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Abstract- We consider the problem of estimating the internal 
state of a class of guarded-command programs. Such programs 
model dynamical systems that may have both continuous and 
discrete states. We propose a way to construct an observer 
that takes advantage of the guarded-command structure of 
the program. We then apply our ideas to the “RoboFlag 
Drill” example wherein two teams of robots compete in a 
simplified capture-the-flag-like game. This system is complicated 
enough that the proposed observer is practicable only for small 
numbers of agents. We then propose an approach for reducing 
the complexity of the observer that takes advantage of the 
particular structure of the RoboFlag Drill example. 

1. INTRODUCTION 
In this paper we examine the problem of estimating the 

values of the internal state (hidden variables) in a class of 
guarded coninland programs. Such programs, which consist 
of a set of guard-rule pairs, are typically used in program 
verification to formally model algorithms. In this paper 
we extend this use to modeling a kind of hybrid system 
wherein there is an interplay between discrete and continuous 
variables. In particular, we are concerned with decentralized 
multi-robot systems, such as are found in robot soccer, 
where continuous variables represent physical quantities such 
as position and velocity, and discrete variables represent 
the state of the internal logical system or communications 
protocol used by the robots to coordinate their actions. The 
observation problem is then the one of estimating the internal 
discrete variables of the system given the evolution of the 
continuous physical variables. 

The main contributions of this paper are the definition of 
the observation problem for transition systems represented 
by guarded command programs (Section 11) and, in the case 
of ”weakly observable” programs, the actual construction of 
an observer (Section 110. In Section V, we introduce a multi- 
robot task similar to the game “capture the flag” and specify it 
as a composition of guarded command programs in Section 
III. Given the evolution of the positions of the robots, the 
discrete state of the program, representing an assignment of 
defending robots to attacking robots, is observable. Unfortu- 
nately, due to the large state space of the system, the observer 
defined in Section 111 is not applicable for high numbers 
of robots. Therefore we propose in Section VI-C a scheme 
to reduce complexity by exploiting the structure of the 
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RoboFlag Drill system. We end the paper with simulations of 
the RoboFlag Drill system that demonstrate the convergence 
of the estimation schemes proposed. 

Related Work: Hybrid systems have been examined by 
many researchers [3], [8]. [4], [IO]. Guarded command 
programs are introduced in [7] and are used in [9] (in 
a somewhat different sense than in the present paper) to 
model capture the flag-like systems. This way of model- 
ing hybrid systems is particularly suitable for describing 
distributed systems parameterized by the number of agents 
involved. The guarded command formalism allows us to 
implicitly represent large state spaces that would have to 
be explicitly represented in other formalisms. Observability 
of hybrid systems has been examined in [2] for the MDL 
modeling framework, in [13] with piecewise discrete time 
linear systems, and in [ 11 where piecewise-linear continuous- 
time systems are studied. In MDL, one can model a broad 
class of systems, although the continuous part must be linear. 
Guarded command programs model any kind of continuous 
and logic dynamics in the form of guards and commands. 
This model, as opposed to the MDL one, exploits explicitly 
the distributed nature of the system, leading to concise 
representation and analysis (see [9] for example.) 

In [l] an observer for the discrete mode and the con- 
tinuous state of a hybrid system is described, the mode 
being estimated from a finite set via residual analysis on 
the continuous part. In our case, examining the continous 
part does not fix the mode, but instead suggests several 
possibilities so that further computation is required to guess 
the hidden state. In [13] an algebraic check is proposed 
to determine the observability property of a jump linear 
system. The sequence of discrete and continuous states is 
then reconstructed “post mortem” and, therefore, such a 
reconstruction has no predictive power. In this paper we seek 
to track the evolution of the hidden variables for the purpose 
of prediction. In the discrete event literature the observability 
problem for finite automata is examined in, for example, [SI. 
The approach used in this work leads to an observer similar to 
the one we derived as far as its complexity is concerned. The 
systems we explore in this paper have continuous variables, 
however, and it is not obvious that such observers can be 
used in our case. Observability of programs is also related to 
information flow security [ 121 where the problem of ensuring 
that hidden variables can nor be observed from observable 
variables is considered. 

. 

0-7803-7924-1/03/$17.00 02003 IEEE 3353 

mailto:ddomitilla@cds.caltech.edu
mailto:klavins@washington.edu


‘K 

\,, 
Fig. 1. Trajectories u z ( t )  and u3(t) are weakly equivalent trajectories 
according to Definition 2.3 while ug(t) is not weakly equivalent to either 
c71 ( t )  or uz ( t ) .  

11. DEFINITIONS 

A. State Transition Systems 

For completeness, we review the basic definitions used 
in transition systems as described more completely in other 
work [ 111. Consider a set of variable symbols V with types 
type(v) for each v E V .  A state s is a function from V into 
U where U = UvEV type(v). The set of all states is denoted 
S. For a subset W of V ,  we denote by sIw the restriction 
of s to W ,  so that we have that Slw = {slw : s E S}. A 
transition relation on S is a relation R S x S. If sRs’ 
and ‘LI E V ,  we will write v to refer to s(v) and U’ to refer 
to s’(’u). For example, if we denote R by 

(1) 2’ < y v y’ = 2 

then sRs’ * s’(z) < s(y) V s’(y) = s(z) .  
Given a transition relation R, an execution of R is a 

sequence a = { s t } t E ~  such that stRst+l for all t E N. 
The set of all executions of R is denoted &(R). If (T E &(R) 
is fixed and U E V we denote by v ( t )  the value u(t)(w). 
The trajectory of v E V with respect to (T is the sequence 

We define transition relations over subsets IY of V ,  as in 
R G Slw x Slw, to enforce the notion that R does not have 
information about variables in V - W .  

( t )  ( .>) t€W.  

B. Observability 

We now define two notions of observability for transition 
systems. The first is the standard notion: The system is ob- 
servable if any two execution sequences can be distinguished 
by their outputs. The second is a weaker definition that we 
introduce motivated by the fact that in the systems in which 
we are interested, two different states may transition to the 
same state. Thus, we use the notion of “weakly observable”: 
The system is observable as long as any two executions that 
do not collapse onto the same state before stabilizing can be 
distinguished from their outputs. The following definitions 
state these ideas formally. 

DeJiriition 2.1: Given a transition relation R on S and an 
output map h : S -, U, two executions (~1.02 E &(R) are 

distinguishable if there exists a time t such that h(al(t)) # 

Definition 2.2.- Let R be a transition relation on S ,  the 
set A c S is the w-lintit set of R, denoted by w(R), if the 
following hold: 
(i) if s E A and s R s’, then s’ E A; 

(ii) for each (T E &(R), there exists a time t ,  such that 

Definition 2.3: Given a transition relation R, two execu- 
tions ul, u2 E I (  R)  are weakly equivalent, denoted u1 N u2, 
if there exists a time t* such that al(t*) 4 w(R) and 
al(t)  = az(t) for all t 2 t*. 

Examples of weakly equivalent and inequivalent trajecto- 
ries are illustrated in Figure 1. 

Dejinition 2.4: (Observability and Weak Observability) 
The transition relation R is said to be obsenable with 
respect to the output function h : S + U if any two 
executions (TI, ( ~ 2  E &(R) are distinguishable. The system 
is weakly observable if whenever (TI + u2 then (TI and u2 

are distinguishable. 
In this paper we assume that V = XUM, with ‘HnM = 8, 

and that the output map h makes available for measurement 
the values of the variables in M .  That is h : S -, S ( M .  Then 
we refer to M as the set of measurable variables and to 7-i 
as the set of hidden variables. In the sequel we construct an 
observer R for (R ,  h) that is defined on the set of variables 
W such that W n V = M .  Denote by Q the variables in 7-f 
and by & the variables in W - M that R uses to estimate 
the value of a. 

Problem 2.1: (Observer) Let V = XUM and W be such 
that M C W and 7 f f i  W = 0. Suppose that Q is the vector 
of all variables in 3-1 and suppose that 6 E W - M .  Given 
a transition relation R : Slv x Slv, the transition relation 
R : Slw x Slw is an observer for R if the following hold 
for all o E &(ex(R) n ex(@): 

(i) there exists a time t* such that &(t) = a(t)  for all 

(ii) there exists a metric d on type(&) such that for each 

h(o2(t))* 

a(tu) E A for all t L tu. 

t 2 t*; 

c there exists a 6 such that for all t 

d(&(O),a(O)) < b =+ d(&( t ) , c r ( t ) )  < E .  

C. Guarded Command Programs 

One way to specify transition relations is with guarded 
command programs, which we now define. A guard is a 
predicate on states and a rule (or comnzand) is a relation 
on states. A guarded command is then a pair g : r 
where g is a guard and T is a rule. As in expression (l), 
we denote guarded commands using primed and unprimed 
variable symbols. For example, x > 0 x’ = x + y 
denotes the guarded command relating two states SI and s2 
by s1(z) > 0 : s2(x) = sl(x)+sl(y). Aguardedconzmand 
program consists of a set C of guarded commands. A guarded 
command program defines a transition relation (giving the 

: 
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operational semantics of the program) wherein all commands 
are executed in parallel to give a new state (other formalisms 
define the operational semantics differently). 

Dejnition 2.5: Given a guarded command program C 
over variables V ,  the transition relation corresponding to 
C is the relation RE G S(V x Slv where s RE s’ if and 
only if Vg : T E C . g(s) + s T s’. Furthermore, if a variable 
v E V does not occur primed in any command applicable in 
s, then s(v) = s’(v). 

Note that the composition CI U CZ of two guarded com- 
mand programs C1 and CZ has defining relation Rcl n Rcz. 
The observer problem for guarded command programs is: 
Given C construct 2 so that Rg is an observer for RE. 

111. PROBLEM STATEMENT 
Let M = (21, ..., zrvM} and 7l = { a l , . . . , a ~ ~ }  and put 

V = M U ‘H. We suppose that each zi has a associated with 
it Ki commands of the form 

and each a k  has associated with it h f k  commands of the 
form: 

where f i , 3 ( . )  and gk , l ( . )  are functions. We use C to denote 
the set of all the commands for the hidden and observ- 
able variables described in ( 2 )  and (3). We suppose that 
type(zz , )  = R and denote the vector (21, ..., Z N ~ )  by z 
and the vector (a1, ..., Q N ~ )  by cr. We leave U 4 t y p e ( a )  
unspecified for now and suppose that it represents the set 
of all possible values that Q can take.’ Thus, C defines a 
relation Rlv with domain (V + RNM x U ) .  We require 
that for each i there is exactly one j E (1, ...,Kt} such 
that Pi,3 ( z ,  a)  is true, and for each IC there is exactly one 
I E (1, ..., A d k }  such that Q ~ , ~ ( Z , Q )  is true. This assumption 
implies that there cannot be two different update rules for 
z (or a) acting simultaneously. It also implies that at any 
time there is at least one update rule holding at that time. 
The other assumption we have made (implied by structure (2) 
and (3)) is that C is deterministic (i.e. that RE is a function). 
We intend to relax this somewhat strong assumption in future 
work. 

IV. OBSERVER CONSTRUCTION 
We now turn our attention to the question of when an 

?bserver exists for C. We first propose a candidate observer 
C for (2)-(3). We then show property 2.1(ii), by choosing a 
particular d defined on U. Further if C is weakly observable 
we can also show property 2.l(i) - that is, that 2 is an 
observer for E. 

We use the variable symbol & to represent an estimate of 
a, with t ype(&)  = 2u. The intention is that & will denote 

’For simplicity we assume that type(cui) = type(c.j) although this 
certainly does not need to be the case. 
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the set of all possjble values of Q at any given $me in an 
execution of C U C. Initially & = U. We define C to be the 
program containing the single clause: 

N M  K ,  

i 3  

true : B’ = n U { a  : Z: = f i , 3 ( ~ )  A P~.~(z,(Y)} n & 

I Afk 

A &’ = U P : vk.Pk E U g k , l ( ( a )  n (7 : Qk,l(z7 7))) 
1=1 

(4) 
where B is an auxiliary variable used for clarity. The 
assignment to B’ collects the set of all values of Q that agree 
with the observation z: = fi,3(z, a )  and that are currently 
candidates (they are also in 6). The assignment to 6’ maps 
this forward using the functions gk,l on each component. An 
example illustrates the process. 

Example 4.1: Let Nm = NB = 1, tzjpe(a) = 
{-2, -1,1,2}, and z E W. Instantiate (2)-(3) by: 

ff€B‘ { 

z < a :  z ’ = z + O . l ,  z > a :  z ’ = z - O . l  
z = a :  z I = z  

l a - z l < 0 . 5 :  @’=-a ,  I c t - ~ l > O . 5 :  Q ’ = Q  

where z observable variable and Q needs to be estimated. 
Here K 1  = 3 and A l l  = 2. Suppose that initially z = 0.4, 
and e = 2. The first four steps of the resulting execution of 
C U C are shown in the following table: q--p 0.6 {-I7 2) 

0.7 (2) 
From the first step ( z  := 0.4 + z := 0.5) the observer 
determines that Q must be positive because the first z clause 
was used. The estimate then changes to {-1,2} at the 
following step. 

We now show that f: is indeed an observer for E. 
Theorem 4.1: Given C defined in (2)-(3), the program 9 

defined in equation (4) satisfies the following properties: 
(1) For all t, a(t)  E &(t) (correctness); 
(2) If C is weakly observable, then 2.l(i) holds for 2 

(3) Property 2.l(ii) also holds for 9 (small error). 
Therefore, 9 is an observer for E. 

(convergence); 

Proofi 
(1) Fix a particular execution. We prove (1) by induction 

on t. By assumption, a(0) E &(O) = U. For the inductive 
step, suppose that a(t-1) E &(t-1). It suffices to determine 
how the set-valued map in (4) taking & to 6’ operates on the 
singleton {a(t - 1)). First note that if & = {a(t - 1)) then 
B’ = {a(t - 1)) as well. In this case, for each k there is at 
least one 1 for which the argument for gk,l equal to {a(t-1)) 
and for which g k , l ( a ( t  - 1)) = a k ( t ) .  



ZI Z2 z3 5 z5 

Fig. 2. An example state of the RoboFlag Drill for 5 robots. Here a = 
{3,1>5?4>2}. 

(2) By (4) for any given P’ E 6’ there exists an ,8 E B’ 
such that PI, E U;’’ gk, l ( (P}  n {Y : Q k , l ( ~ ,  Y)}) for each IC. 
Also P E B’ implies that P E and that for every i there is a 
j such that = fi,g (2) A Pa,g ( z ,  P) .  This in turn implies that 
the sequence ( ( ~ ( t ) ,  P ( t ) ) } t E ~  corresponds to an execution 
o of C with a(t)(P) = p(t) and o( t ) ( z )  = z ( t )  for all t. 
Also, P( t )  E d( t )  for all t. Therefore, for any p’,~’ E &’ 

corresponding to executions of u1 and 02 of C, where 

z ( t )  for all t. Since h o q ( t )  = h 0 0 2 ( t )  = z ( t ) ,  01 N 02 

and so there exists a time t such that o l ( t )  = a2(t)  implying 
that P( t )  = y ( t ) .  Thus, the two sequences { / 3 ( t ) } t E N  and 
{y( t )} tEw collapse onto the same value. This will occur for 
the sequences corresponding to any two elements in &, thus 
we conclude that & converges to a singleton. 

there exist sequences { ( Z ( t ) ,  P W } t € N  and { ( z ( t ) ,  r(t))}tm 

Q ( t ) ( P )  = P ( t ) 9  O2(t) (T)  = Y(t),  n ( t ) ( z )  = 0 2 ( t ) ( z )  = 

(3) Define d : 2’ x 2‘ + R by 

d ( A ,  B )  / A  - BI + IB - Al. (5 )  

It is straightforward to show that d is a distance function. 
Note that by (l), a(t)  E &(t) and thus d(&(t),a(t))  = 
I&(t) - a(t)l = I&(t)l - 1. Thus, to show 2.1(ii), we need 
only demonstrate that l&l is non-increasing. Since B’ is of 
the form X n &, clearly IB’I I 161. Now, by (Al), we have 
that for each a and each k there is exactly one I such that 
Qk.l(z(t),a) is true. This implies that in (4) I&’/ 5 IB’I. 

V. AN EXAMPLE: THE ROBOFLAG DRILL 
In this section we consider a game called RoboFlag that 

is similar to “capture the flag”, only for robots [6] .  Two 
teams of robots, say red and blue, each have a defensive 
zone that they must protect (it contains the team’s flag). If 

a red robot enters the blue team’s defensive zone without 
being tagged by a blue robot, it captures the blue flag and 
earns a point. If a red robot is tagged by a blue robot in the 
vicinity of the blue defensive zone, it is disabled. We do not 
propose to devise a strategy that addresses the full complexity 
of the game. Instead we examine the following very simple 
drill or exercise. Some number of blue robots with positions 
(zi,O) E R2 must defend their zone ((x,y) I y I 0) from 
an equal number of incoming red robots. The positions of 
the red robots are (xi, yf) E R2. An example for 5 robots is 
illustrated in Figure 2. 

The red robots move straight toward the blue defensive 
zone. The blue robots are assigned each to a red robot and 
they coordinate to intercept the red robots. Let N represent 
the number of robots in each team. The robots start with a 
random (bijective) assignment a : {I, ..., N }  + (1, ..., N } .  
At each step, each blue robot communicates with its neigh- 
bors and decides to either switch assignments with its left or 
right neighbor or keep its assignment. This basic solution to 
the RoboFlag Drill problem is adapted from a slightly more 
sophisticated solution expressed in the modeling language 
CCL [9]. We consider the problem of estimating the current 
assignment a given the motions of the blue robots - which 
might be of interest to, for example, the red robots in that 
they may use such information to determine a better strategy 
of attack, although we do not consider the problem of how 
they would change their strategy in this paper. 

The system can be described with guarded commands as 
follows (the description here is similar to that in [9]). The 
red robot dynamics C R ~ ~  are described by the N clauses 

y 2 - 6 > 0  : y;=yi--6 

for i E (1, ..., N} .  These state simply that the red robots 
move a distance 6 toward the defensive zone at each step. 
The blue robot dynamics C B ~ ~ ~  are described by the 3N 
clauses 

for i E (1, ..., N } .  To define the assignment protocol, it is 
useful to define, for i E (2, ..., N - l}, the predicates 

d o w n ,  u p a - ,  
upa !A T d o w n l  A x , %  > x,*+, 

and for robots 1 and N the predicates 

d o w n 1  4? false dOWlZN 4 
xa, > xa, u p N  false . . - UP, 

The assignment protocol dynamics C A ~ ~ ~ ~ ~  are then given 
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by the 3N clauses 

dOWni : a: = ( - ~ i - i  

UPi . 2 ,+I . Q! = a .  
T(downi  V upi) : a: = ai. 

for i E {1, ..., N } .  Note that we have defined CAssign so 
that a remains a permutation of {l,. ..., N }  at every step. 
The complete RoboFlag specification is then given by 

C R F  ' CRed U CBlue U CAssign. 

For the blue robots we assume that initially zi E [zmin, z,,] 
and zi < zi+l. For the red robots, we assume it is always 
the case that xi E (zi-1, zi) and yi > 0. We will denote 
with x = ( X I ,  ..., X N ) ,  y = (yl, ..., y ~ ) ,  z = (zl, ..., z ~ ) .  
a = (a1, ..., a N ) .  

It should be apparent that CRF has the form described 
in Equations (2) and (3). Furthermore, it is straightforward 
to show that assumption (Al) holds. In the sequel we will 
be concerned only with the system C B ~ ~ ~  U C A ~ ~ ~ ~ ~ .  This 
is because the evolution of CBlue U CAssign depends only 
on the initial values of x and y and not on the evolution 
of C R ~ ~ .  Therefore, we may treat x and y as parameters 
of CBlue U C A ~ ~ ~ ~ ~  and put M = { z l ,  ..., ZN} and ?l = 
{al,  ..., QN} corresponding to the problem definition 2.1. 

It can be shown that Q stabilizes to the assignment 
a* = (1, ..., N )  by showing that (1) the number of "conflicts" 
(pairs ( i , j )  such that i < j but zai > za,) decreases at 
each step- that changes an assignment and (2) once downi 
and upi  are both false for all i, they remain false forever 
after. Once Q stabilizes, the values of zi converge to the 
interval (xa i  - 6,xaz + 6) .  For a given execution D E 
&@slue U C A ~ ~ ~ ~ ~ )  we denote the time that a stabilizes by 
tg and the time that the whole system stabilizes by t,. Note 
that t,* 5 t,. The observation problem of interest is then 

RoboFlag Drill Observation Problem: Given initial val- 
ues for x and y and the values of z corresponding to an 
execution of C B ~ ~ ~ U C A ~ ~ ~ ~ ~ ,  detennine the value of a during 
that execution. 

VI. OBSERVABILITY OF THE ROBOFLAG DRILL 
To solve the RoboFlag Drill observation problem, we first 

determine whether C B ~ ~ ~  U C A ~ ~ ~ ~ ~  is weakly observable. 
In particular, we want to know if inequivalent executions of 
CBlue  U CAssign lead to different sequences for z.  
A. Observability 

Lemma 6.1: The program CBlue U CAssign is weakly 
observable. 

Pro08 (Sketch) Suppose xi E (zi-1, z i )  is invariant (i.e. 
6 is small). For given initial values of x and y consider any 

'The assignment (1, ..., N )  results from our choice of the initial robot 
positions. In general, the initial condition would not be known and the 
assignment would stabilize to an arbitrary value. Fixing the initial condition 
in this paper is done merely for the sake of clarity or presentation. 

two executions 01 * c72 of C B ~ ~ ~  U C A ~ ~ ~ ~ ~  (that might 
arise from different initial values of CY and z) .  Put ta = 
m a x { t ~ ,  , tz2}  and t* = mm{t,, ,to*}. There are two cases: 

1) ta < t*: Then u1(ta)(a) = ~ ( t " ) ( a ) .  Since by 
assumption 01 * u2. it must be that al(ta)(z) # 

2) ta = t*: Then al(ta - l)(a) # o2(ta - l)(a). If 
01 (t") ( z )  # 0 2  (t*) (2) then we have the desired result. 
Thus, suppose crl(ta)(z) = a2(ta)(z) z*. Then it 
can be shown that for some i, 

az(t*)(z). 

c(ta - 1)(z2) = z,* - 6 but 

a(t" - l)(z,) = 2; + 6. 

This is because at time ta - 1 the values of a under 
the two executions differ. 

B. RoboFlag Observer 

respect to C B ~ ~ ~  U C A ~ ~ , ~ ~ .  We have 
We now examine the observer 5 as defined by (4) with 

p2.1 ( z ,  Q) zz < X"* 9 f i , l ( Z )  = z, + 6, 
P,,2(z, a)  * z, > x**, f,,z(z) = z, - 6, 
P2,3 ( z7Q)  * zz = xa,, fz,3(z) = * 2  

and 

Q ~ , I  (2, Q) e. downk, Q k , l ( Q )  = Ok-17 

Q k , 2 ( z ,  Q) e-  UP^, g k , 2 ( Q )  = Qk+1, 
Qw(z,Q) @ -(down, V UP,) ,  g k , l ( a )  = a~k. 

Note that P,,3 only depends on z, and a, and so we may also 
write P z . 3 ( ~ , , a z )  and similarly for Since the system is 
weakly observable, the properties listed in Theorem 4.1 hold. 
It can be easily shown that in the worst case the observer 2 
applied to C B ~ ~ ~  U C A ~ ~ ~ ~ ~  converges in at-most t,* + 1 steps 
in any execution 0 of CBlue U CAsszgn U E. 

C. A More EfJicient Scheme 

Note that the number of possible assignments ]U1 Is N ! .  
Therefore, without some efficient scheme for representing B, 
the space and computational requirements for computing the 
clause in (4) is prohibitively high. In this section we propose 
a more efficient scheme for a estimation, which may over- 
approximate the set 6 given by the observer (4). For each z 
we keep a set m, G {1, ..., N }  of possible assignments to 
the zth blue robot. Initially, m, = { 1, ..., N } .  

First, for A, B C { 1, ... , N } ,  define 

A < B  H Q i E A V j E B . x z , 5 x J  

and define A S  = { j  : A 5 { j } } .  Also define A? = {J : 
A L { j } } .  We use A $ B to mean T A  5 B and similarly for 
2. We now describe in Algorithm 1 a procedure for mapping 
forward the sets ml, ..., m N  at each step. Although we write 
the procedure as a loop to better show its structure, it could 
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(N=8) Reduced observer 
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Fig. 3. The performance of the observer 2 (a) and the efficient scheme 5 (b) for the RoboFlag Drill. Here, N=8. 

Algorithm 1 Approximate Observer 
< mi = (ml - m2) U (mf n m2) 

flag = true 
for i = 2 to N do 

AP = m: n m,-l 
if flag then 

else 

end if 
AN = (m, - DP)S n m,+l 
DN = m:+l n m t l  n m, 
mi = (m, - DP - D N )  U A P  U A N  
Jug = ( A P U D P  = 0) 

> DP = m,, n m, 

D P = 0  

end for 

equally be written (with some effort) as a rule in a guarded 
command program. 

In each iteration i of the for-loop in Algorithm 1 we com- 
pute four sets: AP,  DP, AN and DN (for “Add Previous”, 
“Delete Previous”, “Add Next” and “Delete Next”). A P  and 
AN consist of elements from m,-l and m,+l respectively 
that should be added to m, because there is a possibility 
that a, could take on these values. Similarly, DP and DN 
consist of elements from ma that should be deleted from 
m,. Note that DP is the set of elements in m, that musf be 
exchange with some element in m,-l under the assumption 
that nothing in ma-l has exchanged with an element of 
mE-2. The boolean variable flag is used to denote the truth of 
this assumption. For example if ml = {1,2,3}, m2 = {2,3} 
and m3 = {1,2} and z, = i, the reader can check that 
mi = {1,2}, mk = {1,2,3} and m$ = {l12,3}.  

Call the function computed by the above procedure 4 so 
that ml, = g,(m). We may then represent the approximate 

observer 2 by the single clause 
3 

true : b i  = m, n U{% : .: = fz,g(.z) A E , g ( . z 1 4 }  
g=1 

A(ci,  ..., ch) = Refine(bi, ..., bh) . 
Am: =&(C;, ..., ch)  (6) 

where Refine(b1, ..., b ~ )  takes the assignment sets b l ,  ..., bN 

and produces assignment sets c1, ..., C N  with the following 
property: If c, = {IC} then k 4 c, for any j # i. This is helps 
increase the rate of convergence of 2 by decreasing the size 
of the sets ma at each step. 

It can be shown that in any execution (T of C B ~ ~ ~ U C A ~ ~ ~ ~ ~  
each set m, converges to a, in at most t: + 1 steps, where 
t: is time at which a stabilizes. Unfortunately we were not 
able to find a non increasing function of the error, so strictly 
speaking this scheme is not an observer according to 2.1, 
since we could not prove that (ii) holds. 

The construction of the efficient observer in this section 
takes advantage of the particular properties of the RoboFlag 
Drill problem. However, we have found that the RoboFlag 
Drill is in fact representative of a broader class of systems for 
which an approach similar to that described here, but based 
on partial order theory, can be applied. We will report on this 
in future work. 

D. Siinulation Results 
We implemented the RoboFlag Drill in MATLAB 6.0 

together with the observer defined in equation (4). We 
considered eight robots per team, and show the performance 
of the observer in Figure 3(a). We denote by cl(&,&) the 
distance introduced in (5). We also define the quantity 

l N  E( t )  = - Iayi - 21 ,  
i=l 

N 
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Fig. 4. Efficient scheme performance for the RoboFlag Drill where N=30. 

which is a function of Q that is not increasing along the 
executions of system C A ~ ~ ~ ~ ~ ~  U ER& and gives an idea of 
the convergence rate of the a assignment. In Figure 3(b), we 
show the performance of the efficient scheme on the same 
execution of the same system. For the efficient scheme we 
plot 

where d(mi, ai) is computed according to (5). Systems 
where N A >  10 are computationally too difficult for the 
observer C but tractable for the efficient scheme. We show 
the performance of the efficient scheme in an example with 
N = 30 in Figure 4. In all the simulations the initial 
assignment was chosen randomly. 

VII. CONCLUSIONS 

We have examined the observability problem for a class of 
hybrid guarded command programs. We proposed a defini- 
tion of weak observability and proposed an observer that con- 
verges when the system is weakly observable. The proposed 
observer can be computationally expensive as is apparent 
when it is used with the RoboFlag system. Thus a more 
efficient scheme was proposed that has low computational 
and space requirements, but is not an observer since property 
(ii) in 2.1 could not be shown. 

We have not provided practical tests for determining 
observability of guarded command programs nor have we 
provided a general construction for a practicable observer 
for systems with large state spaces. We hope to address 
these problems in future work. Finally, we plan to explore 
the observation problem applied to programs whose guarded 
commands are executed asynchronously, as is usually as- 
sumed in distributed systems. 
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