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Abstract. Many biological systems can be modeled as a chemical reaction network with unknown parameters.5
Data available to identify these parameters are often in the form of a stationary distribution, such6
as that obtained from measurements of a cell population. In this work, we introduce a framework7
for analyzing the identifiability of the reaction rate coefficients of chemical reaction networks from8
stationary distribution data. Working with the linear noise approximation, which is a diffusive ap-9
proximation to the chemical master equation, we give a computational procedure to certify global10
identifiability based on Hilbert’s Nullstellensatz. We present a variety of examples that show the11
applicability of our method to chemical reaction networks of interest in systems and synthetic bi-12
ology, including discrimination between possible molecular mechanisms for the interaction between13
biochemical species.14
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1. Introduction. System identification is concerned with going from a model class for a17

system to a particular model in that class based on experimental data. The basic property18

that guarantees that this is possible with sufficient data is structural identifiability [5]. One19

practical use of identifiability analysis is to determine whether a particular experimental setup20

is sufficient to uniquely estimate the parameters of interest. If a system is not identifiable, then21

an identification algorithm may give incorrect parameter values without warning. Similarly,22

if one wishes to discriminate between two possible models for a system, the property of23

discriminability is necessary to guarantee a priori that the true model can be determined24

from data. If discriminability is not guaranteed then an algorithm that determines which25

model generated data can select the wrong model. In the context of ordinary differential26

equation (ODE) models, identifiability analysis often takes the form of determining which set27

of input signals are sufficient to identify the parameters, while discriminability analysis takes28

the form of determining which input signals are sufficient to select the true model.29

Global a priori identifiability is the strongest type of structural identifiability, which guar-30

antees that no matter what the true parameter values are, one will be able to uniquely de-31

termine them from a given experiment as long as sufficient data is gathered [29]. In general,32

proving that global identifiability holds is difficult [13, 24], and for ODE models a variety of33

computational tools have been developed. Some exploit the differential algebraic structure34
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2 T. W. GRUNBERG AND D. DEL VECCHIO

of the problem to analyze identifiability with Ritt’s Algorithm [29, 6, 3], while other meth-35

ods are based on observability analysis, with the parameters treated as states with trivial36

dynamics [43, 41, 42, 52, 12, 51].37

Most work on identifiability for biological applications has focused on ODE models that38

describe the time evolution of the mean values of the state variables, using the previously39

discussed algorithmic tools. However, in biological applications, common data include single40

cell measurements from a population of cells, such as obtained from flow cytometry [40] or41

from single cell RNAseq [30]. While these techniques can obtain measurements of popula-42

tion distributions across many cells, they do not allow tracking individuals cells across time.43

Therefore, the data does not take the form of (possibly noisy) measurements along a sample44

path of the system and thus the standard methods for identifiability analysis of dynamical45

systems are not directly applicable. However, it has been observed in a variety of studies that46

using information about the time evolution of the population distribution over the outputs47

can help identify more parameters than just the time evolution of the means of the outputs48

in specific cases [33, 32, 28, 45]. Despite this, no general framework for identifiability analysis49

exists in this setting. When the time evolution of the population distribution can be described50

by a system of finitely many ODEs, methods of identifiability analysis for ODE models such51

as those in [29] and [52] can be used. Cinquemani studied identifiability of chemical reac-52

tion networks from a sequence of distributional data [13]. However, their results are only53

valid for local identifiability of chemical reaction networks with propensities that are affine in54

the state, e.g., monomolecular reactions, and therefore these results do not allow analysis of55

general chemical reaction networks or of global identifiability.56

A special case of distributional data measures only the stationary distribution, i.e., just the57

equilibrium population distribution. In this scenario, algorithms to identify chemical reaction58

network parameters from stationary distributions have been developed [22, 34, 4]. However,59

none of these works considered the question of identifiability. Therefore, generally applicable60

methods for identifiability analysis when only the stationary distribution is measured have61

been lacking. In fact, to the best of the authors’ knowledge, the question of identifiability62

from only the stationary distribution has not been studied for general chemical reaction net-63

works. Swaminathan and Murray considered identifiability of linear time invariant systems64

from the stationary distribution over all states and additionally a sample path of the under-65

lying stochastic process for a subset of states [48], but they did not provide conditions for66

identifiability in the case of only distributional data.67

An additional source of noise in biological systems is extrinsic noise. Extrinsic noise arises68

from the variability of cellular context across a population of cells [47]. In this work we69

additionally consider extrinsic noise that manifests through parameter variation between cells70

in a population. Such noise can arise from a variety of sources, most notably in synthetic71

genetic circuits from differences in copy number of the DNA on which the genetic circuit is72

encoded, such as with lentiviral transduction in mammalian cells or with plasmid transfection73

in either bacterial or mammalian cells [11, 39]. Such noise can, in principle, improve our ability74

to identify the reaction rate constants, since we have data across a wider range of conditions.75

However, this is not clear a priori.76

In this work, we consider global identifiability of linear noise approximation (LNA) mod-77

els [50] of chemical reaction networks with intrinsic and extrinsic noise from their stationary78
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CRN IDENTIFIABILITY FROM STATIONARY DISTRIBUTIONS 3

distributions, including a treatment of the model discrimination case where one wishes to79

know if it is possible to determine which chemical reactions are present in a system. Our so-80

lution is a generally applicable algebraic characterization of identifiability, which is amenable81

to analysis using Hilbert’s Nullstellensatz [14], and thus allows the computation of certificates82

of identifiability.83

This paper is organized as follows. In Section 2, we give mathematical background and84

a description of the problem we consider. In Section 3, we give the main results of this85

paper, describing how to use algebraic tools to certify global identifiability of chemical reaction86

networks from their stationary distributions. In particular, Section 3 describes a chemical87

reaction network modeled by the LNA where the goal is to identify the values of the reaction88

rate constants. In Section 4, we show how to approach the model discriminability problem89

using our techniques. In Section 5, we show how to certify global identifiability from the90

stationary distribution for chemical reaction networks with extrinsic and intrinsic noise, and91

additionally show that the addition of extrinsic noise cannot make an identifiable chemical92

reaction network non identifiable. Throughout this work we apply our methods to certify93

identifiability of a wide range of chemical reaction networks.94

2. Problem Setting.95

2.1. The linear noise approximation. A chemical reaction network (CRN) is a model of96

a system of chemical species interacting through reactions, each of which is a discrete event97

that occurs stochastically. The exact model of the resulting stochastic kinetics is given by the98

chemical master equation, an infinite set of ordinary differential equations that describes the99

time evolution of the probability of having a particular number of molecules of each species100

in the system [18]. In this work, we use the LNA as a model of the stochastic dynamics101

of CRNs. The LNA, also known as the system size expansion, is the first order correction102

to the deterministic reaction rate equations in Ω−1/2, where Ω is the volume in which the103

chemical species are contained [50]. Letting X represent the vector of molecular counts of104

each species, and x represent the mean concentration of the molecular species, the LNA105

makes the approximation X = Ωx +
√

Ωξ. Here, x is the deterministic mean, which is106

given by the reaction rate equations, an ODE model that describes the rate of change of107

the molecular species concentrations, assuming mass action kinetics [18], and ξ is a random108

variable representing the fluctuations of X about Ωx. For completeness, we give a brief109

description of the LNA here, a full derivation is given in [50]. We remark that while the LNA110

gives distributions that are close to the distributions given by the chemical master equation111

when the volume and molecular counts are large on a finite time interval [27], there are no112

formal guarantees that the stationary distribution of the LNA is close to that of the chemical113

master equation. In this work, we take the stationary distribution of the LNA as our model114

of the stationary distribution of a CRN.115

Consider a CRN consisting of r reactions among n species in a well mixed volume of size Ω.116

Reaction i, for i ∈ {1, . . . , r}, is described by sTRiX
ki−→ sTPiX, where X =

[
X1 X2 · · ·Xn

]T
117

with Xj the number of molecules of species j, sRi is the vector of number of molecules of118

reactant species consumed by reaction i, and sPi is the vector of number of molecules of119

product species created by reaction i. The reaction rate constant of reaction i is ki. Using the120
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4 T. W. GRUNBERG AND D. DEL VECCHIO

approximation X(t) = Ωx(t) +
√

Ωξ(t), the dynamics of the system are given by121

d

dt
x(t) =f(x(t);k), x0(0) = x0,(2.1a)122

dξ(t) =
∂f

∂x
ξ(t)dt+ Γ(x(t);k)dw(t), ξ(0) = ξ0,(2.1b)123

124

in which (2.1a) are the reaction rate equations (RRE) [18] and (2.1b) gives the evolution of125

ξ(t). Specifically, let k = [k1, . . . , kr]
T . Then, f(x;k) is given by126

(2.2) f(x;k) = Sq(x;k)127

where q(x;k) =
[
q1(x; k1) q2(x; k2) · · · qr(x; kr)

]T
, where qi(x; ki) = ki

∏n
j=1 x

sjri
j is the128

macroscopic propensity of reaction i, where sjri is the jth element of sri. The stoichiometry129

matrix S is defined as S =
[
s1 s2 · · · sr

]
, with si = spi − sri representing the change in130

X when reaction i occurs. Here, w(t) is a Wiener process, and131

(2.3) Γ(x;k) = S diag
(√

q(x;k)
)
.132

We note that (2.1b) is a stochastic differential equation describing the evolution of the random133

variable ξ(t) as forced by the “noise” term Γ(x(t);k)dw(t). The Wiener process w(t) is134

a stochastic process with independent, Gaussian increments. Since in this work we deal135

with only with the stationary covariance of (2.1b), we direct the interested reader to [26] for136

technical details. Throughout this work, we assume that (2.1a) has a unique, exponentially137

stable, equilibrium in Rn≥0 for all k > 0. We denote this equilibrium point by x∗(k). Let138

P ∈ Rn×n be the stationary covariance of ξ. Then, the following equations characterize the139

stationary distribution of X(t) as a function of k:140

0 =f(x;k),(2.4a)141

0 =
∂f

∂x
P + P

∂f

∂x

T

+ Γ(x;k)Γ(x;k)T .(2.4b)142
143

The stationary distribution of X(t)/Ω is N (x∗(k), 1
ΩP
∗(k)), i.e., a normal distribution with144

mean x∗(k) and covariance 1
ΩP
∗(k), where x∗(k) and P ∗(k) are the solutions to (2.4). Our145

assumption that (2.1a) has a unique equilibrium point in Rn≥0 for all k > 0 ensures that (2.4)146

defines the unique stationary distribution under the LNA. For brevity, we denote a CRN as147

a function R that maps reaction rate vectors to the corresponding stationary distribution148

according to (2.4), i.e., R : Rr>0 → Rn × Sn×n, where Sn×n is the space of symmetric n × n149

real matrices, defined by R(k) =
(
x∗(k), 1

ΩP
∗(k
)
).150

Example 1 (Illustrative Example 1). We first consider a simple CRN R1 with a single151

species (n = 1) and three reactions (r = 3) given by152

(2.5) ∅
k1

k2
X1

k3
2X1,153
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where reaction i is labeled with its reaction rate constant, ki. The reaction rate equation (2.2)154

in this case given by155

(2.6)
d

dt
x1 = f(x;k) = k1 − k2x1 − k3x

2
1,156

from which we see that there is a unique and asymptotically stable equilibrium point in157

the region x1 ≥ 0 as long as k > 0, and thus the LNA model has a unique equilibrium158

distribution. In this case we have q(x;k) =
[
k1 k2x1 k3x

2
1

]T
and the stoichiometry matrix159

is S =
[
1 −1 −1

]
. Therefore, from (2.3) we have160

(2.7) Γ(x;k)Γ(x;k)T = k1 + k2x1 + k3x
2
1.161

2.2. Identifiability. In this work, we study the following problem: Given π∗, a stationary162

distribution over the species concentrations, and K ⊆ Rr>0 a set of possible k values, can we163

uniquely identify the k which gave rise to π∗? To make this question mathematically precise,164

we will consider the following definition of global identifiability for CRNs from the stationary165

distribution.166

Definition 2.1. A CRN R(k) is stationary globally identifiable over K ⊆ Rr≥0 if for any167

k1,k2 ∈ K such that R(k1) = R(k2), there exists a ∈ R such that k2 = ak1.168

If a CRN and an associated set K do not satisfy Definition 2.1, we say that the CRN is not169

stationary globally identifiable over K.170

Remark 2.2. For any CRN, if one scales all of the reaction rate constants by the same171

value, a, the stationary distribution does not change. This fundamental lack of identifiability172

is due to our inability to tell the ‘speed’ of a continuous time Markov chain from its stationary173

distribution. Definition 2.1 reflects that fact that here we study identifiability modulo this174

fundamental source of non-identifiability.175

Remark 2.3. Whether or not a system is identifiable depends entirely on the model, which176

is given by the LNA in our analysis. However, under certain conditions, the first and second177

moments of the LNA and chemical master equation models are identical [20], and hence in178

those cases our results also imply identifiability of the chemical master equation model. This is179

due to the fact that the moments can be calculated from the stationary distribution, and hence180

if the parameters are identifiable from the moments they are identifiable from the stationary181

distribution.182

2.3. Nullstellensatz. In this section, we briefly describe the algebraic tools that we use183

in this work [14]. Let z be an n′ dimensional vector of variables. We denote the set of184

polynomials in z,with rational coefficients by Q[z]. Since p ∈ Q[z] is a function of z, for any185

z′ ∈ Cn′ , p(z′) denotes p evaluated at z′ ∈ Cn′ . We say that p ∈ Q[z] is a monomial if p can186

be written as p =
∏n′

i=1 z
αi
i for some α1, α2, . . . , αn′ ∈ N ∪ {0}. Let “≺” be any total ordering187

[14] on the set of monomials in Q[z] that additionally satisfies i) 1 ≺ p for any nonconstant188

monomial p ∈ Q[z] and ii)
∏n′

i=1 z
αi
i ≺

∏n′

i=1 z
βi
i implies that

∏n′

i=1 z
αi+γi
i ≺

∏n′

i=1 z
βi+γi
i for all189

α1, . . . , αn′ , β1, . . . , βn′ , γ1, . . . , γn′ ∈ N ∪ {0}. Such a total ordering ≺ is called a term order190
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6 T. W. GRUNBERG AND D. DEL VECCHIO

on Q[z]. The ideal generated by a set of polynomials P ⊆ Q[z] is defined as all polynomial191

combinations of the elements of P, i.e.,192

〈P〉 =

{
g ∈ Q[z]

∣∣∣∣∣g =
m∑
i=1

λipi, p1, . . . , pm ∈ P, λ1, λ2, . . . , λm ∈ Q[z], for some m ∈ N

}
.193

Example 2 (Algebraic preliminaries). To illustrate the concepts we consider two different194

sets of polynomials, P1 = {z2 − 1, z − 1} ⊂ Q[z] and P2 = {z2 − 1, z − 2} ⊂ Q[z]. We have195

that196

〈P1〉 =
{
g ∈ Q[z]

∣∣g = λ1

(
z2 − 1

)
+ λ2 (z − 1) , λ1, λ2 ∈ Q[z]

}
197

and198

〈P2〉 =
{
g ∈ Q[z]|g = λ1

(
z2 − 1

)
+ λ2 (z − 2) , λ1, λ2 ∈ Q[z]

}
.199

For example, P1 contains 0 (with λ1 = 0, λ2 = 0), z2 − 1 (with λ1 = 1, λ2 = 0), z − 1 (with200

λ1 = 0, λ2 = 1), as well as z3 − 1 (with λ1 = z, λ2 = 1), but does not contain 1, since no201

λ1, λ2 ∈ Q[z] results in 1 = λ1(z2 − 1) + λ2(z − 1). On the other hand, P2 does contain 1,202

since λ1 = 2z/3− 1 and λ2 = −2z2/3− z/3 results in λ1(z2 − 1) + λ2(z − 2) = 1.203

Let p ∈ Q[z]. Then, in≺(p) denotes the largest monomial with respect to ≺ that appears204

in p with a nonzero coefficient. Suppose I = 〈P〉, then G is a Gröbner basis of I if it is a205

finite subset of I that satisfies 〈in≺(p)|p ∈ I〉 = 〈in≺(g)|g ∈ G〉. G is a reduced Gröbner basis206

of I if additionally i) the coefficient of the largest monomial in g with respect to ≺ is 1 for207

each g ∈ G and ii) for all g ∈ G, 〈in≺(g′)|g′ ∈ G \ {g}〉 does not contain any monomial term of208

g. In Example 2 and for the rest of this work we use Buchberger’s algorithm, as implemented209

in Macaulay2, to compute reduced Gröbner bases [9, 19].210

Example 2 (Algebraic preliminaries continued). Continuing Example 2, we consider the re-211

duced Gröbner bases of P1 and P2. When n′ = 1, the only valid term order is 1 ≺ z ≺ z2 ≺ . . . .212

The reduced Gröbner basis of 〈P1〉 is G1 = {z − 1} with respect to this term order, whereas213

with the same term order the reduced Gröbner basis of P2 is {1}. The details of computing214

reduced Gröbner bases can be found in [14].215

Given an ideal I = 〈P〉, there are many sets of polynomials that generate I. The reduced216

Gröbner basis is a special choice of generating polynomials which reveals certain properties of217

I. In particular, let V(P) denote the variety of P, defined by218

V(P) = {z ∈ C|0 = p(z), ∀p ∈ P} .219

In other words if P = {p1, p2, . . . , pm}, V(P) is the set of solutions to the system of equations220

0 = p1(z), 0 = p2(z), . . . , 0 = pm(z). It is true that V(P) = V(F) for any F such that221

I = 〈F〉. In particular, if G is a reduced Gröbner basis of I, then V(P) = V(G). Therefore, if222

we wish to study V(P), the set of common zeros of the polynomials in P, we can study V(G)223

instead, which is advantageous since by examining the reduced Gröbner basis, one can easily224

tell if V(P) is empty or not. This idea is formalized by Hilbert’s Nullstellensatz, one version225

of which is given here.226
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Theorem 2.4 (See e.g. [46]). Let p1, p2, . . . , pm ∈ Q[z] be polynomials in the n′ variables227

in z. Then228

∅ =
{
z ∈ Cn

′
∣∣∣0 = p1(z), 0 = p2(z), . . . , 0 = pm(z)

}
229

if and only if the reduced Gröbner basis of 〈p1, p2, . . . , pm〉 is {1}.230

Example 2 (Algebraic preliminaries continued). Since the reduced Gröbner basis of P1 is231

not {1}, from Theorem 2.4 we can conclude that there is a solution in C to232

0 = z2 − 1,233

0 = z − 1.234235

In fact, one can see that there is one solution, z = 1. On the other hand, the reduced Gröbner236

basis of P2 is {1} and therefore, from Theorem 2.4, we can conclude that there are no solutions237

in C to238

0 = z2 − 1,(2.8)239

0 = z − 2,(2.9)240241

which is consistent with our ability in this simple case to deduce that the sets of solutions to242

(2.8) and (2.9) do not intersect.243

3. Certifying Identifiability of the LNA. We now present the main results of this work,244

which are methods to algorithmically test for stationary global indentifiability. We begin by245

showing that the right-hand side of (2.4) is linear in k. Specifically, we can write (2.4a) as246

f(x;k) =
r∑
i=1

kisi

n∏
j=1

x
sjri
j ,247

and, given (2.3), (2.4b) can be written as248

0 =
∂f

∂x
P + P

∂f

∂x

T

+ S diag q(x;k)ST ,249

where we have used the fact that for all x ∈ Rn≥0, it is true that q(x;k) ≥ 0. Therefore, the250

right-hand side of (2.4a) is linear in k. Furthermore, since ∂f
∂x and q(x;k) are linear in k, the251

right-hand side of (2.4b) is also linear in k. Also, (2.4) give n+n2 equations for x ∈ Rn≥0 and252

P ∈ Sn×n. Since P is symmetric, there are only n2+n
2 unique equations in (2.4b). Therefore,253

combining our observations about linearity and the number of unique equations, (2.4) can be254

written in the form255

(3.1) 0 = A(x, P )k,256

where A(x, P ) ∈ R
n2+n

2
×r is a function of x and of the n2+n

2 entries of P that are on and above257

the diagonal. Additionally, since f(x;k) and qi(x; ki) are polynomials in x, the elements of258

A(x, P ) are polynomials in x and in the elements of P on and above the diagonal.259
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Example 1 (Illustrative example 1 continued). We ask if R1, given by (2.5), is stationary260

globally identifiable over R3
>0. In this example, letting x = x1 and P = p11, writing out (2.4)261

explicitly using (2.6) and (2.7) yields262

0 = k1 − k2x1 − k3x
2
1,(3.2a)263

0 = 2(−k2 − 2k3x1)p11 + k1 + k2x1 + k3x
2
1.(3.2b)264265

We can write (3.2) as 0 = A(x, P )k where266

(3.3) A(x, P ) =

[
1 −x1 −x2

1

1 x1 − 2p11 x2
1 − 4p11x1

]
.267

In general, proving that a given system is stationary globally identifiable is difficult, since268

it requires proving that (3.1) has only one subspace of solutions in k for all (x, P ) that are269

feasible, that is, for all (x, P ) such that there exists k ∈ K satisfying (x, P ) = R(k). These270

feasible (x, P ) are given by (2.4), which is a set of polynomial equations in (x, P ), along with271

the constraint k ∈ K. To overcome this difficulty, we develop a method to certify global272

stationary identifiability based on Theorem 2.4. To begin, associated with each CRN R, we273

define the sets274

(3.4) V =
{

(x, P,k) ∈ (Rn, Sn×n,Rr>0)
∣∣0 = A(x, P )k, rank(A(x, P )) < r − 1

}
.275

and276

V ′ =
{

(x, P,k) ∈ (Rn≥0,Sn×n,Rr>0)
∣∣0 = A(x, P )k, rank(A(x, P )) < r − 1

}
.277

The following theorem gives an algebraic characterization of stationary globally identifiable278

for a CRN.279

Theorem 3.1. Consider a CRN R. The following hold:280

i) If V = ∅, then R is stationary globally identifiable over Rr>0.281

ii) If R is stationary globally identifiable over Rr>0, then V ′ = ∅.282

Proof. First, to show i), suppose that R is not stationary globally identifiable over Rr>0.283

Then there exists k1,k2 > 0, with k2 and k1 linearly independent, such that 0 = A(x, P )k1284

and 0 = A(x, P )k2. This immediately implies that rankA(x, P ) < r − 1, and therefore285

(x, P,k1) ∈ V . Now, to show ii), suppose that there exists (x′, P ′,k′) ∈ V ′. By the definition286

of V ′, rankA(x′, P ′) < r − 1, so there exists W , a subspace of dimension 2 containing k such287

that 0 = A(x′, P ′)W . It then follows from the fact that Rr>0 is open that there exists k′′ > 0,288

linearly independent from k′, such that 0 = A(x, P )k′′. By the uniqueness of the equilibrium289

point of (2.1a) in Rn≥0, we know that (x′, P ′) is the stationary distribution of R for all k ∈W ,290

and therefore R is not stationary globally identifiable over Rr>0.291

Remark 3.2. While our assumption that (2.1a) has a unique, exponentially stable, equi-292

librium point in Rn≥0 is required for statement ii) of Theorem 3.1 to hold, this assumption is293

not required for statement i) of Theorem 3.1.294
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In the remainder of this section, we transform the rank condition on A into a polynomial295

condition so that the question of the emptiness of V can be addressed by algebraic techniques.296

To this end, we require the following Lemmas.297

Lemma 3.3. (Determinant rank characterization) Let A ∈ Rn×m. Then, rankA = r′ if298

and only if every r′+ 1× r′+ 1 minor of A is zero, and there exists an r′× r′ minor of A that299

is non-zero.300

Proof. See [23, Section 0.4].301

Lemma 3.4. Let A ∈ Rn×m. Then, rankA < r′ if and only if every r′ × r′ minor of A is302

zero.303

Proof. First, we show that if rankA < r′, then every r′ × r′ minor of A is zero. Let304

rankA = r′′ < r′. Then, by Lemma 3.3, every r′′+1×r′′+1 minor of A is zero. Furthermore,305

by the Laplace expansion for the determinant [23], for all r′′′ ≥ r′′ + 1, every r′′′ × r′′′ minor306

of A is zero. Specifically, since r′ ≥ r′′ + 1, every r′ × r′ minor of A is zero. Second, we show307

that if rankA ≥ r′, then there exists a nonzero r′ × r′ minor of A. Let rankA = r′′ ≥ r′. By308

Lemma 3.3 there exists an r′′× r′′ nonzero minor of A. It follows from the Laplace expansion309

for the determinant [23] that for all r′′′ ≤ r′′ there exists an r′′′ × r′′′ nonzero minor of A.310

Specifically, there exists an r′ × r′ nonzero minor of A.311

We now use Lemma 3.4 and Theorem 3.1 to give a computationally checkable sufficient con-312

dition for a CRN to be stationary globally identifiable.313

Theorem 3.5. Consider a CRN R. If the reduced Gröbner basis of314

(3.5)
I =

〈
y2
jkj − 1 ∀j ∈ {1, . . . , r}, Aq(x, P )k ∀q ∈ {1, . . . r},

M
(r−1)×(r−1)
i (x, P ) ∀i ∈ {1, . . . ,m}

〉315

is {1}, then R is stationary globally identifiable over Rr>0. Here, Aq(x, P ) is the qth row of316

A(x, P ) and M
(r−1)×(r−1)
i (x, P ) is all of the size (r− 1)× (r− 1) minors of A(x, P ), indexed317

by i = 1, . . . ,m.318

Remark 3.6. The ideal I defined in (3.5) is a subset of Q[(x,y,k)].319

Proof. Let320

321

(3.6) V̄ =
{

(x, P,k,y) ∈ (Rn, Sn×n,Rr,Rr)
∣∣∣0 = A(x, P )k,322

0 = M
(r−1)×(r−1)
i (x, P ) ∀i ∈ {1, . . . ,m}, 0 = y2

jkj − 1 ∀j ∈ {1, . . . , r}
}
.323

324

Recall V defined in (3.4). We first show that V = ∅ if and only if V̄ = ∅. First, suppose325

V 6= ∅. Then, there exists (x, P,k) ∈ V . It follows that 0 = A(x, P )k. Let y be such that326

yj =
√

1/kj . Therefore, for all j, y2
jkj − 1 = 0. By Lemma 3.4, rank(A(x, P )) < r − 1327

guarantees that 0 = M
(r−1)×(r−1)
i (x, P ) for all i = 1, . . . ,m, and hence (x, P,k,y) ∈ V̄ . Now328

suppose that V̄ 6= ∅. Then, there exists (x, P,k,y) ∈ V̄ . It follows that 0 = A(x, P )k. Then,329

we have that 0 = M
(r−1)×(r−1)
i (x, P ) for all i = 1, . . . ,m, and hence by Lemma 3.4 it is true330
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10 T. W. GRUNBERG AND D. DEL VECCHIO

that rankA(x, P ) < r− 1. Therefore (x, P,k) ∈ V , and hence V 6= ∅. To complete the proof,331

observe that V̄ is the variety of I defined by (3.5). If the reduced Gröbner basis of I is {1}332

then by Theorem 2.4 V̄ = ∅. This implies by our above argument that V = ∅, and therefore333

by Theorem 3.1 R is stationary globally identifiable over Rr>0.334

Since the computation of reduced Gröbner bases can be done algorithmically, Theorem335

3.5 allows us to check if a CRN is stationary globally identifiable automatically. We note336

that Theorem 3.5 is not an if and only if statement, in part due to our use of Hilbert’s337

Nullstellensatz. In fact, consider a CRN that is stationary globally identifiable over Rr>0 and338

has V = ∅, which implies that there is no common real zero of the polynomials generating339

I. It is possible that the ideal I 6= {1} because there is a common complex zero of the340

polynomials generating I.341

Remark 3.7. Even though in this work we focus on using Hilbert’s Nullstellensatz to certify342

identifiability, alternatively Positivstellensatz can be used to search for a certificate that V =343

∅ [44].344

Example 1 (Illustrative example 1 continued). We continue with Example 1. We ask if R1,345

given by (2.5), is stationary globally identifiable over R3
>0. In this case, r = 3, n = 1, x = x1,346

and P = p11. Using (3.3), (3.5) becomes347

(3.7)

〈
k1y

2
1 − 1, k2y

2
2 − 1, k3y

2
3 − 1, k1 − k2x1 − k3x

2
1,

k1 − k3(4p11x1 − x2
1)− k2(2p11 − x1), 2x1 − 2p11, 2x

2
1 − 4p11x1, 2p11x

2
1

〉
.

348

Computing the reduced Gröbner basis of (3.7) using the built in implementation of Buch-349

berger’s algorithm in Macaulay2 [19], we find that it is {1} [19]. Therefore, by Theorem 3.5,350

R1 is stationary globally identifiable over R3
>0. The code for this example is provided in the351

Supplementary information.352

3.1. Examples. In this section, we present several examples of using the mathematical353

tools of Section 3 to certify that a given CRN is stationary globally identifiable. For all of354

the examples in this section, we compute reduced Gröbner bases with Macaulay2, a software355

system for algebraic geometry [19].356

Example 3 (Two species illustrative example). We now consider CRN R3 shown in (3.8):357

(3.8)

∅

k
1

X1

k 3

X2
k2

358

R3 has two species, X1 and X2. X1 is produced with rate constant k1 and spontaneously359

transforms into X2 with rate constant k2, which is degraded with rate constant k3. We wish360

to understand if it is possible to estimate the rate vector k up to a scaling factor from the361

stationary distribution. For this example, f(x;k) defined in (2.2) is362

f(x;k) =

[
k1 − k2x1

k2x1 − k3x2

]
,363
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and Γ(x;k) defined in (2.3) is364

Γ(x;k)Γ(x;k)T =

[
k1 + k2x1 −k2x1

−k2x1 k2x1 + k3x2

]
.365

Writing (2.1) in the form (3.1) yields366

(3.9) 0 = A(x, P )k =


1 −x1 0
0 x1 −x2

1 x1 − 2p11 0
0 p11 − p12 − x1 −p12

0 2p12 + x1 x2 − 2p22

k.367

Computing the reduced Gröbner basis G of the ideal defined by (3.5) with A given in (3.9), we368

find that G = {1}, and hence by Theorem 3.5 R3 is stationary globally identifiable over R3
>0.369

The polynomials defining (3.5) for this example are given in the supplementary information370

in the form of a script for Macaulay2, and in SM2.371

Example 4 (Sequestration rate). Consider a CRN R4 consisting of two species X1 and X2372

as shown in (3.10):373

(3.10)

∅

k
2

k
1

X1

k
3

k
4

X2

k 5

X1 + X2

374

Each species is produced and degraded at some unknown rate, and additionally X1 and X2 mu-375

tually degrade through the reaction X1 + X2
k5 ∅. Such a system of chemical reactions376

is referred to as the antithetic motif, and can be used to realize an integral controller [37, 25, 2].377

Controllers constructed using the antithetic motif only approximately implement an integra-378

tor [37]. Based on [37], we can establish a heuristic to compare two possible biological im-379

plementations of the antithetic motif with parameter vectors kA and kB respectively with380

respect to the steady state error generated in a feedback system. To do this, we define the381

following dimensionless parameters:382

σ1

(
kA,kB

)
=

kB2 k
A
5

kB5 k
A
2
, σ2

(
kA,kB

)
=

kB2 k
A
1

kB1 k
A
2
,383

σ3

(
kA,kB

)
=

kB4 k
A
5

kB5 k
A
4
, σ4

(
kA,kB

)
=

kB4 k
A
3

kB3 k
A
4
.384

385

If σi(k
A,kB) << 1 for i ∈ {1, 2, 3, 4}, then kB is expected to perform better than kA. We386

observe that for all αA, αB > 0 we have σi
(
αAkA, αBkB

)
= σi

(
kA,kB

)
for i ∈ {1, 2, 3, 4}.387

Therefore, stationary global identifiability ensures that one can estimate σi
(
kA,kB

)
for i =388

1, 2, 3, 4 from the stationary distribution of R4. Motivated by this we study whether R4 is389

stationary globally identifiable. For R4 we have that390

f(x;k) =

[
k1 − k2x1 − k5x1x2

k3 − k4x2 − k5x1x2

]
391
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12 T. W. GRUNBERG AND D. DEL VECCHIO

and392

Γ(x;k)Γ(x;k)T =

[
k1 + k2x1 + k5x1x2 k5x1x2

k5x1x2 k3 + k4x2 + k5x1x2

]
.393

Therefore, writing (2.1) in the form (3.1) yields394

(3.11)

0 = A(x, P )k =


1 −x1 0 0 −x1x2

0 0 1 −x2 −x1x2

1 x1 − 2p11 0 0 x1x2 − 2p12x1 − 2p11x2

0 −p12 0 −p12 x1x2 − p12x1 − p12x2 − p22x1 − p11x2

0 0 1 x2 − 2p22 x1x2 − 2p22x1 − 2p12x2

k.395

Computing the reduced Gröbner basis G of the ideal defined by (3.5) with A in (3.11) we396

find that G = {1}, and therefore by Theorem 3.5 R4 is stationary globally identifiable. The397

polynomials defining I for this example are given in the supplementary information in the398

form of a script for Macaulay2, and in SM2.. We have shown that measurements of the399

stationary distributions are sufficient to infer which of two biological implementations of R4400

is better for implementing antithetic feedback control.401

Example 5 (Cooperative enzymatic degradation). We now consider R5 shown in (3.12).402

(3.12)

∅

k
2

k
1

X1

k
3

k
4

X2 2X1 + X2

k
5

2X1

403

Note that R5 is similar to R4 considered in Example 4, but the mutual degradation of X1 and404

X2 has been replaced by X1 enzymatically degrading X2 via the reaction 2X1 + X2
k5

2X1.405

Such an enzymatic reaction, where two copies of X1 bind with and degrade one copy of X2 is406

encountered when an mRNA molecule has two target sites for a complementary microRNA407

to bind to, both of which must be bound for degradation of the mRNA to occur [17]. For R5408

we have that f(x;k) defined in (2.2) is given by409

f(x;k) =

[
k1 − k2x1

−k5x2x
2
1 + k3 − k4x2

]
410

and Γ(x;k) defined in (2.3) is given by411

Γ(x;k)Γ(x;k)T =

[
k1 + k2x1 0

0 k5x2x
2
1 + k3 + k4x2

]
.412
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Therefore, writing (2.1) in the form (3.1) yields413

(3.13) 0 = A(x, P )k =


1 −x1 0 0 0
0 0 1 −x2 −x2

1x2

1 x1 − 2p11 0 0 0
0 −p12 0 −p12 −p12x

2
1 − 2p11x2x1

0 0 1 x2 − 2p22 x2
1x2 − 2p22x

2
1 − 4p12x1x2

k.414

Computing the Gröbner basis G of the ideal defined by (3.5) with A in (3.13), we find that415

G = {1}, and therefore by Theorem 3.5 R5 is stationary globally identifiable over R5
>0. The416

polynomials defining (3.5) for this example are given in the supplementary information in the417

form of a script for Macaulay2, and in SM2.418

We now apply the results of Section 3 to two different CRNs with three species.419

Example 6 (Activation cascade). We consider a simplified model of an activation cascade420

R6, as shown in (3.14):421

(3.14)

∅
k1

k2
X1

k
3

k
4

X2

k5

k6
X3

k
7

X1 + X2
k8

X2 + X3

422

In our simplified model R6, we have three species, X1, X2, and X3, each of which is a protein423

species. X1 activates the production of X2, which we model by the reaction X1
k7

X1 + X2.424

Similarly, X2 activates the production of X3 as modeled by the reaction X2
k7

X2 + X3.425

Reactions 1 through 6 model each species degrading as well as being produced at some basal426

rate. For R6, f(x;k) defined in (2.2) is given by427

f(x;k) =

 k1 − k2x1

k3 − k4x2 + k7x1

k5 − k6x3 + k8x2

428

and Γ(x;k)Γ(x;k)T with Γ(x;k) defined in (2.3) is given by429

Γ(x;k)Γ(x;k)T =

k1 + k2x1 0 0
0 k3 + k4x2 + k7x1 0
0 0 k5 + k6x3 + k8x2

 .430
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14 T. W. GRUNBERG AND D. DEL VECCHIO

Therefore, writing (2.1) in the form (3.1) yields431

(3.15)

0 = A(x, P )k =



1 −x1 0 0 0 0 0 0
0 0 1 −x2 0 0 x1 0
0 0 0 0 1 −x3 0 x2

1 x1 − 2p11 0 0 0 0 0 0
0 −p12 0 −p12 0 0 p11 0
0 −p13 0 0 0 −p13 0 p12

0 0 1 x2 − 2p22 0 0 2p12 + x1 0
0 0 0 −p23 0 −p23 p13 p22

0 0 0 0 1 x3 − 2p33 0 2p23 + x2


k.432

Computing the reduced Gröbner basis G of the ideal (3.5) with A given in (3.15), we find that433

G = {1}, and therefore by Theorem 3.5 R6 is stationary globally identifiable over R8
>0. The434

polynomials defining (3.5) for this example are given in the supplementary information in the435

form of a script for Macaulay2, and in SM2.436

Example 7 (Coupled sequestration reactions). We now consider a biological system with437

three species X1, X2, and X3 where X2 binds to and mutually degrades with both X1 and X3.438

We model this system by the CRN shown in (3.16):439

(3.16) ∅

k
2

k
1

X1

k
3

X2

k 4

X3

k5
X1 + X2

k6
X2 + X3440

We assume that all three species are produced at some rate, but only X1 spontaneously de-441

grades. This CRN is a coarse model of two RNA species (X1 and X3), which are degraded442

by the same microRNA species (X2). Such systems are common in biology, as some mi-443

croRNA species are known to regulate multiple genes by targeting the corresponding mRNA444

species [38]. For R7 the definition of f(x;k) in (2.2) gives445

f(x;k) =

 k1 − k2x1 − k5x1x2

k3 − k5x1x2 − k6x2x3

k4 − k6x2x3

446

and using the definition of Γ(x;k) given in (2.3) we obtain that447

Γ(x;k)Γ(x;k)T =

k1 + k2x1 + k5x1x2 k5x1x2 0
k5x1x2 k3 + k5x1x2 + k6x2x3 k6x2x3

0 k6x2x3 k4 + k6x2x3

 .448
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Therefore, writing (2.1) in the form (3.1) yields 0 = A(x, P )k, where449

(3.17)
A(x, P ) =

1 −x1 0 0 −x1x2 0
0 0 1 0 −x1x2 −x2x3
0 0 0 1 0 −x2x3
1 x1 − 2p11 0 0 x1x2 − 2p12x1 − 2p11x2 0
0 −p12 0 0 x1x2 − p12x1 − p12x2 − p22x1 − p11x2 −p12x3 − p13x2
0 −p13 0 0 −p13x2 − p23x1 −p12x3 − p13x2
0 0 1 0 x1x2 − 2p22x1 − 2p12x2 x2x3 − 2p23x2 − 2p22x3
0 0 0 0 −p13x2 − p23x1 x2x3 − p23x2 − p23x3 − p33x2 − p22x3
0 0 0 1 0 x2x3 − 2p33x2 − 2p23x3


.

450

Computing the reduced Gröbner basis G of the ideal (3.5) with A given in (3.17), we find that451

G = {1}, and therefore by Theorem 3.5 R7 is stationary globally identifiable over R6
>0. The452

polynomials defining (3.5) for this example are given in the supplementary information in the453

form of a script for Macaulay2, and in SM2.454

An example of a CRN that is not stationary globally identifiable over Rr>0 is provided in455

Example 11, which is deferred until Section 5.456

4. Model discrimination. One application of the results of Section 3 is to model discrim-457

ination. In this setting, we ask if it is possible to determine whether the rate constant vector458

k is in K1 ⊆ Rr≥0 or is in K2 ⊆ Rr≥0. For example, we may be interested in determining which459

of two reactions is present in our system, with the knowledge that at most one of the two460

reactions is present. This notion is formalized in the following definition.461

Definition 4.1. A CRN R is stationary model discriminable between K1 and K2 if there462

does not exist k1 ∈ K1,k2 ∈ K2 such that R(k1) = R(k2).463

In this work, we do not give a complete characterization of stationary model discriminability464

in our problem setting, however we do present the following result, which allows us to directly465

apply the framework developed in this work to certify stationary model discriminability for466

CRNs. We first consider how to certify that a CRN is stationary globally identifiable over a467

general set K defined in terms of polynomial equations. To do this, we consider a set468

(4.1) K̄ =
{

(k,y) ∈ Rr+l
∣∣∣hi(k,y) = 0, i = 1, 2, . . . , p

}
469

where hi(k,y) are polynomials such that the orthogonal projection of K̄ onto the k space470

is equal to K. We call such a K̄ a lifted representation of K. If K is a semialgebraic set,471

that is, a finite union of sets described by polynomial equalities and inequalities, then it is472

always possible to construct a lifted representation as in (4.1) with l = 1 [31]. A simple way473

to convert a strict inequality of the form p(x) > 0, to an equality is by adding a variable y,474

and using the constraint p(x)y2 − 1 = 0. Similarly, an inequality of the form p(x) ≥ 0 can be475

converted to an equality by adding a variable y and using the constraint p(x)− y2 = 0 [8, 7].476

Theorem 4.2. Consider a CRN R and a set K such that K̄ defined in (4.1) is a lifted477

representation of K. If the reduced Gröbner basis of478

(4.2)
〈
hj(k,y), j = 1, . . . , p, Aq(x, P )k q = 1, . . . , r, M

(r−1)×(r−1)
i (x, P ) i = 1, . . . ,m

〉
479
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16 T. W. GRUNBERG AND D. DEL VECCHIO

is {1}, then R is stationary globally identifiable over K.480

Proof. The proof follows that of Theorem 3.5, however we replace the polynomials kiy
2
i −1481

with hj(k,y), and instead of Theorem 3.1 we have only a sufficient semialgebraic condition482

for stationary global identifiability, since here we do not assume that K is open. Suppose R483

is not stationary globally identifiable over K. Then there exist k1,k2 ∈ K, x0 ∈ Rn>0, and484

P ∈ Sn×n such that k1 and k2 are linearly independent and (x0, P0) = R(k1) = R(k2). The485

fact that k1 ∈ K implies that there exists y1 such that (k1,y1) ∈ K̄. By the fact that k1486

and k2 are linearly independent, rankA(x0, P0) < r − 1, and hence M
(r−1)×(r−1)
i (x0, P0) for487

all i = 1, . . . ,m. Since additionally 0 = Aq(x0, P0)k1, we have that k = k1, y = y1, x = x0,488

P = P0 is a solution to489

0 =hj(k,y), ∀j = 1, . . . , p490

0 =Aq(x, P )k, ∀q = 1, . . . , r491

0 =M
(r−1)×(r−1)
i (x, P ), ∀i = 1, . . . ,m.492493

Therefore, by Theorem 2.4, the reduced Gröbner basis of (4.2) must not be {1}. We have494

thus shown the contrapositive of the theorem statement.495

We note that Theorem 4.2 is not an if and only if statement, in part due to our use of496

Hilbert’s Nullstellensatz, as commented on previously in the context of Theorem 3.5.497

Example 1 (Example 1 with a different set K). We return to Example 1, however instead498

of asking if R1 given by (2.5) is stationary globally identifiable over R3
>0, we are interested in499

investigating whether it is stationary globally identifiable over500

(4.3) K =
{
k ∈ R3

∣∣k1 > 0, k2 > 0, k3 ≥ 0
}
.501

One way to represent this set as the projection of a set K̄ in the form (4.1) is by choosing K̄502

as:503

K̄ =
{

(k,y) ∈ R6
∣∣y2

1k1 − 1 = 0, y2
2k2 − 1 = 0, k3 − y2

3 = 0
}
.504

Indeed, it can be checked that the orthogonal projection of K̄ onto x is K. In fact, if505

y2
i ki − 1 = 0 then k1 = 1/y2

i > 0. Similarly, if k2 − y2
2 = 0, then k2 = y2

2 ≥ 0. To apply506

Theorem 4.2 we must compute the reduced Gröbner basis of (4.2), which from (3.3) is given507

by508

(4.4)

〈
k1 − k2x1 − k3x

2
1, k1 − k3(4p11x1 − x2

1)− k2(2p11 − x1), k1y
2
1 − 1,

k2y
2
2 − 1, k3 − y2

3, 2x1 − 2p11, 2x2
1 − 4p11x1, 2p11x

2
1

〉
.

509

Using Macaulay2 [19] we find that the reduced Gröbner basis of (4.4) is {1}, and hence by510

Theorem 4.2 R1 is stationary globally identifiable over K given by (4.3).511

We are now ready to study the model discriminability problem. Our approach is to attempt512

to certify global stationary identifiability of R over the set K1 ∪ K2, which is formalized in513

the following theorem.514
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Theorem 4.3. Consider a CRN R. Let K1,K2 ⊂ Rr≥0 be such that cone (K1) ∩ K2 =515

∅1. If R is stationary globally identifiable over K = K1 ∪ K2, then R is stationary model516

discriminable between K1 and K2.517

Proof. We prove Theorem 4.3 by contraposition. Suppose that R is not stationary model518

discriminable between K1 and K2. Then there exists k1 ∈ K1 and k2 ∈ K2 such that519

R(k1) = R(k2). The assumption that span (K1)∩K2 = ∅ ensures that there does not exist α520

such that k1 = αk2, and hence R is not stationary globally identifiable over K1 ∪K2.521

Remark 4.4. The converse of Theorem 4.3 is not true. However, Theorem 4.3 provides a522

sufficient condition to conclude that R is stationary model identifiable between K1 and K2.523

As an illustration, suppose that for some CRN R with r reactions, we know that exactly524

one between the rth and r − 1th reactions is present. If we want to determine if it is possible525

to discriminate from the stationary distribution of R between reaction r being present and526

reaction r − 1 being present, we ask if R is stationary model discriminable between K1 and527

K2 where, letting k1:r−2 be the vector of the first r − 2 elements of k,528

K1 =
{
k ∈ Rr≥0

∣∣k1:r−2 > 0, kr−1 > 0 and kr = 0
}

529

and530

K2 =
{
k ∈ Rr≥0

∣∣k1:r−2 > 0, kr−1 = 0 and kr > 0
}
.531

Let K = K1∪K2. We need a representation of K as in equation (4.1). One such representation532

of K is533

(4.5)
K̄ =

{
(k,y) ∈ R2r+1

∣∣0 = kiy
2
i − 1, i = 1, 2, . . . , r − 2, 0 = kr−1 − y2

r−1,

0 = kr − y2
r , 0 = kr−1kr, 0 = (kr−1 + kr)y

2
r+1 − 1

}
.

534

535

Remark 4.5. We can choose K̄ to be any lifted representation of K1∪K2 of the form (4.1),536

however, it is possible for the reduced Gröbner basis of (4.2) to be {1} for some choices of K̄537

and not {1} for other choices of K̄. Such a possibility is a consequence of using Nullstellensatz538

to prove identifiability, and using Positivstellensatz as discussed in Remark 3.7 would prevent539

this issue.540

Example 1 (1-dimensional model discriminability). Let us again consider R1 given by (2.5).541

Suppose we know that either k2 > 0 and k3 = 0, or k2 = 0 and k3 > 0. If we are interested in542

whether we can discriminate between these two models, we use the framework of this section543

as follows. Let544

(4.6) K1 =
{
k ∈ R3

∣∣k1 > 0, k2 > 0, k3 = 0
}

545

and546

(4.7) K2 =
{
k ∈ R3

∣∣k1 > 0, k2 = 0; k3 > 0
}
.547

1For a set K ⊆ Rv, cone(K) = {z ∈ Rv|z = λk, k ∈ K, λ ≥ 0}.
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18 T. W. GRUNBERG AND D. DEL VECCHIO

Then, to check ifR1 is stationary model discriminable between K1 and K2 we let K = K1∪K2,548

which has lifted representation549

K̄ =
{

(k,y) ∈ R7
∣∣0 = k1y

2
1 − 1, 0 = k2 − y2

2, 0 = k3 − y2
3, 0 = k2k3, 0 = (k2 + k3)y2

4 − 1
}
.550

In this case, using (3.3) and hj(k,y) defined in (4.5), the ideal given by (4.2) is551

(4.8)

〈
k1 − k2x1 − k3x

2
1, k1 − k3(4p11x1 − x2

1)− k2(2p11 − x1),

k1y
2
1 − 1, k2 − y2

2, k3 − y2
3, k2k3, (k2 + k3)y2

4 − 1 2x1 − 2p11, 2x
2
1 − 4p11x1, 2p11x

2
1

〉
.

552

Using Macaulay2 [19], we find that the reduced Gröbner basis of (4.8) is {1}, and hence by553

Theorems 4.3 and 4.2 the CRN R1 is stationary model discriminable between K1 and K2554

given by (4.6) and (4.7), respectively.555

4.1. Examples. We now use (4.5) to certify stationary model discriminability of several556

biologically relevant systems via Theorem 4.3.557

Example 8 (Determining the direction of an activation (model discrimination)). In this558

example we consider whether it is possible to determine from only measurements of the joint559

stationary distribution of two genes X1 and X2 whether X1 activates X2 or X2 activates X1.560

Such a question is of practical importance in systems biology because it asks whether one can561

deduce causality in a biological system without observing how the system evolves over time,562

or how it reacts to applied perturbations. This question is conceptually related to the study563

of causal inference, though here we ask whether we can distinguish between two a prior given564

stochastic process models, instead of deciding between graphical models [36]. Such a system565

is conceptually modeled by CRN R8 shown in (4.9).566

(4.9)

∅
k2

k1
X1

k3

k4
X2

k
6

X1 + X2

k
5

X1 + X2

567

We note that in order to simplify the system we have modeled gene expression as a one step568

process, and model activation of X2 by X1 with the reactions ∅
k3

X2 and X1
k6

X1 +X2,569

i.e., an affine activation function of the form k3 +k6x1. The activation of X1 by X2 is modeled570

analogously via the 1st and 5th reactions. For R8 f(x;k) defined in (2.2) is given by571

f(x;k) =

[
k1 − k2x1 + k5x2

k3 − k4x2 + k6x1

]
572

and Γ(x;k) as defined in (2.3) is given by573

Γ(x;k)Γ(x;k)T =

[
k1 + k2x1 + k5x2 0

0 k3 + k4x2 + k6x1

]
.574
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Therefore, writing (2.1) in the form (3.1) yields575

(4.10) 0 = A(x, P )k =


1 −x1 0 0 0 x2

0 0 1 −x2 x1 0
1 x1 − 2p11 0 0 0 2p12 + x2

0 −p12 0 −p12 p11 p22

0 0 1 x2 − 2p22 2p12 + x1 0

k.576

The two models we wish to decide between are577

1. X1 is constitutively expressed (k1 > 0) and activates X2 (k3, k6 > 0),578

2. X2 is constitutively expressed (k3 > 0) and activates X1 (k1, k5 > 0).579

In both models we assume X1 and X2 degrade at a nonzero rate (k2, k4 > 0). Using the580

framework of Section 4 we represent model 1 as the reaction rate vector being in581

(4.11) K1 =
{
k ∈ R6

≥0

∣∣k1:4 > 0, k5 > 0 and k6 = 0
}

582

and model 2 by the reaction rate vector being in583

(4.12) K2 =
{
k ∈ R6

≥0

∣∣k1:4 > 0, k5 = 0 and k6 > 0
}
.584

In this case (4.5) becomes585

(4.13)
K̄ =

{
(k,y) ∈ R2r+1

∣∣0 = kiy
2
i − 1, i = 1, 2, . . . , 4,

0 = k5 − y2
5, 0 = k6 − y2

6, 0 = k5k6, 0 = (k5 + k6)y2
7 − 1

}
,

586

which we use as our representation of K = K1 ∪K2. Computing the Gröbner basis G of the587

ideal defined by (4.2) with A in (4.10), we find that G = {1}, and therefore by Theorem 4.2 R8588

is stationary globally identifiable over K1∪K2. The polynomials defining (3.5) for this example589

are given in the supplementary information in the form of a script for Macaulay2, and in SM3..590

We can therefore conclude by Theorem 4.3 that R8 is stationary model discriminable between591

K1 and K2. This result conflicts with the intuition that correlation between the concentrations592

of X1 and X2 is insufficient to infer whether X1 “causes” X2 or vice versa. However, examining593

the joint distribution allows us to tell which direction the activation acts because the noise on594

x1 will contribute to the variance of x2 when X1 activates X2, whereas the noise on x2 will595

contribute to the variance of x1 when X2 activates X1. The fact that noise from “upstream”596

genes contributes to a higher variance in “downstream” genes is well understood [35], though597

to the authors’ knowledge the use of this principle for model discrimination has not been598

explored.599

Remark 4.6. In Example 8 we showed that in CRN R8 it is possible to determine whether600

reaction 5 or 6 is present. Given sufficient data, the inference can be carried out by solving601

c1 = min
k∈K1

‖A(x̂, P̂ )k‖22602

and603

c2 = min
k∈K2

‖A(x̂, P̂ )k‖22,604
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20 T. W. GRUNBERG AND D. DEL VECCHIO

where x̂ is the sample mean and P̂ is Ω times the sample covariance. This procedure is very605

similar to standard model selection methods [1], expect that the fitting of the parameters is606

not done via maximum likelihood estimation, and we do not worry about the Occam factor607

present in the Akaike information criterion, since given infinite data, exactly one of c1 and c2608

will be zero. In this case, if c1 = 0 then X1 is constitutively expressed (k1 > 0) and activates609

X2 (k3, k6 > 0), whereas if c2 = 0 then X2 is constitutively expressed (k3 > 0) and activates610

X1 (k1, k5 > 0).611

Example 9 (Sequestration vs enzymatic degradation). As discussed in Example 4, the612

antithetic motif where X1 and X2 mutually degrade is important to constructing integral613

biomolecular feedback controllers. When searching for pairs of species that can be used to614

implement such a controller, it is common that it is not know a priori whether X1 and X2615

mutually degrade, or whether one enzymatically degrades the other. Since integral controllers616

using an antithetic motif are designed assuming that X1 and X2 mutually degrade, it is617

important to be able to distinguish between these two models [37, 10]. Typically, detailed618

kinetic studies need to be done to determine which model is accurate for the interaction619

between two given species [54]. Here, we investigate if an alternative experimental approach620

where only the stationary distribution of a system of X1 and X2 is measured can be used to621

answer this model discrimination question. Consider the CRN R9 shown in (4.14):622

(4.14)

∅

k
2

k
1

X1 k
3

k
4

X2

k5

X1 + X2

k
6

623

For R9 we have from (2.2) that624

f(x;k) =

[
k1 − k2x1 − k5x1x2 − k6x1x2

k3 − k4x2 − k5x1x2

]
,625

and from (2.3) that626

Γ(x;k)Γ(x;k)T =

[
k1 + k2x1 + k5x1x2 + k6x1x2 k5x1x2

k5x1x2 k3 + k4x2 + k5x1x2

]
.627

Therefore, writing (2.1) in the form (3.1) yields 0 = A(x, P )k where628

A(x, P ) =
1 −x1 0 0 −x1x2 −x1x2
0 0 1 −x2 −x1x2 0
1 x1 − 2p11 0 0 x1x2 − 2p12x1 − 2p11x2 x1x2 − 2p12x1 − 2p11x2
0 −p12 0 −p12 x1x2 − p12x1 − p12x2 − p22x1 − p11x2 −p12x2 − p22x1
0 0 1 x2 − 2p22 x1x2 − 2p22x1 − 2p12x2 0

.629

Here we consider the additional assumption that exactly one of the two degradation reactions630

involving X1 and X2 is present with a nonzero rate. Asking if we can discriminate between631

these two cases is asking if R9 is model discriminable between632
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1. X1 and X2 mutually degrade (k5 > 0),633

2. X2 enzymatically degrades X1 (k6 > 0).634

In both models we assume X1 and X2 are constitutively produced (k1, k3 > 0) and di-635

lute/spontaneously degrade (k2, k4 > 0). The model discrimination problem is then as in636

Example 8 between k being in K1 given by (4.11) and K2 given by (4.12). As in Example 8,637

we construct a lifted representation of K = K1∪K2 as (4.13). We perform the same procedure638

as in Example 8, computing the Gröbner basis G of the ideal (4.2) with A given in (3.15).639

The polynomials defining (3.5) for this example are given in the supplementary information640

in the form of a script for Macaulay2, and in SM3. In this case we find that G = {1}, and641

therefore by Theorem 4.2 R9 is stationary globally identifiable over K1 ∪ K2. We therefore642

conclude by Theorem 4.3 that R9 is stationary model discriminable between K1 and K2.643

Remark 4.7. Given data drawn from the stationary distribution of x1 and x2 in R9, the644

same technique described in Remark 4.6 can be used to determine which model for the inter-645

action of X1 and X2 is present in the system.646

5. Gaining identifiability with extrinsic noise. We now extend our methods to handle647

CRNs with extrinsic noise. Our motivation is models of genetic circuits on plasmids, where the648

plasmid copy number, and therefore certain reaction rate constants in the CRN, vary among649

cells in the population [16]. To this end, we consider systems where this variation across cells,650

or extrinsic noise, denoted by u = [u1, u2, . . . , us]
T , is an element of the set U ⊂ Rs, with651

known distribution ρ(u), and the reaction rate constants are given by g(ui) � k, where k652

is the nominal reaction rate constants and g : U → Rr≥0 is a known function representing653

how u ∈ U perturbs k. Here “�” denotes elementwise multiplication. Our assumption that654

g(u) is known requires a mechanistic model of how the extrinsic noise enters the system. For655

simplicity, in this work we assume |U | < ∞ as well as that within each cell the value of u is656

constant. In this case, the population distribution after all cells have reached their stationary657

distribution is given by a Gaussian mixture model of the form658

(5.1) fX(x;k) =
∑
u∈U

ρ(u)v(x;R (g(u)� k))659

where v(x;R) denotes the Gaussian probability density function with parameters R = (x′, P ′),660

where the mean is x′ and the covariance is P ′.661

Remark 5.1. Gaussian mixture models like (5.1) have been proposed for the special case662

where the extrinsic noise is slowly varying enzyme concentrations that vary from cell to cell663

[49]. However, a Gaussian mixture model such as (5.1) is a reasonable model for a population664

of cells whenever the LNA is valid in each cell, and there are certain variables (the extrinsic665

noise u) that i) vary across the population and ii) are constant or slowly varying within each666

cell.667

Example 10 (1-dimensional extrinsic noise). We consider a variation onR1, where extrinsic668

noise affects the rate of reaction 1. This corresponds to a system where X1 is a protein species669

produced at a rate proportional to the DNA copy number in a given cell [16]. For simplicity,670

we assume that in each cell there is either zero copies, one copy, or two copies of the gene671
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coding for X, with probability 1/2, 1/4, and 1/4 respectively. The modified CRN R1 is:672

∅
u1k1

k2
X1

k3
2X1673

where in this example u = u1 ∈ U = {0, 1, 2}. Here, g(u) =
[
u1 1 1

]T
since the copy674

number directly scales the rate constant of the production reaction, but does not change the675

rate constants of the degradation reactions. ρ(u) takes values of 1/2, 1/4, and 1/4 when u676

is 0, 1, and 2 respectively, which reflects the probabilities of the different copy numbers. The677

stationary distribution of (R1, g(u), ρ(u), U) is then given by the mixture model678

fX(x;k) =
1

2
v(x;R1((0, k2, k3))) +

1

4
v(x;R1((k1, k2, k3))) +

1

4
v(x;R1((2k1, k2, k3))).679

We now formally define our notion of identifiability for CRNs with extrinsic noise.680

Definition 5.2. A CRN with extrinsic noise (R, g(u), ρ(u), U) is stationary globally iden-681

tifiable over K ⊆ Rr>0 if for any k1,k2 ∈ K such that the stationary distribution given by682

(5.1) is identical for k = k1 and k = k2, there exists a ∈ R such that k2 = ak1.683

Remark 5.3. Definition 5.2 is the same as Definition 2.1 with the exception that Defini-684

tion 5.2 applies to the tuple (R, g(u), ρ(u), U) that defines a CRN with extrinsic noise. We685

explicitly give Definition 5.2 to emphasize the point that g(u), ρ(u) and U play a role in686

determining whether a CRN with extrinsic noise is stationary globally identifiable.687

We now develop a characterization of identifiability in the sense of Definition 5.2. To do this688

we must deal with the fact that from an observed Gaussian mixture, e.g. of the form (5.1),689

one can only determine the mixture components. This implies that to estimate k from the690

observed distribution we must deal with the problem of not knowing a priori which component691

in the mixture distribution corresponds to each value of u ∈ U . Additionally, if R (g(u)� k)692

is the same for two values of u ∈ U , there will be fewer that |U | components identified in the693

mixture. We begin by formalizing the mapping from a distribution of the form (5.1) to the set694

of mixture components. Let U = {u1,u2, . . . ,u|U |}. Consider any distribution f(x) = f(x;k)695

of the form (5.1). Here our notation reinforces the fact that every distribution of this form is696

generated by some k ∈ K, but when solving the identification problem, the value of k ∈ K697

is initially unknown. We define C = C(f(·)) = {(w1,x1, P1) , (w2,x2, P2) , . . . , (ws,xs, Ps)} as698

the smallest set such that699

∀x ∈ Rn, f(x) =

|U |∑
i=1

ρ(ui)v(x; (xi,
1
ΩPi)) =

∑s
i=1wiv(x; (xi,

1
ΩPi)).700

Such a function C exists by the uniqueness of representation property of finite mixtures of701

Gaussian distributions [53]. Conversely, given C = C(f(·)), it is clear that f(·) can be deter-702

mined uniquely. We note that our use of f(·) as the argument of C reinforces the fact that703

C = C(f(·)) is a function of the whole distribution.704
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Remark 5.4. Technically, [53] tells us that C̄(f(·)) defined as the smallest set705

C̄ = C̄(f(·)) =

{(
w1,x1,

1

Ω
P1

)
,

(
w2,x2,

1

Ω
P2

)
, . . . ,

(
ws,xs,

1

Ω
Ps

)}
706

such that707

∀x ∈ Rn, f(x;k) =

|U |∑
i=1

ρ(ui)v(x; (xi,
1
ΩPi))708

exists, i.e. from the population distribution we can uniquely identify the mixture components.709

However, since the mapping between C̄ and C is bijective, C exists and is invertible.710

We now formalize the notion of an assignment of the elements of C = C(f(·)) to the ele-711

ments of U . In general, for identifiability we need to determine the “correct” assignment as well712

as the true value of k from C = C(f(·)). Given a CRN with extrinsic noise (R, g(u), ρ(u), U),713

for any f(·) of the form (5.1) with k ∈ K we define σ : {1, 2, . . . , |U |} → C(f(·)), i.e.714

a mapping from the indices of the elements of U to the mixture components. We de-715

note σ(i) = (σρ(i), σx(i), σP (i)) where for each i ∈ {1, 2, . . . , |U |}, (σρ(i), σx(i), σP (i)) =716

(wj ,xj , Pj) ∈ C(f(·)) for some j. Given f(·), only some mappings σ are “consistent” with C717

in the sense that718

∀x ∈ Rn,
|U |∑
i=1

σρ(i)v(x; (σx(i), σP (i))) = f(x).719

The set of consistent σ’s is given by720

Σf = {σ : {1, 2, . . . , |U |} → C(f(·)) surjective|σρ(i) =
∑

j:(σx(j),σP (j))=(σx(i),σP (i))

ρ(uj)}.721

Given a CRN with extrinsic noise (R, g(u), ρ(u), U), for any f(x) = fX(x;k) of the form722

(5.1) and σ ∈ ΣfX(·;k), we define723

(5.2) Ā(f(·),σ) =


A(σx(1), σP (1)) diag(g(u1))
A(σx(2), σP (2)) diag(g(u2))

...

A(σx(|U |), σP (|U |)) diag(g(u|U |))

 .724

We then have that ∀k ∈ K, fX(·;k) satisfies725

0 = Ā(fX(·;k),σ∗)k726

where σ∗ ∈ ΣfX(·;k) satisfies727

∀i = 1, 2, . . . , |U |, (σx(i), σP (i)) = R(g(ui)� k)728
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Lemma 5.5. A CRN with extrinsic noise (R, g(u), ρ(u), U), is stationary globally identifi-729

able over K if for all f(x) = f(x;k) of the form (5.1), there exists ξ ∈ Rr such that for all730

(σ,k) ∈ (Σf ,K) satisfying 0 = Ā(f(·),σ)k, k = aξ for some a ∈ R.731

Proof. We prove the contrapositive. To begin, suppose that (R, g(u), ρ(u), U) is not732

stationary globally identifiable over K. Then, there exists f(·) and k′,k′′ ∈ K with k′ 6= αk′′733

for any α such that734

f(·) =

|U |∑
i=1

ρ(ui)v(·;R(g(ui)� k′))735

and736

f(·) =

|U |∑
i=1

ρ(ui)v(·;R(g(ui)� k′′)).737

Let us define σ′ by σ′(i) = (σ′ρ(i), σ
′
x(i), σ′P (i)) where (σ′x(i), σ′P (i)) = R(g(ui)� k′) and738

σ′ρ(i) =
∑

j:R(g(uj)�k)=R(g(ui)�k)

ρ(uj).739

Similarly, we define σ′′ by σ′′(i) = (σ′′ρ(i), σ′′x(i), σ′′P (i)) where (σ′′x(i), σ′′P (i)) = R(g(ui)� k′′)740

and741

σ′′ρ(i) =
∑

j:R(g(uj)�k′′)=R(g(ui)�k′′)

ρ(uj).742

Observe that σ′,σ′′ ∈ Σf . We have743

Ā(f(·),σ′) =


A(σ′x(1), σ′P (1)) diag(g(u1))
A(σ′x(2), σ′P (2)) diag(g(u2))

...

A(σ′x(|U |), σ′P (|U |)) diag(g(u|U |))

 ,744

and furthermore, for all i ∈ {1, 2, . . . , |U |}, since745

(σ′x(i), σ′P (i)) = R(g(ui � k′),746

we have that 0 = A(σ′x(i), σ′P (i)) diag(g(ui))k′. Therefore, 0 = Ā(f(·),σ′)k′. Similarly,747

0 = Ā(f(·),σ′′)k′′. Therefore, it is not the case that for all (σ,k) ∈ (Σf ,K) satisfying748

0 = Ā(f(·),σ)k, k = aξ for some a ∈ R, which completes our proof.749

Condition 5.6. The CRN with extrinsic noise (R, g(u), ρ(u), U) is such that for all f(x) =750

f(x;k) of the form (5.1), there exists a unique σf ∈ Σf such that 0 = Ā(f(·),σf )k for some751

k ∈ K.752
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Lemma 5.7. A CRN with extrinsic noise (R, g(u), ρ(u), U), is stationary globally identifi-753

able over K if it satisfies Condition 5.6, and furthermore, for all f(·) of the form (5.1),754

(5.3) rank Ā(f(·),σf ) = r − 1.755

Here σf is the unique σ ∈ Σf such that 0 = Ā(f(·),σ)k for some k ∈ K.756

Proof. The result follows from Lemma 5.5. For any f(·) of the form (5.1), assumption757

1) ensures that all solutions (σ,k) to 0 = Ā(f(·),σ)k are of the form (σf ,k) for some k.758

Assumption 2) then ensures that the dimension of the nullspace of Ā(f(·),σf ) is one, and759

hence ∃v ∈ K such that 0 = Ā(f(·),σf )k if and only if k = αv for some α.760

We now develop a criteria for identifiability that is amenable to analysis using algebraic761

tools of Section 2.3. Given a CRN with extrinsic noise (R, g(u, ρ(u), U), we define Ā :762

(Rn × Sn×n)
|U | → R|U |(

n2+3n)
2
×r by763

(5.4) Ā((x1, P1), (x2, P2), . . . , (x|U |, P|U |)) =


A(x1, P1) diag(g(u1))
A(x2, P2) diag(g(u2))

...

A(x|U |, P|U |) diag(g(u|U |))

 .764

Theorem 5.8. Consider a CRN with extrinsic noise (R, g(u), ρ(u), U) that satisfies Con-765

dition 5.6, and additionally has the property that766

(5.5) rank Ā((x1, P1), (x2, P2), . . . , (x|U |, P|U |)) ≥ r − 1,767

for all
(
(x1, P1), (x2, P2), . . . , (x|U |, P|U |)

)
∈
(
Rn≥0 × Sn×n

)|U |
such that there exists k ∈ K768

satisfying 0 = Ā((x1, P1), (x2, P2), . . . , (x|U |, P|U |))k. Then, the CRN with extrinsic noise769

(R, g(u), ρ(u), U) is stationary globally identifiable over K.770

Proof. To apply Lemma 5.7 we must show that the rank condition (5.5) implies assumption771

(5.3) of Lemma 5.7. Let f(·) be of the form (5.1). We have that772

Ā(f(·),σf ) =


A(σfx(1), σfP (1)) diag(g(u1))

A(σfx(2), σfP (2)) diag(g(u2))
...

A(σfx(|U |), σfP (|U |)) diag(g(u|U |))

 .773

Observe that for all i ∈ {1, 2, . . . , |U |}, (σfx(i), σfP (i)) ∈
(
Rn≥0 × Sn×n

)
. Therefore,774

Ā(f(·),σf ) = Ā((σfx(1), σfP (1)), (σfx(2), σfP (2)), . . . , (σfx(|U |), σfP (|U |))).775

Hence, by (5.5), rank Ā(f(·),σf ) ≥ r − 1. Furthermore, the fact that Condition 5.6 holds776

ensures that rank Ā(f(·),σf ) ≤ r − 1, and so rank Ā(f(·),σf ) = r − 1. By applying Lemma777

5.7 we then obtain the desired result.778
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It is possible to obtain a version of Theorem 5.8 that is an if and only if statement, but for779

simplicity we do not do so here since we focus on sufficient conditions for stationary global780

identifiability over K. Theorem 5.8 can be turned into an algebraic condition for identifiability781

that can be checked computationally. However, in general, it is hard to check that Condition782

5.6 holds. Therefore, we now focus on a special case which occurs frequently in synthetic783

biology where Condition 5.6 is guaranteed to hold. To begin this investigation we define the784

augmented CRN of a CRN with extrinsic noise as follows.785

Definition 5.9. Given a CRN with extrinsic noise, (R, g(u), ρ(u), U) and α ∈ Rs>0, γ > 0,786

we define the augmented version of the CRN Raug, as the CRN with species X1, . . . ,Xn from787

R along with species Z1, . . . ,Zs, and all reactions from R along with788

∅
uiαi
γ Zi, i = 1, . . . , s.789

Here we recall that s is the dimension of u. We denote the augmented version of a CRN790

(R, g(u), ρ(u), U) with parameters α and γ by (Raug, gaug(u), ρ(u), U,α, γ).791

Remark 5.10. The ideas we have developed for CRNs with extrinsic noise apply to aug-792

mented CRNs as well. In fact, for a fixed value of α and γ, Definition 5.2 can be applied793

to an augmented CRN with extrinsic noise, since (Raug, gaug(u), ρ(u), U,α, γ) defines a map794

from k to a Gaussian mixture model. Theorem 5.8 can be used for an augmented CRN795

(R, g(u), ρ(u), U). In this case the Ā used in Theorem 5.8, and the Ā(f(·),σ) used in Lemma796

5.7 are the same as Ā and Ā defined for the non-augmented CRN (R, g(u), ρ(u), U). This is797

due to the fact that the only reactions involving the Z species have rate constants α or γ, which798

are known constants, and thus do not need to be inferred from the stationary distribution.799

Remark 5.11. In applications in synthetic biology it is often the case that one has an800

augmented CRN in the sense of Definition 5.9. One example is when a biomolecular circuit is801

constructed on one or more plasmids which are transformed in the cells and each plasmid has802

a constitutive reporter. Each constitutive reporter is a fluorescent protein whose amount is803

proportional to the copy number of the plasmid. Additionally, it is possible to estimateα and γ804

in a separate experiment where the copy number is well controlled [15]. Note that the reaction805

rate constant vector of (Raug, gaug(u), ρ(u), U) is the same as that of (R, g(u), ρ(u), U), and806

we treat α and γ as known constants.807

The following continuation of Example 10 illustrates Definition 5.9.808

Example 10 (1-dimensional extrinsic noise). Continuing with Example 10, we now con-809

sider the case where there is a constitutive reporter in the circuit. The augmented CRN810

(R1aug, gaug(u), ρ(u), U,α, γ) is given by811

Z1
γ

u1α1
∅

u1k1

k2
X1

k3
2X1.812

Here Z1 is the constitutive reporter. Its production rate is proportional to the copy number,813

u = u1, which takes a, constant, value drawn from ρ(u) in each cell.814

The augmented version of any CRN will satisfy Condition 5.6, and thus we can readily815

construct an algebraic condition that is sufficient for identifiability of augmented CRNs. We816

formalize this fact in the following theorem.817
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Theorem 5.12. Consider a CRN with extrinsic noise (R, g(u), ρ(u), U). Let α0 ∈ Rs>0,818

and let819

K̄ =
{

(k,y) ∈ Rr+m
∣∣hi(k,y) = 0, i = 1, 2, . . . , p

}
820

be a lifted representation of K. Let {u1, u2, . . . , ul} ⊆ U and denote row q of Ā by821

Āq(x1, . . . ,xl, P1, . . . , Pl,u
1, . . . ,ul). If the reduced Gröbner basis of822

(5.6)〈
hi(k,y), ∀i ∈ {1, . . . , p}, Āq(x1, . . . ,xl, P1, . . . , Pl,u

1, . . . ,ul)k, ∀q ∈ {1, . . . , un
2 + 3n

2
},

M̄
(r−1)×(r−1)
i (x1, . . . ,xl, P1, . . . , Pl,u

1, . . . ,ul)k, ∀i ∈ {1, . . . ,m}
〉823

is {1}, then the augmented CRN (Raug, gaug(u), ρ(u), U,α0, 1), given in Definition 5.9, is824

stationary globally identifiable over K.825

Proof. For notational clarity we use Ā(f(·),σ) refer to the matrix defined by (5.2) for the826

CRN (R, g(u), ρ(u), U), and Āaug(f(·),σ) refer to the matrix defined by (5.2) for the aug-827

mented CRN (Raug, gaug(u), ρ(u), U,α, γ). Observe that Āaug(f(·),σ) is used to determine828

if the augmented CRN satisfies Condition 5.6, whereas Ā(f(·),σ) determines identifiability829

of the augmented CRN. This is due to α and γ being known constants instead of parameters830

that must be estimated. We partition P as831

P =

[
Px Px,z

P Tx,z Pz

]
.832

Observe that Āaug(f(·),σ) takes the form833

(5.7)

Āaug(f(·),σ) =



A(σ′
x(1), σ′

Px
(1)) diag(g(u1)) 0 0
0 diag(u1) −σz(u1)
0 2 diag(σPz (u1))− diag(u1) −σz(u1)

A(σ′
x(2), σ′

Px
(2)) diag(g(u2)) 0 0
0 diag(u2) −σz(u2)
0 2 diag(σPz (u2))− diag(u2) −σz(u2)
...

...
...

A(σ′
x(|U |), σ′

Px
(|U |)) diag(g(u|U |)) 0 0

0 diag(u|U |) −σz(u|U |)
0 2 diag(σPz (u|U |))− diag(u|U |) −σz(u|U |)


.834

We use Theorem 5.8 to prove the desired result. To do so we must show that Condition 5.6835

holds for (Raug, gaug(u), ρ(u), U). Suppose that there exists σ1,σ2 ∈ Σf such that σ1 6= σ2836

This manuscript is for review purposes only.



28 T. W. GRUNBERG AND D. DEL VECCHIO

and837

0 = Āaug(f(·),σ1)

k1

α0

γ

838

0 = Āaug(f(·),σ2)

k2

α0

γ

839

840

with k1,k2 ∈ K, α0 ∈ Rs>0, and γ = 1. Then, from (5.7) we have that for all i = 1, 2, . . . , |U |,841

842

0 = α0 � ui − σ1
z(i),843

0 = α0 � ui − σ2
z(i).844845

This implies that for all i = 1, 2, . . . , |U |, we have that σ1
z(i) = σ2

z(i). Therefore, |C(f(·))| ≥846

|U |. Additionally, we know that it always holds that |C(f(·))| ≤ |U |. Therefore, we can then847

infer that |C(f(·))| = |U |. Thus, σ1
z(i) = σ2

z(i) for i = 1, 2, . . . , |U | implies that σ1(i) = σ2(i)848

for i = 1, 2, . . . , |U |. This shows that only one σ ∈ Σf has a k ∈ K such that 0 = Ā(f(·),σ)k849

for some k ∈ K, and therefore Condition 5.6 is satisfied by (Raug, gaug(u), ρ(u), U,α, γ). To850

complete the proof, observe that (5.6) being equal to {1} ensures that Theorem 5.8 can be851

applied, and so (Raug, gaug(u), ρ(u), U,α0, 1), is stationary globally identifiable over K.852

We note that Theorem 5.12 is not an if and only if statement, in part due to our use of853

Hilbert’s Nullstellensatz, as commented on previously in the context of Theorem 3.5.854

Remark 5.13. We note that Condition 5.6 is needed for the emptiness of the ideal defined855

by (5.6) to be a sufficient condition for stationary global identifiability of (R, g(u), ρ(u), U).856

This is because without Condition 5.6 there are two ways for a CRN with extrinsic noise to857

lose identifiability: a) There is exactly one σ consistent with f(·) and (R, g(u), ρ(u), U), but858

rank Ā(f(·),σ) < r − 1, which is analogous to the loss of identifiability for CRNs without859

extrinsic noise, or b) There are multiple σ’s consistent with f(·) and (R, g(u), ρ(u), U), and860

each corresponds to a different 1-dimensional subspace of for k. In Theorem 5.12 we use the861

fact that the augmented CRN is considered to ensure that Condition 5.6 holds.862

Remark 5.14. We note that identifiability in sense that Theorem 5.12 certifies assumes863

that both α and γ are known, with γ = 1. However, since this work studies only stationary864

distributions, as long as α/γ is known we can always take γ = 1 and use the value of α/γ in865

place of α.866

Example 10 (1-dimensional extrinsic noise). Here we continue Example 10. Let α > 0. We867

wish to certify identifiability of (Raug, gaug(u), U,α, 1) over R2
>0. Theorem 5.12 states that868

we can consider the ideal (5.6), and if the reduced Gröbner basis is {1}, we can conclude that869

stationary global identifiability holds. For this example, (5.6) is defined by 54 polynomials,870

which are given in the Supplementary material in the form of a Macaulay2 script.871

We observe that if we want to use Theorem 5.12 to certify stationary global identifiability872

we must compute the reduced Gröbner basis of an ideal over Q[[xT ,yT ,kT ]T ]. If for example873
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K = Rr>0, then [xT ,yT ,kT ]T ∈ Rl
n2+3n

2
+r, and hence as |U | grows our computational problem874

becomes harder very quickly, since we may need to use l = |U | in the worst case. An alternative875

is to use only the reaction rate equations (2.1a), which conceptually equates to using only the876

means of each mixture component in the estimation of the parameters. Let Arre(x) be the877

first n rows of A(x, P ), and for any l ≤ |U |, define878

Ārre(x1, . . . ,xl,u
1, . . . ,ul) =


Arre(x1) diag(g(u1))
Arre(x2) diag(g(u2))

...
Arre(xl) diag(g(ul))

 .879

Since the first n rows of A(x, P ) correspond to the reaction rate equations (2.4a) they are not880

a function of P , and therefore neither is Ārre. Therefore, we can eliminate all the covariance881

variables from (5.6) which results in a check for stationary parametric identifiability involving882

an ideal over a lower dimensional ring.883

Theorem 5.15. Consider a CRN with extrinsic noise (R, g(u), ρ(u), U). Let α0 ∈ Rs>0,884

and let885

K̄ =
{

(k,y) ∈ Rr+m
∣∣hi(k,y) = 0, i = 1, 2, . . . , p

}
886

be a lifted representation of K. Let {u1, u2, . . . , ul} ⊆ U . Denote by Ārreq row q of Ārre, and887

denote by M̄
rre,(r−1)×(r−1)
i (x1, . . . ,xl,u

1, . . . ,ul) the (r− 1)× (r− 1) minors of Ārre, indexed888

by i. If the reduced Gröbner basis of889

(5.10)

〈
hi(k,y), ∀i ∈ {1, . . . , p}, Ārreq (x1, . . . ,xl,u

1, . . . ,ul)k, ∀q ∈ {1, . . . , un}

M̄
rre,(r−1)×(r−1)
i (x1, . . . ,xl,u

1, . . . ,ul)k, ∀i ∈ {1, . . . ,m}
〉890

is {1}, then the augmented CRN defined in Definition 5.9 (Raug, gaug(u), ρ(u), U,α0, 1), is891

stationary globally identifiable over K.892

Proof. We observe that rank Ārre ≤ rank Ā, and therefore if the reduced Gröbner ba-893

sis of the ideal (5.10) is {1}, the rank of Ā cannot drop below r − 1 for any admissible894

x1, . . . ,xl, P1, . . . , Pl and hence the ideal (5.6) has reduced Gröbner basis {1}. Therefore,895

(Raug, gaug(u), ρ(u), U,α0, 1) is stationary globally identifiable over K by Theorem 5.12.896

We note that Theorem 5.15 is not an if and only if statement, in part due to our use of897

Hilbert’s Nullstellensatz, as commented on previously in the context of Theorem 3.5.898

Example 10 (1-dimensional extrinsic noise). We now return to Example 10. Suppose we899

want to certify that (R1, g(u), ρ(u), U, α, 1) is stationary globally identifiable over R3
>0, while900

using fewer variables. For this example, Ārre is given by901

Ārre(x1,x2,x3) =

0 −x11 −x2
11

1 −x12 −x2
12

2 −x13 −x2
13

 .902
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Theorem 5.15 states that we can consider the ideal (5.10), and if the reduced Gröbner basis903

is {1}, we can conclude that stationary global identifiability holds. The polynomials defining904

(5.10) for this example are given in the Supplementary material in the form of a Macaulay2905

script.906

We now present an important example where Theorem 5.15 can be used to certify sta-907

tionary global identifiability.908

Example 11 (gaining identifiability by adding extrinsic noise). We consider a feedback loop909

consisting of two species, X1 and X2 where as shown in Figure 1 X1 and X2 mutually degrade,910

and X2 activates the production of X1. As in Example 8 we model the activation of X1 by911

X2 as the production rate of X1being an affine function, k1 + k6x2. This system forms a912

conceptual model of a feedback loop with only two species, where as we will see the system is913

not stationary globally identifiable over R6
>0 without extrinsic noise, but is stationary globally914

identifiable with extrinsic noise. To start, we note that without the extrinsic noise the CRN915

is not stationary globally identifiable over R6
>0 since for the CRN916

∅

k
2

k
1

X1 k
3

k
4

X2

k5

X1 + X2

k
6

917

we have from the definition of f(x;k) in (2.2) that918

f(x;k) =

[
k1 − k2x1 − k5x1x2 + k6x2

k3 − k4x2 − k5x1x2

]
919

and from (2.3) that920

Γ(x;k)Γ(x;k)T =

[
k1 + k2x1 + k6x2 + k5x1x2 k5x1x2

k5x1x2 k3 + k4x2 + k5x1x2

]
.921

Therefore we have that (3.1) is given by 0 = A(x, P )k where922

(5.11)

A(x, P ) =


1 −x1 0 0 −x1x2 x2

0 0 1 −x2 −x1x2 0
1 x1 − 2p11 0 0 x1x2 − 2p12x1 − 2p11x2 2p12 + x2

0 −p12 0 −p12 x1x2 − p12x1 − p12x2 − p22x1 − p11x2 p22

0 0 1 x2 − 2p22 x1x2 − 2p22x1 − 2p12x2 0

 .923

One can verify that when k =
[
10 1 10 1 1 10

]T
the solution to (5.11) is x =

[
10 10

11

]T
924

and925

P =

[
10 0
0 10/11

]
.926
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Evaluating the rank of A in (5.11) with these values of x and P gives rankA = 4 < r− 1 and927

so the CRN without extrinsic noise is not stationary globally identifiable over R6
>0.928

We now consider extrinsic noise, where the genes for X1 and X2 are on separate plasmids,929

each with its own constitutive reporter, X3 and X4 respectively. In a cell with extrinsic noise930

value ui = (ui1, u
i
2)T , the production rate of X1 is ui1k1 and the production rate of X2 is u2

i k3.931

To model the constitutive reporters we define the augmented CRN (Raug, gaug(u), U,α, γ) in932

Figure 1(b) which includes the reporter species Y1 and Y2. Therefore, we can use Theorem933

5.15. Considering U ⊇ {[0, 1], [1, 0], [1, 1], [2, 1], [2, 2], [1, 2]} we find that for mixture component934

i the reaction rate equations defined in (2.2) are935

0 = f(xi;k),936

0 =

[
ui1k1 − k2x1i − k5x1ix2i + k6x2i

ui2k3 − k4x2i − k5x1ix2i

]
.937

938

Where we use the notation xi = [x1i, x2i]
T . Forming Ārre(x1, . . . ,xl,u

1, . . . ,ul) we find that939

(5.4) is given by940

(5.12) 0 = Ārre(x1, . . . ,xl,u
1, . . . ,ul)k =



1 −x11 0 0 −x11x21 x21

0 0 0 −x21 −x11x21 0
0 −x12 0 0 −x12x22 x22

0 0 1 −x22 −x12x22 0
1 −x13 0 0 −x13x23 x23

0 0 1 −x23 −x13x23 0
1 −x14 0 0 −x14x24 x24

0 0 2 −x24 −x14x24 0
2 −x15 0 0 −x15x25 x25

0 0 1 −x25 −x15x25 0
2 −x16 0 0 −x16x26 x26

0 0 2 −x26 −x16x26 0



k.941

The reduced Gröbner basis of (5.6) with Ārre(x1, . . . ,xl,u
1, . . . ,ul) given by (5.12) is {1}, and942

hence, by Theorem 5.15, (Raug, gaug(u), U,α, 1) is stationary globally identifiable over R6
>0.943

The complete polynomials defining ideal (5.6) are given in the supplementary information in944

the form of a Macaulay2 script, and in SM4.945

In this way the techniques of this paper help guide experimental design, since as shown946

in this example one can estimate all of the rate constants in this CRN from the stationary947

population distribution by placing the genes for X1 and X2 on separate plasmids, but not948

if the genes were e.g. genomically integrated in a single copy, or otherwise placed into the949

population of cells without copy number variation.950

In this section we have studied the problem of checking if a CRN that is not necessarily951

stationary globally identifiable becomes identifiable when extrinsic noise is added. We now952

consider the converse problem, can the addition of extrinsic noise make a CRN that is sta-953

tionary globally identifiable over Rr>0 become not stationary globally identifiable over Rr>0?954

Here we give the following corollary, which formalizes the intuition that if a chemical reaction955
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∅
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(a) (R, g(u), U)

∅
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∅
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∅
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i 2
α γ

Z2k
6

(b) (Raug, gaug(u), U)

Figure 1: The CRN with extrinsic noise (R, g(u), ρ(u), U) introduced in Example 11. (a)
Shows (R, g(u), U) and (b) shows (Raug, gaug(u), ρ(u), U,α, γ), the version augmented with
constitutive reporters. Augmented CRN (Raug, gaug(u), ρ(u), U,α, 1) is stationary globally
identifiable over R6

>0 if U ⊇ {[0, 1], [1, 0], [1, 1], [2, 1], [2, 2], [1, 2]} and there is a constitutive
promoter for u1 and u2.

network without extrinsic noise is stationary globally identifiable, then adding extrinsic noise956

preserves identifiability as long as Condition 5.6 is met.957

Theorem 5.16. Consider an augmented CRN with extrinsic noise (R, g(u), ρ(u), U,α, 1).958

Assume that ∀u ∈ U, g(u) > 0. If the corresponding CRN without extrinsic noise R is959

stationary globally identifiable over Rr>0, then (R, g(u), ρ(u), U,α, 1) is stationary globally960

identifiable over Rr>0.961

Proof. Consider an arbitrary x1, P1 that satisfies 0 = A(x1, P1)g(u1) � k for some k ∈962

Rr>0. Letting k′ = g(u1) � k we have that 0 = A(x1, P1)k′ and k′ ∈ Rr>0. Therefore963

rankA(x1, P1) = r − 1 by our assumption that R is stationary globally identifiable over964

Rr>0. Since rankA(x1, P1) diag g(u1) = rankA(x1, P1), we have that Ā is rank r − 1 for965

all x1, . . . ,xl, P1, . . . , Pl that satisfy Ā(x1, . . . ,xl, P1, . . . , Pl,u
1, . . . ,ul)k for some k ∈ Rr>0.966

Therefore, the reduced Gröbner basis of (5.6) is {1} and so by Theorem 5.12, (R, g(u), U,α, 1)967

is stationary globally identifiable over Rr>0.968

Example 10 (1-dimensional extrinsic noise). Returning to Example 10, we now ask if we can969

conclude that (R1, g(u), ρ(u), U, α, 1) with α > 0 is stationary globally identifiable simply by970

exploiting our results in Example 1. If we consider (R1, g(u), ρ(u), U ′, α, 1), where U ′ = {1, 2},971

we can apply Theorem 5.16 to conclude that since R1 is identifiable, the augmented CRN with972

extrinsic noise (R1, g(u), ρ(u), U ′, α, 1) is also stationary globally identifiable. We note that973

if we used U = {0, 1, 2} instead of U ′, the condition g(u) > 0 would not be satisfied and so974

we would not be able to apply Theorem 5.16.975

We conclude with section by noting that while in general it is unclear how to verify976

Condition 5.6 for a non-augmented CRN with extrinsic noise, for the case n = 1 and s = 1, it977

is sometimes possible, as in the following example.978

Example 10 (1-dimensional extrinsic noise). Here we continue Example 10 and certify global979

stationary identifiability of (R1, g(u), ρ(u), U). Theorem 5.12 requires us to have an aug-980

mented network. However, if we can verify Condition 5.6 directly we can check identifiability981

by considering ideal (5.6) directly. Here we consider u1 = u ∈ U ⊂ R, and so we can write982
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(2.2) as983

(5.13) ẋ1 = u1k1 − k2x1 − k3x
2
1.984

If u1 = 0, then the equilibrium value of x1 is 0. Furthermore, letting x∗1 denote the equilibrium985

of (5.13) we have that
∂x∗1
∂u = k1

k2+2k3x∗1
> 0. Therefore, the means of each mixture component in986

fX(x;k) are ordered such that if ui1 < uj1 then xi < xj . It follows that Condition 5.6 is satisfied,987

since given any f(·) of the form (5.1), C(f(·)) = {(w1, x1, p1), (w2, x2, p2), (w3, x3, p3)}, where988

x1 < x2 < x3, the only possible σ ∈ Σf consistent with (R, g(u), ρ(u), U) is given by σ(0) =989

(w1, x1, p1), σ(1) = (w2, x2, p2), and σ(2) = (w3, x3, p3). From (2.3) we have that for any990

value of u1 = u ∈ U991

Γ(x;k)Γ(x;k)T = u1k1 + k2x1 + k3x
2
1,992

and so, letting xi = xi, Pi = pi, u
1 = u1

1 = 0, u2 = u2
1 = 1, and u3 = u3

1 = 2, (5.4) is given by993

Ā(x1,x2,x3, P1, P2, P3) =



0 −x1 −x2
1

0 x1 − 2p1 x2
1 − 4p1x1

1 −x2 −x2
2

1 x2 − 2p2 x2
12 − 4p2x2

2 −x3 −x2
3

2 x3 − 2p3 x2
3 − 4p3x3

 .994

We have established Condition 5.6 for this example, and hence we can establish global station-995

ary identifiability by computing the reduced Gröbner basis of the ideal (5.6), since in the proof996

of Theorem 5.12 the only place the augmented species are considered is in the verification of997

Condition 5.6.998

6. Conclusion. In this work we studied the identifiability of LNA models of chemical999

reaction networks with intrinsic and extrinsic noise from stationary distributions. We gave1000

algebraic characterizations of identifiability and model discriminability which can be used to1001

algorithmically prove identifiability or model discriminability holds for a given model. Our1002

tools are therefore well suited to be used by practicing synthetic biologists and systems bi-1003

ologists to establish identifiability prior to running costly experiments, as well as to provide1004

confidence that fitted parameters and inferred models are accurate. We applied our meth-1005

ods to many examples of biological relevance, those of which do not have extrinsic noise are1006

summarized in Table 1. Since our results for chemical reaction networks with extrinsic noise1007

require Condition 5.6, which is in general difficult to verify unless the extrinsic noise arises1008

from copy number variation and constitutive reporters are included in the CRN, future work1009

includes algorithmic methods for checking Condition 5.6.1010
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Ex. CRN K

1 ∅
k1

k2
X1

k3
2X1 R3

>0

3 ∅

k
1

X1

k 3

X2
k2

R3
>0

4 ∅

k
2

k
1

X1

k
3

k
4

X2

k 5

X1 + X2

R5
>0

5 ∅

k
2

k
1

X1

k
3

k
4

X2 2X1 + X2

k
5

2X1 R5
>0

6 ∅
k1

k2
X1

k
3

k
4

X2

k5

k6
X3

k
7

X1 + X2
k8

X2 + X3

R8
>0

7 ∅

k
2

k
1

X1

k
3

X2

k 4

X3

k5
X1 + X2

k6
X2 + X3 R6

>0

8 ∅
k2

k1
X1

k3

k4
X2

k
6

X1 + X2

k
5

X1 + X2

{k ∈ R6
≥0|k1:4 > 0, k5 > 0 and k6 = 0

or k5 = 0 and k6 > 0}

9 ∅

k
2

k
1

X1 k
3

k
4

X2

k5

X1 + X2

k
6

{k ∈ R6
≥0|k1:4 > 0, k5 > 0 and k6 = 0

or k5 = 0 and k6 > 0}

Table 1: Chemical reaction networks and the associated set K over which stationary para-
metric identifiability has been certified using the techniques of Section 3.
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[5] R. Bellman and K. J. Åström, On structural identifiability, Mathematical Biosciences, 71028
(1970), pp. 329–339, https://doi.org/https://doi.org/10.1016/0025-5564(70)90132-X, https://www.1029
sciencedirect.com/science/article/pii/002555647090132X.1030

[6] G. Bellu, M. P. Saccomani, S. Audoly, and L. D’Angiò, Daisy: A new software tool to test1031
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