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Discrete Dynamic Feedback for a Class of Hybrid Systems on a Lattice

Domitilla Del Vecchio

Abstract— We address the problem of designing a dynamic
output feedback control for a hybrid system in order to
satisfy system specifications, once the continuous variables are
measured. In absence of a structure on the discrete variable
space, the design of such a controller requires a number of
computations at least proportional to the size of the discrete
variable set and to the size of the control set. In this paper, we
propose to exploit a partial order structure on the set of discrete
variables and inputs. The control input is thus computed as a
function of two discrete variable values that are updated at each
step. This algorithm is applied to a multi-robot game involving
two teams competing against each other in a ‘“capture the flag”-
like game.

I. INTRODUCTION

Controller design problems under language specification
have been extensively studied for discrete systems in the
computer science literature [11]. A control perspective in
the context of discrete event systems was given by [8]. The
approach has been extended to specific classes of hybrid
systems such as timed automata [1] and rectangular automata
[13]. For these classes of hybrid systems, implementation
results using tools such as [6] showed that in practice the
synthesis procedure is limited to control problems with small
numbers of control modes. Large part of the work on safety
verification for general classes of hybrid systems has been
concerned with the computation of reachable sets [12]. As
noted also by [12], the problems solved with these methods
are of low dimension. Also, these works are concerned with
state feedback, that is, the state is available for measurement.
An output map is considered in the literature of viability the-
ory for hybrid systems [2]. However, static output feedback
is usually performed.

In this paper, the continuous variables are available for
measurement, thus the control and state estimation prob-
lems concern only the discrete variables. This scenario
has practical interest in multi-robot systems in which the
continuous variables represent the position and the velocity
of a robot, while the discrete variables regulate the internal
communication and coordination protocol. In [8], the control
problem of discrete event systems under language specifica-
tions is considered. The proposed control algorithms with
full observation have polynomial complexity in the number
of states. In the case of partial observations, the control
problem becomes NP complete at worse. In a practical
system, the number of states can be exponential in the
number of constituent processes, and therefore these control
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methodologies are prohibitive. Caines and Wang [5], con-
sider the problem of steering the state of a partially observed
automata to a final desired state. A dynamic programming
methodology is proposed, which leads to a complexity of
the control computation that is polynomial in the size of the
state set, of the input set, and of the output set. Modular
synthesis and special structures on the process are suggested
in order to reduce computation. For example, [9] proposes
algorithms for the synthesis problems of safe control policies
in decentralized control of discrete event systems.

In this work, we propose a methodology based on partial
order structures for computing dynamic feedback control that
satisfies system specifications. This methodology relies on
the state estimator on a lattice already developed in [4]. This
state estimation algorithm updates two variables at each step.
These are then used to compute the lower and upper bounds
(in a specified lattice) of the set of inputs that satisfy the
system specifications. This can be achieved under suitable
order preserving assumptions of the system dynamics. A
multi-robot example is proposed, which shows how to apply
the proposed methodology in an attack-defense game. In
particular, an attacker team runs the proposed estimation
and control algorithm to design the next move based on
the observation of the other team behavior. The scope of
the attackers is to win the game. This scope is encoded
in a system specification, which is then guaranteed by the
dynamic control algorithm.

This paper is organized as follows. In section II, we
introduce deterministic transition systems. In section III, we
formulate the control problem of a system on a partial order.
In section IV, we propose a solution to the problem. In
section V, we show a multi-robot example. A small appendix
revises some partial order theory and gives the proof of the
main theorem.

II. DETERMINISTIC TRANSITION SYSTEMS

A Deterministic transition system is a tuple ¥ =
(S8,7,Y,F,g) in which S is a set of states, Y is a set of
outputs, 7 is a set of inputs, F : SX I — S is a transition
function, and g : S — Y is an output function. An execution
of ¥ is any sequence o = {s(k)};eyy such that s(0) € S
and stk + 1) = F(s(k),u(k)) for u(k) € I for any k € N.
The output sequence g(o) is also denoted {y(k)}ieyy With
y(k) = g(s(k)). Given a system execution o, o (k)(s) denotes
the value of the state at step k along such an execution.
Let P : & — {T,F} be a predicate on the set of states
that can be either true (T) or false (F). Assume that we
would like to design a control input that guarantees that
such a predicate is true at any time step along a system
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execution starting in an initial set X, C S. Since we have
only output information to design such an input, we give
a definition about output controllability with respect to the
given predicate. Let S = {s € S| P(s) = T} denote the true
set and let Y = {s € S| g(s) = y,y € Y} denote the output
set, with Y(k) = {s € S| g(s) = y(k), y(k) € Y}, in which
{y(k)}kar is an output sequence of X. For any X C S, we use
the notation Ix(S) := {u € 7 | F(X,u) C S} to represent the
set of inputs that map a set X inside S through F. Let P(S)
denote the set of all subsets of S, that is, P(S) = {A | A C S}.
The next definition proposes a concept of dynamic output
feedback analogous to the one proposed by [10].
Definition 2.1: The system X is said to be controllable by
dynamic output feedback with respect to true set S and initial
set X, if there exist functions H; : P(S) x Y — P(I) and
H; : P(S) x Y — P(S) such that for any execution o and
for any k, if X(k+ 1) = Hy(X(k), y(k)), utk) € Hi(X(k), y(k)),
with X(0) = Xo, and y(k) = g(o(k)(s)), then
(1) s(k) € X(k) with s(k) = o(k)(s);
(i) X(k)cS.
This definition implies that there is a feedback system X, =
(P(S), Y, P(I), Hy, Hy) that takes as input the output of X,
y € Y, has internal state X € P(S) a subset of S, and it has a
set of inputs to X as its output. The set H(X(k), y(k)) is the
set of inputs that map the set of states X(k) inside the desired
true set S. One can verify that if Iyng(S) is nonempty for any
y € Y and 5(0) € S, system X is controllable by dynamic
output feedback with respect to true set S and initial set
Xo = S. In the next section, we specialize the structure of
system X to explicitly model the evolution of continuous and
discrete variables.

III. PrROBLEM SETUP

Given a deterministic transition system X = (S, I, Y, F, g),
we specialize it to the case S = U X Z, in which U is a
finite set of discrete variables denoted @ € U and Z is a
set of continuous variables denoted z € Z. The transition
function will also have two components, i.e., F' = (f, h), in
which f: UXZXT — U and h: U X Z — Z. The set
of outputs is defined as Y = Z x Z and the output function
is g : U X Z — Y. For the remainder of this paper, we
denote by X = (UXZ, I, Y,(f,h), g) the system represented
by the following difference equations

ak+1) = flak),z(k), u(k))
Zk+1) = hla(k),z(k) (D
»1(k), y2(k)) = (2(k), h(a(k), z2(k))). 2)

Any execution of the system X is of the form o =
{a(k), z(k)}renw and the output sequence is given by {y(k)}renw =
{y1(k), y2(k)}ken. Given any execution o of the system, we
will denote the values of z and « at step k in such an
execution by o (k)(z) and o(k)(@), respectively. At each step
k, the output y has two components corresponding to the
value of z(k) and of z(k + 1).

Since the z variables are measured, we consider the
problem of satisfying a predicate P on the discrete variables

only. Thus, P : U — {T,F}. Let the true set S Cc U be
defined as S = {a@ € U | P(a) = T}, then we consider the
problem of determining an input to the system that satisfies
the specification. In the present case, the output set is given
by Y ={a e U |y = ha,y1), y1.y2 € Z}.

Assume that we would like to compute the set of inputs
that maintain an output set ¥ in S. In principle, if U and
I are finite and discrete, for any @ € Y we can compute
f(a,z,u) for any u € I and check whether it is contained
in S. Assuming that the sizes of ¥ and § are of the order
of the size of U, this requires a number of computations of
the order of |I||U|*.We thus propose an alternative procedure
that exploits a partial order structure on the set of discrete
states as well as on the set of inputs. Assume that @ € N,
Y = [2,11], § = [1,10], u € Z, and that f(a,z,u) =
f(a,u) = a + u. For computing the set of inputs in Z such
that f([2, 11],u) c [1, 10], it is not necessary to compute f
for all pairs (@, u) and check whether f(a,u) € S. In fact, it
is enough to compute the set of u € Z such that f(2,u) > 1
and the set of u € Z such that f(11,u) < 10, and then
intersect the two found sets, which turn out to be intervals
in Z: [-1,00) and (—co, —1], respectively. This simply gives
the answer u = {—1}. This simplification is due to the fact
that the spaces U and I are equipped with a (total in this
case) order while the function f preserves such orders. This
argument will be made more formal and more general in this
paper by using some basic partial order theory. We next state
the problem of determining a dynamic output feedback on a
partial order.

Problem 1: (Dynamic Output Feedback on a Lat-
tice)Given system X = (U x Z,1,Y,(f,h),g) with a(0) €
Xo € S, find a deterministic transition system X; = (y X
X> Y, I X1, (Ha, Hy), (Hii, Hip)) with Hap : xy Xy XY — x,
Hy, :XX)(XM -y, Hpp :XX)(XM — I,Hyp :)(xxxy -7,
(v, <) and (7, <) lattices, with U C yx and I C 7, such that
if u(k) € [Hy1(L(k), U(k), y(k)), Hi2(L(k), U(k), y(k))] N1, and
L(k), U(k) € y are updated by L(k) = Hy (L(k — 1),U(k —
D), y(k = 1),y(k)) and U(k) = Hpp(L(k — 1), Uk — 1), y(k —
1), y(k)) with {y(k)}i=0 = g() we have

@) ok)(@) € [Lk), U] NU;

() [Lk), URINUCS.

The variables L(k) and U(k) represent the lower and upper
bound of the set of possible discrete states compatible
with the output sequence and with the system dynamics.
The functions H;; and Hj, compute the lower and upper
bounds of the set of possible inputs that map the interval
[L(k), U(k)]NU inside the true set S. In the next section, we
propose a solution for the dynamic output feedback problem.

IV. PROBLEM SOLUTION

In what follows, we will say that a system X satisfies the
dynamic controllability condition with respect to S C U if
{fueI|f(SNY,zu) CS}isnot empty for any y € Y and
ze Z.

Definition 4.1: Let £ = (U X Z,1,Y,(f,h),g), and let
(x,<) and (Z, <) be lattices with U C yand 7 C 7. An
extension of ¥ on (y, <) and (7, <) is any system 2 = (y X

1557



f’(U [/\f Y24))

Gl — VT T

(fH) @)

) TANC)
e NG

Fig. 1. This figure explains how u; and uy of Lemma 4.1 are computed.
The dependence on z has been omitted. Each polygon represents an interval
sublattice in the partial order. u;, is the supremum (V) of (,fl’])‘l(b) and
(f))"N(d), while uy is the infimum (&) of (f})'(c) and (f},)'(a). Since
the function f” is an order preserving map on the interval [L, U]. It is enough
to (1) compute the set of inputs that map L into [L’,U’], (2) compute the
set of inputs that map U into [L’, U’], (3) intersect the these sets. Since f’
is an order isomorphism in its second argument, the sets computed in (1)
and in (2) are intervals.

Z,1,Y,(f,h), 8 such that fluxzxr = f, Mluxz = h, and
8luxz = g
Let " : )(Xf exbeamap w1th()(<) and (7, <)
lattices. Let /(x,[A 1,V I1) = [f'(x, /\I) f’(x \/I)] be a
bijection for any x € y. For any w € Lf (x, /\I) Fx VD
we denote by ( f )~'(w) the input @i € /\I \/I ] such that
f"(x,it) = w. Then, we have the following lemma.
Lemma 4.1: Let (7, <) and (y, <) be a lattices. Let L, U €
x with L< U and L', U’ € y with L’ < U’. Assume that
(i) the function f’ : yxI — y is order preserving on [L, U]
in its first argument;
Q) f @ IANLVID = [ AD, VDI
order isomorphism for any x € [L, U];
(iii) the set {i e 7 | f/((L, U],ir) € [L’, U’]} is not empty.

Then, {i e 1| f/((L, U], C[L,U']} =
wo = (e NDvr)y @ (fw, ANDvr)
w = (7 (LN Dav) Ay (fw\/ Dav)
The proof of this lemma is pictorially shown in Figure 1.
LetE = (yxZ,I,Y,(f, h), g) be an extension of £ on (y, <
). We will assume that the output set of the extended system
is an interval, that is, ¥ = {x € x | y» = A(x,y1), (y1,y2) €
=[A Y,V Y]. For an output sequence {y(k)};=0, we will
denote the output set by ¥(k) and its lower and upper bounds
by A Y(k) = Ly(k) and \/ Y (k) = U, (k). We also assume that
S c y is a set such that S N U = S and that ¥ satisfies
the dynamic output controllability condition with respect to

S. This implies by the definition of f that I satisfies the
dynamic output controllability condition with respect to S.

is an

[ur, uy], with

Definition 4.2: Let £ = (y x Z,7,Y,(f,h),g) be an
extension of X on (y,<). Let (7,<) be a lattice with 7 C
7. Let [L,U] be any interval in § N Y. If there are a
function f Xx]' — x such that f' : (x,[AT,AT]) —
[f(x, AD), f(x,\/ I)] is an order isomorphism for any
x € y and an order preserving map in the first argument,
constants L*, U* € [L,U], and L', U’ € S such that {u €
I | f(LUlLzu C Sy 2 In{ae | /(LU0 C
[L’, U’]}, with the righthand set not empty, then the extension
¥ of T is said to admit an order compatible input extension
on (1:, <) with respect to S. The tuple (f’,L*, UL, U is
named an order compatible tuple for [L, U].

The reason for introducing this definition is that while the
computation of the set {u € 7 | f([L, U],z u) C §} might be
hard, the computation of the set {ii € T f’ ([IL*,U"l,n) C
[L’, U’]} is simpler by virtue of Lemma 4.1.

Definition 4.3: The system extension ¥ is said to be

output interval compatible with respect to S if for any
[L,U] c yx, we have that f([L,U],z,u) C S implies
IAGFUL, Ul zou) 0 Y), \VV(f(IL, Ul,zzu) N ¥)] € S for any
yelY and z€ Z.
In this paper, we are not making any order preserving
assumption on the function f. It is in fact always possible to
break a function into order preserving pieces on an interval.
Let f : y — x with (y,<) a lattice. Let [L,U] C y be
an interval. The function f is said to be a piecewise order
isomorphism on [L, U] if there are a finite number of points
L/,U/ € [L,U] such that [L,U] = [L', U U ..U [LM, UM]
with [L, U] N [L/,U/] = 0 for i # j and such that f :
[L/, U] — [f(LY), f(U’)] is an order isomorphism for any
j. The points L/ are said lower knot points and the point U’
are said upper knot points of f in [L, U]. On a finite discrete
set, a map can always be broken into order isomorphisms:
in the limit, each interval will contain only one element.

The next theorem provides a solution to Problem 1.

Theorem 4.1: Let £ be an extension of £ on (v, <). Let
(0) be such that ¥(0) € §. Assume that £ admits an
order compatible input extension on (I, <) with respect to
§. Assume that ¥ is output interval compatible with respect

to S. Then,

Lk+1) = /\ LI, L = f(L7(k), z(k), u(k)) v Ly(k + 1)
Li<Ui

Uk+1) = \/ U/, U/ = f(U/(k), z(k), u(k)) A Uy(k + 1),
L/<U/

with L/(k),U/(k) knot points of f on [L(k),U(k)],
L(0) = Ly(0), U(0) = Uy(0), and u(k) € [ur(k),uy(k)] N I
with w® = (P, PLoAD v L) v
Pt P W, AD v L)  and  wyk) =
PP R,V I) A U0) A (P (U0, Y T) &
U'(k)), with (f',L*(k),U*(k),L'(k),U’(k)) an order
compatible tuple for [L(k), U(k)], solve Problem 1.

From the update laws of L(k) and U(k), it is clear that
the amounts of computation increases with the number of
order isomorphisms in which f needs to be broken. In the
next section, we propose a multi-robot game to show how
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Fig. 2. Example with five robots per team.

to apply Theorem 4.1.

V. EXAMPLE: A MULTI-ROBOT SYSTEM

We consider a simplified version of the game called
“RoboFlag Drill” already considered in [4].

A. System description

Some number of robots with positions (z;,0) € R2, which
we refer to as blue robots, must defend their zone {(x,y) €
R? | y < 0} from an equal number of incoming robots, which
we refer to as red robots with positions (x;,y;) € R%. An
example with five robots is illustrated in Figure 2.

Let N represent the number of robots in each team.
The robots start with an arbitrary (bijective) assignment
a : {1,..N} — {1,..,N}, where «; is the red robot
that blue robot i is required to intercept. At each step, each
blue robot communicates with its neighbors and decides to
either switch assignments with its left or right neighbor or
keep its assignment. In the case in which the red robots are
just coming down straight, it is possible to show that the
a assignment reaches the equilibrium value (1,...,N) [7]. In
this work, we consider the problem of estimating the current
assignment @ given the motions of the blue robots, which
is then used by the red robots to determine a strategy of
attack. We thus assume that the red robots can also move
horizontally by exchanging position with a close red robot.
The RoboFlag Drill system can be specified as follows

yitk+ 1) =yi(k) =6 if yi(k) 26 3)
zik+ 1) =zi(k)+6 if  zi(k) < Xo,0 )
zitk + 1) = zi(k) =6 if  zi(k) > xoyh) ®)

(aitk + 1), @ir1(k + 1)) = (i1 (k), a;(k)) if

(6)

Xy = Zir1 (k) A Xy ) £ 2is1(k),
(xi(k + 1), x;(k + 1)) = (x;(k), x;(k)) if ;
A,k = Ai(k) + 1 and swapy k) = 1, )
(Aitk + 1), A(k + 1)) = (4;(k), A;(k)) if ®

A;(k) = A;(k) + 1 and swap; (k) = 1.

Equation (6) establishes that two blue robots trade their
assignments if the current assignments cause them to go

toward each other. Condition (7) allows two adjacent red
robots to swap their location. Here, A; is the location of red
robot i. Locations are {1, ..., N} and denote the order along the
x direction in which the red robots are displaced. We start the
game with A = (1,...,N), z; < zi4+1, and x; < z; < x;31 . The
variable swap; ; is the control input to the system represented
by equations (4-6).

For the purpose of control, we define the system X = (U x
Z.1,Y,(f, h), g) that models the dynamics of the blue robots
with inputs swap; ; (4-6) as follows. Let @; = A,, represent
the assignment of blue robot i to one of the locations. Let
X; = x;(0) represent the x coordinate of location i. We let the
variable u; = 1 if and only if the red robot at location i swaps
with the red robot at location i + 1. Then, set U = perm(N),
withaeU, Z=RN, I ={ue{-1,0,1}N |u;=1 & uyy =
—1, and uy # 1 and u; # -1}, Y = RY x R". The functions
are defined as follows: f(a,z,u) = G(F(&,z),u), in which
F(@, 7) is represented by relations (6) with x;(k) = x;(0) = X;
and a; replaced by @ and G(B,u) = f, with u; = 1 =
GfB=j=pB =j+Dand Gfg = j+1 =B = ).
Note that we also will use the following notation G(83, u) =
(G1(B1,u), ..., GN(BN, u)), in which Gi(B;,u) = B!, with u; =
I=>@Gg=j=p =j+Dand (g =j+1=p = ).
We assume for simplicity that z; < z;41 and X; < z; < X;31 for
all k. In the sequel, with abuse of notation we will remove
the bar and denote @ and ¥ by « and x, respectively. The
function h(a, z) is represented by relations (4-5).

Let the entropy of the blue robots be defined by E(a) =
%Zf\il |o; — i|. In absence of any input to the system (i.e.
u(k) = 0 for any k), this entropy converges to zero. We define
the control specification P : U — {T,F} to be P(a) = T if
E(a) > 2 and P(«@) = F otherwise. In words, we want to solve
the following problem: Given measurements z determine a
dynamic control input u(k) such that E(a(k)) > 2 for all
k € N. Having entropy greater or equal than two implies that
two or more swappings of assignments among the blue robots
are needed before the assignment reaches the value (1, ..., N).
One can verify that § = {a | E(a) > 2} = {a | i, j, with j >
i + 1 such that @; # i and «; # j}.

In the next section, we show how to use the state esti-
mation and control computation on a partial order for the
solution of the described control problem.

B. Dynamic control on a partial order

In this section, we introduce the partial order (y, <) and the
set § extension of S in y. Let (y, <) be the partial order with
x = NV with order established componentwise. For any set
X C N¥, we denote [X]; the projection along j of such set.
Then, we have the following characterization of the set S.
A set S C y with § = § N U is given by § = U;S,, in which
S for each i are intervals of four types: (a) there are [ < j
such that [S;]; = [[ + 1,N] and [S;]; = [j + 1, N]; (b) there
are [ < j such that [S;=1[1,I-1] and [Si]j =[j+1,N]; (c)
there are [ < j with j > [+ 1 such that (S =[+1,N] and
[S:1; = [1,j—1]; (d) there are [ < j such that [S;], = [1,/-1]
and [S,-]j = [1,j— 1]. One can easily verify by inspection
that such a constructed S is such that S N U = S.
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Let us define the extension F : y x Z — y as F with now
a € NV Clearly, Flyxz = F. Also, we define h : yxZ — Z
as h with @ € NV, Also, we have that Algyz = h. Let us
denote ¥ = {x € y | Z = h(x,z)}. One can easily check that
this set is an interval for any pair z,z’. Also, the function F
is an order isomorphism on the set ¥ (more details can be
found in [4]). The function G : y X.I — y is defined as G in
which the first argument now belongs to NV, Then f = GoF,
in which one can check that f lexzxr = f. We thus have the
extended system £ = (y x Z, Y, I, (f,h), ). One can verify
that ¥ N S is an interval in y for any y and that if P is an
interval, also F(P,z) is an interval. It is easy to show that
the extended system 3= xZ 1Y, (f, ), 2) satisfies the
dynamic controllability condition with respect to S if N > 4,
that is, for P = ¥ N § there is u € T such that f(P,z,u) C S.

The set § is given by the union of a large number of
intervals. At each step, we determine a particular subset
X c § in which we want (and for which it is possible) to
keep the system state. The following algorithm, computes X

componentwise.
Algorithm 5.1: Let P C ¥ NS be an interval, and let
= F(P,z).
Initialize X; = [1, N1, flag; = 0 for all i
Fori=1:N

If min(P}) =i and flagiy =0 = X; =1
[i+1,N] and flag = 1

,i—1]U

End

Fori=2:N
If max(P)_) =i-1and flagi.y = 0 = Xy =
[1,i =2]U[i,N] and flag; = 1

End

Fori=1:N
If min(P)) > i+1 and flagi,; = 0 = X; = [i+1, N]
If max(P)) <i-1 and flag; =0 = X =[1,i-1]

End.

One can show that the set X = X; x ... x Xy is contained
in the set S and that there exist an input u € 7 that maps
the interval P € S NY into X. Since X depends on the set
P of Algorithm 5.1, we will use the notation X(P). Thus,
{u € IT| f(P,z,u) € X(P)} is nonempty for any interval
P C YnS§ and it is contained in the set {u € I | f(P, z,u) C S}
The next proposition shows that system £ admits an order
compatible input extension on (f , <), where T= {-1,0, 1}V.

Proposition 5.1: Let P C ¥ NS be an interval, let P’ =
F(P,7), and let X(P) as computed by Algorithm 5.1. Then,
el |GP,uycX(P)=In{aell|f/(L,Uu) C

[L',U’]} with 7 = {-1,0, 1}", in which
(i) L7 = U; =i forall i such that X =[1,i-11U[i+1,N]
or X; = [I,N], L; = Uy =i-1if X; = [1,i- 1], and

L U*—l+11fX [i +1,N];
(i) FAL U L) = (ALY Uit oo Fy(LLy Uil )
with uy, = u; if X; =[1,i-1]U[i+]1, N] orif X; = [1, N],
Uk, = Uj—1 1f)~(, = [1,i—1],and U, = Uiyl lel = [i+1,N];
(iii) f/(x1,x2) = x; + x, for x; € [1,N] and x, € {~1,0, 1};
(iv) [L,U[]=1[1,i=1]if P, =[i,N] and X, =[1,i-11U[i+
1,N],orif X; = [1,i-1]; [L;, U/l = [i+1,N]if P} = [1,1]
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Fig. 3. Convergence plots of the estimator and of the entropy for N = 15
and (0) = (4,8,9,2,13,15,6,5,12,10, 1, 14, 3,7, 11). The horizontal dotted
lines corresponds to E(k) =

and X; = [1,i— 1JU[i+ I,N], or if X; = [i + 1, N];
[L,U/1=[1,N]if X; = [1,N].
Clearly, f’ is an order isomorphism in the second argument
for any x € [L*,U"] and order preserving in the first
argument. This along with {u € I | f(P zu) C X(P)} C
fu e 1| f(P zu) € S} with P C ¥ n§ implies that
system & admits an order compatible input extension. The
next proposition provides the intervals on which G is an order
isomorphism.
Proposition 5.2: For any u € I and any [L, U] € y, let
[L,U] = [Ly, U ] X ... X [Ly, Uy] with [L;, U;] = [L},UTU
U LY, UM] and [Lf U N [LE, UM = 0. Assume that the
sets [L] U] ] for any j satisfy the following conditions
(i) if u; =1 then j € [L;,U]] = L = U’ = j for some
p,j+lel[L,U]l= L''=U"=j+1 for some p;
(ii) if uj = -1 then j € [L;, U] = L} = U’ = j for some
Lji-lell,U]l= L= U"—J—lforsomep
Then G([LJ U'lu) = [G(LJ u),G(U’,u)] is an order
isomorphism for any L/ < U’ with L’ = (L]',...,L}) and
U’ = U, .. U for ji € {1, ..., My).
The proof of this proposition is apparent once one notices
that u; = 1 leads to a swapping of j with j + I in each
coordinate set [L;, U;]. The next proposition shows that
system X is output interval compatible with respect to §'.
Proposition 5.3: Let ¥ = [L,,U,] and [L,U] C .
Assume G([L,U],u) € X c § and let [L,U] = [Ll, U] x
- X [Ly, Un] with [L;, U] = (L}, UNU.. U[L U '] and
the sets [L’ U ] as in Pr0p0s1t10n 5.2. Then, we have that
G«([L;, Uy, u)ﬁ[ vi» Uy i1 € X; for all .
The next section shows simulation results obtained by
constructing the lower-upper bound estimator of Theorem
4.1, which is used to compute an allowed input to the system.

C. Simulation results

We consider the system starting with a random (unknown)
assignment @(0) € S such that Y(0) c §, which implies that
the initial entropy of the assignment is larger or equal than
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two. Given P C y, which at the first step is equal to ¥(0)
and in general it is equal to [L(k), U(k)], we compute by
means of Algorithm 5.1 the set X(P) in which we want to
map the state at the next step. Once X(P) is computed, we
use Proposition 5.1 to compute an order compatible tuple.
Then, we use Lemma 4.1 to compute u;(k) and uy(k), that
is, the lower and the upper bounds of the set of possible
inputs. Among these inputs, we choose the one that has the
largest number of zero components (smallest control action).
We thus apply this input to the system. Then, we update
[L(k), U(k)] by exploiting Propositions 5.2 and 5.3 for using
the update laws of Theorem 4.1.

In Figure 3, we report convergence plots of the estimator
and of the entropy for N = 15 robots. We have that
Wk) = 1/N Zf\; 1 Imi(k)|, in which m;(k) is the coordinate
set [Li(k), U;(k)] minus all the singletons that occur at other
coordinates. The controlled system has always E(k) > 2. The
estimator with no input applied to the system not always
converges before the state a(k) has reached E(k) = 2. Thus,
a strategy that runs the estimator first, and only when it has
converged the controller is applied to the system does not
guarantee the specification. The computation requirement for
the implementation of the dynamic controller is proportional
to N, that is, to the number of variables that need to be
controlled. If we had not used any structure, we would have
incurred in a number of computations at each step at least
of the order of (N!)?.

VI. ConcLusions AND FUTURE WoORK

In this work, we have shown how to exploit a partial order
structure on the set of inputs and of discrete states in order
to design a low-computation dynamic controller that keeps
the system state in a desired set. We showed how to apply
the proposed algorithm to a multi-robot system involving
two teams competing against each other in order to design
a dynamic winning controller for one of the teams.

We conjecture that, as in the case of state estimation (see
[4]), also for the dynamic control problem if the system
is controllable by dynamic output feedback it is always
possible to find suitable partial orders and system extensions
for which the assumptions are verified. This point however
needs more investigation. The proposed method does not
rely on enumeration and exhaustive search, and therefore
it is in principle applicable to state estimation and control
of continuous states. This will be studied in future work.
Finally, we would like to apply this approach to more
complex multi-agent systems scenarios in which the agents
can move in a plane as opposed to a line with more complex
dynamics.
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A. Appendix

A partial order is a set y with a partial order relation “<”, and
we denote it by the pair (y, <). For any x,w € y, the sup{x,w} is
the smallest element that is larger than both x and w. In a similar
way, the inf{x, w} is the largest element that is smaller than both x
and w. We define the join “v” and the meet “A” of two elements
x and win y as (1) x v w = sup{x,w} and x A w = inf{x, w}; (2) if
SCx,VS =sup Sand AS =inf S.Let (y, <) be alattice and let
S C x be a non-empty subset of y. Then, (S, <) is a sublattice of y if
a,b € S implies that avb € S and aAb € S. Any interval sublattice
of (y,<)isgivenby [L,U] ={we y | L<w< U}for L,U € y. That
is, this special sublattice can be represented by only two elements.
Let (P, <) and (Q, <) be partially ordered sets. Amap f: P — Q is
(1) an order preserving map if x <w = f(x) < f(w); (ii) an order
embedding if x <w & f(x) < f(w); (iii) an order isomorphism
if it is order embedding and it maps P onto Q. For more details,
the reader is referred to [3].

Proof: [Proof of Theorem 4.1]. For any k, if [L(k), U(k)] C
S N Y(k), we have {u € T | f(LK),Uk)],u) €S} 2 InN{ice
T | fL k), U], @) C [L'(k), U'(k)]}, in which the righthand
side is not empty for (", L*(k), U*(k), L' (k), U’ (k)) an order compat-
ible tuple for [L(k), U(k)]. As a consequence, we can apply Lemma
4.1 to obtain u; (k) and uy (k). We need to show that [L(k), U(k)] C
§ N ¥Y(k) for any k. We proceed by induction argument on k. We
omit the dependence of f on z for simplicity. By assumption,
we have that [L(0), U(0)] = Y(0) c §. Let us then assume that
[L(k), Uk)] € Y(k) n'S and show that also [L(k + 1), Uk + 1)] C
Y(k+1)NS . Since [L(k), U(k)] € Y(k)N§, then f([L(k), U(k)],u) € §
for u € [up(k),uy(k)] N I. Let Li(k),U'(k) be knot points of
f on [L(k), U(k)] Then, we have that f([L(k), U(k)],u) N Y(k +
1) = [f(L'(K)nuw) v Lk + 1), f(U"(k),u) A Uyk + D] U .
[f(LM(k) w) v Ly(k + 1), FOUM k), u) A Uy(k + 1]. It follows that
AGULOD, UL, )y T +1) = Aoy FLK), w)v LGkt 1) = Lik+1)
and \/(f(LL(K), UGOL.w) N T(k+ 1) = Vigg fUK).u) A Uy(k + 1) =
U(k+1) with I = {i | f(Li(k), u)vLk+1) < F(U k), u)A Uyk+1)
and u € [ug(k), uy(k)] N 7}. By the output interval cornpatlblhty
assumption, [ \A(F([L(Kk), U(k)],u) N ¥ (k+ 1)), V(F(LK), UK)],u) N
Y(k+ 1)] € §, thus we also have that [L(k + 1), UK + 1)] C §.
Also, a(k) € [L(k), U(k)] " U by construction, which shows (i) of
Problem 1. Since [L(k), U(k)] € S and § N U = S, we also have
that [L(k), U(k)] N U C S, which shows (ii) of Problem 1. [ |
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