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The ability to engineer genetic circuits in living cells has tremendous poten-
tial in a number of applications, from health, to energy, to bio-manufacturing.
Although substantial efforts have gone into design approaches that make circuits
robust to variable cellular context, context-dependence of genetic circuits still
remains a significant hurdle. We review the problem of intra-cellular resource
competition, one culprit of context-dependence, and summarize recent efforts
toward design approaches to mitigate it. We classify these approaches into two
main groups: global control and local control. In global control approaches, the
pool of resources is globally regulated to meet the demand by genetic circuits.
In contrast, in local control strategies, individual circuit modules are regulated
to be robust to variability in the pool of resources. Within each group, both
feedback and feedforward regulation methods have been implemented, which
we describe by highlighting differences in terms of ease of implementation and
performance.

Introduction

The ability to engineer cells for novel functionalities has great promise to
revolutionize fields such as medicine, healthcare, and the environment [1, 2,
3, 4, 5, 6, 7]. However, the design of genetic circuits is hampered by context
dependence–where circuit components behave differently depending on the cellu-
lar and genetic context, which results in lengthy design processes [8]. One major
aspect of context dependence in genetic circuits is cellular resource competition:
the fact that the operation of a genetic circuit changes the availability of cellular
resources, such as ribosomes, RNAP, or dCas9, to other circuit modules. These
changes in the availability of cellular resources often results in unwanted cou-
pling between the operation of supposedly independent circuit modules, which
can destroy the circuit’s intended function [9, 10].
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To address the problem of resource competition, significant effort has re-
cently gone into strategies to mitigate different aspects of resource sharing in
genetic circuits. Here, we review recent works that have proposed strategies that
either adjust the level of resources to meet demand or that make genetic circuits
robust to changes in available resources. We refer to the former as global control
and to the latter as local control. Specifically, in the global control strategy, the
resource pool is regulated to keep resource availability constant independent of
changing demand by genetic circuits [11, 12, 13, 14]. In the local control strat-
egy, genetic modules are regulated to make their operation robust to changes
in resource availability [15, 16, 17, 18]. Overall, these approaches set the basis
for making the operation of genetic circuits less affected by the intra-cellular
context, thus aiding the creation of circuits that behave as intended [7].

The paper is organized as follows. First, we review the molecular basis of
resource competition in genetic circuits. Next, we review recently proposed
solutions to mitigate the effects of resource competition on circuits’ operation.

Molecular Basis of Resource Competition

Resource competition arises from the fact that cells have a limited amount of
resources, which are shared among the various components in a genetic circuit
[9, 10, 17, 18, 19, 20, 21, 22, 23, 24]. Therefore, when one genetic module in a
circuit increases its usage of cellular resources, other modules are left to operate
with less available resources. Critical shared resources that any genetic module
requires for operation include the RNA polymerase (RNAP) and the ribosome,
since they are needed by every gene for transcription and translation, respec-
tively [10, 22]. Additional resources that are also limited and are shared by many
genes, especially in mammalian cells, include specific co-activators and general
transcription factors [17, 18]. Finally, in genetic circuits where transcriptional
regulation occurs through CRISPRi/a, dCas9 is also a shared resource required
by multiple modules for transcriptional activation or repression [25, 26, 27].

As an example of ribosome competition, the authors of [10] built a simple
genetic circuit in E. coli with two unconnected genes, shown in Figure 1a. They
showed that as the RFP gene was increasingly expressed, the GFP level de-
creased by more than 70%, despite the absence of any regulatory interactions
between the RFP and GFP genes. This drop in GFP level was due to a re-
duction in the pool of available translational resources caused by the expression
of the RFP gene. Resource competition has also been experimentally demon-
strated in genetic circuits in mammalian cells at both the transcriptional and
translational levels [18] and in CRISPRi-based genetic circuits [25, 26, 27].

Resource competition leads to subtle effects in the emergent behavior of
a genetic circuit beyond simply coupling the expression of unconnected genes
through the resource pool. Specifically, Figure 1b depicts two genetic circuit
modules (Modules 1 and 2), each with monotonically increasing input-output
transfer curves in the absence of other modules. When Module 1 and 2 are
connected in a cascade within a single circuit, Module 1 and 2 compete for
cellular resources thereby changing each other’s input-output transfer curve.
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Figure 1: Examples of experimentally observed consequences of resource compe-
tition in genetic circuits. (a) Two genetic modules sharing ribosomes and RNAP. A red
fluorescent protein (RFP) gene is activated by an input to its promoter, while a green fluo-
rescent protein (GFP) gene is constitutively expressed [10]. As the input to the RFP gene is
increased, the output of the GFP gene is decreased. (b) Resource competition changes the
emergent behavior of connected genetic modules [9]. Module 1, represented by the orange
gene, and Module 2, represented by the green gene, are characterized in a cell in isolation
and both have increasing input-output transfer curves. When Modules 1 and 2 are connected
within the same cell in a cascade structure, they compete for cellular resources, and the
input-output transfer curve of the connected module is no longer monotonically increasing.

This results in a cascade’s input-output transfer curve that is not monotonically
increasing. This can be explained by noticing that when Module 1’s gene is
expressed upon presentation of the input, even though Module 2’s promoter
becomes activated, ribosomes are sequestered away from Module 2, which can
overall lead to a decrease in Module 2’s expression. This was experimentally
demonstrated in [9]. Additionally, resource competition may also change other
aspects of the qualitative behavior of genetic circuits such as the number of
stable equilibrium points as demonstrated in [28, 29, 30, 31].

Cellular resources such as ribosomes are also shared between genetic circuits
and the host cell metabolism [32]. Therefore, high resource demand by the
genetic circuit can decrease resource availability to the host, resulting in a de-
creased growth rate, which may also disrupt circuit function [29, 30, 33, 34, 35,
36]. Accordingly, in [22], the authors developed a sensor to estimate the burden
on the host cell by the genetic circuit. Whole-cell mechanistic mathematical
models have also been developed to capture ribosome redistribution [37].

Other experimentally demonstrated consequences of resource competition
that may also significantly affect a genetic circuit’s behavior include competi-
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tion for proteases [38] and for dCas9 [25, 26, 27]. Specifically, the dCas9 enzyme
is a shared resource as it binds with different engineered guide RNAs (gRNAs)
in CRISPRi/a-based genetic circuits to produce functional gRNA-dCas9 regu-
latory complexes. When the production of one gRNA is increased, less dCas9
is available for other gRNAs. This sharing of dCas9 has been shown to result
in decreased gRNA-dCas9 activity of other, competing, gRNAs by more than
10-fold [26].

Design approaches for making circuits robust to resource competition

Here, we review experimentally verified approaches to improve circuit ro-
bustness in the face of resource competition. We group solutions by whether a
controller acts directly on the pool of resources, which we call global control, or
acts on each module separately, which we call local control.

Local control

The objective of the local control approach is to make each genetic module
in the circuit insensitive to fluctuations in the amount of available resource by
incorporating a controller into the module. In this way, the behavior of the
synthetic circuit is made robust to competition for resources among modules
within the circuit itself, and to competition with genetic modules outside the
circuit. The two types of controllers that have been used for this purpose are
feedback controllers and feedforward controllers.

Feedback control is ubiquitous in engineering applications and involves reg-
ulating a system by making continuous readings of its output and applying ad-
justments, which keep the system’s output near the desired value independent
of perturbations. The local feedback control architecture is shown in Figure 2a.
It is useful to split each Module i into two components, the plant Pi and the
controller Ci. The controller Ci uses a measurement of the output of the plant
Pi, then computes and applies a corrective action to the plant Pi. A feedback
controller should result in a module where the output does not change when
the amount of available resource changes. In order to obtain zero steady state
change in the module output when the level of available resource changes, an in-
tegral controller is required. One example of this approach is the quasi-integral
controller experimentally implemented using RNA molecules which bind and
degrade each other in [15] and shown in Figure 2b. Other circuits have been
constructed using similar principles with other goals, such as the circuit in [39],
which used RNA molecules which bind to each other and degrade in the feed-
back path to reduce noise and improve tunability. Additionally, a feedback
controller constructed using protein species instead of RNA species has also
been constructed, and has been called antithetic feedback control [40]. Pre-
viously, transcriptional feedback control was used to reduce the sensitivity to
fluctuations in available resources, as demonstrated in [16].

An alternative approach to the design of controllers for robustness to cellu-
lar resource fluctuations is to utilize feedforward controllers within each module.
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Figure 2: Local control design approaches for engineering robustness to resource
competition. (a) Block diagram representation of local feedback control. Modules 1 and
2 use the same common pool of resources and have outputs Y1 and Y2 as well as regulatory
inputs U1 and U2, respectively. Each module is composed of the plant Pi and the controller
Ci connected in a feedback configuration. Ci senses the output of Pi and applies a corrective
control action to Pi, which compensates for changes in the availability of the resource (vertical
black arrow from resource to module). The regulatory input Ui, which may not be present
in all implementations, acts on Ci to produce a “desired” value of the module output Yi.
(b) Local feedback control implementation example [15]. Pi consists of a gene coding for the
output protein (red). Ci contains the gene for an sRNA which is activated by the output of
Pi and binds to and mutually degrades the mRNA coding for the output of interest. Ci also
containts the promoter for the gene of interest, which must be tuned to compensate for the
decrease in Yi level due to the sRNA. In this case the resource of interest is the ribosome.
(c) Block diagram representation of local feedforward control. Each module has an output
Yi and possibly a regulatory input Ui. Each module consists of the plant Pi and controller
Ci connected in a feedforward configuration. The available level of the resource acts as a
disturbance input on both Pi and Ci. This disturbance positively affects the output of Pi.
This disturbance also acts through the intermediary Ci to decrease the output of Pi. The
regulatory input from Ui to Ci (dashed arrows) does not exist in current implementations, but
would allow Yi to change in a desired way based on Ui. (d) Local feedforward control. One
example implementation of local feedforward control is an incoherent feedforward loop (iFFL)
constructed using an endoribonuclease (ERN) [17]. Pi consists of a gene coding for the protein
of interest (red). Ci consists of a gene with the same promoter as Pi, which codes for an ERN
that degrades the mRNA of Pi. In this case, the resource of interest is a transcriptional
co-activator or general transcription factor, which promotes transcription of both the output
protein and the ERN. The combination of the activating path from transcriptional co-activator
to Yi, and the repressing path from transcriptional co-activator to Yi through the ERN forms
an iFFL.

In this scheme, as shown in Figure 2c, a feedforward controller Ci senses the
available resources and uses this information to apply a control input to Pi

to compensate for any change in the output of Pi caused by a change in the
available resources. Feedforward controllers have been extensively used before
to provide robustness to plasmid copy number variation [41, 42, 43], which
appears as a disturbance similar to fluctuations in available transcriptional re-
sources. In the context of robustness to resource competition this feedforward
control structure results in an incoherent feedforward loop (iFFL) characterized
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Figure 3: Global control design approaches for engineering robustness to resource
competition. (a) Block diagram representation of global feedback control. A feedback con-
troller regulates the resource such that the available amount is constant no matter how much
is used by the modules. (b) Global feedback control for orthogonal ribosomes (o-ribosomes).
o-ribosomes are ribosomes where the 16s ribosomal RNA (rRNA) is an engineered version
orthogonal to the wild type rRNA (o-rRNA). The empty ribosomes shown are ribosomes with
no 16s ribosomal RNA. The controller is composed of a repressor which is translated by o-
ribosomes and represses the production of o-rRNA [11]. (c) Global feedback control for dCas9.
dCas9 is used to produce the output of each module, Yi, a dCas9-guide RNA complex which is
a repressor whose target is determined by the guide RNA (gRNA). The controller is composed
of a controller gRNA which binds to the dCas9 protein and forms a complex which represses
the production of dCas9 [14]. (d) Block diagram representation of global feedforward control.
Modules 1 and 2 share a common resource. Each module uses resources (dashed red arrows)
and also sends a signal to the controller indicating its level of resource usage (black arrows).
The controller then increases the available level of the resource to cancel out the module’s
usage.

by two paths from the resource to the output: an activating path and a repress-
ing path [17]. If properly designed, the effects of the two paths cancel at steady
state, thus making the module’s output robust to changes in the availability of
the resource. A potential limitation of iFFL-based implementations is that, to
ensure robustness to transcriptional resources, the same transcriptional resource
must be used to express both the output gene and the gene that represses the
output [17]. Therefore, it is still unexplored how the design may be extended
to modules with regulatory inputs. On the other hand, iFFL-based designs are
often simpler to implement than feedback-based designs. Figure 2d depicts a
feedforward controller constructed using an endoribonuclease (ERN) [17]. Feed-
forward controllers that use a micro RNA in place of an ERN have also been
constructed to engineer robustness to transcriptional resources [43], although
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these cannot achieve robustness to changes in translational resources.

Global control

Here we review approaches that utilize a controller in order to regulate the
cellular resources in a global manner, e.g. by regulating the resource pool across
the entire genetic circuit. If the amount of available resource adapts to resource
usage by each module, the output of each module will be robust to usage of
resources by any other module. Global controllers can be constructed using
either feedback, as shown in Figure 3a, or feedforward architectures, as shown
in Figure 3d. In both control architectures, the control design aims to keep the
available amount of resource constant, despite modules using variable amounts
of available resources, which prevents modules from seeing a fluctuation in the
available concentration of the resource.

In a global feedback controller, the controller measures the available amount
of resource and applies a regulatory action to compensate for measured changes
in the available level of the resource due to resource usage by the modules.
In [11], the authors implement a global feedback controller regulating ribo-
some concentration based on closed loop regulation of orthogonal ribosomes
(o-ribosomes), as shown in Figure 3b. This solution, further explored via math-
ematical modeling in [44] and [45], makes modules robust to competition for
o-ribosomes, which are ribosomes where the 16s ribosomal RNA is replaced by
an orthogonal ribosomal RNA (o-rRNA), which targets ribosome binding sites
different from those targeted by the host cell’s 16s ribosomal RNA. Similarly,
the authors of [14] constructed a global controller for regulating dCas9 concen-
tration as shown in Figure 3c. In such a system, we consider each gene coding
for a guide-RNA (gRNA) to be a module, each of which uses dCas9 to produce
its output, a gRNA-dCas9 complex. The global controller regulates the amount
of dCas9 so that the dCas9 available for each module is constant despite the se-
questration of dCas9 by other modules. This makes the output of each module
robust to the use of dCas9 by other modules.

Global controllers can also be constructed using feedforward control, as de-
picted in Figure 3d. Here, the controller measures the resources used by every
module and actuates the resource pool to compensate for such use. An example
of this implementation is reported in [13], in which a global feedforward con-
troller for ribosomes is proposed that increases the production of ribosomes as
a gene is overexpressed. This, in turn, compensates for the changes in resource
availability due to overexpression of genes within a given module.

Two global control methods with different goals from making a synthetic
circuit robust to resource usage by other modules have also been demonstrated.
Feedback systems have been demonstrated that reduce the expression level of
synthetic genes when the host cell’s stress response is activated by high resource
usage [46, 47]. Such systems can maintain constant growth rate at the expense
of reducing exogenous gene expression. In [12], the authors demonstrated a
system that degrades the host cell’s mRNA to free up translational resources for
a genetic circuit of interest, resulting in higher and more robust gene expression
for the genetic circuit.
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Other approaches

While the global and local control approaches are the most common ap-
proaches to constructing genetic circuits that are robust to resource competi-
tion, there are other conceptually distinct approaches. If each module uses its
own of pool of the resource, which is orthogonal to the pools of all other mod-
ules, then resource competition among modules is eliminated. However, this
approach requires a large library of orthogonal resources. Indeed, Darlington
et. al. demonstrated that, in the absence of the global controller, a module
using o-ribosomes did not compete for resources with a module using host ribo-
somes [11]. However, two modules that both use o-ribosomes will still compete
with each other. Recent investigations have engineered ribosomes to be orthog-
onal to wild-type ribosomes [48, 49] and have studied the function of o-rRNA
from divergent species in E. coli [50]. However, thus far there has been no
demonstration of a library of orthogonal resources with sufficiently many or-
thogonal elements to enable engineering circuits with multiple modules. While
not directly solving the problem of modules being coupled through resource
competition, methods that free up cellular resources for the synthetic circuits
via genetic interventions [51] or tuning growth conditions [52] have been pro-
posed. Alternative approaches include reducing the amount of resources used by
a synthetic circuit by genomic integration [53]. Both approaches can mitigate
some of the effects of resource competition, but genetic modules will continue
to be coupled via resource competition.

Discussion

We have reviewed several recent design approaches for increasing the robust-
ness of synthetic circuits to resource competition. The local control strategies
show promise, with multiple solutions demonstrating near perfect adaptation
to the available level of the resource. However, since each module contains a
controller, each module is substantially more difficult to engineer. In addition,
it remains to be investigated whether the controlled modules use more resources
than their uncontrolled counter-parts, which could increase the burden on the
host cell and potentially lead to design limitations [54]. On the other hand,
global control strategies require the engineering of only one controller while
each module can be simpler. However, engineering a global controller can be
more challenging due to the interaction with the natural resource regulation
system. This is consistent with the current absence of an experimentally val-
idated controller capable of making the available level of a transcriptional or
translational resource almost perfectly adapt to changes in resource usage. It
is plausible that for circuits with many components, such as networks of logic
gates [14] the global control approach is simpler, since only one controller is
needed. However, in other applications the designer may care more about the
robustness of certain modules, and should therefore use a higher performance
local controller, at least in the most critical modules in the circuit. Both global
and local control strategies may also be used in conjunction with each other to
optimize design trade offs.
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The implementation of the various control approaches outlined in this paper
requires that specific inputs in genetic circuit modules are regulated. There
are many possible mechanisms for implementing control strategies depending
on the biological context and application [55], which may include sigma/anti-
sigma factors [56], sRNA regulators [15, 57], transcriptional regulation through
T7 RNA polymerase [58], or transcription-activator-like effectors [41], among
others. Additionally, natural biological systems use control strategies to deal
with resource competition, and effort has been made to identify these feedfor-
ward and feedback loops [59]. Results of these studies may aid in the engineering
of controllers for synthetic circuits.
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