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Abstract— This paper adopts a contraction approach to the
analysis of the tracking properties of dynamical systems under
high gain feedback when subject to inputs with bounded
derivatives. It is shown that if the tracking error dynamics
are contracting, then the system is input to output stable with
respect to the input signal derivatives and the output tracking
error. This result is then used to demonstrate that the negative
feedback connection of plants composed of two strictly positive
real LTI subsystems in cascade can follow external inputs with
tracking errors that can be made arbitrarily small by applying
a sufficiently large feedback gain. We utilize this result to design
a biomolecular feedback for a synthetic genetic sensor to make
it robust to variations in the availability of a cellular resource
required for protein production.

I. INTRODUCTION

High gain feedback can be an effective control strategy
for achieving stabilization, disturbance rejection and tracking
in applications where there is little scope for sophisticated
control algorithms to be implemented and where there is
knowledge of the structure, but not the exact parameters, of
a plant to be regulated [15], [11], [3], [14], [16]. Motivated
by design constraints in the regulation of synthetic genetic
circuits, this paper presents an input to output stability
approach [17], [19], [18] that derives from contraction theory
[21], [26], [25], [13] to the problem of tracking inputs with
bounded derivatives.

Control via high gain feedback has been extensively
researched for several decades. Early works on linear time
invariant systems investigated the asymptotic behavior of
the root loci of multivariable systems under high feedback
gains [12], [9], [10]. In [7], it was shown that high gain
feedback introduces a separation of timescales in relative
degree one LTI systems, dividing the state space into modes
with slow eigenvalues and modes with eigenvalues that can
be made arbitrarily fast by sufficiently strengthening the
feedback gain. When the fast eigenvalues are stable, singular
perturbation theory shows that high gain feedback stabilizes
the system trajectories to a small neighborhood of the slow
manifold, the subspace spanned by the slow eigenvectors.
Reference [16] extended [7] to nonlinear systems with affine
inputs. In [8] the results of [7] were also extended to
LTI systems of relative degree greater than one. These
methods and their applications to input tracking in singularly
perturbed systems are summarized in [11], [15], [6], [1].
Following [8], [2] used a singular perturbation approach
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to construct a decentralized dynamic feedback controller
with high observer gain for LTI systems. This controller
ensures that the effect of exogenous disturbances on the
output of an LTI system is attenuated below a pre-specified
tolerance. Nonlinear extensions to [8] were reported in [14].
Problems of disturbance attenuation for nonlinear systems
were addressed using singular perturbation techniques in
[35], [33].

In contrast to the singular perturbation techniques used
in the above references, in this paper we analyze the
tracking properties of systems under high gain feedback
using an input to output stability approach [17], [19]. In [5],
Hoppensteadt’s lemma [23] is used to show that for systems
with slowly varying exogenous inputs, uniform asymptotic
stability for all constant inputs of a system’s equilibrium
implies that the system is ISS with respect to input
derivatives. Here, we leverage a result originally reported
in [20] to show that systems that satisfy a contraction
property [21] are input to state stable [22] and, under
further assumptions, also input to output stable. Using this
result, we show that if the feedback system’s error dynamics
are contracting, then it is input to output stable from the
derivatives of the exogenous input to the tracking error. We
then use this result to show that LTI systems composed of the
cascade of two strictly positive real (SPR) subsystems under
high gain feedback are able to track external inputs with
a tracking error that is inversely proportional to the square
root of the feedback strength and proportional to a bound on
the input time derivatives. With respect to [2], we are only
interested in quantifying the tracking error bounds that are
achievable with a static output feedback, without access to
state information. Furthermore, the approach we present here
is applicable to nonlinear systems.

As discussed in [21], [25], a system can be shown to
have the contraction property over a domain if there exists a
common Lyapunov-type function for the system Jacobian at
all points in the domain. To prove this contraction property
for the cascaded SPR feedback system, we use the fact that a
diagonal Lyapunov function for the interconnection of SPR
systems can be constructed from the storage functions of the
individual subsystems [30], [27]. By appropriately scaling
the resulting composite diagonal Lyapunov function, we are
able to arrive at a matrix measure that proves contraction.

The case of cascaded strictly positive real systems under
feedback is of interest in design applications in synthetic
biology as many chemical reactions can, at a certain level
of abstraction, be dynamically modeled as processes that
are SPR. For our purposes, we are interested in designing
a genetic sensor, the protein output concentration of which



tracks the concentration of an input transcription factor
signal. Often, such sensors are subject to perturbations
arising from changes in the availability of cellular resources
[31], [32], [34], [36]. We propose to use high gain negative
feedback to regulate the sensor against such perturbations.
With our results, we are able to show that the effects
of varying resource availability are diminshed under high
gain autoregulation by a biomolecular feedback that is
engineered into the gene network of interest. Because SPR
is a structural property of the sensor’s chemical reactions,
this tracking property is preserved regardless of the exact
reaction parameter values.

This paper is organized as follows. In Section II we present
the main theoretical result in which we use the contraction
properties of dynamical systems to establish input to output
stability. Then we show how this result can be applied to
determine the input to output stability of a tracking error
with respect to the derivatives of input signals. In Section III,
we introduce a class of LTI systems, the tracking properties
of which we analyze in Section IV. We present examples in
the design of a genetic sensor in Section V and summarize
our results in Section VI.

II. MAIN RESULT

Consider a system of the form:

ė = f̄(t, e) + B̄v

z = h̄(e)
(1)

evolving on a convex set of states E ⊆ Rn. We assume that
f̄ is C1 on E , for each fixed t ≥ 0, and denote by Df̄(t, e)
the Jacobian of f̄ with respect to e, evaluated at (t, e). The
map h̄ : E → Rq is thought of as an output map (if we
are only interested in state results, we let z = e). Inputs
v(t) take values on a set V ⊆ Rm and outputs z(t) on a set
Z ⊆ Rq .

We use the same notation |v| and |z| for two arbitrary
p-norms on Rm (for input signals v) and Rq (for output
signals z). For norms on state vectors, we adopt the
notation |e|p,Q to denote a weighted p-norm induced by the
symmetric positive matrix Q on Rn, so that |e|22,Q = eTQ2e.
We define µp,Q(Ā) := limh↘0

1
h

(∥∥I + hQ−1ĀQ
∥∥− 1

)
as

the matrix measure of Ā ∈ Rn×n associated to the weighted
norm on states | · |p,Q. For further details on the computation
of matrix measures, we refer the reader to [29], [13]. For an
input v : [0, t] → V , ∥v∥[0,t] is by definition the supremum
norm sup0≤s≤t |v(s)|. An “input” will be, by definition, a
function which is continuous except at most in a discrete
set, and one-sided limits exist at all discontinuities. Finally,
we write

∥∥B̄∥∥
p,Q

to denote the induced operator norm of

B̄ : Rm → Rn, so that
∥∥B̄∥∥

p,Q
= sup|v|≤1

(
|Bv|p,Q / |v|

)
.

The main result is as follows.
Theorem 1: Assume that f̄(t, 0) = 0 for all t ≥ 0.

Suppose that two positive constants c and d are such that:

sup
t≥0, e∈E

µp,Q[Df̄(t, e)] ≤ −c (2)

and
d
∣∣h̄(e)∣∣ ≤ |e|p,Q for all e ∈ E . (3)

Then, for every solution e(·) corresponding to an input v(·),
and each t ≥ 0, we have the following input to output
stability estimate:

d|z(t)|≤exp(−ct)|e(0)|p,Q+
1− exp(−ct)

c

∥∥B̄∥∥
p,Q

∥v∥[0,t] .
(4)

In particular,

lim sup
t→∞

|z(t)| ≤ 1

cd

∥∥B̄∥∥
p,Q

∥v∥[0,∞] . (5)

Proof: See Appendix I.
We are interested in applying Theorem 1 to analyze the

tracking error in the dynamical system

ẋ = f(x, v), x ∈ Rn, v ∈ R
y = h(x), y ∈ R

(6)

We define the tracking error e := h(x) − v. By taking
n − 1 derivatives of e we can construct a new state vector
e :=

[
e ė · · · e(n−1)

]T
.

Note that if system (6) is globally observable, we can
define the map e = τ(x, v, · · · , v(n−1)) and express (6) in
the e coordinates as

ė = F (e,v) (7)

where v := ϕ(v, v̇, · · · , v(n−1), v(n)), with ϕ : Rn+1 → Rm.
If (7) can be expressed in the affine form (1) and if the
conditions of Theorem 1 are satisfied, then it follows that
system (7) is input to output stable with respect to input v
and output z.

In the following sections, we will analyze the tracking
error in a class of LTI systems under negative output
feedback of gain g. Since the systems considered are linear,
the error dynamics can be written in the affine form (1).
Under additional assumptions, including assumptions of
observability, we will construct, in Lemma 1, a matrix
weighting Q to show that condition (2) is met. Under the
same assumptions, we will show, in Lemma 2 that when
z = h̄(e) = e (the tracking error), condition (3) is satisfied
with d = O(

√
g). With these results we can then apply

Theorem 1 to obtain the tracking error estimates (4) and (5).
Subsequently, we demonstrate in Lemma 3 that the quantity∥∥B̄∥∥ /c is independent of the feedback gain g, from which
we show, in Theorem 2 that the tracking error upper bound
estimate is O(1/

√
g), meaning that, given a bound ∥v∥[0,∞]

on the input v and its derivatives, the tracking error can be
made arbitrarily small by sufficiently increasing the feedback
gain g.

III. APPLICATION TO LTI SYSTEMS

We consider the following LTI dynamical system,
illustrated in Figure 1, subject to an external input v. For
i = 1, 2 this system satisfies

Σi=

{
ẋi = Aixi +Biui,
yi = Cixi

x1∈Rm1 , x2∈Rm2 , ui ∈ R,
yi ∈ R (8)

with the interconnection rules u1 = g(v−y2), u2 = y1, g ∈
R. The combined feedback system satisfies

ẋ = Ax+ gBv, y = Cx (9)



where x =
[
xT1 xT2

]T
, y = y2 and

A :=

[
A1 −gB1C2

B2C1 A2

]
B :=

[
B1

0

]
C :=

[
0 C2

]
g Σ1 Σ2

v y2
y1

−

Fig. 1. Feedback interconnection of systems Σ1, Σ2 and feedback gain g.

We make the following assumptions on (8).
Assumption 1: System (8) is such that

• The pairs (Ai, Bi) are controllable for i = 1, 2.
• The pairs (Ai, Ci) are observable for i = 1, 2.
• Subsystems Σ1, Σ2 have strictly proper transfer

functions H1(s) and H2(s), respectively.
• The transfer function H1(s)H2(s) contains no pole-zero

cancelations.
Assumption 2: Systems Σi, i = 1, 2, are strictly positive

real [1].
As a direct result of Assumption 1, we have the following

proposition.
Proposition 1: Under Assumption 1 the feedback

interconnection (9) is controllable with input v and
observable with output y2.

Since (9) is observable by Assumption 1, it has an
invertible observability matrix. We denote the inverse of the
observability matrix by T , so that

T−1 =
[
CT (CA)T · · · (CAn−1)T

]T
. (10)

Proposition 2: Under Assumption 2, there exist
symmetric matrices Pi > 0, i = 1, 2 and scalars λi > 0
such that AT

i Pi + PiAi < −λiPi, and PiBi = CT
i

Proof: The result follows from the application of the
KYP lemma [1] to systems Σ1, Σ2.

Proposition 3: Let P :=

[
P1 0
0 gP2

]
. Then under

Assumption 2 the matrix P satisfies ATP + PA < −λP
where λ := min{λ1, λ2}, with λ1, λ2 given in Proposition
2.

Proof: Note that

ATP + PA =

[
AT

1 P1 + P1A1 S

ST g(AT
2 P2 +P2A2)

]
where S = g(P2B2C1)

T − gP1B1C2. From Proposition 2,
PiBi = CT

i for i = 1, 2, and therefore g(P2B2C1)
T −

gP1B1C2 = g(CT
2 C1)

T − gCT
1 C2 = 0. It follows that

ATP + PA =

[
AT

1 P1 + P1A1 0
0 AT

2 P2 + P2A2

]
< −λP

which concludes the proof.

IV. ANALYSIS OF THE TRACKING ERROR

For system (9), we will show that when bounds are placed
on the derivatives of v, the tracking error e := y − v =
C2x2 − v becomes small as feedback gain g grows. To this
end, let Hi(s), the transfer function of subsystem Σi, be
such that Hi =

Ni(s)
Di(s)

, where Ni(s), Di(s) are polynomials
in s, the roots of which are respectively the zeros and poles
of Hi(s). Denoting the Laplace transforms of y, e, v as
Y (s), E(s), V (s), respectively, the transfer function from
V (s) to E(s) is then

E(s)

V (s)
=
Y (s)− V (s)

V (s)
=

D1(s)D2(s)

D1(s)D2(s) + gN1(s)N2(s)

Let n := m1+m2 be the dimension of (9). Then, it follows
that for constants ai, āi, bi, i = 0, · · · , n,

(sn + an−1s
n−1 + (an−2 + gān−2)s

n−2

+ · · ·+ (a1 + gā1)s+ (a0 + gā0))E(s)

= (bns
n + bn−1s

n−1 + · · ·+ b1s+ b0)V (s).

Defining e :=
[
e ė ë · · · e(n−1)

]T
and v :=[

v v̇ v̈ · · · v(n)
]T

it then follows that the error
vector e obeys the state space description

ė = Āe+ B̄v (11)

where

Ā :=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−(a0 + gā0) −(a1 + gā1) · · · −an−1



and B̄ :=


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
b0 b1 · · · bn−1 bn

 .
Proposition 4: The dynamics of the error system (11) are

such that Ā = T−1AT , where T is the inverse of the
observability matrix in (10).

Proof: This follows by taking n− 1 derivatives of the
error e = Cx − v to form an new n-dimensional basis for
system (9) to take it into canonical form.

For any Ā ∈ Rn×n, the matrix measure µ2,Q(Ā) is the
largest eigenvalue of the symmetric part of QĀQ−1, which
is the largest number τ such that ĀTQ2+Q2Ā ≤ 2τQ2 (see
Lemma 3 in [13]). Hence, we have the following lemma:

Lemma 1: The matrix measure µ2,Q(Ā) associated with
the weighted norm induced by the symmetric positive matrix
Q := (TTPT )

1
2 on Rn satisfies µ2,Q(Ā) ≤ −λ

2 where λ =
min{λ1, λ2}.

Proof: From Proposition 3 we have the relation ATP+
PA < −λP , from which it follows that AT (T−1)TTTP +
PTT−1A < −λ

2P . Pre-multiplying both sides of this
inequality by TT and post-multiplying both sides by T yields

TTAT (T−1)TTTPT + TTPTT−1AT < −λTTPT

which gives the result using the fact that, from Proposition
4, Ā = T−1AT .



Lemma 2: Define the output z ∈ R as z := h̄(e) = e.
Then, d

∣∣h̄(e)∣∣ ≤ |e|2,Q, with Q := (TTPT )
1
2 and d =

√
g/

(
C2P

−1
2 CT

2

) 1
2 .

Proof: Define the function W (e) = 1
2 |e|

2
2,Q =

1
2e

TTTPTe. To prove the result, we will show that if

W (e) = K then |e| ≤ 1√
g

(
2KC2P

−1
2 CT

2

) 1
2 . To this

end, we seek to find the maximum value of |e| in the
set {e|W (e) ≤ K}. We therefore seek the extrema of an
objective function f(e) := e =

[
1 0n−1

]
e subject to

the inequality constraint g(e) := K − W (e) ≥ 0. Local
maxima eT of the objective function f(e) subject to the
constraint g(e) ≥ 0 can be found by defining the Lagrangian
L(e, κ) = f(e) + κg(e), where κ ∈ R is a Kuhn-Tucker
multiplier, and solving for e = ê and κ = κ̂ that satisfy
∇L(ê, κ̂) = 0n+1, κ = κ̂ ≥ 0 and κ̂g(ê) = 0. Therefore at
the local maximum where e = ê and κ = κ̂ we have

∇L(ê, κ̂) = ∇f(ê) + κ̂∇g(ê)

=

[
1
0n

]
+

[
κ̂TTPT ê

K − 1
2
êTTTPT ê

]
= 0n+1

yielding the relations κ̂TTPT ê =
[
1 0T

n−1

]T
and

g(ê) = K − 1
2 ê

TTTPT ê = 0. By Assumption 1, the
matrix T−1, and therefore T , is full rank. By Assumption 2,
P > 0. Therefore the matrix TTPT is positive definite and
invertible. From (10), we can see that

(T−1)T
[

1
0n−1

]
=

[
0m1

CT
2 .

]
This gives

ê =
1

κ̂
(TTPT )−1

[
1

0n−1

]
=

1

gκ̂
T−1

[
0m1

P−1
2 CT

2

]
,

(12)
which, from the relation g(ê) = 0 and (10) yields
1
2 ê

TTTPT ê = 1
2gκ̂2C2P

−1
2 CT

2 = K and κ̂ =

±
(

1
2gKC2P

−1
2 CT

2

) 1
2

. Note that C2P
−1
2 C2 > 0 since

P2 > 0. To find the local maximum of f(e), the
positive value of κ̂ is substituted into (12) to give ê =√

2K
g

1
C2P

−1
2 CT

2

T−1

[
0m1

P−1
2 CT

2

]
, so that at this point we

have the local maximum f(ê) =
√

2K
g C2P

−1
2 CT

2 . A similar
analysis reveals that f(e) has local minimum value of −f(ê)
at e = −ê. The ellipsoidal set {e|W (e) ≤ K} is compact
and therefore by the extreme value theorem, |e| attains its
global maximum value of f(ê) in this set. Hence, if W (e) =
1
2 |e|

2
2,Q = K then |e| ≤ 1√

g

√
|e|22,Q C2P

−1
2 CT

2 .

With the upper bound on the matrix measure µ2,Q from
Lemma 1 and d from Lemma 2, we can apply Theorem 1
to system (9), as in the following corollary.

Corollary 1: Suppose (9) satisfies Assumptions 1, 2 and
that it is subject to an input signal v which is such that
v ∈ L∞. Then the tracking error e(t) satisfies

lim sup
t→∞

|e(t)| ≤ 2

λ
√
g

(
C2P

−1
2 CT

2

) 1
2 ∥∥B̄∥∥

2,Q
∥v∥[0,∞] . (13)

where Q := (TTPT )
1
2 .

The following lemma shows that the quantity
∥∥B̄∥∥

2,Q
in

(13), with Q := (TTPT )
1
2 , is independent of the feedback

gain g. This result will be used in Theorem 2 to show that
the upper bound on the tracking error given in (13) can be
made arbitrarily small by sufficiently increasing g.

Lemma 3: The induced matrix norm
∥∥B̄∥∥

2,Q
, with Q :=

(TTPT )
1
2 is indepdendent of the feedback gain g, and

therefore there exists K > 0 such that for all g > 0,∥∥B̄∥∥
2,Q

< K.

Proof: With Q := (TTPT )
1
2 , we have

∥∥B̄∥∥
2,Q

=

B̄TTTPTB̄. We will show that the elements of B̄TTTPTB̄
do not grow unbounded with g. We present this proof for the
case where system Σ2 is of dimension one, without loss of
generality and for brevity. For a matrix M , denote by {M}i,j
the matrix resulting from the deletion of the ith row and jth

column of M . For a row vector R, denote by {R}j the row
vector resulting from the deletion of the jth element of R.
We also re-write the matrix A in (9) as A = Ã−gBC where

Ã :=

[
A1 0m1×1

B2C1 A2

]
.

To show that elements of B̄TTTPTB̄ do not grow
unbounded with g, we first make the following two claims

Claim 1: The determinants det({T−1}n,j) and det(T−1)
are independent of g.

Proof: See Appendix II
Claim 2: The determinant det({T−1}n,n) = 0.
This claim follows from the fact that the first row of T−1

is C =
[
0T
m1

C2

]
and C2 ∈ R.

Next, note that the only non-zero elements of the matrix B̄
lie along its nth row. Therefore columns of the matrix TB̄ are
scalings of the nth column of T . The jth element of the nth
column of T is given by (−1)n+j det({T−1}n,j)/det(T−1).
From Claims 1 and 2 the nth column of T can be expressed
as

[
qT 0

]T
, where

q =

[
det({T−1}n,1) · · · det({T−1}n,n−1)

]T
detT−1

is independent of g. Hence

TB̄ =

[
b0

[
q
0

]
· · · bn

[
q
0

] ]
and, from the definition of P in Proposition 3,

B̄TTTPTB̄ = qTP1q


b20 b0b1 · · · b0bn
b1b0 b21 · · · b1bn

...
...

. . .
...

bnb0
bnb1 b2n · · · b1bn

 (14)

the elements of which are independent of g. It therefore
follows that ∥B̄∥2,Q is bounded for all g, and K is the
subordinate norm of (14) on Rn×m, induced by the norms
on Rm and Rn.

Since the induced operator norm
∥∥B̄∥∥

2,Q
does not depend

on g, it therefore follows that the upper bound estimate
(13) on the tracking error can be made arbitrarily small by



sufficiently increasing g. This is formalized in the following
theorem.

Theorem 2: Suppose (9) satisfies Assumptions 1, 2 and
that it is subject to an input signal v which is such
that v ∈ L∞. Then the tracking error e(t) satisfies
lim supt→∞ |e(t)| = O(1/

√
g).

V. EXAMPLE

This example is motivated by design considerations that
arise in the construction of synthetic genetic circuits in which
it is desired that the total concentration of a protein p is
made to track the concentration of a transcription factor v
(see Table I). It is assumed that the circuit to be designed will
part of a plasmid that has been transformed to E. coli and
is forced to share the cell’s resources with the chromosome.
Since many translational processes simultaneously take place
inside the cell, significant variations in the concentration of
available ribosomes R arise, subjecting the translation of
the mRNA m to the protein p to disturbances. Here, it is
assumed that the rate of transcription can be amplified by the
introduction of high concentrations of the RNA polymerase
T7RNAP, resulting in a transcription rate g, where g is large.
Furthermore, it is assumed that the mRNA degrades at a rate
δ, the protein p degrades at a rate γ and the translation rate
is R, the concentration of available ribosomes.

To analyze the potential of feedback regulation to mitigate
the effect of disturbances on the ability of the protein to
track the transcription factor concentration v, we analyze a
circuit in which the protein p is an RNAase that regulates its
own translation by binding with, and degrading, the mRNA
m (Table II). Since the binding and unbinding reactions on
relatively fast timescales, those reaction rates are scaled by
a factor of 1/ϵ, where ϵ is small.Thus, when the amount of
protein p falls, due to a shortage of ribosomes, the rate of
mRNA degradation by p also falls, leading to a resurgence
in the protein concentration.

R-1 ∅ gv−−→ m Transcription

R-2 m
δ−→ ∅ Natural mRNA degradation

R-3 m
R−→ p +m Translation

R-4 p
γ−→ ∅ Protein degradation

TABLE I
REACTIONS OF THE GENE EXPRESSION MODEL.

R-6 p +m
k1/ϵ−−−⇀↽−−−
k2/ϵ

Γ RNAase p binds mRNA, forms complex Γ

R-7 Γ
k3−−→ p RNAase p degrades mRNA

R-8 Γ
δ−→ p Natural mRNA degradation

R-9 Γ
R−→ p +m Translation of mRNA in complex Γ

R-10 Γ
γ−→ m Natural protein degradation

TABLE II
REACTIONS OF THE MRNA REGULATION MECHANISM.

From the reactions in Tables I and II, we obtain the
following ODE model:

Γ̇ = −δΓ− k3Γ +
k1
ϵ
mp− k2

ϵ
Γ− γΓ

ṁ = gv − δm− k1
ϵ
mp+

k2
ϵ
Γ + γΓ

ṗ = Rm+RΓ + k3Γ− k1
ϵ
mp+

k2
ϵ
Γ.

Define the total mRNA concentration m̂ := m + Γ and
total protein p concentration p̂ = p + Γ. Since the binding
and unbinding reactions are relatively fast, we have the
quasi-steady state approximation k1mp ≈ k2Γ, from which
we obtain that Γ ≈ k1m

k2+k1m
p̂2. If we assume that the RNAase

strongly binds the mRNA so that k1 ≫ k2 we obtain Γ ≈ p̂.
By choosing an RNAase that degrades mRNA sufficiently
fast, we can also make the approximation k4 ≈ g. We
therefore obtain the reduced order system

˙̂m = gv − δm̂− gp̂

˙̂p = Rm̂− γp̂
(15)

The simplified model (15) can be decomposed into the
form (8), with Σ1 = (A1, B1, C1), Σ2 = (A2, B2, C2), with
A1 = −δ = −1, B1 = 1, C1 = 1, A2 = −γ = −1,
B2 = R, C2 = 1. Note that systems Σ1 and Σ2 are both
strictly positive real, respectively having transfer functions
H1 = 1

s+δ and H2 = R
s+γ , each of which has strictly positive

real parts. Therefore, the results of Theorem 2 can be applied
to this system. Figure 2 shows a simulation of system (15),
subject to an external input v = D sin(t/1) + 20. At t =
100 the ribosome availability undergoes a step change from
R = 0.5 to R = 4. At t = 200 the input signal’s sinusoidal
amplitude D undergoes a step change from D = 10 to D =
20. As can be seen, high gain feedback is able to maintain
a small tracking error between the transcription factor input
signal v and the protein concentration p.

Next, we will show that if there is a protease present in
the cellular environment, tracking is still maintained under
high gain feedback. In the presence of a protease, the system
(15) is transformed into a nonlinear model of the form

˙̂m = gv − δm̂− gp̂

˙̂p = Rm̂− γp̂− p̂

1 + p̂

(16)

To analyze the tracking error e := v − p̂, we first
transform (16) to a coordinate system in the coordinates
e =

[
e ė

]T , as described in Section II, to obtain the
time varying system

ė = Ā(t)e+ B̄v

where Ā(t) =
[

0 1
−ā1(t) −ā2(t)

]
, B̄ =

[
0
1

]
, ā1(t) =

g + δ, ā2(t) = γ + 1
(1+p̂(t))2 + δ and v = δ p̂(t)

1+p̂(t) + δv +(
δ + γ + 1

(1+p̂(t))2

)
v̇ + v̈. Note that if v, v̇, v̈ ∈ L∞

then v ∈ L∞ if p̂(t) > 0, ∀t. Without loss of generality,

let γ = 1. Then, defining Q =

[
g 1

2
1
2 1

] 1
2

, Theorem



1 can be applied to (16) if we can find c, d such that
µ2,Q ≤ −c and d|e| ≤ |e|2,Q. Therefore c should satisfy
M := −2cQ2 − Ā(t)TQ2 + Q2Ā > 0. Pick c = 1

4ā2
.

We then obtain that M(2, 2) =
(
4ā22 − 2ā22 − 1

)
/(2ā22).

Since ā2 > 1 we have M(2, 2) > 0. To ensure that
M > 0 we need det(M) > 0. Evaluating this determinant,
we find that detM = gρ1(ā2) − ρ0(ā2, δ), with ρ1(a) =
8ā3

2−8ā2
2+1

4ā2
2

and ρ0(ā2, δ) =
ā4
2−4ā3

2δ+4ā2
2δ

2+4ā2δ−ā2
2+

1
4

4ā2
2

. Note
that since ā2 > 1 we have ρ1(ā2) > 1/4ā22. Therefore, with
c = 1

4ā2
, we have det(M) > 0 as long as g > ρ̄ :=

ā2
2(ā2−2δ)2+4ā2

2δ

4ā2
2

> ρ0(ā2,δ)
ρ1(ā2)

. To ensure condition (3), note
that |e|22,Q > (g− 1

4 )e
2. Therefore Theorem 1 can be applied

with d =
√
g − 1

4 , as long as g > max(ρ̄, 14 ). Finally, note
that as t → ∞, we obtain the upper bound estimate on the
tracking error

lim sup
t→∞

|e(t)|≤
4ā2

∥∥B̄∥∥
2,Q√

g − 1
4

∥v∥[0,∞]=
4ā2√
g − 1

4

∥v∥[0,∞]

showing that the tracking error can be made arbitrarily small
by sufficiently increasing g.
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Fig. 2. Simulation of system (9) with g = 0.1, 100. At time t = 100 there
is a step change in the available ribosome concentration from R = 0.5 to
R = 4. At time t = 200 there is a change in the input amplitude from
D = 10 to D = 20.

VI. CONCLUSIONS

We have shown that dynamical systems that are
contracting in the sense of [21] are, under the assumptions
of Theorem 1, input to output stable. This result was
subsequently employed to show that if the tracking error
dynamics of a system subject to an exogenous input are
contracting, then the tracking error is input to output stable
with respect to the derivatives of the input. In the case
of LTI systems, verifying contraction in the second matrix
measure is equivalent to simply finding a quadratic Lyapunov
function. We have presented a method to construct this
Lyuapunov function for the tracking error dynamics of a
dynamical system composed of two LTI strictly positive
real systems in cascade. In addition to using this result
to show that the error dynamics in this case are input to

output stable, we have demonstrated that the tracking error
is proportional to the inverse of the square root of the
feedback gain. Our results find application in the design
of synthetic biomolecular networks. In this setting, most
system parameters are not well characterized. Since the
SPR property is a structural one, their tracking will also
be robust with respect to parameter changes. Characterizing
dynamical systems through their structural properties in
this way therefore enables the rational design of control
architectures in highly uncertain environments.

APPENDIX I
PROOF OF THEOREM 1

Theorem 1 follows immediately as a special case of the
more general incremental input to state stability result proved
here. Henceforth we drop the notation | · |p,Q, µp,Q, ∥·∥p,Q
and use | · |, µ(·), ∥·∥ for shorthand.

Theorem 3: Suppose that c > 0 is such that

sup
t≥0, e∈X

µ[Df̄(t, e)] ≤ −c .

Consider the difference between any two solutions
corresponding to possibly different inputs and initial states:

ṗ = f̄(t, p) + B̄v1

q̇ = f̄(t, q) + B̄v2 .

Denote e(t) := p(t)− q(t). Fix any T ≥ 0 and let

r := sup
0≤t≤T

∣∣B̄v1(t)− B̄v2(t)
∣∣

(where the norm is the norm in Rn being considered). Then:

|e(T )| ≤ exp(−cT ) |e(0)| + 1− exp(−cT )
c

r .

This theorem is the same as Theorem A in [20], which uses
Coppel’s inequality. The proof of that theorem is provided
here with some additional details.

Proof: Observe that, for any 0 ≤ t ≤ T , we have ė(t) =
A(t)e(t) +m(t), where

A(t) =

∫ 1

0

∂f̄

∂e
(t, λp(t) + (1− λ)q(t)) dλ

and m(t) := B̄v1(t)− B̄v2(t). Consider the norm of e(t)
and its (upper) Dini derivative:

D+ |e(t)| = lim sup
h→0+

1

h

(
|e(t+ h)|−|e(t)|

)
= lim sup

h→0+

1

h

(
|e(t)+hA(t)e(t)+hm(t)+o(h)|− |e(t)|

)
≤ lim sup

h→0+

1

h

(
|e(t) + hA(t)e(t)| − |e(t)|

)
+ |m(t)|

≤ lim sup
h→0+

1

h

(
∥I +A(t)∥ − 1)

)
|e(t)|+ r

= µ(A(t)) |e(t)|+ r ≤ −c |e(t)|+ r .

Since the function ψ(t) = |e(t)| is continuous, we may
apply the subdifferential version of Gronwall’s inequality, as
for example in Proposition 2, Appendix A, in [4], to conclude
that

ψ(t) ≤ exp(−ct)ψ(0) +
∫ t

0

exp(−c(t− s))r ds

for all t, which gives the desired conclusion.



To prove Theorem 1 from Theorem 2, we compare a
solution of ė = f̄(t, e)+B̄v with the constant solution q ≡ 0
corresponding to v2 ≡ 0. Note that r ≤

∥∥B̄∥∥ ∥v∥[0,∞].

APPENDIX II
PROOF OF CLAIM 1

Proof: We can write the kth row of T−1 as CAk−1 =
C(Ã−gBC)k−1. The binomial expansion of (Ã−gBC)k−1

results in a sum of 2k−1 terms composed of the matrix
products M1M2 · · ·Mk−1, with each Mi either Ã or −gBC.
Each term in the sum resulting from the expansion of
C(Ã− gBC)k−1 is therefore a scalar multiple of CÃi with
i ∈ {0, · · · , k−1}. The vector C(Ã−gBC)k−1 can therefore
be expressed as

C(Ã− gBC)k−1 = CÃk−1 +

k−2∑
j=1

αk−1,jCÃ
j (17)

with αi,j ∈ R. It follows that as T−1 = DΩ where Ω is the
(Ã, C) observability matrix and

D =


1 0 · · · 0 0
α1,1 1 · · · 0 0

...
...

. . .
...

...
αn−2,1 αn−2,2 · · · 1 0
αn−1,1 αn−1,2 · · · αn−1,n−1 1


Since D is lower triangular, det(D) = 1 and therefore

det(T−1) = det(D) det(Ω) = det(Ω), which is independent
of g.

From (17) we readily obtain that {C(Ã− gBC)k−1}j =
{CÃk−1}j +

∑k−2
j=1 αk−1,j{CÃj}j , from which it follows

that

{T−1}n,j=


{C}j

{C(Ã− gBC)}j
...

{C(Ã− gBC)n−2}j

={D}n,n{Ω}n,j

Therefore det({T−1}n,j) = det({D}n,n) det({Ω}n,j) =

det({Ω}n,j) which is independent of g.
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