)T

+ ✏B�1

2

dB
3

(t)
dt

B
3

(t)T (B�1

2

)T � ✏�
1

(E[x], t)dB3

(t)
dt

(B�1

2

)T

+ ✏
@

@t

Z 1

0

e(B2

v)⇤(E[x], �
1

(E[x], t), t, 0)e(B
T

2

v)dv. (41)

The boundary layer dynamic for b
3

are given by setting
✏ = 0 in (38) and using E[z] = �

1

(E[x], t), E[zxT ] =
�
2

(E[x],E[xxT ], t), and E[zzT ] = �
3

(E[x],E[xxT ], t). Due
to the linearity of the functions g

1

, g
2

, g
3

, g
4

, g
5

in the
commutative diagram of Figure 2, we have that the solutions
E[x],E[z],E[xxT ],E[zxT ], E[zzT ] exist and are bounded on
a finite time interval t 2 [0, t

1

] for some finite t
1

> 0.
Therefore, setting ✏ = 0 in (39) and (40) we have that
dE[x]
d⌧

= 0 and dE[xxT

]

d⌧

= 0.
Under Assumption 1, we have that dB

3

(t)

dt

is continuous
in t and therefore it is bounded on the finite time interval
t 2 [0, t

1

]. Furthermore, we observe that, the matrix multi-
plications in the term e(B2

v)⇤(E[x], �
1

(E[x], t), t, 0)e(BT

2

v)

appearing in equation (41) results in linear combina-
tions of the entries of ⇤. Therefore, due to the con-
tinuous differentiability of ⇤ with respect to its argu-
ments under Assumption 1, we have that the expres-
sion @

@t

R1
0

e(B2

v)⇤(E[x], �
1

(E[x], t), t, 0)e(BT

2

v)dv is con-
tinuous with t. Hence, it is bounded on the finite time



interval t 2 [0, t
1

]. Equation (41) thus implies that
@�

3

(E[x],E[xxT

],t)

@⌧

= 0 when ✏ = 0. Therefore, setting
✏ = 0 in (38), using that f

z

(x, z, t, 0) = B
1

x + B
2

z +
B

3

(t) and �
z

(x, z, t, 0)�
z

(x, z, t, 0)T = ⇤(x, z, t, 0) from
Assumption 1 and Assumption 2, and taking E[z] =
�
1

(E[x], t), E[zxT ] = �
2

(E[x],E[xxT ], t), E[zzT ] =
�
3

(E[x],E[xxT ], t), we obtain the dynamics for b
3

as
db

3

d⌧
= (b
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+ �
2

(E[x],E[xxT ], t))BT
1

+ (b
3

+ �
3

(E[x],E[xxT ], t))BT
2

+ (b
1

+ �
1

(E[x], t))B
3

(t)T

+B
1

(b
2

+ �
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(E[x],E[xxT ], t))T + ⇤(E[x],E[z], t, 0)
+B

2

(b
3

+ �
3

(E[x],E[xxT ], t))T +B
3

(t)(b
1

+ �
1

(E[x], t))T .

Substituting here the expression of �
3

from (15), yields
db
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d⌧
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(E[x],E[xxT ], t))BT
1

+ (b
3

� �
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(E[x̄],E[x̄x̄T ], t)BT
1
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)T

� �
1

(E[x̄], t)B
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(t)T (B�1
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)T
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3

(t)T
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(b
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2

(b
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� �
2
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1
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2
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� �
1
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3

(t)T (B�1

2

)T +  (E[x], t))T
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3

(t)(b
1

+ �
1

(E[x], t))T + ⇤(E[x], �
1

(E[x], t), t, 0). (42)

From (13), we have that  (E[x], t) =R1
0

e(B2

v)⇤(E[x], �
1

(E[x], t), t, 0)e(BT

2

v)dv, which is
the unique solution to the Lyapunov equation

 (E[x], t)BT
2

+B
2

 (E[x], t) = �⇤(E[x], �
1

(E[x], t), t, 0).
(43)

Therefore using (43) in (42), we finally obtain
db

3

d⌧
= b

3

BT
2

+B
2

bT
3

+ b
2

BT
1

+B
1

bT
2

+B
3

(t)bT
1

+ b
1

B
3

(t)T .

(44)

Under Assumption 3, we have that the matrix B
2

is
Hurwitz and therefore the dynamics of b

1

and b
2

are globally
exponentially stable. Then, using the solution of (44) for b

3

given by [14]

b
3

(⌧) = eB2

⌧ b
3

(0)eB
T

2

⌧

+

Z ⌧

0

eB2

(⌧�v)(b
2

(v)BT
1

+B
1

b
2

(v)T +B
3

(t)b
1

(v)T

+ b
1

(v)B
3

(t)T )(eB2

(⌧�v))T dv,

it follows that there exists a positive constants C
1

and r
1

such
that kb

3

(⌧)k
F

 C
1

(kb
1

(0)k
F

+kb
2

(0)k
F

+kb
3

(0)k
F

)e�r

1

t,
where k.k

F

denotes the Frobenius norm. Then, taking Y =
[b

1

b
2

b
3

], and considering the exponential stability of b
1

and
b
2

, we can write kY (⌧)k
F

 CkY (0)k
F

e�rt for positive
constants C and r. Therefore, we have that the origin is
a globally exponentially stable equilibrium point of the
boundary layer dynamics.

Under Assumption 1 we have that the functions
g
1

, g
2

, g
3

, g
4

, g
5

and their first partial derivatives with respect
to their arguments are continuous. We also have that the func-
tions �

1

(E[x], t), �
2

(E[x],E[xxT ], t), �
3

(E[x],E[xxT ], t)
have continuous first partial derivatives with respect to their

arguments. Due to the linearity of the functions g
1

and g
2

,
the reduced system has a unique solution for t 2 [0, t

1

].
Therefore, the assumptions of the Tikhonov’s theorem are
satisfied. Applying the Tikhonov’s theorem to the moment
dynamics of the original we then obtain the result in (35).

A. Illustrative Example

Next, we consider again the motivating example in Section
1, and approximate the fast variable dynamics of the original
system by the reduced fast system z̄(t) = �

1

(x̄(t), t) +
g(x̄(t), t)N given in (12).

Setting ✏ = 0, we obtain �
1

(x̄(t), t) = 0. To obtain
g(x̄(t), t), we solve the equation

g(x̄(t), t)g(x̄(t), t)T (�1)+(�1)g(x̄(t), t)g(x̄(t), t)T = �v2
1

which yields g(x̄(t), t) =
p

v
1

/2. Therefore, the reduced
fast system is given by

z̄(t) =
v
1p
2
N.

We have that E[z̄2] = v

2

1

2

E[N2], where E[N2] = 1. From
equation (11), we also have that the second moment of the
fast variable dynamics of the original system (9) is given by
E[z2] = v

2

1

2

. Therefore, it follows that kE[z2] � E[z̄2]k = 0
and that the reduced fast system provides a good approxi-
mation for the fast variable dynamics of the original system.

V. EXAMPLE

In this section, we apply the results to a biomolecular
system that exhibits time-scale separation. Consider the
system given in Figure 3, where the transcription factor X
binds to the promoter p

1

and regulates the production of
protein G, while also binding to a non-regulatory binding
site p

2

. It has been show that the amount of non-regulatory
binding sites - also referred to as decoy sites - can alter the
speed and the shape of the response of protein X [15], [16],
[17]. Stochastic effects of this system have also been studied
in [18], using the chemical Master equation. In this section,
we model the dynamics of the system using the chemical
Langevin equation and obtain a reduced model, taking into
account the time-scale separation in the system.

X G

p
1

p
2

X G

p
1

p
2

Fig. 3: Transcription factor X regulates the production of protein
G, while also binding to non-regulatory binding site p

2

.

The chemical reactions for the system can be written as

follows: �
k(t)��*)��
�

1

X , X + p
1

k

on1���*)���
k

off1

C
1

, X + p
2

k

on2���*)���
k

off2

C
2

,



C
1

��! C
1

+ G, G ��! �, where k(t) is the production rate
of X , k

on1

, k
o↵1

and k
on2

/k
o↵2

are the binding/unbinding
rate constants between the transcription factor X and the
promoters p

1

and p
2

, � is the production rate of the protein
G, and �

1

, �
2

are the decay rate constants of X and G
respectively, which includes both degradation and dilution.
The total amount of promoters are conserved, and hence we
can write P

t1

= p
1

+ C
1

and P
t2

= p
2

+ C
2

. Denote by
⌦ the cell volume, and let ⌦ = 1 for simplicity. Then, the
chemical Langevin equations for the system can be written
as

dX
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= k(t)� �

1

X � k
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X(Pt1 � C
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C
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+
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�
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k
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+
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k
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�
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�
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k
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, (45)
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C
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+
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k
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�
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k
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�
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dG
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� �
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p
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�
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, (48)

where �
i

are independent white noise processes. We assume
that the binding between the transcription factor X and the
promoters are weak, giving P

t1

� C
1

and P
t2

� C
2

.
Therefore, we can write the system (45) - (48) in the form
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We have that the binding/unbinding reactions are much faster
than protein production and decay [19], and thus we can
write ✏ = �

1

/k
o↵1

, where ✏ ⌧ 1. Letting k
d1

= k
o↵1

/k
on1

,
k
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/k
on2

, and a = k
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we have k
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=
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=
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/✏. Then, with the change of variable y = X +C
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,
we can take the system into standard singular perturbation
form
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This system does not satisfy the sufficient conditions for
existence of a unique solution in [13], and we note that the
existence of a unique, well-defined solution for chemical
Langevin equations is an ongoing research question [20],
[21]. Therefore, in this case, we ensure that the parameter
conditions are chosen to give large enough molecular counts,
such that the argument of the square-root term remains pos-
itive for all simulations performed and used to numerically
determine the sample means.

Setting ✏ = 0, we obtain the function �
1

(y, t) =
[�

1

(y, t)
1

, �
1

(y, t)
2

] in the form
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Then, to obtain the function g(y, t) we consider the equation
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(49)
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The eigenvalues of B
2

are given by ��
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where the parameters
�
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, k
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t2

are positive. Therefore, we have
that the matrix B

2

is Hurwitz. Then, solving the set
of linear equations in (49), we find that the matrix
g(y, t)g(y, t)T is given by
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and therefore we have
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Then, the reduced system is given by
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where N
1

and N
2

are standard normal random variables.
Figure 4 shows the error in the moments between the

fast variable dynamics of the original system and that of
the approximation. The simulations are performed using the
Euler-Maruyama method for stochastic differential equations
and the moments are calculated using 500,000 simulation
runs.

Fig. 4: Errors in the first and second order moments. The param-
eters used are k(t) = 10, �

1

= 0.1, �
1

= 1, kd1 = 1000, kd2 =
1000, Pt1 = 1000, Pt2 = 1000, � = 1, y(0) = 70, G(0) =
60, C

1

(0) = 20 and C
2

(0) = 20. Moments are calculated using
500,000 simulation runs.

Remark: The above example is performed for illustration
purposes and shows how the reduction approach can be
applied to obtain the fast variable approximation. We also
note that calculating the function g(x̄, t) from g(x̄, t)g(x̄, t)T

obtained through (16) may be challenging for systems with
high dimension. However, in many applications, the analysis
typically requires the calculation of statistical properties
such as the mean and the variance, which can be directly
calculated from the reduction approach using the functions
�(x, t) and g(x̄, t)g(x̄, t)T in equations (7) and (16), which
can be readily obtained.

VI. CONCLUSION

We considered a class of singularly perturbed stochastic
differential equations where the drift terms are linear and

diffusion coefficients are nonlinear functions of the state
variables. Building on the results in our previous paper [9],
where we obtained a reduced system that approximates the
slow variable dynamics, in this work, we obtained an approx-
imation for the fast variable, when the time-scale separation
is large. This result allows the derivation of a reduced-
order system with approximations for both slow and fast
dynamics, which is useful in many applications. In particular,
biomolecular systems consist of variables affected by both
slow and fast reactions, which can be represented in singular
perturbation form after a coordinate transformation. This
approach could be used to analyze the statistical properties
of such systems where the variables of interest are affected
by both slow and fast dynamics.

In future work, we aim at extending this analysis to
systems with nonlinear drift terms.
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differential equations. Kybernetika (Prague), 4:260–279, 1968.
[9] N. Herath, A. Hamadeh, and D. Del Vecchio. Model reduction for

a class of singularly perturbed stochastic differential equations. In
American Control Conference (ACC), 2015, pages 4404 – 4410. IEEE,
2015.

[10] N. Herath and D. Del Vecchio. Moment convergence in a class
of singularly perturbed stochastic differential equations. page (To
Appear), 2015.

[11] M. Contou-Carrere, V. Sotiropoulos, Y. N. Kaznessis, and P. Daoutidis.
Model reduction of multi-scale chemical langevin equations. Systems

& Control Letters, 60(1):75–86, 2011.
[12] B. Øksendal. Stochastic differential equations. Springer, 2003.
[13] D. Duffie and R. Kan. A yield-factor model of interest rates.

Mathematical finance, 6(4):379–406, 1996.
[14] Huibert Kwakernaak and Raphael Sivan. Linear optimal control

systems, volume 1. Wiley-interscience New York, 1972.
[15] Shridhar Jayanthi, Kayzad Soli Nilgiriwala, and Domitilla Del Vec-

chio. Retroactivity controls the temporal dynamics of gene transcrip-
tion. ACS synthetic biology, 2(8):431–441, 2013.

[16] T. Lee and N. Maheshri. A regulatory role for repeated decoy
transcription factor binding sites in target gene expression. Molecular

systems biology, 8(1):576, 2012.
[17] Deepak Mishra, Phillip M Rivera, Allen Lin, Domitilla Del Vecchio,

and Ron Weiss. A load driver device for engineering modularity in
biological networks. Nature biotechnology, 32(12):1268–1275, 2014.

[18] M. Soltani, P. Bokes, Z. Fox, and A. Singh. Nonspecific transcription
factor binding can reduce noise in the expression of downstream
proteins. Physical biology, 12(5):055002, 2015.

[19] Uri Alon. An introduction to systems biology: design principles of

biological circuits. CRC press, 2006.
[20] Joshua Wilkie and Yin Mei Wong. Positivity preserving chemical

langevin equations. Chemical Physics, 353(1):132–138, 2008.
[21] David Schnoerr, Guido Sanguinetti, and Ramon Grima. The com-

plex chemical langevin equation. The Journal of chemical physics,
141(2):024103, 2014.


