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Abstract— Bistable genetic circuits that can be toggled be-
tween two states have been engineered in bacterial cells for
a variety of applications. These circuits often impose state-
dependent resource loads on the cell, creating growth feedback.
In the context of a population of cells, each with a copy of
the genetic circuit, cells in either circuit state grow at different
rates, thereby affecting the emergent population-level dynamics.
It is generally difficult to predict how this growth heterogeneity
will affect the composition of the population over time. In this
work, we consider an ODE population model and evaluate
its ability to predict the transient dynamics of the fraction
of cells in either state. These dynamics are driven by two
processes. The first is due to the difference in growth rate
between the cells in the two states, while the second process
arises from the probability that the circuit switches state. For
the latter, we compute switching rates for the toggle switch
using a Markov chain two-dimensional model and exploit the
system’s structure for efficient computation. We demonstrate
via simulations that the ODE model well approximates the
dynamics of the system obtained by a published population
simulation algorithm for sufficiently large molecular counts
and population sizes. The ability to approximate via ODEs the
population-level dynamics of cells engineered with multi-stable
circuits will be especially relevant to forward engineer such
circuits for desired population dynamics.

I. INTRODUCTION

Understanding how the feedback between a genetic circuit
and cellular growth rate affects population-level dynamics
is a significant challenge in synthetic biology. For example,
genetic toggle switches (Fig. 1a) are used to produce cellular
memory, with exposure to some signal causing the cell to
preferentially adopt one of two stable states [1]. Due to
molecular noise, a cell will eventually switch between these
stable states, losing memory of the earlier signal. As a result,
a population of cells initially biased to one of the stable states
will ultimately return to an equilibrium independent of its
initial state, with possible coexistence of both states. When
one of the proteins used to implement the toggle switch
places a higher burden on the cell growth rate (Fig. 1b),
however, cells producing high levels of that protein will grow
slower, thereby affecting the dynamics of the population [2],
[3].

Monte Carlo methods can be used to simulate the behavior
of cell populations in the presence of growth feedback [2].
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Fig. 1. (a) Circuit diagram for a bistable toggle switch with proteins A
and B that each repress the production of the other. A and B concentrations
in the cell are also lowered due to dilution. (b) Circuit diagram for a toggle
switch in which each protein also suppresses cellular growth rate, creating
a feedback loop between growth rate and circuit state.

In particular, the “Next Family” method can be used to run
an adaptation of the Stochastic Simulation Algorithm (SSA)
at a population level in O(NlogN) time, where N is the
number of cells in the population [2], [4]. Even this method,
however, can be computationally intensive when N is large
or when the time between reactions is small compared to the
overall simulation time. Most importantly, simulation-based
approaches offer little insight to forward engineer a genetic
circuit that results in desired population-level dynamics.

In [2], an ordinary differential equation (ODE) model was
used to approximate the steady-state fraction of cells in either
state of the toggle switch. However, setting the rate constants
of this ODE model requires repeatedly simulating a single
cell via Monte Carlo. Additionally, the approximation accu-
racy of this model was only investigated at the population’s
steady-state, without evaluation during the transient. In this
work, we introduce a similar ODE model to approximate the
subpopulation fraction dynamics of both states. Unlike [2],
we set the model parameters without requiring simulation,
but instead by computing suitable hitting times in a Markov
chain model of the toggle switch circuit. Like in [2], we will
assume throughout that the cells are exponentially growing
in a fixed-sized population, with a cell removed from the
population at random each time a cell divides. We refer
to such a setting as an “ideal turbidostat” [5]. We evaluate
via simulation how the agreement between the ODE model
and the Monte Carlo model changes as molecular counts in
each cell are increased and as population size increases. We
demonstrate via simulation that the approximation error can
be made small for sufficiently large molecular counts and
population sizes.

The paper is structured as follows: in Section II, we
describe the system; in Section III, we introduce the ODE
model and parameterization procedure; in Section IV, we
define our approximation metric; in Section V, we compare
the ODE model output to simulations from the Next Family
method.
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II. SYSTEM DESCRIPTION AND ASSUMPTIONS

In this section, we describe the system under investigation,
which is composed of a population of N cells, each with
an identical copy of a genetic toggle switch. Each cell can
stochastically produce and eliminate A and B molecules and
divide. Upon division, a cell produces a daughter cell with
the same number of A molecules and the same number of
B molecules. The daughter cell replaces another cell in the
population at random, keeping the population size fixed.
Below, we introduce the determinstic model for a toggle
switch with growth feedback, and then we precisely describe
the stochastic population model we take as ground truth for
evaluation of the ODE approximation.

A. Deterministic toggle switch model

We consider the following ODE model for a toggle switch
with growth feedback:

d
dt
[A] = σβA

1

1+
(

[B]
σKA

)2 − (γ ′σ ([A], [B])+δA)[A] (1)

d
dt
[B] = σβB

1

1+
(

[A]
σKB

)2 − (γ ′σ ([A], [B])+δB)[B] (2)

γ
′
σ ([A], [B]) =

γ

1+ [A]
σJA

+ [B]
σJB

, (3)

in which [A] and [B] are the concentrations of proteins A and
B within the cell, σβX , σKX , σJX , and δX are, respectively,
the maximal production rate, DNA dissociation constant,
growth feedback parameter, and degradation constant of
protein X (X ∈ {A,B}), and γ is the basal growth rate
constant [1], [2], [3]. Here, σ > 0 is a unitless concentration-
scaling factor. Indeed, by dividing the left and right hand
sides of (1) and (2) by σ and defining [A] = [A]/σ and
[B] = [B]/σ , we obtain a σ -independent toggle switch model
described by the scaled quantities [A] and [B] and parameters
βX , KX , JX , δX , and γ .

Equations (1)-(2) are a standard model of a toggle switch
[1], with the exception of the state-dependent growth rate
constant (3), which takes a similar form as in [2], [3].
The growth-rate model assumes exponentially growing cells,
which is reasonable for population setups that are continu-
ously infused with new rich media and in which cell counts
remain constant, such as in a turbidostat [5].

Assumption 1. We assume that the parameters γ , βX , KX ,
δX , and JX (X ∈ {A,B}) are all positive real numbers such
that (1)-(3) admits exactly two asymptotically stable steady
states, ([A]0, [B]0) and ([A]1, [B]1), and one unstable steady
state, ([A]us, [B]us), such that [A]0 > [A]us > [A]1 and [B]0 <
[B]us < [B]1. We denote the stable steady states of (1)-(2)
with σ = 1 by ([A]0, [B]0) and ([A]1, [B]1), where [A]0 > [A]1
and [B]0 < [B]1. Then for general σ > 0, the stable steady
states are ([A]0, [B]0) = (σ [A]0,σ [B]0) and ([A]1, [B]1) =
(σ [A]1,σ [B]1). We view state (σ [A]0,σ [B]0) as being the
“A-high, B-low” equilibrium state and (σ [A]1,σ [B]1) as the
“A-low, B-high” equilibrium state.

B. Stochastic population model

We consider a population with N cells. Accordingly, we
define the set of states of the system to be N2N

0 , where
the vector x = (a1,b1, ...,aN ,bN) corresponds to the state in
which cell ℓ has aℓ copies of molecule A and bℓ copies
of molecule B. We henceforth refer to x as a “population
microstate.” Using the production and decay terms in (1)-
(2), we define the following four functions, which represent
the propensities for an individual cell to produce (+) and
eliminate (-) an A or B molecule given that it currently has
a copies of A and b copies of B:

rσ
+A(a,b) = σβAV

1

1+
(

b
σKAV

)2 (4)

rσ
+B(a,b) = σβBV

1

1+
(

b
σKBV

)2 (5)

rσ
−A(a,b) =

(
γ
′
σ

(
a
V
,

b
V

)
+δA

)
a (6)

rσ
−B(a,b) =

(
γ
′
σ

(
a
V
,

b
V

)
+δB

)
b. (7)

In the above, V > 0 represents the cellular volume (treated
as constant), and the other parameters are as in (1)-(3). We
also define a function representing the rate at which a cell
with a molecules of A and b molecules of B divides:

rσ
γ (a,b) = γ

′
σ

(
a
V
,

b
V

)
. (8)

We explicitly write the (infinite) infinitesimal generator
matrix Q for the minimal, continuous-time Markov chain
(CTMC) describing the population microstate as follows. In-
dex the population microstates N2N

0 using a bijective function
ιN : N2N

0 → N. For each ℓ,m ∈ {1, ...,N} and each i, j ∈ N,
define (infinite) matrices Q̃ℓ,σ ,N and Q̃ℓ,m,σ ,N element-wise:

Q̃ℓ,σ ,N
i, j =



rσ
+A(x2ℓ−1,x2ℓ) x′ = x+ e2ℓ−1

rσ
+B(x2ℓ−1,x2ℓ) x′ = x+ e2ℓ

rσ
−A(x2ℓ−1,x2ℓ) x′ = x− e2ℓ−1

rσ
−B(x2ℓ−1,x2ℓ) x′ = x− e2ℓ

0 else,

Q̃ℓ,m,σ ,N
i, j =

{
rσ
γ (x2ℓ−1,x2ℓ)

N x′ = x+∆am,ℓe2m−1 +∆bm,ℓe2m

0 else,

where er is the r-th standard unit vector, x = ι
−1
N (i), x′ =

ι
−1
N ( j), ∆am,ℓ = x2ℓ−1 − x2m−1, and ∆bm,ℓ = x2ℓ − x2m. We

then define

Q̃σ ,N =
N

∑
ℓ=1

Q̃ℓ,σ ,N +
N

∑
ℓ=1

N

∑
m=1

Q̃ℓ,m,σ ,N ,

Qσ ,N = Q̃σ ,N −D(Q̃σ ,N), (9)

where D(X) is the diagonal matrix with D(X)k,k = ∑
∞
r=1 Xk,r.

Each Q̃ℓ,σ ,N is a matrix, whose non-diagonal entries repre-
sent the rates at which the population microstate changes due
to cell ℓ producing or eliminating an A or B molecule. Each
Q̃ℓ,m,σ ,N is a matrix, whose non-diagonal entries represent
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the rates at which the population microstate changes due to
cell ℓ dividing and its daughter cell replacing cell m. Qσ ,N

i, j
then represents the rate at which the population (directly)
transitions from the population microstate with index i to
the one with index j (with i ̸= j).

For convenience, if the population microstate is
(a1,b1, ...,aN ,bN), we refer to (aℓ,bℓ) as the microstate
of cell ℓ. Fix a rational number F0,0 ∈ [0,1] such that
k = F0,0N is an integer. F0,0 represents the fraction of cells
whose initial A and B concentrations (a/V ,b/V) are near
the state 0 equilibrium point (σ [A]0,σ [B]0), and 1 − F0,0
represents the fraction with initial concentrations near
(σ [A]1,σ [B]1). Specifically, we will assume the initial
microstates of cells 1, ...,k are each (⌊σ [A]0V⌋,⌈σ [B]0V⌉)
and that the initial microstates of cells k + 1, ...,N are
each (⌈σ [A]1V⌉,⌊σ [B]1V⌋). This assumption is made
for simplicity and can be relaxed, as shown in the results
section. Denote the index of this initial population microstate
by iσ ,N

0 .
Define Zσ ,N = (Zσ ,N

t )t≥0 to be a minimal CTMC on state
space N with infinitesimal generator matrix Qσ ,N and initial
state iσ ,N

0 . We define the stochastic process representing the
population microstate as(

aσ ,N
1 (t),bσ ,N

1 (t), ...,aσ ,N
N (t),bσ ,N

N (t)
)
= ι

−1
N (Zσ ,N

t ).

We define the state 0 subpopulation fraction at time t to be

Fσ ,N
0 (t) =

1
N

N

∑
ℓ=1

θ

(
aσ ,N
ℓ (t)

[A]0
,

bσ ,N
ℓ (t)

[B]1

)
, (10)

where θ(x,y) is 0 if x < y, 1/2 if x = y, and 1 if x > y.

C. Simulation Algorithm

The stochastic population model described in Section II.B
is simulated via the Next Family method [2], where each
cell has the reactions ∅ → A, ∅ → B, A → ∅, B → ∅,
with associated propensity functions (4)-(7) and division
propensity function (8). At regular time intervals through the
simulation, the fraction of cells in which a/[A]0 is larger than
b/[B]1 (with (a,b) the cell microstate) is computed to produce
an empirical value of Fσ ,N

0 (t). Note that cells in which these
numbers are equal provide a count of 1/2 (see (10)).

III. ODE MODEL OF SUBPOPULATION
FRACTIONS

We here introduce a two-state cell population ODE model,
similar to that introduced in [6] and used in [2] for prediction
of the steady-state fractions of cells in either toggle switch
state. We then define and compute this model’s parameters,
and we investigate when this model provides a good approx-
imation to Fσ ,N

0 (t).
Consider a population of N cells with the following

properties. Each of the cells can be in either of two states,
denoted as 0 and 1, and switch instantaneously between these
states. The cells in state i have growth rate constants γi
and switch to the opposite state with rate constant αi. Cells
in either state are also removed from the population with

equal rate coefficients, such that the total population size
remains constant. More precisely, let N̂0(t) and N̂1(t) denote
the number of cells in the population in each state at time t.
The rate at which the number of cells in state i grows due
to division minus the rate at which these cells are removed
is γiN̂i −

γiN̂i+γ jN̂ j
N N̂i = γi

N̂ j
N N̂i − γ j

N̂i
N N̂ j, where j is the other

state. Assuming N̂0(t) and N̂1(t) are sufficiently large [7],
we can then write ODEs for the number of cells in either
state as follows:

d
dt

N̂0 = γ0
N̂1

N
N̂0 − γ1

N̂0

N
N̂1 +α1N̂1 −α0N̂0

d
dt

N̂1 = γ1
N̂0

N
N̂1 − γ0

N̂1

N
N̂0 +α0N̂0 −α1N̂1.

Let F̂0(t) = N̂0(t)/N and F̂1(t) = N̂1(t)/N denote the fraction
of cells in state 0 and 1, respectively. We can rearrange the
first ODE and use the fact that F̂1(t) = 1− F̂0(t) to find

d
dt

F̂0 =−∆γF̂2
0 +(∆γ −α1 −α0)F̂0 +α1, (11)

where ∆γ = γ0 −γ1. This equation gives the dynamics of the
state 0 subpopulation fraction (F̂1 can be found as 1− F̂0).
It should be noted that while the ODEs for the total number
of cells in either state are different in the case of a growing
population (as in [6]), it can be shown that (11) is the same
in either setting.

In what follows, we set ∆γ , α0, and α1 using the param-
eters σ , βX , KX , JX , δX , and γ , such that (on a finite time
interval [0,T ]) the solution F̂0(t) to (11) provides a good
approximation to Fσ ,N

0 (t).

A. Defining ∆γ

To set the value of ∆γ , we first compute the growth
rate constants γi given by (3) at the equilibrium point
(σ [A]i,σ [B]i) of (1)-(2) and define:

γ0 =
γ

1+ [A]0
JA

+
[B]0
JB

, γ1 =
γ

1+ [A]1
JA

+
[B]1
JB

.

We then define
∆γ = γ0 − γ1. (12)

B. Defining α0 and α1

We define α0 and α1 in terms of the Markov chain that
describes the evolution of a single cell’s microstate. We make
the dependence of these rates on σ explicit with the notation
α0 = ασ

0 and α1 = ασ
1 .

Specifically, index the set of cell microstates (a,b) ∈ N2
0

with a bijective function κ : N2
0 →N. For each σ > 0, define

the (infinite) infinitesimal generator matrix Rσ element-wise:

Rσ
i, j =



rσ
+A(a,b) a′ = a+1,b′ = b

rσ
+B(a,b) a′ = a,b′ = b+1

rσ
−A(a,b) a′ = a−1,b′ = b

rσ
−B(a,b) a′ = a,b′ = b−1
−∑s∈{+A,+B,−A,−B} rσ

s (a,b) a′ = a,b′ = b
0 else,

(13)
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where (a,b) = κ−1(i) and (a′,b′) = κ−1( j).
Let Xσ = (Xσ

t )t≥0 be a minimal CTMC with infinitesimal
generator matrix Rσ . Given a set S ⊂ N we define the first
passage time (FPT) of Xσ into S , as

τ
σ ,S = inf{t ≥ 0 : Xσ

t ∈ S }. (14)

Given an index p ∈N, we define the mean first passage time
(MFPT) of Xσ from p to S as

kσ ,S
p = E

[
τ

σ ,S | Xσ
0 = p

]
. (15)

Recall that [A]i and [B]i are defined such that
(σ [A]0,σ [B]0) and (σ [A]1,σ [B]1) are the stable equilibria
of system (1)-(2), with σ [A]0 > σ [A]1 and σ [B]0 < σ [B]1.
Define the sets A σ = {κ(a,b) : a ≥ σ [A]0V,b ≤ σ [B]0V}
and Bσ = {κ(a,b) : a ≤ σ [A]0V,b ≥ σ [B]0V}. Define uσ =
κ(⌊σ [A]0V⌋,⌈σ [B]0V⌉) and vσ = κ(⌈σ [A]1V⌉,⌊σ [B]1V⌋).
We then define

α
σ
0 =

(
kσ ,Bσ

uσ

)−1
, α

σ
1 =

(
kσ ,A σ

vσ

)−1
. (16a,b)

C. Computing α0 and α1

To compute α0 and α1, we use a similar approach to
[8]. Specifically, given a set S ⊂ N, define kσ ,S to be the
(infinite) vector with i-th element kσ ,S

i . Note that Rσ
i,i > 0 for

all i ∈N. Then a standard result for MFPTs (see for example
[9], Theorem 3.3.3) of countable state CTMCs indicates that
kσ ,S is the minimal non-negative solution to the equations{

kσ ,S
i = 0 i ∈ S

−∑ j∈N Rσ
i, jk

σ ,S
j = 1 i /∈ S .

(17)

Define the (infinite) vector λ σ element-wise as λ σ
i =− 1

Rσ
i,i

,
and let Pσ be the jump matrix of Xσ , that is:

Pσ
i, j =

0 i = j

−
Rσ

i, j
Rσ

i,i
i ̸= j.

(18)

Denote by P̄σ ,S the matrix Pσ with row and column indexes
in S removed, and denote by k̄σ ,S and λ̄ σ ,S , respectively,
the vectors kσ ,S and λ σ with row indexes in S removed.
Manipulation of (17) gives the matrix equation (cf. [8])

(I − P̄σ ,S )k̄σ ,S = λ̄
σ ,S . (19)

The matrices and vectors in (19) when S = A σ or S =
Bσ are infinite, so we use a truncation-based approach to
compute the MFPTs. For each r ∈ N0, define the set Er =
{κ(a,b) : a+b ≤ r} and Sr = S ∪E C

r .

Proposition 1. Fix p ∈ N and S ⊂ N nonempty. Let κ :
N2

0 → N be bijective and for all i, j ∈ N, and define the
element Rσ

i, j in the i-th row and j-th column of the in-
finitesimal generator matrix Rσ using (3),(4)-(7),(13), where
(a,b) = κ−1(i) and (a′,b′) = κ−1( j). Let Xσ = (Xσ

t )t≥0 be a
minimal, countable-state CTMC with infinitesimal generator
matrix Rσ , and define kσ ,S

p and kσ ,Sr
p using (15). Also let

Er and Sr be as above. Then

kσ ,S
p = lim

r→∞
kσ ,Sr

p . (20)

The above proposition shows that rather than solve (19)
directly, we can compute an approximate value for ασ

0 by
finding the minimal non-negative solution k̄σ ,Sr to

(I − P̄σ ,Sr)k̄σSr = λ̄
σ ,Sr , (21)

with r sufficiently large.
In particular, let ūσ = uσ −|{ j ∈ Bσ ∪E C

r : j < uσ}| and
v̄σ = vσ −|{ j ∈A σ ∪E C

r : j < vσ}|, with r sufficiently large.
Then k̄σ ,Bσ∪E C

r
ūσ = kσ ,Bσ∪E C

r
uσ , and k̄σ ,A σ∪E C

r
v̄σ = kσ ,A σ∪E C

r
vσ . We

can then approximate the switching rates by

α
σ
0 ≈

(
k̄σ ,Bσ∪E C

r
ūσ

)−1
, α

σ
1 ≈

(
k̄σ ,A σ∪E C

r
v̄σ

)−1
. (22a,b)

Remark 1. The matrices U = I − P̄σ ,Bσ∪E C
r and V =

I − P̄σ ,A σ∪E C
r are both invertible because P̄σ ,Bσ∪E C

r and
P̄σ ,A σ∪E C

r are irreducible and have row sums greater than
or equal to 1, with some rows having sums strictly greater
than 1 due to the removed states (see Lemma 1 in [10]).
Then (21) indeed has a unique solution. Solving a linear
equation involving a r2-dimensional square matrix generally
takes O(r6) operations. However, the indexing function κ

can be chosen such that U and V are banded matrices with
bandwidth of order r (for example κ(0,0) = 1, κ(0,1) = 2,
κ(1,0) = 3, κ(0,2) = 4, κ(1,1) = 5,...). Using standard
banded matrix linear equation algorithms, (21) can then be
solved in O(r4) computation time [11].

IV. PROBLEM FORMULATION

Fix parameters βA, βB, KA, KB, δA, δB, JA, JB, γ , such
that Assumption 1 is satisfied. Let N ∈ N be the population
size, σ > 0 the concentration-scaling parameter, and F0,0 ∈
[0,1]∩Q the initial state 0 subpopulation fraction, where
F0,0N ∈ N0.

Consider F̂σ
0 (t), the solution to (11) with initial condition

F̂0(0) = F0,0 for t on some interval t ∈ [0,T ], where ∆γ is
given by (12), and α0 = ασ

0 and α1 = ασ
1 are given by

(16a,b). Let Fσ ,N
0 (t) be the “true” state 0 subpopulation

fraction defined by (10). We define the approximation error
by

εσ ,N(t) :=
∣∣∣F̂σ

0 (t)−E
[
Fσ ,N

0 (t)
]∣∣∣ , (23)

which we next computationally evaluate for t ∈ [0,T ] as σ

and N are increased.

V. MAIN RESULT: COMPUTATIONAL
EVALUATION OF APPROXIMATION ERROR

In this section, we compare the trajectory F̂σ
0 (t) of the

subpopulation fraction model (11) with parameters defined
by (12) and (16a,b) to the expected value of Fσ ,N

0 (t),
simulated as described in Section II.C.

Results are summarised in Fig. 2 and Fig. 3. These results
indicate that for a given t, εσ ,N(t) may be made as small as
desired by making σ and N sufficiently large. Intuitively, as
σ becomes larger and molecular counts grow, the switching
rates reduce. We would expect in this case that cells starting
near either stable equilibria tend to stay by this equilibria and
grow at rates close to the growth rates at the deterministic

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 623 submitted to 61st IEEE Conference on Decision and Control .
Received March 31, 2022.



Fig. 2. Comparison for various values of σ of numerical estimates of
E[Fσ ,N

0 (t)] (given in (10)) over time with the solution, F̂σ
0 (t), to (11)

with initial value F0,0. Parameters were set as βA = βB = 30 molecules ·
µm−3hr−1, KA = KB = 10 molecules · µm−3, δA = δB = 0.1hr−1, JA =
750 molecules ·µm−3, JB = 150 molecules ·µm−3, γ = 1hr−1, V = 1µm3,
and F0,0 = 0.1. 900 replicate simulations were performed using N = 104

cells. Values of Fσ ,N
0 (t) were sampled during simulation for each t ∈

{0, ...,100} and averaged at each time point. Standard error bars for the
numeric estimates are shown but typically too small to see. For each σ ,
∆γ was computed using (12) to be approximately 0.1064hr−1, and α0
and α1 were computed by using (21)-(22a,b) with r = 500. In addition
to the primary approximation (F̂σ

0 (t)), the solution to (11) with initial
condition F0,0, ∆γ given by (12), and α0 = α1 = 0, which is denoted as
F̃0(t), is also shown. (a) Results for σ = 1. α0 ≈ 1.58 · 10−2hr−1 and
α1 ≈ 1.10 · 10−2hr−1. (b) Results for σ = 2. α0 ≈ 7.01 · 10−3hr−1 and
α1 ≈ 3.46 · 10−3hr−1. (c) Results for σ = 4. α0 ≈ 1.69 · 10−3hr−1 and
α1 ≈ 4.24 · 10−4hr−1. (d) Results for σ = 8. α0 ≈ 9.05 · 10−5hr−1 and
α1 ≈ 5.82 · 10−6hr−1. (e) Maximal errors across time points in (a)-(d)
(“Standard Initialization”). To check for robustness of results with respect to
the initial population microstate, trajectories in (a)-(d) were recomputed (not
shown) when initial cell microstates were chosen stochastically. Specifically
for each cell ℓ ∈ {1, ...,F0,0N}, the microstate, (aσ ,N

ℓ ,bσ ,N
ℓ ), of cell ℓ was

initialized as aσ ,N
ℓ (0)∼Λ{σ [A]0V} and bσ ,N

ℓ (0)∼Λ{σ [B]0V}, and for each
ℓ ∈ {F0,0N + 1, ...,N}, aσ ,N

ℓ (0) ∼ Λ{σ [A]1V} and bσ ,N
ℓ (0) ∼ Λ{σ [B]1V},

where Λ{x} is a Poisson distribution with mean x. The errors for this case
are also displayed (“Alternate Initialization”).

equililibria, giving plausibility to the deterministic model
(11). Computation of the parameters α0 and α1 help account
for effects due to switching when σ is small or moderate.
As N increases, effects associated with the discrete number
of cells in the population, such as those due to noise and
subpopulation fractions hitting 0, also become attenuated.

Remark 2. In Fig. 2 and Fig. 3, approximations using a
second model F̃0(t) are shown. F̃0(t) is defined to be the
solution to (11) with initial condition F̃0(t) = F0,0, when ∆γ

is defined by (12) and α0 = α1 = 0. The results in Fig. 2
and Fig. 3 indicate that this simplified ODE model may also
provide a good approximation for E[Fσ ,N

0 (t)] when σ and N
are sufficiently large. However, for σ of small or moderate

Fig. 3. Results from simulations and ODE approximations with parameters
identical to those in Fig. 2 except that F0,0 = 0.01, σ = 8 throughout and
N is varied rather than σ . (a)-(d) Results for various values of N. In each
case, α0 ≈ 9.05 ·10−5hr−1 and α1 ≈ 5.82 ·10−6hr−1 were computed using
using (21)-(22a,b) with r = 500. (e) Maximal errors for each N.

Fig. 4. Results from simulations and ODE approximations with parameters
identical to those in Fig. 2 except that F0,0 = 0, and JA = JB = 750 molecules ·
µm−3 so that the toggle switches are symmetric and ∆γ = 0. (a) Results for
σ = 1. α0 = α1 ≈ 1.82 ·10−2hr−1. (b) Results for σ = 8. α0 = α1 ≈ 2.09 ·
10−4hr−1. Switching rates were computed using (21)-(22a,b) with r = 500.

size, this model may produce poor results because it does not
account for cells switching between states (Fig. 4). Indeed,
as shown in Fig. 4, the simplified model is only accurate
when the switching rates are small enough that they need
not be accounted for.

VI. CONCLUSION

In this paper, we introduced and evaluated an ODE-based
approximation for the subpopulation fraction dynamics of
exponentially growing cells engineered with toggle switch
genetic circuits with growth feedback in a turbidostat. For
sufficiently large parameter scaling factors σ and population
sizes N, computational analyses show good agreement of
the ODE model and numerical population simulations on
fixed, finite time intervals. Importantly, the parameters for
this approximate model can be computed without simulation.
The ability to efficiently quantify and design population-
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level behavior of toggle switches via this approximate model
may be useful for applications requiring the engineering of
populations with subpopulations that partition in a desired
way.

APPENDIX

To prove Proposition 1, we need two results. The first
is from [12], and the second follows directly from [13] (in
particular see their Theorem 1.1, conclusions (iii) and (v)).

Theorem 1. (see [12], Theorem 2.3) Let R be the infinites-
imal generator matrix (assumed to have finite entries and
rows that sum to 0) of an irreducible, time-homogeneous,
Markov process X = (Xt)t≥0 on state space N. If for some
vector y = (yi)i∈N with finite, non-negative elements and for
some finite set F ⊂ N, R satisfies

∀i ∈ FC
∑

j
Ri, jy j ≤−1 (i)

∀i ∈ F ∑
j

Ri, jy j < ∞, (ii)

with limi→∞ yi = ∞, then all states in X are ergodic (with
ergodicity of state j defined by the condition limt→∞P(Xt =
j|X0 = j)> 0).

Note that for the chain X in the theorem, ergodicity of
a non-absorbing state in this sense is equivalent to positive
recurrence of the state (see §1.1.7,§1.1.8 of [14]). Because
X is assumed irreducible, positive recurrence of all states in
turn implies that the MFPT of X from any state to any set
of states is finite (see footnote in [15]).

Theorem 2. (see [13], Theorem 1.1, conclusions (iii),(v))
Let R be the infinitesimal generator matrix (with finite entries
and rows that sum to 0) of a minimal, time-homogeneous,
Markov process, X = (Xt)t≥0, on state space N for which the
initial distribution is 0 for all states outside of some finite set.
Consider a sequence E1 ⊂ E2 ⊂ ... whose union is N, a set
S ∈N, and a sequence of positive real numbers t1

f ≤ t2
f ≤ ...,

with tr
f → ∞ as r → ∞. If E[min(τS ,T ∞)]< ∞ then

E[min(τS ,T ∞)]−E[min(τS , tr
f )1τS ≤τEC

r
]→ 0 (24)

as r → ∞, where 1• is the indicator function that is 1 when
its argument is true and 0 otherwise, and τS is the FPT of
X into S .

Proof of Proposition 1. To begin, notice that Rσ is ir-
reducible. Indeed for each (a,b) ∈ N2

0, Rκ(a,b),κ(a+1,b),
Rκ(a,b),κ(a,b+1), Rκ(a+1,b),κ(a,b), and Rκ(a,b+1),κ(a,b) are all
positive, and Rκ(a,b),κ(a,b) is finite.

We show that the conditions of Theorem 1 apply to Rσ

with yκ−1(a,b) = e(a+b)h, where h is chosen large enough that
δA > (δA + γ)e−h and δB > (δB + γ)e−h (recall it is assumed
that δA > 0 and δB > 0), and F is chosen such that its
complement, FC, is the set of κ(a,b) for which

(σβAV +σβBV )eh + e−(a+b)h ≤ (δA − (δA + γ)e−h)a

+(δB − (δB + γ)e−h)b.

Note that this choice of FC implies F finite. The only
nontrivial condition to check is (i). Let (a,b) be such
that κ(a,b) ∈ FC. Then, simple manipulation of the above
equation gives

(σβAV +σβBV )e(a+b+1)h+

((δA+γ)a+(δB+γ)b)e(a+b−1)h+1 ≤ (δAa+δBb)e(a+b)h.

From the definition of y and noticing that 0 ≤ rσ
+A(a,b) ≤

σβAV , 0 ≤ rσ
+B(a,b) ≤ σβBV , δAa ≤ rσ

−A(a,b) ≤ (δA + γ)a,
and δBb ≤ rσ

−B(a,b)≤ (δB + γ)b, the above equation implies
that

rσ
+A(a,b)yκ(a+1,b)+ rσ

+B(a,b)yκ(a,b+1)

+ rσ
−A(a,b)yκ(a−1,b)+ rσ

−B(a,b)yκ(a,b−1)+1

≤ ∑
s∈{+A,+B,−A,−B}

rσ
s (a,b)yκ(a,b),

which is equivalent to ∑ j Rσ

κ(a,b), jy j ≤−1, i.e. condition (i).
Without loss of generality, we may assume that Xσ has initial
state p. Because Xσ is positive recurrent, its explosion time
T ∞ = ∞ almost surely (see [9], Theorem 3.6.3).

Notice that E
[
min(τS , tr

f )1τS ≤τEC
r

]
≤ E

[
τS 1

τS ≤τEC
r

]
≤

E
[
min(τS ,τE C

r )
]

= E
[
τS∪E C

r

]
= E

[
τSr
]
. Thus

E
[
min(τS , tr

f )1τS ≤τEC
r

]
≤ E

[
τSr
]
≤ E

[
τS
]
. Combining

this fact with Theorem 2, we see that as r → ∞,
E
[
τSr
]
− E

[
τS
]
→ 0. Because the initial state of Xσ

is assumed to be p, E
[
τSr
]
= kσ ,Sr

p and E
[
τS
]
= kσ ,S

p .
Our result follows.
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