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Abstract— The Chemical Master Equation (CME) is com-
monly used to describe the stochastic behavior of biomolecular
systems. However, in general, the CME’s dimension is very
large or infinite, so analytical or even numerical solutions may
be difficult to achieve. The truncation methods such as the
Finite State Projection (FSP) algorithm alleviate this issue to
some extent but not completely. To further resolve such a
computational burden, we propose the Enhanced Finite State
Projection (EFSP) algorithm, in which the ubiquitous time-scale
separation is utilized to reduce the dimension of the CME.
Our approach combines the original FSP algorithm and the
model reduction technique that we developed, to approximate
an infinite dimensional CME with a finite dimensional CME
that contains the slow species only. Unlike other time-scale
separation methods, which rely on the fast-species counts’
stationary conditional probability distributions, our model
reduction technique relies on only the first few conditional
moments of the fast-species counts. This is possible because
we apply conditional moment closure to close the fast-species
counts’ dynamics. In addition, each iteration of the EFSP
algorithm relies on the solution of the approximated CME that
contains the slow species only, unlike the original FSP algorithm
relies on the solution of the full CME. These two properties
provide a significant computation advantage. The benefit of
our algorithm is illustrated through a protein binding reaction
example.

I. INTRODUCTION
To analyze the behavior of biomolecular systems, deter-

ministic or stochastic methods can be used [1]. At the single-
cell level, the randomness of molecular events can have
substantial repercussions on an emergent system’s behavior
[2]. Therefore, deterministic models, in many cases, fail to
capture the inherent randomness of biomolecular systems,
so stochastic approaches are often needed. The Chemical
Master Equation (CME) gives the temporal description of the
progression of a system’s state probability distribution [1].
However, when the number of molecular counts is large or
unbounded, the dimension of the CME is large or countably
infinite. Therefore, analytical or computational solutions of
the CME are very difficult to obtain in general.

To obtain sample paths that result from the CME, the
Stochastic Simulation Algorithm (SSA) [3] is used. However,
when the number of reactions increases or especially in the
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presence of multiple time scale, this algorithm can become
computationally expensive, resulting in long simulation time.
To address the simulation time issue, [4] [5] ran the SSA
algorithm only with the slow reactions. These approaches
require an approximation of the fast-species counts as a
function of the slow-species counts, which need considerable
extra computation. For example, [4] approximated the sta-
tionary conditional probability distribution of the fast-species
counts as functions of the slow-species counts. Obtaining
the stationary conditional probability distribution of the fast-
species counts is equivalent to obtaining the fast-species
counts’ stationary conditional moments of all different orders
[6], and the number of conditional moments grow exponen-
tially with the number of the fast-species counts.

Another way to address the CME’s computational issue is
to use the Finite State Projection (FSP) algorithm developed
by [7]. When the number of molecular counts is unbounded,
the system’s state space becomes an infinite set. The FSP
algorithm finds an upper bound to the molecular count of
each species and truncates the system’s state space as a
finite set, so that the truncated finite dimensional system’s
trajectories of probabilities are as close as desired to those of
the original infinite dimensional CME. In several examples,
the FSP algorithm outperforms SSA algorithms in terms of
computational efficiency as well as accuracy [7]. However,
when multiple time scales exist, the FSP algorithm also con-
fronts a computational issue. This is because the algorithm
equally treats the transition rates between states, even though
they typically vary over several orders of magnitude [8].

To handle this problem, Peleš [8] combined the FSP algo-
rithm and time-scale separation. In particular, Peleš applied
the FSP algorithm to the approximated CME that contains
the slow species only. To obtain the approximated CME
with the slow species only, the author applied the time-scale
separation technique developed by [9] [6], and approximated
the stationary conditional probability distribution of the fast-
species counts as functions of the slow-species counts as
[4] did. However, the size of the vector of these stationary
distributions grows exponentially with the number of the fast-
species counts.

In this paper, we propose the Enhanced Finite State
Projection (EFSP) algorithm, which combines the original
FSP algorithm and the model reduction technique that we
developed [10] to approximate an infinite dimensional CME
with a finite dimensional CME, which contains the slow
species only. Instead of considering the fast-species counts’
stationary conditional probability distributions, our model re-
duction technique considers the first n conditional moments



of the fast-species counts, where n is an arbitrary (small)
number, which gives a trade off between approximation
accuracy and computational complexity. We assume that
the number of fast-species counts is bounded, which is
reasonable in many biomolecular systems of practical interest
[1], but allow an unbounded number of slow-species counts.

For each iteration of the EFSP algorithm, we use the
truncated state space of the slow species, which is a finite set,
as an input. Then, we write Ordinary Differential Equations
(ODEs) for both the marginal probability distribution of the
slow-species counts, with the truncated state space at that
iteration, and for the first n conditional moments of the
fast-species counts. Next, we apply our model reduction
technique [10] and obtain a low dimensional CME with
the slow species only. We expand the truncated state space
of the slow species until the approximation error between
the original CME and the approximated CME is sufficiently
small, by using the approximated CME that contains the
slow species only. Therefore, for each iteration, unlike the
original FSP algorithm, which relies on the solution of the
full CME, the EFSP algorithm only relies on the solution of
the approximated CME that contains the slow species only.
In addition, different from [8], our method does not require
the slow-species counts’ stationary conditional probability
distribution. These two differences of the EFSP algorithm
provide a significant computation advantage.

II. PRELIMINARIES

In this section, we define notations that are used through-
out this paper. Z≥0 and R≥0 are the sets of nonnegative
integers and real numbers, respectively. For any positive in-
teger n, Zn≥0 (Rn≥0) implies the set of n-dimensional vectors
with each entry in Z≥0 (R≥0). Given a nonnegative integer
w and an n-dimensional vector Z = [z1, z2, . . . , zn]T , we
define Ψw(Z) to be the vector made up of entries of the
form z1

k1zk22 . . . zn
kn where ki ∈ Z≥0, for i = 1, 2, . . . , n,

and
∑n
i=1 ki = w. For instance, when Z = [z1, z2, z3],

Ψ1(Z) = [z1, z2, z3]T ,

Ψ2(Z) = [z1
2, z1z2, z1z3, z2

2, z2z3, z3
2]T .

(1)

The l∞ and l1 norms of a vector Z = [z1, z2, . . . , zn]T

are defined as ‖Z‖∞ = maxi|zi| and ‖Z‖1 =
∑n
i=1 |zi|,

respectively. For the l∞ norm, we eliminate the subscript
∞ and simply note ‖Z‖ . We call a vector P ∈ Rp≥0 a
probability vector when ‖P‖1 = 1. The l∞ induced norm of
matrix M is defined as ‖M‖ = maxi

∑n
j=1 |mij |.

The l1 to l∞ induced norm of matrix M is defined as
‖M‖l1−l∞ = maxi,j |mij |. We define R[M ]i as the ith row
of M = [mij ] ∈ Rm×n, which implies that

R[M ]i =
[
mi1 mi2 . . . min

]
, for i = 1, 2, . . . ,m.

Now, we consider a biomolecular system with r species,
S1, . . . , Sr, and K reactions of the form:

pk1S1+ . . .+pkrSr
dk−→ qk1S1+ . . .+qkrSr, k = 1, . . . ,K,

where qkl − pkl is the change in the number of molecules
of Sl by the kth reaction and dk stands for the kth reaction

rate constant. Let si, for i = 1, 2, . . . , r, be the molecular
count for each species as a discrete random variable and let
s = [s1, s2, . . . , sr]

T be the state of the system. Then, for
any s ∈ Zr≥0, the CME takes the form

∂P (s, t)
∂t

=

K∑
k=1

[−ak(s)P (s, t) + ak(s− γk)P (s− γk, t)] (2)

where γk is a stoichiometry vector and ak(s) is a propensity
function. When we let pk = [pk1, . . . , pkr]

T and qk =
[qk1, . . . , qkr]

T , for k = 1, . . . ,K, then γk = qk − pk. ak(s)
is proportional to dk and ak(s)dt is the probability that the
kth reaction takes place in an infinitesimal time step dt [11].

Let Ωs be the state space of all species, which implies
s ∈ Ωs. Since Ωs is a subset of a countable set Zr≥0, it is
also countable. Let {si} = {s1, s2, . . .} be an enumeration
of Ωs, and define S = [s1, s2, . . .]T . Then according to [7],
when we let P (S, t) = [P (s1, t), P (s2, t), . . .]T , which is the
probability density state vector at time t, (2) can be written
as a single linear expression:

d

dt
P (S, t) = MP (S, t), given P (S, t0),where (3)

Mij =

−
∑K
k=1 ak(sj) if i = j,

ak(sj) if sj = si − γk,
0 Otherwise.

In this work, we consider biomolecular systems in which
the chemical reactions take place on two time-scales. Let Ks

be the number of slow reactions and Kf be the number of
fast reactions where Ks + Kf = K. We are using a small
positive parameter ε(� 1), which quantifies a time-scale
separation between the slow and fast reactions. Then, we can
separate propensity functions as slow reactions’ propensity
functions ak(s), for k = 1, 2, . . . ,Ks, and fast reactions’
propensity functions ak(s), for k = Ks+1,Ks+2, . . . ,Ks+
Kf = K. Based on the slow and fast reactions, we can
define the slow and fast species as follow. Upon firing the
fast reactions, slow species counts never change. On the
other hand, for each fast species, there exists at least one
fast reaction that changes the fast-species counts. According
to [12], there exists a proper linear coordinate transformation
that identifies the slow and fast species in the system. Let
X1, . . . , Xl be the slow species and Y1, . . . , Yq be the fast
species, where l + q = r. Let xi, for i = 1, 2, . . . , l, yj ,
for j = 1, 2, . . . q, be the molecular count for each slow
and fast species, respectively. Let x = [x1, x2, . . . , xl]

T and
y = [y1, y2, . . . , yq]

T be the state of the system for each
slow and fast species, respectively. Then s ∈ Zr≥0 can be
represented as s = (x,y), where x ∈ Zl≥0 stands for
the slow-species counts and y ∈ Zq≥0 stands for the fast-
species counts. In addition, for k = 1, 2, . . . ,K, propensity
function ak(s) can be written as ak(x,y). Now we make the
following assumptions:

Assumption 2.1: There exist nonnegative integers yjtot
such that

0 ≤ yj ≤ yjtot, for j = 1, 2, . . . , q.



Assumption 2.2: All of the propensity functions are poly-
nomial in s [11]. In addition, the order of each polynomial
is less than or equal to 2.

Assumption 2.1 requires that the number of fast species is
bounded, which is reasonable in many biomolecular systems
of practical interest [1]. Gillespie derived that propensity
functions are polynomial under suitable conditions such as
well-mixedness [11]. Assumption 2.2 states that the order of
each polynomial for the propensity function is at most two
because reactions are either uni-molecular or bi-molecular.
This is a standard assumption considering that n-molecular
reactions (n > 2) have low probability compared to a se-
quence of bi-molecular reactions [1]. In addition, propensity
functions can be written as follows [10] [13]:
ak(x,y) = bk(x) + ck(x)Ψ1(y) + dkΨ2(y), k = 1, 2, . . . ,Ks,

ak(x,y) =
1

ε
(bk(x) + ck(x)Ψ1(y) + dkΨ2(y)),

k = Ks + 1,Ks + 2, . . . ,K,
(4)

where Ψ1(y) and Ψ2(y) are defined in (1). bk(x) is a
polynomial in x with order less than or equal to 2. ck(x) is a
matrix with appropriate dimensions, and each component of
ck(x) is a polynomial in x with order less than or equal to
1. dk is a constant matrix with appropriate dimension. The
propensity functions of the slow reactions are an order of ε
of the propensity functions of the fast reactions.

We let Ωx and Ωy , be the state space of the slow species
and the fast species, respectively. Since each slow-species
counts is unbounded, Ωx = Zl≥0. On the other hand, because
of Assumption 2.1, Ωy ⊂ Zq≥0 and it is a finite set. Then
x and y will be vectors of random variables taking values
in the sets Ωx and Ωy , respectively. Then, Ωs = Ωx × Ωy ,
which is a subset of Zr≥0. Ωy is a countable set because it
is a finite set, and Ωx is also a countable set because it is
a finite product of countable sets. Let {xi} and {yj} be an
enumeration of Ωx and Ωy , respectively.

Then for any x ∈ Ωx and y ∈ Ωy , we can rewrite the
CME as

d

dt
P (x,y, t) =

Ks∑
k=1

[−ak(x,y)P (x,y, t)

+ ak(x− γx,k,y − γy,k)P (x− γx,k,y − γy,k, t)]

+

K∑
k=Ks+1

[−ak(x,y)P (x,y, t)

+ ak(x,y − γy,k)P (x,y − γy,k, t)],

(5)

where, for k = 1, 2, . . .K, ak(x,y) are propensity functions
for the slow and fast reactions defined in (4), and γx,k and
γy,k are corresponding stoichiometry vectors, for the slow
species and the fast species, respectively [5]. For the fast
reactions (k = Ks + 1, . . . ,K), γx,k is 0, because the slow-
species counts are not changed by the fast reactions.

III. BASIC SETUP

In this section, we define ODEs for the slow-spcies counts’
marginal probability distribution, P (x, t), and for the fast-
species counts’ first n conditional moments, Yn(x, t), based

on (5). To proceed, we define P (y, t|x) as the conditional
probability distribution of the fast-species counts given the
slow-species counts. Then, these two distributions, P (x, t)
and P (y, t|x), jointly specify the full distribution P (s, t) =
P (x,y, t) via P (x,y, t) = P (x, t)P (y, t|x), by Bayes’
theorem. Then we define

µw(x, t) = E[Ψw(Y )|x] =
∑
y∈Ωy

Ψw(y)P (y, t|x),

Yn(x, t) = [µ1(x, t)T , µ2(x, t)T , . . . , µn(x, t)T ]T ,

(6)

for any x ∈ Ωx, w ∈ Z≥0, 1 ≤ n ≤ |Ωy|, where µw(x, t)
and Yn(x, t) denote the fast-species counts’ wth and first n
conditional moments, respectively. For w = 1, 2, . . . , n, let
fw be a matrix whose multiplication with Yn(x, t) isolates
µw(x, t), i.e.,

µw(x, t) = fwYn(x, t). (7)

Now we can derive ODEs from (5) for the slow-species
counts’ marginal probability distribution, P (x, t), as in (8):

Proposition 3.1: [10] For the CME in (5) with Assump-
tions 2.1 and 2.2, given x ∈ Ωx, we have

d

dt
P (x, t) =

Ks∑
k=1

[−E[ak(x,y)|x]P (x, t)

+E[ak(x− γx,k,y)|x− γx,k]P (x− γx,k, t)].
(8)

By using (4), we can further express the conditional expec-
tation of propensity function ak(x,y) as

E[ak(x,y)|x] =
∑
y

ak(x,y)P (y, t|x)

= bk(x) + ck(x)µ1(x, t) + dkµ2(x, t),

(9)

for given x and 1 ≤ k ≤ Ks. When we let X =
[x1, x2, . . . , ]T , according to Munsky [7], the slow-species
counts’ marginal probability distribution in (8) can be written
as a single linear expression:

d

dt
P (X, t) = A(Y2(x, t))P (X, t), given P (X, t0), (10)

where, P (X, t) = [P (x1, t), P (x2, t), . . . , P (xi, t), . . .]
T (11)

is the slow-species counts’ marginal probability distribution
vector at time t and

Aij =


−
∑Ks
k=1E[ak(xj ,y)|xj ] if i = j,

E[ak(xj ,y)|xj ] if xj = xi − γx,k, 1 ≤ k ≤ Ks,

0 Otherwise.
(12)

In (10), P (X, t) is an infinite dimensional vector, because
Ωx, the state space of the slow species is infinite. We can
also derive ODEs from (5) for the fast-species counts’ first
n conditional moments, Yn(x, t), as in (13):

Proposition 3.2: [10] For the CME in (5) with Assump-
tions 2.1 and 2.2, for x ∈ Ωx and 1 ≤ n ≤ |Ωy|, we have

ε
d

dt
Yn(x, t) = C(x)Yn(x, t) + c1(x) + c2µn+1(x, t) + εG(t).

(13)
To proceed further, let us define some notations. Let Is =
{i1, i2, . . . , ia} and Ix = {i1, i2, . . . , ib} denote a finite or-
dered index set for all species and slow species, respectively.



Then, for given Is and Ix, we can define a truncated finite
state space, ΩIss and ΩIxx , as follows:

ΩIss = {si1 , si2 , . . . , sia}, ΩIxx = {xi1 ,xi2 , . . . ,xib}.

For any matrix A and a given ordered index set I , let AI
denote the principal submatrix of A, in which both rows and
columns have been chosen and ordered according to I . For

example, when A =

1 2 3
4 5 6
7 8 9

 , I = {2, 3}, then AI =[
5 6
8 9

]
. In addition, for any vector X , XI is the vector

of those elements of X indexed by I . For example, when
X = [0.3, 0.7, 0.1]T , I = {3, 2}, then XI = [0.1, 0.7]T .

Based on (3), and a given finite ordered index set Is, we
define P Is(S, t) as solutions of

d

dt
P Is(S, t) = MIP

Is(S, t), P Is(S, t0) = PIs(S, t0), (14)

where P Is(S, t) is the approximated finite dimensional prob-
ability distribution. Also, based on (10), and a given finite
ordered index set Ix, we define P Ix(X, t) as solutions of

d

dt
P Ix(X, t) = [A(Y2(x, t))]IxP

Ix(X, t), P Ix(X, t0) = PIx(X, t0),

(15)
where P Ix(X, t) is the approximated finite dimensional
marginal probability distribution of the slow-species counts.

Although, we are not assuming that the slow species’ count
is finite, we iteratively truncate the space space of the slow
species to Ix and compute the error due to such a truncation.
If the error is larger than a desired value, we enlarge Ix and
repeat the procedure. This process is streamlined in Section
7, where we propose the EFSP algorithm. Therefore, for now,
we assume that Ix is a given finite set. Then, for the given
Ix, let Σtrue be

Σtrue :


d
dt
P Ix(X, t) = [A(Y2(x, t))]IxP

Ix(X, t),
ε d
dt
Yn(x, t) = C(x)Yn(x, t) + c1(x)

+c2µn+1(x, t) + εG(t),
(16)

for any x ∈ ΩIxx . When n = |Ωy|, Σtrue is closed,
because µn+1(x, t) can be represented as an affine function
of Yn(x, t) [5]. However, in general, when 1 ≤ n < |Ωy|, the
dynamics of the fast-species counts’ conditional moments are
not closed, because µn+1(x, t) is not a function of Yn(x, t)
anymore. To solve this problem, we apply a robust condi-
tional moment closure method to approximate µn+1(x, t) as
a function of Yn(x, t) to close the dynamics. The next section
proposes the robust moment closure technique developed by
[13], and it can be applied to the conditional moments.

IV. ROBUST CONDITIONAL MOMENT CLOSURE

The Robust Moment Closure (RMC) was originally devel-
oped by [13] for the moments dynamics. Here we modify it
so to make it applicable to the dynamics of the conditional
moments. For any x ∈ ΩIxx , we define the fast-species
counts’ conditional probability distribution as

PY |X(x, t) = [P (y1, t|x), . . . , P (yj , t|x), . . . , P (y|Ωy|, t|x)]T .

Then for each µn+1(x, t) and Yn(x, t), there exists unique
Hn and Vn that satisfy

µn+1(x, t) = HnPY |X(x, t), Yn(x, t) = VnPY |X(x, t).

For example, when q = 1,

Hn =
[
0 1n+1 2n+1 . . . (|Ωy|)n+1

]
, (17)

Vn =

0 1 2 . . . |Ωy|
...

...
0 1n 2n . . . |Ωy|n

 . (18)

Our objective is to approximate µn+1(x, t) as a function of
Yn(x, t), so that (15) becomes closed, denoted as

µn+1(x, t) ≈ φ(Yn(x, t)),

where φ(.) can be a nonlinear function. Since the condi-
tional probability distribution, PY |X(x, t), is not known, φ(.)
should be chosen such that the worst-case error between
µn+1(x, t) and φ(Yn(x, t)) is minimized. Therefore, the
following min-max problem:

inf
φ

sup
PY |X (x,t)∈P

‖µn+1(x, t)− φ(Yn(x, t))‖, (19)

should be solved. According to [13], without a pri-
ori information on the conditional probability distribution,
PY |X(x, t), a solution for (19) is obtained when φ(Yn(x, t))
is an affine function of Yn(x, t), which can be written as

φ(Yn(x, t)) = KYn(x, t) +K0.

In addition, we can obtain K and K0 by solving the linear
program

min
K0,K

γ

s.t. − γ1T ≤ R[Hn − (KVn +K01T )]i ≤ γ1T
(20)

for i = 1, 2, . . . , p, where p is the number of rows in Hn.
Let the linear program in (20)’s object value be ρn. When n
is fixed, ρn is a constant. Then

‖µn+1(x, t)− φ(Yn(x, t))‖ =∥∥HnPY |X(x, t)− (KVnPY |X(x, t) +K0)
∥∥,

which is the approximation error between µn+1(x, t) and
φ(Yn(x, t)), is bounded by ρn for any PY |X(x, t).

On the right-hand side of Σtrue, we substitute KYn(x, t)+
K0 for µn+1(x, t), and obtain

Σclosed :


d
dt
P̃ Ix(X, t) = [A(Ỹ ε2 (x, t))]Ix P̃

Ix(X, t) = Ã(t)P̃ Ix(X, t)

ε d
dt
Ỹ εn(x, t) = C(x)Ỹ εn(x, t) + c1(x)

+c2(KỸ εn(x, t) +K0) + εG(t).
(21)

Let us define µ̃εw(x, t) = fwỸ
ε
n(x, t).

Remark 4.1: If C(x) + c2K is a stable matrix, the ap-
proximation error between µw(x, t) and µ̃εw(x, t) is bounded.
To ensure the stability by construction, we can augment
(20) with a linear matrix inequality and conduct an iterative
algorithm. This procedure is in [10]. Here we assume that
C(x) + c2K is a stable matrix.



V. TIME-SCALE SEPARATION

We can check that (21) is written in standard singular
perturbation form [9]. Let Ỹ 0

n (x) be the solution of

C(x)Ỹ 0
n (x) + c1(x) + c2(KỸ 0

n (x) +K0) = 0, (22)

which can be obtained by letting ε = 0 in (21). Since C(x)+
c2K is a stable matrix, Ỹ εn(x, t) converges exponentially fast
to Ỹ 0

n (x) [9]. By replacing Ỹ ε2 (x, t) with Ỹ 0
2 (x) on the right-

hand side of (21), we can obtain

Σreduced :
{

d
dt
P̄ Ix(X, t) = [A(Ỹ 0

2 (x))]Ix P̄
Ix(X, t) = ĀP̄ Ix(X, t).

(23)
Σreduced is composed of the slow species only, because
we approximate the conditional moments of the fast-species
counts, Ỹ ε2 (x, t), as functions of the slow-species counts,
Ỹ 0
2 (x). Σreduced is a positive system if and only if Ā is

a Metzler matrix [14]. However, this is not guaranteed in
general. Because of (9) and (12), any off-diagonal element
of Ā has the form

bk(x) + ck(x)µ̃0
1(x) + dkµ̃

0
2(x), (24)

where µ̃0
w(x) = fwỸ

0
n (x), for w = 1, 2. Therefore, Ā is

a Metzler matrix if and only if (24) is non-negative for all
x ∈ ΩIxx . For a given x ∈ ΩIxx and k = 1, 2, . . . ,Ks, we
define a linear program

min
h1(x),h2(x)

∥∥h1(x)− µ̃0
1(x)

∥∥+
∥∥h2(x)− µ̃0

2(x)
∥∥

s.t. bk(x) + ck(x)h1(x) + dkh2(x) ≥ 0.
(25)

Let the optimal solution to (25) be h1(x) = µ̂1(x) and
h2(x) = µ̂2(x) and the object value be λx. By replacing
µ̃0
1(x) and µ̃0

2(x) with µ̂1(x) and µ̂2(x) in Σreduced, we
obtain

Σfinal :
{

d
dt
P̂ Ix(X, t) = [A(Ŷ2(x))]Ix P̂

Ix(X, t) = ÂP̂ Ix(X, t),
(26)

where Ŷ2(x) = [µ̂1(x)T , µ̂2(x)T ]T . In (26), Σfinal is a
positive system because Â is a Metzler matrix, which is
guaranteed by (25). Furthermore, Â is a stable matrix and
both

∥∥µ̂1(x)− µ̃0
1(x)

∥∥ and
∥∥µ̂2(x)− µ̃0

2(x)
∥∥ are bounded

by λx.
Remark 5.1: [10] When n = |Ωy|, both ρn and λx are 0.

Now the approximation errors for both the fast-species
counts’ conditional moments and the slow-species counts’
marginal probability distribution should be quantified.

VI. ERROR QUANTIFICATION

A. Conditional Moments of the Fast-Species Counts

Here, we first consider the fast-species counts’ conditional
moments. The following theorem derives the approximation
error between the fast-species counts’ conditional moments
of Σtrue, µw(x, t), and those of Σfinal, µ̂w(x).

Theorem 6.1: [10] Given tf > t0 > 0 and x ∈ ΩIxx ,
for a sufficiently small ε, the approximation error between
µw(x, t) and µ̂w(x) satisfies

supt∈[t0,tf ] ‖µw(x, t)− µ̂w(x)‖ ≤ ∆x
w,ε + λx +O(ε),

for w = 1, 2, where,
∆x
w,ε =

∫ tf
t0

∥∥fw exp
{

1
ε
(C(x) + c2K)(tf − τ)

}∥∥dτ ρn
ε
‖c2‖.

Furthermore, there exist ∆ε > 0 and ε∗ > 0 such that
supt∈[t0,tf ] ‖µw(x, t)− µ̂w(x)‖ ≤ ∆ε + O(ε) for all x ∈
ΩIxx , ε ∈ (0, ε∗) and w = 1 or 2.

B. Marginal Probability Distribution of the Slow-Species
Counts

Next, we quantify the approximation error of the slow-
species counts’ marginal probability distribution by using
Theorem 6.1. In Σfinal, we construct a positive system by
making Â Metzler and stable matrix. Now, let us regard
Σfinal as our nominal system and (15) as the perturbed sys-
tem. Then we can express the perturbed system as follows:

d

dt
P Ix(X, t) = (Â+ ∆1(t))P Ix(X, t), (27)

where

∆1(t) = [A(Y2(x, t))]Ix − Â.

By using Theorem 6.1, we can prove that l1 − l∞ norm of
∆1(t) is bounded.

Lemma 6.2: [10] There is a constant k1 such that

‖∆1(t)‖l1−l∞ ≤ k1∆ε +O(ε).

Now we can qunatify the approximation error between the
slow-species counts’ marginal probability distribution of the
original CME, P Ix(X, t), and those of Σfinal, P̂ Ix(X, t), as
follows:

Theorem 6.3: [10] Given tf > t0 > 0, the approximation
error between P Ix(X, t) and P̂ Ix(X, t) satisfies

supt∈[t0,tf ]

∥∥∥P Ix(X, t)− P̂ Ix(X, t)
∥∥∥

≤ k1

∫ tf
t0

∥∥∥exp
{
Â
}

(tf − τ)
∥∥∥dτ∆ε +O(ε).

Corollary 6.4: [10] As ε → 0, the right-hand side of the
inequality in Theorem 6.3 goes to k∆0, where

k = k1

∫ tf
t0

∥∥∥exp
{
Â(tf − τ)

}∥∥∥dτ ,
∆0 = limε→0 ∆ε = sup

w∈{1,2},x∈Ω
Ix
x

(∆x
w,0 + λx) , and ∆x

w,0 =

limε→0 ∆x
w,ε =

∫∞
0
‖fw exp{(C(x) + c2K)t}‖dtρn‖c2‖.

Remark 6.5: When n = |Ωy|, the right-hand side of the
inequality in Theorem 6.3 goes to O(ε). This is because when
n = |Ωy|, both ρn and λx go to 0 by Remark 5.1, so ∆ε

goes to 0.
Corollary 6.4 and Remark 6.5 show that the approximation
error between the slow-species counts’ marginal probability
distribution of the original system and those of the approx-
imated system decreases as ε decreases. Now we should
discuss about how to find Ix, that approximate the infinite
dimensional CME as a finite dimensional CME that contains
the slow species only.

VII. THE FSP AND THE EFSP ALGORITHMS

In this section, we first illustrate the FSP algorithm de-
veloped by [7] in general, for (2) and (3). Then we propose
the EFSP algorithm which can be applied to (10), where two
time-scale exists.



A. The FSP algorithm in general

The FSP algorithm provides a systematic method to find
a finite ordered index set Is, so that the approximated
probability distribution, P Is(S, t) in (14), is sufficiently close
to the original infinite-dimensional probability distribution,
P (S, t). In particular, the solution of (14) for t ∈ [t0, tf ] is

P Is(S, t) = exp(MIst)P
Is(S, t0).

According to [7], for any pair of index sets, Is,1 ⊂ Is,2,

[exp
(
MIs,2

)
]Is,1 ≥ exp

(
MIs,1

)
≥ 0. (28)

Since the probability density vector P (S, t) is always non-
negative, (28) guarantees that

[exp
(
MIs,2tf

)
]Is,1P

Is,1(S, t0) ≥ exp
(
MIs,1tf

)
P Is,1(S, t0).

(29)
This result assures that when we gradually expand ordered
index set Is,j (as Is,1 ⊂ Is,2 . . . ⊂ Is,j . . .), the approxima-
tion monotonically improves.

In addition, for given δ > 0, tf ≥ 0 and Is, if∥∥∥exp(MIstf )P I(S, t0)
∥∥∥
ls,1

= 1
T [exp(MIstf )P Is(S, t0)] ≥ 1−δ

(30)
is satisfied then exp(MIstf )P Is(S, t0)

≤ PIs(S, tf ) ≤ exp{(MIs)tf}P Is(S, t0) + δ1
(31)

is guaranteed [7]. (30) and (31) imply that the
approximate solution, P Is(S, tf ) = exp(MIstf )P Is(S, t0)
never exceeds the actual solution, PIs(S, tf ), and∥∥PIs(S, tf )− P Is(S, tf )

∥∥ ≤ δ, when (30) is satisfied.
We can depict the underlying idea of the FSP algorithm,

by representing all possible states as nodes on an infinite r-
dimensional integer lattice, where r is the number of species
in the biomolecular system and each node corresponds to
distinct state, si. Fig. 1 (Top) of [7] shows a lattice for
r = 2. Here, infinite lattice is projected onto the finite
subset enclosed by the gray square, that corresponds to an
index set Is. This projected state space is shown in Fig.
1 (Bottom) of [7], where Is represents the truncated state
space, and I

′

s represents the complement of Is, where I
′

s is
aggregated to a single point. (14) illustrates the truncated
CME with the index set Is. (14) reflects transitions between
states within Is as well as reactions that starts from Is and
end in I

′

s. However, the equation ignores reactions that begin
in I

′

s and end in Is or I
′

s. (29) shows that as the index
set Is increases, more trajectories are maintained and the
probability of remaining in Is increases. (31) shows that the
probability that the original infinite dimensional system is
currently in Is must be larger than or equal to the probability
that the system has stayed in Is for all times, t ∈ [t0, tf ].

Now we can apply the FSP algorithm to (3) to find a finite
ordered index set Is that truncates the original infinite state
space to a finite state space such that the error∥∥P Is(S, t)− PIs(S, t)

∥∥ ≤ δ.

∗ The Finite State Projection Algorithm
Step 0.

Choose the final time of interest, tf .

Specify the acceptable error, δ > 0.
Choose an initial finite set of states, I0 for the FSP.
Initialize a counter, j = 0.

Step 1.
Get ΓIs,j = 1TP Is,j (S, tf ) = 1T exp

(
MIs,j tf

)
P Is,j (S, t0).

Step 2.
If ΓIs,j ≥ 1− δ: Is = Is,j , Stop.
P Is(S, tf ) approximates PIs(S, tf ) within error δ.
Else: Go to Step 3.

Step 3.
Add more states to Is,j and obtain Is,j+1.
Increment j as j + 1 and return to Step 1.

In Step 0, I0 can be determined based on the initial
probability distribution P (S, t0). In Step 3 of the FSP
algorithm, a method to expand Is,j to Is,j+1 is not explicitly
stated. There may be many methods to expand the state
space, and [7] illustrates one way to perform the expansion,
called N -step reachability. Let Is,0 be the initial state and
define Is,j inductively. Let Is,j+1 contain all states in Is,j
combined with all states which can be reached from Is,j
in 1 reaction. Then, Is,j denotes the set of all states which
can be reached from the initial state in j or fewer reactions.
This is how the algorithm expands the state space in Step
3. Munsky showed that for sufficiently large j, ΓIs,j =
1T exp

(
MIs,j tf

)
P Is,j (S, t0) ≥ 1 − δ is satisfied [7]. In

addition, for I that we find in the FSP algorithm, we have
that ∥∥PIs(S, t)− P Is(S, t)

∥∥ ≤ δ,

for t ∈ [t0, tf ] is guaranteed.
However, when multiple time scales exist, the FSP al-

gorithm suffers from computational issues for two reasons.
First, when the algorithm expands Is,j in Step 3, it equally
treats the transition rates between states, even though tran-
sitions by the fast reactions are much more probable than
transitions by the slow reactions. Second, to compute ΓIs,j
in Step 1, the algorithm has to solve the full CME at t = tf ,
to obtain P Is,j (S, tf ), which contains both slow and fast
species. To handle these problems, we propose the EFSP
algorithm, when two time-scale exists. In Step 3 of the
EFSP algorithm, we aggregate the fast species and apply
the N -step reachability to the slow species, by using the
fact that transitions by the fast reactions are much more
probable than transitions by the slow reactions. In Step 1 of
the EFSP algorithm, we use the model reduction technique
to approximate the original CME as Σfinal, which contains
the slow species only, and solve the approximated CME at
t = tf .

B. The EFSP algorithm where two time-scale exists

The EFSP algorithm provides a systematic method to find
a finite ordered index set Ix, so that the approximated slow-
species counts’ marginal probability distribution, P̂ Ix(X, t)
in (26), is sufficiently close to the original slow-species



Fig. 1: Here, we visualize a two dimensional lattice, when
one slow species (X1) and one fast species (Y1) exist. Based
on the fact that moving vertically is much more probable
then moving horizontally, we aggregate the fast species and
apply the N -step reachability to the slow species.

counts’ marginal probability distribution, P (X, t), which is
an infinite dimensional vector.
∗ The Enhanced Finite State Projection Algorithm

Step 0.
Choose the final time of interest, tf .
Specify the acceptable error, δ > 0.
Choose an initial finite set of states, Ix,0 for the FSP.
Initialize a counter, i = 0.

Step 1.
Get ΓIx,i = 1T P̂ Ix,i(X, tf ) = 1T exp

(
ÂIx,itf

)
P̂ Ix,i(X, t0).

Step 2.
If ΓIx,i ≥ 1− δ: Ix = Ix,i, Stop.
P̂ Ix,i(X, tf ) approximates PIx(X, tf ) within error δ.
Else: Go to Step 3.

Step 3.
Add more elements to Ix,i and obtain Ix,i+1.
Increment i as i+ 1 and return to Step 1.

In Step 3 of the EFSP algorithm, a method to expand
Ix,i to Ix,i+1 is not explicitly stated. Fig. 1 shows a
two-dimensional integer lattice when only one species
for both slow (X1) and fast species (Y1) exist. Based on
the fact that moving horizontally (by the fast reactions)
is much more probable than moving vertically (by the
slow reactions), we aggregate all state, that have the same
slow-species counts, as a single state, and apply the N -step
reachability procedure to the slow species only. It solves the
first computational issue of the original FSP algorithm.

In Step 1, unlike the original FSP algorithm, which has
to calculate original CME that contains both fast and slow
species, the EFSP algorithm relies on the approximated
CME, Σfinal, that contains the slow species only. It
solves the second computational issue of the original FSP
algorithm. To obtain P̂ Ix,i(X, tf ) at ith iteration, we have to
approximate Yn(x, t) as Ŷn(x) for all x ∈ Ω

Ix,i
x . However,

Ŷn(x) for x ∈ Ω
Ix,i−1
x is already calculated at (i − 1)th

iteration, so we additionally need to calculate Ŷn(x) only
for x ∈ Ω

Ix,i
x \ Ω

Ix,i−1
x . In addition, unlike other time-scale

separation methods, which rely on the fast-species counts’

stationary conditional probability distributions, our model
reduction technique relies on only the first few conditional
moments of the fast-species counts, which provides
significant computational advantage. Approximation error
occurs by the model reduction and the truncation of the
state space. Corollary 6.4 and Remark 6.5 assure that the
approximation error by the model reduction is small enough
for sufficiently small ε. In addition, [7] shows that for
sufficiently large projection space, approximation error by
truncating the state space is sufficiently small. Therefore,
even though there is no guarantee that the EFSP algorithm
converges, we expect that this algorithm will converge for
sufficiently small ε and large truncated state space. To show
the utility of our algorithm, we consider a protein binding
example.

VIII. EXAMPLE

In this section, we consider a protein binding reaction to
show the utility of our method. We can write the chemical
reactions as follows [1]:

∅ k−⇀↽−
b
X , X +R

a−⇀↽−
d
C, (32)

where X , R, C is protein, promoter and complex, respec-
tively, and k, b, a, d is protein’s production and decay rate,
promoter’s binding and unbinding reaction rate, respectively.
In (32), there exists a constant Rt that satisfies Rt = R+C,
because the total concentration of the promoter is conserved.
We know that aRt, d � b, k, because the protein and the
promoter’s binding and unbinding reactions are much faster
than the protein’s decay and production reactions. Therefore,
we can divide reactions in two groups: ∅ k−⇀↽−

b
X are two slow

reactions and X +R
a−⇀↽−
d
C are two fast reactions. When we

define X1 = X+C, we can find out that X1 is a slow species
and C is a fast species which is bounded by Rt, because
count of X1 is never changed and count of C is changed
by the fast reactions. When we define ε = b

d , which satisfies
0 < ε � 1 and let k = b, aRt = d

2 , s = [x1, c]
T , we can

derive the following propensity functions and corresponding
stoichiometries for both fast and slow reactions as

a1(x1, c) = b, γ1 = [+1, 0]T ,
a2(x1, c) = b(x1 − c), γ2 = [−1, 0]T ,

a3(x1, c) = 1
ε

b
2V Rt

(x1 − c)(Rt − c), γ3 = [0,+1]T ,
a4(x1, c) = 1

ε
bc, γ4 = [0,−1]T ,

where, V is the volume.
The state space of the fast species is Ωy =

{0, 1, 2, . . . , Rt}, which is a finite set, and the state space
of the slow species is Ωx = {0, 1, 2, . . . , } which is an
infinite set. Based on the above propensity functions and
stoichiometries, for x1 ∈ Ωx and c ∈ Ωy , we can derive
ODEs for the slow-species counts’ marginal probability
distribution and the fast-species counts’ first 2 conditional
moments as follows:

d

dt
P (x1, t) = −bx1P (x1, t) + b(x1 + 1)P (x1 + 1, t)

− bµ1(x1 + 1, t)P (x1 + 1, t) + bµ1(x1, t)P (x1, t)

− bP (x1, t) + bP (x1 − 1, t),

(33)



ε
d

dt
Y2(x1, t) =[
−b− b(x1+Rt)

2V Rt

b
2V Rt

b+ b(2bx1Rt−bx1−bRt)
2V Rt

−2b+ b−2bx1−2bRt

2V Rt

]
Y2(x1, t)

+

[
bx1

2V
bx1

2V

]
+

[
0
b

V Rt

]
µ3(x1, t) +O(ε)

= C(x1)Y2(x1, t) + c1(x1) + c2µ3(x1, t) +O(ε),

Here, µ3(x1, t) is not a function of Y2(x1, t). Therefore, to
close the dynamics, we need to approximate µ3(x1, t) as an
affine function of Y2(x1, t) as follows:

µ3(x1, t) ≈ K32µ2(x1, t) +K31µ1(x1, t) +K30.

By solving the linear program in (20), we can obtain

K32 = 15, K31 = −56, K30 = 30 and ρ2 = 30.

When we substitute µ3(x1, t) with φ(Y2(x1, t)) in (33), we
can check that ODEs for the fast-species counts first 2
conditional moments are closed. To approximate Y2(x1, t)
as functions of the slow-species counts, we let ε = 0 in
Σclosed, and obtain

C(x1)

[
µ̃0

1(x1)
µ̃0

2(x1)

]
+ c1(x1)

+ c2(K32µ̃
0
2(x1) +K31µ̃

0
1(x1) +K30) = 0.

(34)

By solving (34), we can obtain µ̃0
2(x1) = K21µ̃

0
1(x1)+K20,

where K20 =
ax1Rt + 2aK30

2aRt + 2ax1 − 2aK32 − a+ 2dV
,

K21 =
2ax1Rt − aRt − ax1 + 2aK31 + dV

2aRt + 2ax1 − 2aK32 − a+ 2dV
,

µ̃0
1(x1) =

aK20 + ax1Rt
aRt + ax1 − aK21 + dV

.

(35)

We can obtain the CME with the slow species only, by
substituting µ1(x1, t) as µ̃0

1(x1) in (33). Now we should
apply the EFSP algorithm to the original CME to find Ix.

Let b = 0.4[min−1], Rt = 10[molecules], V = 1[µm3],
t0 = 0[min], tf = 30[min], X1(t0) = 10[molecules], C(t0) =

2[molecules], Ω
Ix,0
x = {0, 1, . . . , X1(t0) + C(t0) = 12}

and the EFSP error δ = 10−3. When we apply the EFSP
algorithm, ΓIx,0

= 1T P̂ Ix,0(X, tf ) = 0.8859 < 1 − δ.
After some iterations, when ΩIxx = {0, 1, 2, . . . , 15}, ΓIx =
1T P̂ Ix(X, 0) = 0.99989 > 1 − δ. This implies we succeed
to truncate Ωx as ΩIxx = {0, 1, . . . , 15}, which is a finite set.

Fig. 2(a) compares P (X1 = 5) of the original CME with
10−6 error bound (which can be obtained by original FSP
algorithm) with ε = 0.1, 0.01, 0.001 and those of Σfinal with
n = 2, ΩIxx = {0, 1, 2, . . . , 15} and δ = 10−3. Fig. 2(b) is the
extended view of Fig. 2(a). The simulation result shows that
P (X1 = 5) of the original CME with ε = 0.001 is almost
the same as those of Σfinal, which is obtained by the EFSP
algorithm. Therefore, we can conclude that as ε → 0, our
approach gives a valid result.

IX. CONCLUSION

In this paper, we proposed the EFSP algorithm, by com-
biging the FSP algorithm and our model reduction technique.
The EFSP algorithm can be useful for the analysis and design
of biomolecular systems.

(a) Comparing P (X1 = 5) of the original CME with
ε = 0.1 to 0.001 and those of Σfinal with n = 2,
ΩIxx = {0, 1, . . . , 15}, δ = 0.001.

(b) Extended view of the above graph.

Fig. 2: For this simulation, ε = 0.1 to 0.001, n = 2, b =
0.4[min−1], V = 1[µm3], Rt = 10[molecules] are used.
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