
Multi-time-scale biomolecular ‘quasi-integral’ controllers for set-point
regulation and trajectory tracking

Yili Qian∗, Theodore W. Grunberg† and Domitilla Del Vecchio∗

Abstract— Recent trends in synthetic biology to move from
prototypes to applications have triggered higher expectations on
the robustness, predictability and responsiveness of biomolec-
ular circuits. Therefore, a systematic approach to designing
biomolecular controllers for regulating gene expression is
needed. Although a number of integral control motifs (ICMs)
have been proposed for set-point regulation, their performance
in vivo is challenged by integration leakiness due to dilution,
which cannot be neglected in growing cells. In this paper,
we study a class of quasi-integral controllers designed based
on existing ICMs and multiple time-scale separations. We
demonstrate that by engineering all controller reactions to be
much faster than dilution, set-point regulation can be achieved
even in the presence of a leaky integrator. Furthermore,
by engineering controller parameters for a second layer of
time-scale separation, arbitrarily small tracking error can be
achieved under certain technical conditions. We demonstrate
a realization of our design principle through a small RNA
feedback circuit.

I. INTRODUCTION

Rapid advances in synthetic biology in recent years have
posed unprecedented opportunities and challenges to control
engineers. On the one hand, the lack of robustness, pre-
dictability and modularity of biomolecular circuits remain
major hurdles to the creation of larger systems with so-
phisticated functionalities [1]. Control theoretic tools have
been proven instrumental in addressing these fundamental
challenges [2]. On the other hand, emergent applications
of synthetic biology set higher standards in the precision
and responsiveness of biomolecular circuits. For example, in
cancer immunotherapy, T cell activity needs to be tightly
regulated to protect healthy cells [3] and in cell identity
reprogramming, expression of several key transcription fac-
tors must track a given temporal profile (i.e., trajectory)
[4]. While all these design requirements fit well into the
established control-theoretic framework of regulation and
tracking [5], [6], [7], finding their biomolecular realizations
remains challenging. For instance, existing theory often relies
on a combination of state observers and dynamic controllers
to achieve disturbance decoupling and tracking [6], [7], and
their biomolecular realizations are still at their infancy [8].
Nevertheless, recent developments in constructing biomolec-
ular controllers have shown that biomolecular systems have a
distinctive set of tool boxes, such as molecular sequestration
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and time-scale separation that can be exploited to the benefit
of control design [2].

To address the regulation problem, in which the steady
state output of a circuit must be regulated at a constant set-
point regardless of constant disturbances and uncertainties,
a natural control theoretic approach based on the internal
model principle [9] is to construct biomolecular integral
controllers. To this end, a few integral control motifs (ICMs)
have been proposed [10], [11], [12]. However, the ability
of these motifs to realize integral control all hinges on the
idealized assumption that a biomolecular “memory species”
does not dilute as the host cell grows. While this assumption
is satisfied in cell free systems, it is not met in living
cells, in which cell growth dictates dilution of all species
in the circuit. As a consequence, performance of a circuit
containing the ICM in practice cannot be guaranteed, and
often needs to be evaluated computationally on a case-by-
case basis [13]. Less work has investigated the trajectory
tracking problem in biomolecular systems, in which the
output of a circuit is required to follow a given temporal
concentration profile. Nevertheless, in [14], Hsiao et al. first
constructed a biomolecular concentration tracker in bacteria
using negative feedback. Yet, lack of in-depth theoretical
developments in this aspect has hampered our ability to
derive generalizable design principles.

Here, we provide a general controller design approach to
address the problem of set-point regulation and trajectory
tracking in living cells. While ICMs cannot guarantee perfect
set-point regulation due to the presence of dilution, we
show that by selecting/engineering certain rate constants in a
circuit containing an ICM to operate on three different time-
scales, the closed loop output can be regulated arbitrarily
close to a constant set-point even in the presence leaky
integration. We call the resultant controllers with such time-
scale separation property quasi-integral controllers. If the
process to be controlled satisfies a passivity condition, we
further demonstrate that a linearized quasi-integral control
system can track a time-varying trajectory with error that
decreases with the separation of time-scales. Our results
establish a general approach for synthetic biologists to design
biomolecular controllers based on “off-the-shelf” ICMs that
can perform set-point regulation and trajectory tracking.

Notations: The ∞-norm of a signal v(t) defined for
t ≥ 0 is denoted by ‖v‖∞ := supτ∈[0,∞)[|v(τ)|∞],
where | · |∞ represents the ∞-vector norm. When we
consider a scalar time-varying input u(t) to an n-th order
dynamical system, we represent its derivatives by u(t) :=



[u(t), u̇(t), · · · , u(n)(t)]T .

II. MOTIVATING EXAMPLE

As a motivating example, we consider the antithetic ICM
proposed in [10], in which two controller species c1 and c2

regulate the expression of a target gene to produce protein
p. The controller takes as inputs a constant reference input u
and the concentration of p, which is the output of the closed
loop system and we denote it by p (italic). The production
rates of two controller species c1 and c2 are engineered to be
proportional to u and p, respectively. Furthermore, the two
controller species can bind together and annihilate. These
processes can be described by the following reactions:

u
α−→ c1, p

α−→ p + c2, c1 + c2
θ−→ ∅, (1)

where, without loss of generality, we assume that the pro-
duction of c1 and c2 have identical rate constant α. The
biochemical process to be controlled contains the decay (i.e.,
dilution and degradation) of p with rate constant δ, and
its production activated by the controller species c1. These
processes are described by the following reactions:

c1
β(d)−→ c1 + p, p

δ−→ ∅, (2)

where β(d) > 0 models an external disturbance/parameter
uncertainty d affecting the production rate of p. Such distur-
bance may arise, for example, from the competition of gene
expression machinery by other genes in the cell [15]. These
chemical reactions translate into the following mass-action
kinetic model:

ċ1 = αu− θc1c2, ċ2 = αp− θc1c2, ṗ = β(d)c1 − δp,
(3)

A coordinate transformation z := c1−c2 reveals the integral
action in this ICM since ż := α(u − p). The memory
variable z guarantees that, under appropriate stability and
reachability conditions, the closed loop system can reach set-
point u and perfectly reject disturbance d [10], [16]. When a
biomolecular circuit implements such a motif in living cells,
the concentration of all biomolecules are subject to dilution
due to cell growth (i.e., volume expansion). This unavoidable
dilution effect has been neglected in the ICM model (1). To
factor dilution into the model, we consider, in addition to (1),
the reactions ci

γ−→ ∅ (i = 1, 2), where γ is the dilution rate
constant proportional to the specific growth rate of the cell.
In face of dilution, (3) must be modified to become

ċ1 = αu− θc1c2 − γc1,
ċ2 = αp− θc1c2 − γc2,
ṗ = β(d)c1 − δx.

(4)

According to (4), the memory variable z = c1 − c2 is no
longer integrating the error, rather, it carries out a leaky
integration: ż = α(u − p) − γz, and consequently, perfect
set-point regulation cannot be expected. We call ICMs that
include dilution leaky-ICMs. While similar problems exist in
engineering, they can often be solved by reducing the rate
of leakiness γ of the integration component (e.g., a leaky

capacitor). In biological context, however, decreasing γ must
be accomplished by decreasing host cell growth, which is
often undesirable [17]. Consequently, depending on the rest
of the system parameters, the effect of leaky integration can
be appreciable [13], [16], making the performance of ICMs
under question in practice.

The class of quasi-integral biomolecular controllers we
propose here are based on these idealized ICMs. How-
ever, the unwanted effects of leaky integration in these
quasi-integral controllers can be mitigated through time-
scale separation between all controller reactions and dilution.
Additionally, we show that if a second layer of time-scale
separation exists in the controller reactions, then the resultant
linearized closed loop system can achieve trajectory tracking.
In the next section, we first state the general control problem
and provide a mathematical description of the closed loop
system under consideration.

III. PROBLEM FORMULATION
In this paper, we consider a closed loop system Σ(ε,µ)

composed of a plant Σp and a controller Σ
(ε,µ)
c with an or-

dered pair of parameters (ε, µ). The closed loop system takes
as inputs a scalar reference ũ(t) and a constant disturbance
d to produce a scalar output y(t). The disturbance could
also model parameter uncertainties. We describe two control
problems in Section III-A and propose a multi-time-scale
controller setup in Section III-B aimed to address them.

A. Control objectives
We are interested in two control problems closely related

to synthetic biology applications. The first one is to design a
controller to regulate the steady state behavior of the system
when the reference input is constant: ũ(t) ≡ ū.

Definition 1: (Set-point regulation.) Assuming that Σ(ε,µ)

has a unique locally asymptotically stable steady state, we
say that Σ(ε,µ) achieves (ε, µ)-set-point regulation in an
admissible input set U×D if for any pair of constant inputs
(ū, d) ∈ U × D, there exists a constant ε1 and a class K
function α1(·), both dependent on ū and d, such that for all
0 < ε < ε1, the equilibrium output ȳ(ū, d, ε, µ) satisfies

lim
µ→0
|ȳ(ū, d, ε, µ)− ū| = α1(ε). (5)

Remark 1: Definition 1 resembles the concept of approx-
imate integral control in [18], where an integrator appears
in system dynamics when a small parameter approaches 0.
However, this result is inapplicable to our setting as this
would require us to set γ = 0, corresponding to cell death.

Adding upon set-point regulation, we consider next the
problem of regulating the system output to track a smooth
temporal trajectory with bounded derivatives.

Definition 2: (Trajectory tracking.) System Σ(ε,µ) has the
(ε, µ)-asymptotic tracking property in an admissible input set
U × D ⊂ Ln+1

∞ × R if for every (ũ(t), d) ∈ U × D, there
exists a positive constant ε2 and a class K function α2(·),
both dependent on ũ(t) and d, such that for all 0 < ε < ε2
and for some initial conditions,

lim
µ→0

lim sup
t→∞

|y(t, ũ, d, ε, µ)− ũ(t)| = α2(ε). (6)



d

Fig. 1. Quasi-integral control system setup.

In the next section, we propose a general class of quasi-
integral controllers with multiple time-scales. We will show
in Section IV that these (nonlinear) controllers can achieve
set-point regulation and their linearized models can achieve
trajectory tracking, implying that the (nonlinear) controllers
can track a time-varying input with small enough amplitude.

B. Multi-time-scale quasi-integral controller

We consider a feedback interconnection of a plant (i.e.,
biomolecular process to be controlled) and a biomolecular
controller (see Fig. 1). The dynamics of the plant, Σp, can
be written as

Σp : ẋ = f(x, v, d), y = h(x), (7)

in which x represents the plant states (e.g., concentration of
biomolecules), and f(·) describes the plant dynamics. The
plant takes two inputs: v is the control input, and d ∈ D is a
constant external disturbance input. The scalar output of the
plant y is determined by h(x). The plant is connected to a
quasi-integral biomolecular controller Σ

(ε,µ)
c parameterized

by an ordered pair of small positive parameters (ε, µ). These
parameters characterize the different time-scales present in
the controller dynamics. The controller takes two scalar
inputs: a) the output of the process y, and b) the reference
input ũ(t). It produces an output v to control the plant Σp.
We assume that the controller is constructed based on an ICM
with an intended “memory variable”. However, we factor into
its model the fact that integral action is leaky as the host cell
grows with rate constant γ > 0. We therefore consider the
following quasi-integral controller

Σ(ε,µ)
c : µεż1 = g1(z, ε, µ) + µg2(z, u, y, ε),

εż2 = k(u− y)− εγz2, v = Θ(z),
(8)

where z := [zT1 , z2]T are the controller states. Specifically,
scalar z2 is the intended memory variable that carries out
the integral action with integral gain k when γ = 0, corre-
sponding to an ideal situation where the host cell does not
grow. We assume that the dynamics of z can be engineered
to be much faster than dilution. This fact is captured by
parameter 0 < ε � 1 in equations (8). The rest of the
controller states are represented by z1 ∈ Rm. We assume
that z1 evolves on a faster time-scale compared to that of
the leaky memory variable z2. This is captured by the small
parameter 0 < µ � 1 in (8). In the next section, we study
the control performance of the closed loop system (7)-(8).

IV. SET-POINT REGULATION AND TRACKING

In this section, we study the closed-loop quasi-integral
control system in Fig. 1. We first give explicit algebraic
conditions under which the nonlinear closed loop system
can achieve (ε, µ)-set-point regulation. We then consider a
linearized model of the controller and a strictly positive real
(SPR) plant to evaluate trajectory tracking performance.

A. Set-point regulation

Here, we study the equilibrium location of the quasi-
integral control system (7)-(8). As we shall demonstrate,
regardless of the presence of dilution, which breaks the
intended integral control structure in Σ

(ε,µ)
c , the equilibrium

output of the closed loop system ȳ can approximately reach
a constant set-point ū regardless of disturbance d if the
controller parameters ε and µ are small.

The steady state of Σ(ε,µ), ξ̄ = ξ̄(ū, d, ε, µ) :=
[x̄T (ū, d, ε, µ), z̄T (ū, d, ε, µ)]T , can be computed from the
following algebraic equations:

F (ξ̄, d) = 0, k[ū− h(x̄)] = εγz̄,

g1(z̄, ε, µ) + µG2(ξ̄, ū, ε) = 0,
(9)

where F (ξ̄, d) := f(x̄,Θ(z̄), d) and G2(ξ̄, ū, ε) :=
g2(z̄, ū, h(x̄), ε). To study how the solution of (9) changes
with parameters (ε, µ), we make the following assumptions.

Assumption 1: The functions F, g1, G2 and h are C1 in all
their arguments. Specifically, g1 and G2 are C1 in an open
set around (ε, µ) = (0, 0).

Assumption 2: When (ε, µ) = (0, 0), there exists a unique
solution ξ∗ := ξ̄(ū, d, 0, 0) to (9), that is,

F (ξ∗, d) = 0, g1(z∗, 0, 0) = 0, u− h(x∗) = 0. (10)
Assumption 3: The following matrix is invertible:

D :=

 ∂F/∂x ∂F/∂z
0 ∂g1/∂z

−k · ∂h/∂x 0

∣∣∣∣∣∣
(ξ̄=ξ∗,ū,d,ε=0,µ=0)

.

Assumptions 1-3 guarantee that the equilibrium ȳ is C1 in
an open set containing (ε, µ) = (0, 0).

Theorem 1: If Σ(ε,µ) has a unique locally asymptotically
stable steady state, then it has (ε, µ)-set-point regulation
property in U × D if Assumptions 1-3 are satisfied for all
(ū, d) ∈ U× D

Proof: For a given pair of (ū, d) ∈ U × D, the
steady state ξ̄(ū, d, ε, µ) of system Σ(ε,µ) can be solved from
equations (9), which can be re-written as

F(ξ̄, ū, d, ε, µ) :=

 F (ξ̄, d)
g1(z̄, ε, µ) + µG2(ξ̄, ū, ε)
k(ū− h(x̄))− εγz̄

 = 0. (11)

For simplicity of notation, we drop the arguments ū and d in
(11) as they are constants in this problem, and instead write it
as F(ξ̄, ε, µ) = 0 with slight abuse of notation. Based on As-
sumption 2, there exists ξ∗ such that F(ξ∗, 0, 0) = 0. Since
F is C1 at (ξ∗, 0, 0) (Assumption 1), and ∂F/∂ξ|ξ∗,0,0 is
invertible (Assumption 3), according to the implicit function
theorem, we can write ξ̄ = ξ̄(ε, µ), where ξ̄ is C1 in (ε, µ)
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Fig. 2. Linearized quasi-integral control system. (A) Full model. (B) By
setting µ = 0, one obtains the reduced model, which contains high gain
feedback connection of a reduced controller (Σ̂c) and a reduced plant (Σ̂p).
(C) Theorem 2 establishes that high gain feedback of two SPR systems (Σ1

and Σ2) can achieve reference tracking with O(
√
ε) error.

in an open set containing (ξ∗, 0, 0). Since h(·) is C1, from
(10), we have lim(ε,µ)→(0,0) h(x̄(ε, µ)) = h(x∗) = ū. This
implies (ε, µ)-set-point regulation.

B. Small amplitude trajectory tracking

In this section, we study the quasi-integral controller’s
ability to track a bounded time-varying reference input
ũ(t) ∈ U, which we decompose into ũ(t) = ū + u(t). We
assume that the time-varying part u(t) is small enough so
that we can infer the behavior of the nonlinear system (7)-
(8) from its linearized counterpart at steady state ξ̄(ū, d, ε, µ),
which can be written as follows:

µεż1 = Aµ11z1 +Aµ12z2 + µA13x+ µB1u,

εż2 = k(u− y)− εγz2,

ẋ = A31z1 +A32z2 +A33x, y = Cx.

(12)

where Aµ11 = ∂g1
∂z1

+ µ∂G2

∂z1
, Aµ12 = ∂g1

∂z2
+ µ∂G2

∂z2
, A13 =

∂G2

∂x , A31 = ∂F
∂z1

, A32 = ∂F
∂z2

, A33 = ∂F
∂x , B1 = ∂G2

∂u , C =
dh
dx , with all derivatives evaluated at ξ̄. With reference to Fig.
2A, regarding µ as the perturbation parameter, system (12)
is in standard singular perturbation form [5]. We therefore
consider the following reduced system of (12), obtained by
setting µ = 0:

εż2r = k(u− yr)− εγz2r,

ẋr = A33xr + E0z2r, yr = Cxr,
(13)

where Eµ := A32 − A31(Aµ11)−1Aµ12. To show closeness
of y and yr using singular perturbation on the infinite time
interval [5], we make the following assumptions.

Assumption 4: There exists ε∗ > 0 such that matrices A0
11

and
[
−γ −kC/ε
E0 A33

]
are Hurwitz for all 0 < ε < ε∗.

Lemma 1: (Thm. 11.2, [5]) If Assumption 4 is satisfied,
then for any 0 < ε < ε∗, there exists positive t0, µ∗(ε), and

K0(ε) such that |y(t, u, ε, µ)−yr(t, u, ε)| = µK0(ε)+O(µ2)
holds for all t ∈ [t0,∞) and µ < µ∗.

Given the closeness between system (12) and the reduced
system (13), we study the tracking performance of the
reduced system. With reference to Fig. 2B, the reduced
system (13) can be decomposed into a reduced controller
Σ̂c and a reduced plant Σ̂p in cascade with static output
feedback gain 1/ε. Specifically, we have

Σ̂c : ż2r = kv1 − γz2r, Σ̂p : ẋr = A33xr + E0v2,

ŷc = z2r, ŷp = Cxr = yr.
(14)

The two subsystems are interconnected according to v1 =
(u − ŷp)/ε and v2 = ŷc (Fig. 2B). Tracking of u(t) ∈ L∞
for a class of such systems have been studied in [19], which
we state briefly in the following Theorem.

Theorem 2: ([19], Thm. 2.) Consider the static output
feedback control system in Fig. 2C, where for i = 1, 2, the
SISO subsystem Σi described by ẋi = Aixi + Bivi, yi =
Cixi, satisfies the following conditions: 1) The pair (Ai, Bi)
is controllable, the pair (Ai, Ci) is observable; 2) Σi has
strictly proper and SPR transfer function Hi(s); and 3)
H1(s)H2(s) does not contain any pole-zero cancellation. If
the closed loop system with v1 = (u − y2)/ε and v2 = y1

is subject to a reference input u(t) with bounded derivatives
(i.e., u(t) ∈ Ln+1

∞ ), then for ε sufficiently small, there exists
a K = K(‖u‖∞), independent of ε, such that the tracking
error e(t, ε) = u(t)− y(t, u, ε) satisfies

lim sup
t→∞

|e(t, ε)| = K
√
ε. (15)

To apply Theorem 2 to our context, we need the following
assumptions on plant dynamics.

Assumption 5: The reduced plant Σ̂p in (14) is control-
lable and observable. Its transfer function is strictly proper,
SPR, and does not have a zero at s = −γ.

Lemma 2: If Assumption 5 is satisfied and u(t) ∈ Ln+1
∞ ,

then there exists positive constants ε∗∗ and K = K(‖u‖∞),
independent of ε, such that lim supt→∞ |yr(t, u, ε)−u(t)| =
K
√
ε for all 0 < ε < ε∗∗.
Proof: The result follows from applying Theorem 2

directly to Σ̂c and Σ̂p.
Since Lemma 1 establishes the closeness between the full

order and the reduced order system, and 2 demonstrates the
tracking performance of the reduced order system, we are
ready to study the tracking performance of the linearized
full system (12).

Theorem 3: If Assumptions 4-5 are satisfied and u(t) ∈
Ln+1
∞ , then there exists ε > 0 sufficiently small and K =

K(‖u‖∞) > 0, independent of ε, such that the tracking error
of (12) satisfies

lim
µ→0

lim sup
t→∞

|y(t, u, ε, µ)− u(t)| = K
√
ε. (16)

Therefore, the linearized system (12) can achieve (ε, µ)-
asymptotic trajectory tracking.

Proof: According to Lemma 2, we can pick an 0 <
ε0 < min{ε∗∗, ε∗} such that lim supt→∞ |yr(t, u, ε0) −
u(t)| = K

√
ε0. Given this ε0, according to Lemma 1,
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Fig. 3. A realization of quasi-integral controller. (A) Small RNA-based
feedback circuit diagram. (B) Set-point regulation can be achieved when ε
and µ are sufficiently small. Simulations are performed for γ = δ = 1,
ū = 10, and β(d) = 5/(1 + d), where disturbance is applied at t = 15.

there exists positive t0, µ∗(ε0) and K0(ε0), such that for
all µ < µ∗ and t > t0, lim supt→∞ |y(t, u, ε0, µ) −
yr(t, u, ε0)| = µK0(ε0) + O(µ2). Note that since
limµ→0 limt→∞ |yr(t, u, ε0)−u(t)| = 0, by triangle inequal-
ity, we have limµ→0 lim supt→∞ |y(t, u, ε0, µ) − u(t)| =
K
√
ε0.

Remark 2: The two small parameters ε, µ serve different
purposes in the multi-time-scale quasi-integral controller.
Parameter ε serves as a high static feedback gain to overcome
the leaky integration effect at steady state [16]. Decreasing
the other small parameter µ allows z1 dynamics to become
much faster than leaky integration (z2 dynamics). Therefore,
a small µ serves to “hide” high order controller dynamics.

Remark 3: The name “quasi-integral controllers” stems
from the fact that their designs are based on the ICMs pro-
posed previously [10], [11], [12]. However, from a theoretical
perspective, the underlying high gain mechanism of these
quasi-integral controllers is very different from an integral
controller.

V. EXAMPLE

In this section, we apply the results developed in Section
IV to a realization of the leaky-ICM example in (4). In
particular, we consider the small RNA-based feedback circuit
in Fig. 3A, where two controller species mRNA (m) and a
small RNA (s) regulate the translation of protein p [16], [20],
[21]. In this example, the circuit is aimed to attenuate distur-
bance d affecting the translation rate of p. For example, when
d is due to the translation of another resource-competition
protein, β(d) takes the form of β(d) = β̄/(1 +d) [15], [20].
A simplified ODE model of this circuit can be written as

ṁ = ũ(t)/ε−ms/(εµ)− γm,
ṡ = p/ε−ms/(εµ)− γs,
ṗ = β(d)m− δp.

(17)

We refer the readers to [16], [20] for detailed derivation
of this model from chemical reactions. Parameter ε can be
decreased by simultaneously increasing the copy numbers of
the regulated gene and that of the small RNA; parameter µ
can be decreased by increasing the complementarity between
the mRNA and the small RNA, which increases their binding

affinity. This model can be manipulated into the form of (7)-
(8). In particular, let z1 = m, z2 = m − s and x = p, we
have:

µεż1 = µũ(t)− z1(z1 − z2)− µεγz1,

εż2 = (ũ(t)− y)− εγz2,

ẋ = β(d)z1 − δx, y = x.

(18)

We analyze the set-point regulation and tracking behavior of
(18) in the following sections.

A. Set-point regulation

We first study the set-point regulation problem, in which
we assume the reference input is a positive constant ũ(t) ≡
ū. We have shown in [16] that this circuit has a unique
locally exponentially stable steady state ξ̄ = [z̄1, z̄2, x̄] for
any positive parameters (ε, µ) and (ū, d) ∈ U × D := {ū >
0, β(d) > 0}. Moreover, ξ̄ can be found from

F (ξ̄, d) = β(d)z̄1 − δx̄, g1(z̄) = −z̄1(z̄1 − z̄2),

G2(ξ̄, ū, ε) = ū− εγz̄1, h(x̄) = x̄.

We first check that Assumptions 1-3 are satisfied. In partic-
ular, F (z∗, x∗, d) = 0, G1(z∗) = 0 and ū = h(x∗) has a
solution at ξ∗ := [z∗1 , z

∗
2 , x
∗] = [δū/β(d), δū/β(d), ū]. The

matrix

D =

∂G1/∂z1 ∂G1/∂z2 0
0 0 −k · dh/dx

∂F/∂z1 ∂F/∂z2 ∂F/∂x

∣∣∣∣∣∣
ξ̄=ξ∗,ū,d,ε=0,µ=0

=

−δū/β(d) δū/β(d) 0
0 0 −1
β 0 −δ


is invertible. From Theorem 1 we claim that it can achieve
(ε, µ)-set-point regulation in U× D (Fig. 3B).

B. Trajectory tracking

To study the ability of (18) to track a time-varying
reference ũ(t) = ū + u(t), where u(t) has small amplitude
and ũ(t) has bounded derivatives (i.e., ũ(t) ∈ Ln+1

∞ ). We
linearize (18) around state ξ̄ and inputs (ū, d) ∈ U × D to
obtainµεż1

εż2

ẋ

 =

Aµ11 Aµ12 0
0 −εγ −k
A31 A32 A33

z1

z2

x

+

µB1

k
0

u, (19)

where, following the notations in (12), we have Aµ11 =
−2z̄1 + z̄2 − µεγ, Aµ12 = z̄1, A31 = β(d) > 0, A32 =
0, A33 = −δ, B1 = 1, C = 1 and k = 1. To
check whether Assumption 4 is satisfied, note that matrices
A0

11 = −δū/β(d) + O(ε) + O(µ) < 0 for small (ε, µ) and[
−γ −kC/ε
E0 A33

]
=

[
−γ −1/ε

−βz̄1/A
0
11 −δ

]
is Hurwitz for all

positive (ε, µ) and (ū, d) ∈ U × D. By Lemma 1, we can
therefore approximate (19) by its reduced order model:

εż2r = (u− x)− εγz2r, ẋ = β̃z2r − δx, (20)

in which β̃ = −βz̄1/(−2z̄1 + z̄2) = β + O(ε) > 0 for
small ε. Note that in (20), the reduced plant Σ̂p : ẋ =



time

A  

B  

100 150 200
10

-4

10
-3

10
-2

10
-1

10
0

10
1

100 150 200

10

15

20

25

30

reference

time

Fig. 4. Numerical simulation of the tracking performance of (17) with
different parameters ε and µ. (A) Tracking of a randomly generated
smooth trajectory. (B) Dynamic tracking error with DC component removed.
Simulation parameters: γ = δ = 1, β = 5 and ū = 10.

β̃z2r − δx satisfy Assumption 5. According to Theorem
3, we conclude that the linearized small RNA feedback
system can achieve (ε, µ)-asymptotically tracking for every
d ∈ D and ũ(t) ∈ U := {ũ(t) ∈ Ln+1

∞ : ũ(t) > 0,∀t}.
In Fig. 4, we simulate the tracking performance of the
(nonlinear) small RNA feedback model (17) given a smooth
reference trajectory generated by band-limited white noise
and a moving average filter. Tracking performance of the
circuit with different ε and µ values were evaluated. As it
can be seen in Fig. 4, decreasing ε and µ both improves the
tracking performance of the circuit.

VI. DISCUSSION AND FUTURE WORK

We propose a class of multi-time-scale quasi-integral
biomolecular controllers that can achieve set-point regulation
and trajectory tracking. A systematic design procedure is de-
scribed as follows. First, one selects/engineers the reactants
in an ICM such that the rate of all controller reactions are
much greater than dilution. This creates a fast time-scale in
the controller (ε) that effectively functions as a high-gain to
compensate for any undesirable steady state effect due to the
leaky integrator. Second, one selects/engineers all controller
reactions other than the ones involved in leaky integration to
the fastest time-scale (µε). This additional layer of time-scale
separation “hides” all high-order dynamics in the controller
to guarantee tracking in the closed loop system.

The results in this paper can be strengthened in a few
directions. From a theoretical perspective, to study nonlinear
tracking performance, it may be possible to generalize the
result in [19] for SPR systems to more general nonlinear
systems that satisfy certain passivity-type conditions. This
may also help us develop an efficient tool to check uniform
stability of the closed loop system with respect to ε and
µ. Our numerical simulation in Fig. 4 suggests that tracking
error is dominantly determined by ε. Therefore, analyzing the
system’s behavior when µ = O(1) is of interest. However,

in this case, with a single perturbation parameter ε, the
boundary layer system does not have an equilibrium, and
singular perturbation cannot be applied. Further theoretical
developments maybe required towards solving this problem.
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