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Abstract—In this paper, we revisit standard results for virtual dynamical systems, to revisit some results on sin-
singularly perturbed systems on the infinite time interval by  gular perturbation. Nonlinear contraction theory [18,25]
employing tools from nonlinear contraction theory. This alows viewpoint on incremental stability which we briefly review

us to determine explicit bounds both on the rate of convergete . Section II. h d ful tool i licati
of trajectories to the slow manifold, and on the distance beteen In Section 1l, has emerged as a poweriul tool In applications

these trajectories and those of the reduced system. We illiate  fanging from Lagrangian mechanics to network control.
the application of the proposed technique to the problem of Historically, ideas closely related to contraction canraeed

retroactivity attenuation in biomolecular systems, that 5, to  pack to [7] and even to [16] (see also [3,21], and e.g. [17]
the problem of attenuating the effects of output loading dueto 4, 5 more exhaustive list of related references). In adjti

interconnection to downstream systems. By virtue of the eXjeit L .
bounds, we can single out the key biochemical parameters to contraction is preserved through a large variety of systems

tune in order to enhance retroactivity attenuation. This provides ~combinations, which may make it particularly suitable ie th
design guidelines for synthetic biology devices that are tst context of biological systems [11], subject to evolutiordan

to loading and can function as insulation devices just like development mechanisms. Employing nonlinear contraction
insulating amplifiers work in electronics. theory, we provide a global convergence result on the iefinit
|. INTRODUCTION time in_terval for singularly perturbed systems. Specifical
assuming that the reduced system and the fast system are
Multiple time-scales have been viewed as a key ingresach partially contracting, we give explicit bounds both on
dient of the modular architecture of complex systems evghe convergence rate to the slow manifold and on the distance
since [23]. In recent years, this perspective has beengifren of the system trajectories from those of the reduced system.
ened in the context of the flurry of research in systems biol- Explicit bounds are particularly useful in design problems

ogy, most notably by [11,13]. A mathematical formulation, \y hich specific values of can be chosen to obtain a desired

in the context of inter_connections between biomoleculdr neapproximation of the system behavior on the slow manifold.
works has been provided by [5, 9, 10].

In these works, timeI'his is the case, for example, of methods for retroactivity

scale separation was shown to be an effective mechanisganation in biomolecular systems based on time scale sep
to provide dynamic insulation between components and Q iion as studied in [9, 10]. In these works, it was showh tha

enforce_ modl_JIar behavior. Modular beh<f;1vi0r is particylarl i o interconnection structure between biomolecular [syste
appealing as it guarantees that a system input/outputmespO;s ¢ ,ch that making the time scale of an upstream system

is not affected by interconnection to other systems. Thig iciently fast is an effective means for attenuating the
allows to easily predict the behavior of a large system Ty ,4ctivity to the output due to loading effects from a
the beha}/lor of ;ts siubsystems. Modular ?Iehgwor in thQownstream system. Here, we provide explicit bounds on the
context of biomolecular systems is especially important iRyte of attenuation and the amount of retroactivity attéiona
synthetic biology, in which researchers are engineerirgela ;5 qnctions of system parameters anw/e illustrate the ap-
networks starting from small working circuits [2]. _ plication of these tools to design an insulation system dase
Mathematically, the standard description of dynamicaly nhosphorylation, which attenuates retroacitivity ase

systems with multiple time-scales is based on singular pefiie fa5t time scales of the phosphorylation reactions.
turbation theory, whose main results were established more, .o paper is organized as follows. In Section II, we

than 40 years ago [12,15]. The main results state that the

. . ; review basic tools in contraction theory. In Section Illsués
trajectories of the system fast approach @neighbor of on global convergence of singularly perturbed systems are
the slow manifold, in whiche quantifies the ratio between g g 9 yp y

. .provided along with explicit convergence bounds. In Sectio
slow and fast time scales. Convergence results on the fin . o
. : ; : . , we apply these tools to study modular interconnection in
time interval require local exponential stability of thewl | . : .
. . s . biomolecular systems. In Section V, we provide a concrete
manifold, while results on the infinite time interval also

require exponential stability of the equilibrium point dfet biomolecular system example.
reduced system.

In this paper, we use comparatively recent convergence ||. BASIC CONTRACTION THEORY TOOLS
analysis tools, based on nonlinear contraction theory and

_ _ o Recall that, given a normi| on the state space, and its
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[20]) Lemma 1:(Robustnes¥ Assume that the system

. 1
m(A):= lim - ([T+hA] - 1). %= f(x.0)
The basic result of nonlinear contraction analysis [18]alihi is contracting, with an associated metric transformatn
we shall use in this paper can be stated as follows. and contraction rate, and consider the “perturbed” system
Theorem 1 (Contraction)Consider the m-dimensional .

deterministic system xp =1 (xp, 1) + d(xp, 1)

x = f(x,t) (1) Whered(x,,t) is bounded, that is,
wheref is a smooth nonlinear function. The system is said to 3d=0,Vx,,Vt 20, |d(xp,1)] <d.

be contractingif any two trajectories, starting from different
initial conditions, converge exponentially to each othér.
sufficient condition for a system to be contracting is the
existence of some matrix measure, such that

Then, any trajectory of the perturbed system satisfies

xplt) x| < xe NPy 0) —x(0) + 5, 3)
of (x,1) in which y is an upper bound on the condition number of
A >0, Vx, V¢ >0, m (T) < -A (@ @ andk is the induced norm o® [18,19].
. i Proof: With R(t) = |® (x,(t) —x(t))| [18], one has
The scalar\ defines the contraction rate of the system.
The standard m{:xtrix measures are listed 'in Table.l. More iRJr AR < |©d(x,,1)].
generally, contraction may be shown by using matrix mea- dt
sures induced by the weighted vector noeaf, ;, = [©x],, []
with ® a constant invertible matrix and= 1, 2, co. Such
measures, denoted witlhg ;, are linked to the standard 1. MAIN RESULT

measures by: We revisit standard results on singular perturbation using

mei(A) =m; (OAO7Y), Vi=1,2,00. convergence analysis toqls based on nonlinear contraction
theory and virtual dynamical systems.

Note that for linear time-invariant systems, contraction We consider the standard singular perturbation frame-
is equivalent to strict stability, and, using the Euclideamwork [12]

vector norm,® can be chosen as the transformation matrix x =1f(x,z,t)

which diagonalizes the system or puts it in Jordan form [18]. ez=g(x,2,¢)

More generally, contraction can use time-varying and state . n m

dependen® (x, t), where®(x, )T (x, t) is uniformly pos- Wth € > 0 a constantx € D, € R, andz € D, € R™.

itive definite and the so-callegeneralized Jacobian Defini.tion'l: .[25] S_ystem (4) is said to beartially
contracting inx if the virtual system

(4)

af(xa t) -1 N —1 .
FZQ( I )9 00 Yo = £ (va (), 1) (5)
has a uniformly negative definite matrix measure [18]. IS contracting for any;(t) and for allz. Similarly, system (4)
is said to bepartially contracting inz if the virtual system
TABLE |
STANDARD MATRIX MEASURES FOR A REALT X 1 MATRIX, A = [a;;]. €y = g(x(t),yz,e) (6)

THE i-TH EIGENVALUE OF A IS DENOTED WITHA\; (A). . .
i(4) is contracting for any(¢) and for alle > 0.

vector norm,[-| induced matrix measurep (A) Proposition 1: If system (4) is partially contracting in,
pely = S0 eyl [ mi (A) = max; (aj; + T lal) | thEN equation

iy = (0 eaP)® | ma (4) = max, (n {4347 )) g(xze) =0

|| = maxi<j<n |25 | Moo (A) = max; (a + 3 | a \) can be equivalently written as = ~(x,¢), i.e., there is a

unigue, global mapping between ¢ and z.

For convenience, we will also say thatfunction f(x, ¢) Proof: The virtual system

is contracting if the systemx = f(x,t) satisfies the

sufficient condition above. Similarly, we will then say that

the corresponding Jacobiamatrix %(x, t) is contracting. is contracting by hypothesis, for amy (). If we setx, equal

In the sequel, unless otherwise stated, norms are Euclidemnsomeconstantvector, this system is also autonomous, and

norms. therefore tends to a unique equilibrium [18]. Thus for any
We shall also use the following two properties of contractgiven x,,, the algebraic equationg (x,,y.,¢) = 0 has a

ing systems, whose proofs can be found in [18, 24]. unique solution, which we can denafe = v(x,, €). [ |

€Yy :g(xoa)’zae)



Denotey(x) := v(x,0) and assume it is globally differen-

tiable. Differentiating the relationg (x,~y(x),0) = 0 with
respect tax then yields

Oy(x) _ _(%)

ox
which is valid globally, as the matrixg—i is uniformly
invertible. The se{(x,z) | z = v(x)} is commonly referred
to as theslow manifold
Lemma 2: Assume that system (4) is partially contractin
in z, with an associated metric transformati®n,, and let

ox

(x,7(x),0), ()

A./e be the contraction rate of (6). Assume further that,

given (7), one can write

(%)
ox

and thatg(x, z, €) is Lipschitz ine with constantX’. Then,
any trajectory of (4) is such that

7(t) = v(x()] < xze”/V2(0) —4(x(0))|+

“*Aﬂthzo,

wherey is an upper bound on the condition numbei®f.
Proof: Note that y, = z(¢) is a solution of the
contracting virtual system

3d>0,Vx,Vz, ¥t > 0,

f(x,z,t)‘ <d

(8)

€y. = g(x(t),yz,e)

while y.q = ~(x(t)) is a solution of the “perturbed”
contracting virtual system

Vet = 8 (x(0),y20,0) + ¢ 28 (x(0), 200, 1) +

(& (x(t),¥24,0) — g (x(1), ¥zd€)) -

in which

_ Xe @ X:[2(0) = y(x(0))] _XeaX: (d+K)

! (A — €Ag) A Ao ’

andy, is an upper bound on the condition numberef.

Proof: Using bound (8), one can write= f (x,z,t) =
f(x,7(x) + As(t), 1) f(x,7(x),t) + Ax(t), where
Ap(t) = £ (x,7(x) + A1 (2), 8) — £ (x,7(x), 1) and Ay () =
X6~ A=/ 5(0) — 4(x(0))| + (L= ¢ Sincef is Lips-
chitz in z, we have that

702

g

[As(t)] < a]Ar(t)] < ax:|2(0) —y(x(0))[e” X</ "+

c@+E) X s,
Az
Letting R = |©,(x — x,)|, we have that (see [18])
d

dt
which, given the bound or\,(¢), gives

d
N )\:r < Kw z
dtR+ R < ax

|2(0) — 7(x(0))]e” /"
a (d+K) x:

) ©
in which K, is the maximum singular value d®,. Let
co = ax.|z(0) — v(x(0))] and¢; := a(dt\if)xz €. Then,
equation (12) leads to

K,

R(t) < R(0)e A=t 4 M(e—m — e~ s/t
A, — € Ag
Ky
C1/\, (1 _ 67)\”)-

From this equation, using th&(0) < K,|x(0)—x,(0)| and
that R(t) > K. |x(t) — x,(t)], in which K, is the smallest

Applying the basic robustness result (3) of Section 2 yieldsingular value of®,, we obtain inequality (10) withy,
the bound (8). B K,/K. the condition number 06,.

Theorem 2:Assume, in addition to the hypotheses of the Finally, since |z(t) — v(x,(t))] < |z(t) — v(x(¢))] +
previous Lemma, that system (4) is partially contracting iny(x(t)) — v(x,(t))| andy(x) is Lipschitz with Lipschitz

X, with an associated metric transformati@®,,, and let

A, be the contraction rate of (5). Assume furthermore thahequality (10).

f (x,z,t) is Lipschitz inz, with Lipschitz constantv and
that~(x) is Lipschitz with Lipschitz constant, . Letx., be
a solution of the reduced system

%y = f (xy,7(x4),1). 9)
Then, any trajectory of (4) satisfies
[x(t) =%, ()] < xalx(0) = x,(0)]e™ "+
€ (C’l(e_“t — e~/ L Oy(1 — e_)"”t)) , V>0,

(10)
and
|2(t) — y(x(t))] < xze~ =/ V[2(0) — v (x(0))|+
BN ot aele(©) =, 0+
Q€ (Cl(e*)‘”t - e*(’\z/e)t) + Co(1— e*)‘l‘t)) , V>0,

(11)

constante.,,, inequality (11) follows from Lemma 2 and
]

Remark 1:In the standard singular perturbation frame-
work, we have thaik(0) = x,(0) and thate < 1. Under
these conditions, Theorem 2 implies that for any given
t, > 0, there is ane* > 0 such that for alle < ¢* we
have that|z(t) — v(x4(t))| = O(e) for all ¢t > ¢, and that
|x(t) — x4(t)| = O(e) for all t > 0. This is consistent with
standard singular perturbation results [12]. The advantdg
the approach through contraction theory is thatoes not
need to be small for the provided bounds to hold and the
bounds are quantified exactly in terms of known parameters
ande. The conditions required by the contraction approach
are, however, stronger than the local exponential stgbilit
requirements in standard singular perturbation theory.

Theorem 3:Under the hypotheses of the two previous
theorems, denote the overall system’s generalized Jatobia
by

Fyi; ]
Fo; '

Fio

F(x,z,t) = { Fo,



The overall system is contracting if Definition 2: (Functionally Modular Interconnection) We
9 T say that the interconnection of system (14) is functionally
Omax (F12 +Fp1) < 4A, modular provided there are constardty, K1, A > 0 (not
where o, denotes a uniform upper bound on the largegiepending orG; and Gz) such that

singular value. K,
Proof: Use an extra coordinate transformation ly(t) — yis(t)] < Koe 1 + o
diag(I;, \/el.) and the small-gain theorem [25]. B Basically, functional modularity means that if one can in-
IV. ATTAINING MODULARITY IN crease the gaify, then the interconnection to downstrgam
BIOMOLECULAR SYSTEMS THROUGH systt_ems does not affect the outpubf the syste_m. That is,
TIMESCALE SEPARATION loading effects on the output can be arbitrarily attenuated

) ) by increasing gair7;. Note that system (14) can be viewed
Here, we illustrate how the tools developed in the presg 4 perturbed version of system (13). Hence, one could,
vious sections can be applied to obtain explicit bounds of principle, apply the robustness result given in Lemma
retroactivity attenuation as studied in earlier work [9].10 1 Assuming that the isolated system is contracting with
Letue D, CR{,y €Dy, CR%, andv € D, CRY be  oniraction rater;, one would obtain that the trajectories
vectors whose components denote concentrations of chemgi-ihe perturbed system exponentially converge with rate
cal species, such as proteins, enzymes, DNA sites, etc. Wey 15 a neighbor of the isolated system trajectory of
consider the following model for an isolated blomolecuIaué‘mp"tudean/G1 for a suitables > 0. This would not show
system (similar to that of metabolic networks [14]): that the interconnection is functionally modular becatse t
o = hllie 1)+ GLA x(¥i ) Ghven thatces 50 We show i what fallows that even
. iv > = B8G. W in wi W ven i
Vs = GiBr(ys ws) + Gil(yis, i), (13) G- is as large a§,, the structure of the interconnection and
in which r(y,u) € R” is a reaction rate vector modeling the application of the results of the previous section lead t
the interaction of species in the vectomwith species in the showing that the interconnection is functionally modular.
vectory, 1(y,u) € R" is a reaction rate vector driving the In order to proceed, we assume that system (14) has the
dynamics ofy, A € R"™*4, B € R"™*", andG; is a positive two following properties (see [10]).
constant. Consider next the interconnection of this systerp1 There is an invertible matrif € R?2%? and a matrix
with a downstream system whose vector of species is M € R™*4 such that

u h(u,t) + G1A r(y,u) TA+MB=0;
y GlB r(y7 u) + Gl 1(},7 u) + GQC S(ij) M l(y, u) =0 fOf a” (}’7 u),

' M C = 0.
v = G2Ds(y,v), 9 b2 keD) C ker(C).

in whichs(y, v) € R® is a reaction rate vector modeling theusing the change of variables = T u + M y in both

interaction between thg-subsystem and the-subsystem. isolated and connected systems, using Property P1, and
Here, G> is a positive constant such thét, = 5G1 with  letting e = 1/G, we obtain

B > 0. We assume that(0) = uis(0) andy(0) = yis(0).

System (14) is a general model for a biomolecular system. xis = T h(T™ (xis — M yis), )
Interconnections always occur through reactions, whdss ra ¢ Vis = B r(yis, T~ (xis — M yis))+
(r ands, in this case) appear in both the upstream and the 1(yis, T~ (xis — M yis)), (15)
downstream systems with different coefficients (captungd b
matricesA, B, C, andD). Constant7; models the timescale and
of the system. We are |ntere§ted in those cases in whlph the %= Th(T (x - My), )
system evolves on a faster timescale than that of its input, _ .
that is, G; > 1. This situation is encountered, for example, ey =Br(y, T (x-My))+1y, (16)
when they dynamics model protein modification processes T '(x—My)) + BC s(y,v)
(such as phosphorylation, allosteric modification, dimari ev =pADs(x,v).

tion, etc.), while the dynamics ai model slower processes

such as protein production and decay or signaling fror biomolecular systems, these properties are often satisfi
outside the cell (here modeled hyu, t)) [1, 8, 22]. Constant because of the physical mechanism of the interconnection. |
G> models the timescale of the interconnection mechanish@rticular P1 is satisfied because the interconnectionreccu
of the y-subsystems with ther-subsystem. For example, through reversible binding, which implies that ratesvill
when this downstream system models gene expressionpPe found with opposite signs in the equationwénd in the
models the binding and unbinding process of transcriptiofduation ofy. Property P2 is also satisfied because all the
factors to DNA binding sites. This reaction is faster thafomponents of the ra® s usually appear in the components
expression and degradation of proteins and therefore we alf the rateC s. These properties can be easily verified by
have thatG, > 1 [1, 6]. inspection.



Lemma 3:Assume that system (15) is partially contract- Proof: Apply Theorem 2 with f(x,z,t) =

ing in yis, with an associated metric transformati®r, and
let \,/e be the contraction rate. Leg = ~,(x) be the
globally unique and differentiable solution of

Br(y, T"'(x —-My))+1(y, T (x —My)) = 0.
Assume that there i > 0 such that

Yy, ¥x, Vit > 0, %@T h(T~(x - My),t)| <d.
17)

T h(T '(x — M y),t), gx,2,¢) = (Br(y, T71(x —
My))+ Iy, T~!(x—My))+Cs(y,v), D s(y, v)) and
take into account thaDs(y,v) = 0 implies Cs(y,v) =0

by Property P2 so thaf.(x) = (vy(x), 70 (x)) with v, (x)

as in Lemma 3. [ |

Theorem 4:Let the assumptions of Lemma 3 and Lemma
4 hold. Then, the interconnected system (14) satisfies the
modular interconnection property.
Proof: It follows from Lemma 3, Lemma 4, and the

Further, assume that system (15) is partially contracting triangular inequality. ]

Xjs, With an associated metric transformati(mg and let

A be the contraction rate. L& h(T~!(x — M y),t) be

Lipschitz iny, with Lipschitz constantx and let~,(x) be

Lipschitz with constant,. Let x, be the solution of the
reduced system

%, = Th(T ' (x — M 7,(x)),t), x,(0) =x(0). (18)

Then, for all¢ > 0 we have that

(Ay/e)t

|yis(t) = 7 (x5())] < xye™ 1¥is(0) — 7y (x(0))[+

dx ¢ + aye (C’l(e* /9 1 C(1 )\wt)) ;
Ay
in which
C = Xa O Xyl¥is(0) =1 (i) Xy @ X d
()\ 6)\ ) ’ 2 )\y A.’L‘ ’

V. EXAMPLE

As an example, we consider a phosphorylation cycle and
demonstrate that the interconnection to downstream target
is modular. For simplicity, we consider a one-step reaction
model for phosphorylation. For any species X, we denote
by X (italics) its concentration. Let Z be a kinase expressed
at (time-varying) ratek(t) and degraded at rate& Let its
substrate be X and let X* denote the phosphorylated version
of X. Let the total amount of X be constant and denoted
by Xr. Let Y be the phosphatase in total amouit.
Then, the phosphorylation reactions are given by X L
X*+2Z, Y+ X %2, X + Y and the blndlng reaction
with downstream targets p is given by* X p kﬁ C. We

voff
denote the total concentration of downstream targetgby

with y,, andx, upper bounds on the condition numbers ofWith conservation lawgr = C' +p, X7 = X* + X + C,

®, and ®, respectively.

Proof: Apply Theorem 2 to system (15) witk =
Xis, Z = Yis, f(x,2,t) = T h(T }(xis — M yis)), and
g(x,2,¢) = B r(yis, T~ (xis — M yis)) + l(yis, T~ (xis —
M Yis))- |

Lemma 4:Let the assumptions of Lemma 3 be satisfied.

Let system (16) be partially contracting in= (y, v) with
associated metric transformatid®, and let \,/e be the
contraction rate. Letz = ~,(x) be the globally unique
solution of

Ds(x,v) =0

Br(y, T™!'(x—My))+l(y, T~ (x—My))+BCs(y, v) = 0.

Assume that there i’ > 0 such that
072 (x)
ox
Let 7.(x) be Lipschitz with constant/,. Let ., be the
solution of the reduced system (18). Then, for @al> 0

we have that

[y (1) = 7 (%, ()] < xze™ /" [2(0) = (2(0))|+

Vz,Vx,Vt > 0,

Th(T '(x-M y),t)’ <d.

and assuming thapr/Xr < 1, we have the following
expression for the isolated system

Z = k(t)—6zZ

) X*
X* = kXtZ (1 — > — koY X7,
Xr
and for the interconnection
Z = k(t)—6Z
X* = khXrZ (1 - ) — ko Yp X
Xr

—konX*(pT - C) + kot C
C = konX*(pT - C) - koffc.
In this system, we havéy, ks, kon, kot >> 9, k(t). Define
G1 := k1 Xr and leta := ko /G1. DefineGy := kon and let
kq := koww/G2. Letting alsou := Z,y := X*, andv := C,
the isolated system can be re-written as

w = k(t)—du

P Gl@(1—§%>—anw>, (19)

dx, € _ 6 Y
X, +ale (C{(e ~O/ L oy(1 - m)) »and the interconnection with downstream targets is given by
in which « = k(t)—du
Xz & XJE|Z( ) ’YZ(X(O)” Xz o X d . ( < Y ) >
- G 1— = | —aY;
Cl ()\ — €Am) ) CQ )\ )\ ) Yy 1|(u XT arry
with y. and, upper bounds on the condition numbers of —Ga(y(pr — v) — kav) (20)

©®. and©®,, respectively.

0 = Galylpr —v) — kav),



the
the

which are in the forms (13)-(14) with
r(y,u) =0, h(u,t) = k(t) — du,

) = (1 (145 )~ avi).

5(y,v) = y(pr — v) — kqv.

Note that system (19) is already in the form (15) and systerrlnl]
(20) is already in the form (16) with = 1/G; and Gy = [2
B8G1. Hence, we can takd” = T and M = 0. One can
easily verify the assumptions of Theorem 4. In particulae, t
isolated system is partially contractingan= y and inx = u
with ®, = ©, = 1. The functionf(x,z,t) = k(t) — du is
Lip_schi_tz and-y, (u) is_, given by v, (u) = m,
which is globally defined foru € R, differentiable, and
Lipschitz. Assuming thak(¢) is bounded, we also have that

lavg—iu)f(x,z,t)‘ < d for some suitablel > 0.
The connected system is partially contracting 2an=
(y,v) with measurem, and ®, = L. This can be seen
by computing the eigenvalues of the symmetric part of the8]

Jacobian J given by

(3]
(4]

(5]
(6]

El

J— < —(u/X7) — YT — Blpr —v) By + Bka >
Blpr —v) —By —Bka )"
10
Denoting a := (u/Xr) + oYy, b = B(pr — v), and 1ol
¢ = B(y + ka), we have that the eigenvalues &f.J + "

JT) are negative provided det(J + J7)) > 0, which is
satisfied whenevetc(a + b) > (c + b)%. This is, in turn,
satisfied ifa is sufficiently large, which can be guaranteedl2]
by taking Y sufficiently large. Furthermore, we have that

7=(u) (u/qulaYwafigd)’ with 'y = ooy, 14
which is uniquely defined, differentiable everywhere an?ls]
globally Lipschitz foru € R.. Assuming thatk(t) is
bounded, we also have th ngsu)f(x,z,t)| is uniformly
bounded. 17]
Hence, we conclude that the system satisfies the modu{ar
interconnection property as the assumptions of Theorem 4
are satisfied. In particular, the difference between thiated
and connected system behavior can be rendered smaller [y
increasing the values aff;, which can be performed by
increasing the amounts of total substrafe. Furthermore,
to guarantee contraction of the interconnection, one needs
to guarantees large enough, which can be obtained by21l
employing sufficiently large amounts of phosphatdse
In turn, large amounts of substrate and phosphatase [z
phosphorylation cycles have been shown to be at the basis
of a fundamental principle for insulation from retroacyvi
[5, 10].

[16]

[20]

[23]
VI. CONCLUSIONS
. - . [24]
In this paper, we have revisited standard singular pertur-
bation results by employing tools from contraction theory,
Assuming that the fast and slow subsystems are each parti
contracting, we obtained a global result about the conver-
gence of the system trajectories to the slow manifold on
the infinite time interval. Furthermore, explicit bounds on

convergence rate and on the asymptotic error between
trajectories of the singularly perturbed system and the

reduced system were obtained. These results were applied
to obtain explicit bounds and a global result on retroattivi
attenuation in biomolecular systems.
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