
Proceedings of the 42nd IEEE
Conference on Decision and Control
Maui, Hawaii USA, December 2003 ThA09-3

Observation of Guarded Command Programs

Domitilla Del Vecchio”
Control and Dynamical Systems

Califomia Institute of Technology
Pasadena, CA 91 125

ddomitilla@cds.caltech.edu

Abstract- We consider the problem of estimating the internal
state of a class of guarded-command programs. Such programs
model dynamical systems that may have both continuous and
discrete states. We propose a way to construct an observer
that takes advantage of the guarded-command structure of
the program. We then apply our ideas to the “RoboFlag
Drill” example wherein two teams of robots compete in a
simplified capture-the-flag-like game. This system is complicated
enough that the proposed observer is practicable only for small
numbers of agents. We then propose an approach for reducing
the complexity of the observer that takes advantage of the
particular structure of the RoboFlag Drill example.

1. INTRODUCTION
In this paper we examine the problem of estimating the

values of the internal state (hidden variables) in a class of
guarded coninland programs. Such programs, which consist
of a set of guard-rule pairs, are typically used in program
verification to formally model algorithms. In this paper
we extend this use to modeling a kind of hybrid system
wherein there is an interplay between discrete and continuous
variables. In particular, we are concerned with decentralized
multi-robot systems, such as are found in robot soccer,
where continuous variables represent physical quantities such
as position and velocity, and discrete variables represent
the state of the internal logical system or communications
protocol used by the robots to coordinate their actions. The
observation problem is then the one of estimating the internal
discrete variables of the system given the evolution of the
continuous physical variables.

The main contributions of this paper are the definition of
the observation problem for transition systems represented
by guarded command programs (Section 11) and, in the case
of ”weakly observable” programs, the actual construction of
an observer (Section 110. In Section V, we introduce a multi-
robot task similar to the game “capture the flag” and specify it
as a composition of guarded command programs in Section
III. Given the evolution of the positions of the robots, the
discrete state of the program, representing an assignment of
defending robots to attacking robots, is observable. Unfortu-
nately, due to the large state space of the system, the observer
defined in Section 111 is not applicable for high numbers
of robots. Therefore we propose in Section VI-C a scheme
to reduce complexity by exploiting the structure of the

*ONR grant N00014-10-1-0890 under the MURI program
** Supported in part by the DARPA SEC program under grant number

F33615-98-C-3613 and by AFOSR grant number F49620-01-1-0361.

Eric mavins**
Electrical Engineering Department

University of Washington
Seattle, WA 98195

klavins@washington.edu

RoboFlag Drill system. We end the paper with simulations of
the RoboFlag Drill system that demonstrate the convergence
of the estimation schemes proposed.

Related Work: Hybrid systems have been examined by
many researchers [3], [8]. [4], [IO]. Guarded command
programs are introduced in [7] and are used in [9] (in
a somewhat different sense than in the present paper) to
model capture the flag-like systems. This way of model-
ing hybrid systems is particularly suitable for describing
distributed systems parameterized by the number of agents
involved. The guarded command formalism allows us to
implicitly represent large state spaces that would have to
be explicitly represented in other formalisms. Observability
of hybrid systems has been examined in [2] for the MDL
modeling framework, in [13] with piecewise discrete time
linear systems, and in [11 where piecewise-linear continuous-
time systems are studied. In MDL, one can model a broad
class of systems, although the continuous part must be linear.
Guarded command programs model any kind of continuous
and logic dynamics in the form of guards and commands.
This model, as opposed to the MDL one, exploits explicitly
the distributed nature of the system, leading to concise
representation and analysis (see [9] for example.)

In [l] an observer for the discrete mode and the con-
tinuous state of a hybrid system is described, the mode
being estimated from a finite set via residual analysis on
the continuous part. In our case, examining the continous
part does not fix the mode, but instead suggests several
possibilities so that further computation is required to guess
the hidden state. In [13] an algebraic check is proposed
to determine the observability property of a jump linear
system. The sequence of discrete and continuous states is
then reconstructed “post mortem” and, therefore, such a
reconstruction has no predictive power. In this paper we seek
to track the evolution of the hidden variables for the purpose
of prediction. In the discrete event literature the observability
problem for finite automata is examined in, for example, [SI.
The approach used in this work leads to an observer similar to
the one we derived as far as its complexity is concerned. The
systems we explore in this paper have continuous variables,
however, and it is not obvious that such observers can be
used in our case. Observability of programs is also related to
information flow security [121 where the problem of ensuring
that hidden variables can nor be observed from observable
variables is considered.

.

0-7803-7924-1/03/$17.00 02003 IEEE 3353

mailto:ddomitilla@cds.caltech.edu
mailto:klavins@washington.edu

‘K

\,,
Fig. 1. Trajectories u z (t) and u3(t) are weakly equivalent trajectories
according to Definition 2.3 while ug(t) is not weakly equivalent to either
c71 (t) or uz (t) .

11. DEFINITIONS

A. State Transition Systems

For completeness, we review the basic definitions used
in transition systems as described more completely in other
work [111. Consider a set of variable symbols V with types
type(v) for each v E V . A state s is a function from V into
U where U = UvEV type(v). The set of all states is denoted
S. For a subset W of V , we denote by sIw the restriction
of s to W , so that we have that Slw = {slw : s E S}. A
transition relation on S is a relation R S x S. If sRs’
and ‘LI E V , we will write v to refer to s(v) and U’ to refer
to s’(’u). For example, if we denote R by

(1) 2’ < y v y’ = 2

then sRs’ * s’(z) < s(y) V s’(y) = s(z) .
Given a transition relation R, an execution of R is a

sequence a = { s t } t E ~ such that stRst+l for all t E N.
The set of all executions of R is denoted &(R). If (T E &(R)
is fixed and U E V we denote by v (t) the value u(t)(w).
The trajectory of v E V with respect to (T is the sequence

We define transition relations over subsets IY of V , as in
R G Slw x Slw, to enforce the notion that R does not have
information about variables in V - W .

(t) (.>) t€W.

B. Observability

We now define two notions of observability for transition
systems. The first is the standard notion: The system is ob-
servable if any two execution sequences can be distinguished
by their outputs. The second is a weaker definition that we
introduce motivated by the fact that in the systems in which
we are interested, two different states may transition to the
same state. Thus, we use the notion of “weakly observable”:
The system is observable as long as any two executions that
do not collapse onto the same state before stabilizing can be
distinguished from their outputs. The following definitions
state these ideas formally.

DeJiriition 2.1: Given a transition relation R on S and an
output map h : S -, U, two executions (~1.02 E &(R) are

distinguishable if there exists a time t such that h(al(t)) #

Definition 2.2.- Let R be a transition relation on S , the
set A c S is the w-lintit set of R, denoted by w(R), if the
following hold:
(i) if s E A and s R s’, then s’ E A;

(ii) for each (T E &(R), there exists a time t , such that

Definition 2.3: Given a transition relation R, two execu-
tions ul, u2 E I (R) are weakly equivalent, denoted u1 N u2,
if there exists a time t* such that al(t*) 4 w(R) and
al(t) = az(t) for all t 2 t*.

Examples of weakly equivalent and inequivalent trajecto-
ries are illustrated in Figure 1.

Dejinition 2.4: (Observability and Weak Observability)
The transition relation R is said to be obsenable with
respect to the output function h : S + U if any two
executions (TI, (~ 2 E &(R) are distinguishable. The system
is weakly observable if whenever (TI + u2 then (TI and u2

are distinguishable.
In this paper we assume that V = XUM, with ‘HnM = 8,

and that the output map h makes available for measurement
the values of the variables in M . That is h : S -, S (M . Then
we refer to M as the set of measurable variables and to 7-i
as the set of hidden variables. In the sequel we construct an
observer R for (R , h) that is defined on the set of variables
W such that W n V = M . Denote by Q the variables in 7-f
and by & the variables in W - M that R uses to estimate
the value of a.

Problem 2.1: (Observer) Let V = XUM and W be such
that M C W and 7 f f i W = 0. Suppose that Q is the vector
of all variables in 3-1 and suppose that 6 E W - M . Given
a transition relation R : Slv x Slv, the transition relation
R : Slw x Slw is an observer for R if the following hold
for all o E &(ex(R) n ex(@):

(i) there exists a time t* such that &(t) = a(t) for all

(ii) there exists a metric d on type(&) such that for each

h(o2(t))*

a(tu) E A for all t L tu.

t 2 t*;

c there exists a 6 such that for all t

d(&(O),a(O)) < b =+ d(&(t) , c r (t)) < E .

C. Guarded Command Programs

One way to specify transition relations is with guarded
command programs, which we now define. A guard is a
predicate on states and a rule (or comnzand) is a relation
on states. A guarded command is then a pair g : r
where g is a guard and T is a rule. As in expression (l),
we denote guarded commands using primed and unprimed
variable symbols. For example, x > 0 x’ = x + y
denotes the guarded command relating two states SI and s2
by s1(z) > 0 : s2(x) = sl(x)+sl(y). Aguardedconzmand
program consists of a set C of guarded commands. A guarded
command program defines a transition relation (giving the

:

3354

operational semantics of the program) wherein all commands
are executed in parallel to give a new state (other formalisms
define the operational semantics differently).

Dejnition 2.5: Given a guarded command program C
over variables V , the transition relation corresponding to
C is the relation RE G S(V x Slv where s RE s’ if and
only if Vg : T E C . g(s) + s T s’. Furthermore, if a variable
v E V does not occur primed in any command applicable in
s, then s(v) = s’(v).

Note that the composition CI U CZ of two guarded com-
mand programs C1 and CZ has defining relation Rcl n Rcz.
The observer problem for guarded command programs is:
Given C construct 2 so that Rg is an observer for RE.

111. PROBLEM STATEMENT
Let M = (21, ..., zrvM} and 7l = { a l , . . . , a ~ ~ } and put

V = M U ‘H. We suppose that each zi has a associated with
it Ki commands of the form

and each a k has associated with it h f k commands of the
form:

where f i , 3 (.) and gk , l (.) are functions. We use C to denote
the set of all the commands for the hidden and observ-
able variables described in (2) and (3). We suppose that
type(zz ,) = R and denote the vector (21, ..., Z N ~) by z
and the vector (a1, ..., Q N ~) by cr. We leave U 4 t y p e (a)
unspecified for now and suppose that it represents the set
of all possible values that Q can take.’ Thus, C defines a
relation Rlv with domain (V + RNM x U) . We require
that for each i there is exactly one j E (1, ...,Kt} such
that Pi,3 (z , a) is true, and for each IC there is exactly one
I E (1, ..., A d k } such that Q ~ , ~ (Z , Q) is true. This assumption
implies that there cannot be two different update rules for
z (or a) acting simultaneously. It also implies that at any
time there is at least one update rule holding at that time.
The other assumption we have made (implied by structure (2)
and (3)) is that C is deterministic (i.e. that RE is a function).
We intend to relax this somewhat strong assumption in future
work.

IV. OBSERVER CONSTRUCTION
We now turn our attention to the question of when an

?bserver exists for C. We first propose a candidate observer
C for (2)-(3). We then show property 2.1(ii), by choosing a
particular d defined on U. Further if C is weakly observable
we can also show property 2.l(i) - that is, that 2 is an
observer for E.

We use the variable symbol & to represent an estimate of
a, with t ype(&) = 2u. The intention is that & will denote

’For simplicity we assume that type(cui) = type(c.j) although this
certainly does not need to be the case.

3355

the set of all possjble values of Q at any given $me in an
execution of C U C. Initially & = U. We define C to be the
program containing the single clause:

N M K ,

i 3

true : B’ = n U { a : Z: = f i , 3 (~) A P~.~(z,(Y)} n &

I Afk

A &’ = U P : vk.Pk E U g k , l ((a) n (7 : Qk,l(z7 7)))
1=1

(4)
where B is an auxiliary variable used for clarity. The
assignment to B’ collects the set of all values of Q that agree
with the observation z: = fi,3(z, a) and that are currently
candidates (they are also in 6). The assignment to 6’ maps
this forward using the functions gk,l on each component. An
example illustrates the process.

Example 4.1: Let Nm = NB = 1, tzjpe(a) =
{-2, -1,1,2}, and z E W. Instantiate (2)-(3) by:

ff€B‘ {

z < a : z ’ = z + O . l , z > a : z ’ = z - O . l
z = a : z I = z

l a - z l < 0 . 5 : @’=-a , I c t - ~ l > O . 5 : Q ’ = Q

where z observable variable and Q needs to be estimated.
Here K 1 = 3 and A l l = 2. Suppose that initially z = 0.4,
and e = 2. The first four steps of the resulting execution of
C U C are shown in the following table: q--p 0.6 {-I7 2)

0.7 (2)
From the first step (z := 0.4 + z := 0.5) the observer
determines that Q must be positive because the first z clause
was used. The estimate then changes to {-1,2} at the
following step.

We now show that f: is indeed an observer for E.
Theorem 4.1: Given C defined in (2)-(3), the program 9

defined in equation (4) satisfies the following properties:
(1) For all t, a(t) E &(t) (correctness);
(2) If C is weakly observable, then 2.l(i) holds for 2

(3) Property 2.l(ii) also holds for 9 (small error).
Therefore, 9 is an observer for E.

(convergence);

Proofi
(1) Fix a particular execution. We prove (1) by induction

on t. By assumption, a(0) E &(O) = U. For the inductive
step, suppose that a(t-1) E &(t-1). It suffices to determine
how the set-valued map in (4) taking & to 6’ operates on the
singleton {a(t - 1)). First note that if & = {a(t - 1)) then
B’ = {a(t - 1)) as well. In this case, for each k there is at
least one 1 for which the argument for gk,l equal to {a(t-1))
and for which g k , l (a (t - 1)) = a k (t) .

ZI Z2 z3 5 z5

Fig. 2. An example state of the RoboFlag Drill for 5 robots. Here a =
{3,1>5?4>2}.

(2) By (4) for any given P’ E 6’ there exists an ,8 E B’
such that PI, E U;’’ gk, l ((P} n {Y : Q k , l (~ , Y)}) for each IC.
Also P E B’ implies that P E and that for every i there is a
j such that = fi,g (2) A Pa,g (z , P) . This in turn implies that
the sequence ((~ (t) , P (t)) } t E ~ corresponds to an execution
o of C with a(t)(P) = p(t) and o(t) (z) = z (t) for all t.
Also, P(t) E d(t) for all t. Therefore, for any p’,~’ E &’

corresponding to executions of u1 and 02 of C, where

z (t) for all t. Since h o q (t) = h 0 0 2 (t) = z (t) , 01 N 02

and so there exists a time t such that o l (t) = a2(t) implying
that P(t) = y (t) . Thus, the two sequences { / 3 (t) } t E N and
{y(t)} tEw collapse onto the same value. This will occur for
the sequences corresponding to any two elements in &, thus
we conclude that & converges to a singleton.

there exist sequences { (Z (t) , P W } t € N and { (z (t) , r(t))}tm

Q (t) (P) = P (t) 9 O2(t) (T) = Y(t), n (t) (z) = 0 2 (t) (z) =

(3) Define d : 2’ x 2‘ + R by

d (A , B) / A - BI + IB - Al. (5)

It is straightforward to show that d is a distance function.
Note that by (l), a(t) E &(t) and thus d(&(t),a(t)) =
I&(t) - a(t)l = I&(t)l - 1. Thus, to show 2.1(ii), we need
only demonstrate that l&l is non-increasing. Since B’ is of
the form X n &, clearly IB’I I 161. Now, by (Al), we have
that for each a and each k there is exactly one I such that
Qk.l(z(t),a) is true. This implies that in (4) I&’/ 5 IB’I.

V. AN EXAMPLE: THE ROBOFLAG DRILL
In this section we consider a game called RoboFlag that

is similar to “capture the flag”, only for robots [6] . Two
teams of robots, say red and blue, each have a defensive
zone that they must protect (it contains the team’s flag). If

a red robot enters the blue team’s defensive zone without
being tagged by a blue robot, it captures the blue flag and
earns a point. If a red robot is tagged by a blue robot in the
vicinity of the blue defensive zone, it is disabled. We do not
propose to devise a strategy that addresses the full complexity
of the game. Instead we examine the following very simple
drill or exercise. Some number of blue robots with positions
(zi,O) E R2 must defend their zone ((x,y) I y I 0) from
an equal number of incoming red robots. The positions of
the red robots are (xi, yf) E R2. An example for 5 robots is
illustrated in Figure 2.

The red robots move straight toward the blue defensive
zone. The blue robots are assigned each to a red robot and
they coordinate to intercept the red robots. Let N represent
the number of robots in each team. The robots start with a
random (bijective) assignment a : {I, ..., N } + (1, ..., N } .
At each step, each blue robot communicates with its neigh-
bors and decides to either switch assignments with its left or
right neighbor or keep its assignment. This basic solution to
the RoboFlag Drill problem is adapted from a slightly more
sophisticated solution expressed in the modeling language
CCL [9]. We consider the problem of estimating the current
assignment a given the motions of the blue robots - which
might be of interest to, for example, the red robots in that
they may use such information to determine a better strategy
of attack, although we do not consider the problem of how
they would change their strategy in this paper.

The system can be described with guarded commands as
follows (the description here is similar to that in [9]). The
red robot dynamics C R ~ ~ are described by the N clauses

y 2 - 6 > 0 : y;=yi--6

for i E (1, ..., N} . These state simply that the red robots
move a distance 6 toward the defensive zone at each step.
The blue robot dynamics C B ~ ~ ~ are described by the 3N
clauses

for i E (1, ..., N } . To define the assignment protocol, it is
useful to define, for i E (2, ..., N - l}, the predicates

d o w n , u p a - ,
upa !A T d o w n l A x , % > x,*+,

and for robots 1 and N the predicates

d o w n 1 4? false dOWlZN 4
xa, > xa, u p N false . . - UP,

The assignment protocol dynamics C A ~ ~ ~ ~ ~ are then given

3356

by the 3N clauses

dOWni : a: = (- ~ i - i

UPi . 2 ,+I . Q! = a .
T(downi V upi) : a: = ai.

for i E {1, ..., N } . Note that we have defined CAssign so
that a remains a permutation of {l,. ..., N } at every step.
The complete RoboFlag specification is then given by

C R F ' CRed U CBlue U CAssign.

For the blue robots we assume that initially zi E [zmin, z,,]
and zi < zi+l. For the red robots, we assume it is always
the case that xi E (zi-1, zi) and yi > 0. We will denote
with x = (X I , ..., X N) , y = (yl, ..., y ~) , z = (zl, ..., z ~) .
a = (a1, ..., a N) .

It should be apparent that CRF has the form described
in Equations (2) and (3). Furthermore, it is straightforward
to show that assumption (Al) holds. In the sequel we will
be concerned only with the system C B ~ ~ ~ U C A ~ ~ ~ ~ ~ . This
is because the evolution of CBlue U CAssign depends only
on the initial values of x and y and not on the evolution
of C R ~ ~ . Therefore, we may treat x and y as parameters
of CBlue U C A ~ ~ ~ ~ ~ and put M = { z l , ..., ZN} and ?l =
{al, ..., QN} corresponding to the problem definition 2.1.

It can be shown that Q stabilizes to the assignment
a* = (1, ..., N) by showing that (1) the number of "conflicts"
(pairs (i , j) such that i < j but zai > za,) decreases at
each step- that changes an assignment and (2) once downi
and upi are both false for all i, they remain false forever
after. Once Q stabilizes, the values of zi converge to the
interval (xa i - 6,xaz + 6) . For a given execution D E
&@slue U C A ~ ~ ~ ~ ~) we denote the time that a stabilizes by
tg and the time that the whole system stabilizes by t,. Note
that t,* 5 t,. The observation problem of interest is then

RoboFlag Drill Observation Problem: Given initial val-
ues for x and y and the values of z corresponding to an
execution of C B ~ ~ ~ U C A ~ ~ ~ ~ ~ , detennine the value of a during
that execution.

VI. OBSERVABILITY OF THE ROBOFLAG DRILL
To solve the RoboFlag Drill observation problem, we first

determine whether C B ~ ~ ~ U C A ~ ~ ~ ~ ~ is weakly observable.
In particular, we want to know if inequivalent executions of
CBlue U CAssign lead to different sequences for z.
A. Observability

Lemma 6.1: The program CBlue U CAssign is weakly
observable.

Pro08 (Sketch) Suppose xi E (zi-1, z i) is invariant (i.e.
6 is small). For given initial values of x and y consider any

'The assignment (1, ..., N) results from our choice of the initial robot
positions. In general, the initial condition would not be known and the
assignment would stabilize to an arbitrary value. Fixing the initial condition
in this paper is done merely for the sake of clarity or presentation.

two executions 01 * c72 of C B ~ ~ ~ U C A ~ ~ ~ ~ ~ (that might
arise from different initial values of CY and z) . Put ta =
m a x { t ~ , , tz2} and t* = mm{t,, ,to*}. There are two cases:

1) ta < t*: Then u1(ta)(a) = ~ (t ") (a) . Since by
assumption 01 * u2. it must be that al(ta)(z) #

2) ta = t*: Then al(ta - l)(a) # o2(ta - l)(a). If
01 (t") (z) # 0 2 (t*) (2) then we have the desired result.
Thus, suppose crl(ta)(z) = a2(ta)(z) z*. Then it
can be shown that for some i,

az(t*)(z).

c(ta - 1)(z2) = z,* - 6 but

a(t" - l)(z,) = 2; + 6.

This is because at time ta - 1 the values of a under
the two executions differ.

B. RoboFlag Observer

respect to C B ~ ~ ~ U C A ~ ~ , ~ ~ . We have
We now examine the observer 5 as defined by (4) with

p2.1 (z , Q) zz < X"* 9 f i , l (Z) = z, + 6,
P,,2(z, a) * z, > x**, f,,z(z) = z, - 6,
P2,3 (z7Q) * zz = xa,, fz,3(z) = * 2

and

Q ~ , I (2, Q) e. downk, Q k , l (Q) = Ok-17

Q k , 2 (z , Q) e- UP^, g k , 2 (Q) = Qk+1,
Qw(z,Q) @ -(down, V UP,) , g k , l (a) = a~k.

Note that P,,3 only depends on z, and a, and so we may also
write P z . 3 (~ , , a z) and similarly for Since the system is
weakly observable, the properties listed in Theorem 4.1 hold.
It can be easily shown that in the worst case the observer 2
applied to C B ~ ~ ~ U C A ~ ~ ~ ~ ~ converges in at-most t,* + 1 steps
in any execution 0 of CBlue U CAsszgn U E.

C. A More EfJicient Scheme

Note that the number of possible assignments]U1 Is N ! .
Therefore, without some efficient scheme for representing B,
the space and computational requirements for computing the
clause in (4) is prohibitively high. In this section we propose
a more efficient scheme for a estimation, which may over-
approximate the set 6 given by the observer (4). For each z
we keep a set m, G {1, ..., N } of possible assignments to
the zth blue robot. Initially, m, = { 1, ..., N } .

First, for A, B C { 1, ... , N } , define

A < B H Q i E A V j E B . x z , 5 x J

and define A S = { j : A 5 { j } } . Also define A? = {J :
A L { j } } . We use A $ B to mean T A 5 B and similarly for
2. We now describe in Algorithm 1 a procedure for mapping
forward the sets ml, ..., m N at each step. Although we write
the procedure as a loop to better show its structure, it could

3357

71
(N=8) Reduced observer

31 I

d - \

“\“‘([[I - m,, ... ,me .a

4w

200

OO 5 10 15 20 25 OO 5 10 15 20 25

(4 (b)

Fig. 3. The performance of the observer 2 (a) and the efficient scheme 5 (b) for the RoboFlag Drill. Here, N=8.

Algorithm 1 Approximate Observer
< mi = (ml - m2) U (mf n m2)

flag = true
for i = 2 to N do

AP = m: n m,-l
if flag then

else

end if
AN = (m, - DP)S n m,+l
DN = m:+l n m t l n m,
mi = (m, - DP - D N) U A P U A N
Jug = (A P U D P = 0)

> DP = m,, n m,

D P = 0

end for

equally be written (with some effort) as a rule in a guarded
command program.

In each iteration i of the for-loop in Algorithm 1 we com-
pute four sets: AP, DP, AN and DN (for “Add Previous”,
“Delete Previous”, “Add Next” and “Delete Next”). A P and
AN consist of elements from m,-l and m,+l respectively
that should be added to m, because there is a possibility
that a, could take on these values. Similarly, DP and DN
consist of elements from ma that should be deleted from
m,. Note that DP is the set of elements in m, that musf be
exchange with some element in m,-l under the assumption
that nothing in ma-l has exchanged with an element of
mE-2. The boolean variable flag is used to denote the truth of
this assumption. For example if ml = {1,2,3}, m2 = {2,3}
and m3 = {1,2} and z, = i, the reader can check that
mi = {1,2}, mk = {1,2,3} and m$ = {l12,3}.

Call the function computed by the above procedure 4 so
that ml, = g,(m). We may then represent the approximate

observer 2 by the single clause
3

true : b i = m, n U{% : .: = fz,g(.z) A E , g (. z 1 4 }
g=1

A(ci, ..., ch) = Refine(bi, ..., bh) .
Am: =&(C;, ..., ch) (6)

where Refine(b1, ..., b ~) takes the assignment sets b l , ..., bN

and produces assignment sets c1, ..., C N with the following
property: If c, = {IC} then k 4 c, for any j # i. This is helps
increase the rate of convergence of 2 by decreasing the size
of the sets ma at each step.

It can be shown that in any execution (T of C B ~ ~ ~ U C A ~ ~ ~ ~ ~
each set m, converges to a, in at most t: + 1 steps, where
t: is time at which a stabilizes. Unfortunately we were not
able to find a non increasing function of the error, so strictly
speaking this scheme is not an observer according to 2.1,
since we could not prove that (ii) holds.

The construction of the efficient observer in this section
takes advantage of the particular properties of the RoboFlag
Drill problem. However, we have found that the RoboFlag
Drill is in fact representative of a broader class of systems for
which an approach similar to that described here, but based
on partial order theory, can be applied. We will report on this
in future work.

D. Siinulation Results
We implemented the RoboFlag Drill in MATLAB 6.0

together with the observer defined in equation (4). We
considered eight robots per team, and show the performance
of the observer in Figure 3(a). We denote by cl(&,&) the
distance introduced in (5). We also define the quantity

l N E(t) = - Iayi - 21 ,
i=l

N

3358

“30) Reduced Observer

I
2\ ‘0 10 20 30 40 50 60 70

5

‘0 10 20 30 40 50 60 70

Fig. 4. Efficient scheme performance for the RoboFlag Drill where N=30.

which is a function of Q that is not increasing along the
executions of system C A ~ ~ ~ ~ ~ ~ U ER& and gives an idea of
the convergence rate of the a assignment. In Figure 3(b), we
show the performance of the efficient scheme on the same
execution of the same system. For the efficient scheme we
plot

where d(mi, ai) is computed according to (5). Systems
where N A > 10 are computationally too difficult for the
observer C but tractable for the efficient scheme. We show
the performance of the efficient scheme in an example with
N = 30 in Figure 4. In all the simulations the initial
assignment was chosen randomly.

VII. CONCLUSIONS

We have examined the observability problem for a class of
hybrid guarded command programs. We proposed a defini-
tion of weak observability and proposed an observer that con-
verges when the system is weakly observable. The proposed
observer can be computationally expensive as is apparent
when it is used with the RoboFlag system. Thus a more
efficient scheme was proposed that has low computational
and space requirements, but is not an observer since property
(ii) in 2.1 could not be shown.

We have not provided practical tests for determining
observability of guarded command programs nor have we
provided a general construction for a practicable observer
for systems with large state spaces. We hope to address
these problems in future work. Finally, we plan to explore
the observation problem applied to programs whose guarded
commands are executed asynchronously, as is usually as-
sumed in distributed systems.

VIII. REFERENCES

[l] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and
A. Sangiovanni-Vincentelli. Design of observers for
hybrid systems. Lecture Notes in Coniputer Science
2289, C. J. Tomlin and M. R. Greensreet Eds. Springer,
pages 76-89, 2002.

[2] A. Bemporad, G. Ferrari-Trecate, and M. Morari. Ob-
servability and controllability of piecewise affine and
hybrid systems. IEEE Transactions on Automatic Con-
trol, 45:1864-1876, 1999.

Control of systems
integrating logic, dynamics and constraints. Automatica,
35:407427, 1999.

[4] M. S . Branicky, V. S. Borkar, and S. K. Mitter. A uni-
fied framework for hybrid control: model and optimal
control theory. IEEE Trans. Autoniat. Control, 43:3 1-
45, 1998.

[5] P. E. Caines. Classical and logic-based dynamic ob-
servers for finite automata. IMA J. of Matheniatical
Control and Irzfomtation, pages 45-80, 1991.

[6] R. D’Andrea, R. M. Murray, J. A. Adams, A. T. Hayes,
M. Campbell, and A. Chaudry. The RoboFlag Game.
In American Controls Conference, 2003.

[7] E. W. Dijkstra. Guarded commands, non-determinacy
and a calculus for the derivation of programs. Commu-
nications of the ACM, 18(8):453457, August 1975.

[8] R. L. Grossmann, A. Nerode, A. P. Ravn, and
H. Rischel. Hybrid Systems, Lecture Notes in Computer
Science (Vol 736. Springer Verlag, New York, 1993.

[9] E. Klavins. A formal model of a multi-robot control
and communication task. In Coizference on Decision
and Control, Hawaii, 2003.

[lo] N. Lynch, R. Segala, and F. Vaandraager. Hybrid 20
automata. Information and Coinputation, 185(1): 105-
157, 2003.

[111 Z. Manna and A. Pnueli. The Temporal Logic of Reac-
tive and Concur- rent Systems: Specication. Springer-
Verlag, 1992.

[12] A Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE J. on Selected Areas
in Communications, pages 1-15, 2003.

[13] R. Vidal, A. Chiuso, and S. Soatto. Observability and
identifiability of jump linear systems. In Decision and
Control Conference, Las Vegas, 2002.

[3] A. Bemporad and M. Morari.

3359

