
Resource Sensor Design for Quantifying Resource Competition in
Genetic Circuits

Cameron McBride and Domitilla Del Vecchio

Abstract— Sharing of cellular resources in genetic circuits
negatively affects performance and often leads to unpredictable
behavior. Measuring key metrics from experimental data that
quantify resource sharing and its effect on a system’s output
would be highly useful. In this paper, we propose two metrics, Q
and S, representing the quantity of resources used by a genetic
circuit module and the sensitivity of the output of a module
to resource disturbances, respectively. Together, Q and S may
be used to estimate the change in the output of a module in
response to the disturbances in the availability of resources.
We cast the problem of finding these metrics as a parameter
estimation problem and outline a simple procedure to estimate
these metrics from data. Knowledge of Q and S for a circuit
module enables prediction of the effects of resource sharing
and allows for resource-aware design of genetic circuits.

I. INTRODUCTION

As the field of synthetic biology has matured in recent
years, it has become increasingly important to use modular
design approaches to create sophisticated systems [1, 2].
Genetic circuits may be used for a variety of exciting appli-
cations in fields such as medicine, energy, or the environment
[3–5]. However, one of the main barriers to predictable,
modular design of genetic circuits is resource sharing [6–
10], in which the sequestration of a finite pool of cellular
resources, e.g. ribosomes, RNAP, or amino acids, causes
unwanted coupling between otherwise uncoupled genes [8].

Much work has been done in characterizing resource shar-
ing effects and in creating predictive models [8, 9, 11–17].
Most notably, a global resource monitor which characterizes
the resource usage of a genetic circuit was developed in [18,
19]; however, this method is unable to predict changes in
circuit behavior due resource sharing effects since it lacks
a characterization of resource sharing effects on the genetic
circuit of interest.

A method to allocate cellular resources in a synthetic
circuit context has not been possible thus far. Furthermore,
computational simulation of the circuits of interest and
of their interaction with the host resources suffers from
the problem that parameters are largely unknown. Hence,
quantitative predictions are often difficult. Our goal is to
develop a method to predict the effects of resource sharing
on the behavior of a genetic circuit of interest based on a
few standard experiments, with the idea that this information
could be included in automated circuit optimization algo-
rithms [20–22].
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In particular, we consider measuring the resource sharing
properties of a genetic circuit module. We propose two
metrics to characterize resource sharing in a genetic circuit
module i: Qi and Si, representing the resources used by
the module and the sensitivity of the module to changes in
resource availability, respectively. We then demonstrate that
these metrics may be employed to quantitatively predict re-
source sharing effects and propose an experimental method to
estimate Qi and Si. In Theorem 1, we find estimators Q̂i and
Ŝi for Qi and Si using data obtained through the proposed
experimental method and quantify the error introduced by
the estimators. In Corollary 1, we show that these estimators
may be used to predict the output of a genetic circuit with
resource sharing and quantify the estimation error. We show
through simulation that we are able to accurately predict how
the output of one module changes when other modules are
included in the cellular environment. Overall, the metrics Qi

and Si may be appended to a module’s description along
with the experimentally measured input/output characteristic
and used to predict the quantitative output of an arbitrary
combination of modules working together in the cellular
environment.

This paper is organized as follows. In Section II, we
introduce the general framework, define the metrics Qi and
Si, and demonstrate that they may be used to quantitatively
predict resource sharing effects. In Section III, we propose an
experimental method that may be used to estimate Qi and Si.
In Section IV, we present Theorem 1 and Corollary 1, finding
estimators Q̂i and Ŝi and an estimate on the output of the
module under resource sharing. In Section V, we demonstrate
the experimental method and find the estimates Q̂i and Ŝi

through simulation.

II. PROBLEM FORMULATION

To design a genetic circuit, the design process is typically
broken up into the design of separate modules. These mod-
ules are then combined to perform the desired function under
the implicit assumption that their input/output behavior does
not depend on the presence of other modules. Unfortuantely,
this assumption is not valid in synthetic genetic circuits due
to resource sharing [8, 13].

We begin by giving background on synthetic circuits and
defining the problem setup. As shown in Figure 1a, a node
in a genetic circuit is a dynamic process that takes a protein,
known as a transcription factor, as input and produces a
protein as output. A transcription factor input may regulate
the output of the node either positively or negatively, with
positive regulations being represented as “→” and negative
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regulations as “a”. Then, a genetic circuit module is a
collection of nodes with an input that may be controlled
and an output that may be measured.

We consider the input/output behavior of a genetic circuit
module i shown in Figure 1b. The input is ui and the
output is yi, which we assume is some fluorescent reporter
protein that may be measured. This gives the measurement
of the output for module i as yi0 for each input, ui, when
the module is in isolation, that is, it is the only synthetic
genetic circuit in the cell. The module uses resources from
an available pool that the cell has in limited quantity. Now,
if module i and module j are placed within the same cell,
as shown in Figure 1c, due to the interaction of modules i
and j with the pool of resources, the output of the modules,
yi and yj cannot be predicted solely from the measurement
of input/output responses of the modules in isolation.
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Fig. 1. (a) Representation of a node in a genetic circuit. The node takes
the transcription factor protein vi as input and produces the protein yi as
output. The node uses cellular resources for production of the protein yi,
represented by the black dashed arrow. Through using these resources, the
node also sequesters these resources, represented by the red dashed arrow.
(b) The input/output behavior of module i and module j are measured in
isolation. All nodes interact with the shared cellular resources, shown by
dashed arrows. Red dashed arrows indicate sequestration of resources. (c)
Due to the sharing of cellular resources, when module i and module j
are placed together in a cell, the output cannot be predicted solely by the
input/output behavior of the modules done in isolation.

We begin with the ordinary differential equation (ODE)
model for protein production of the output node of module
i, yi, taking into account ribosome and RNAP sharing [23]
and experimentally validated in [13], given as

dyi
dt

=
αyiFyi(vi)

1 +
∑
j∈Ii

wjFj(xi) +
∑
k/∈Ii

wkFk(z)
− δyi. (1)

Here, yi is the concentration of the protein yi, αyi is a scaling

factor on the rate of production of yi, Fyi(vi) is a normalized
Hill function [23, 24] with input vi and has the form of
Fyi(vi) =

1+aivi
n

1+bivin
for one input with ai and bi as constants,

xi is a vector of the concentrations of proteins inside the
module, Ii is the set of indices for all proteins within module
i including yi, and

∑
j∈Ii

wjFj(xi) is proportional to the

quantity of resources used by proteins within the module, z is
a vector of the concentrations of proteins external to module
i, and δ represents dilution and degradation of proteins due to
cell growth. The term

∑
k/∈Ii

wkFk(z) quantifies the resources

used by nodes external to module i (e.g. the nodes of module
j in Figure 1c) and is considered as an external disturbance.
For notational simplicity, we define w(z) ,

∑
k/∈Ii

wkFk(z)

and drop the dependency of w(z) on z.
We assume there are no connections between the module

and the nodes external to the module. We assume that yi is a
fluorescent reporter and is included as part of module i. We
denote the steady state concentration of yi as yssi (xi) and let
vi, yi ∈ xi for every module i. It has been experimentally
shown that the resources in synthetic circuits are not shared
with the resources for the cell’s metabolism [25], so we do
not consider resource sharing with the cell’s metabolism in
the model.

We now present the definitions of two metrics for a
genetic circuit module i: Qi and Si in Definitions 1 and 2,
respectively.

Definition 1: The quantity of resources used by module i,
or resource usage, is defined as

Qi(xi) =
∑
j∈Ii

wjFj(xi) (2)

Definition 2: The sensitivity of the output of the module
with respect to changes in resource availability is defined as

Si(xi) =
dyssi (xi)

dw

1

yssi (xi)|w
(3)

Both Qi(xi) and Si(xi) are nondimensional metrics that
depend on the states of module i. Qi(xi) is a positive real
number and Si(xi) may be any real number, but is typically
negative since concentrations tend to decrease as resource
competition is increased. For brevity in notation, we drop
the explicit dependence of both Qi(xi) and Si(xi) on xi

for the remainder of this paper. We now show some useful
properties of the metrics Qi and Si.

Suppose we have multiple genetic circuit modules i for
i ∈ A, and we wish to find the net resource usage, Qi, of
all modules combined. We define a module A as a module
containing all nodes in modules i for i ∈ A. Then, the total
resource usage of the module QA is given as

QA =
∑
i∈A

∑
j∈Ii

wjFj(xi)

 =
∑
i∈A

Qi, (4)

following from Definition 1. Then, the resource usage for a
module is the sum of the resource usages of all submodules.
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A. Using Qi and Si for Prediction

We now consider the situation where two or more modules
are present in the cellular context (Figure 1(c)), and seek to
quantify the module’s output. We show that prediction of
the output of each module is enabled by knowledge of the
input/output relation of the module in isolation, Qi, and Si

for each module i.
The total resource usage from all modules is the sum of

the resource usage due to each individual module within the
host cell. Therefore, the effective resource disturbance, w, on
module i from all other modules in a system is w =

∑
j 6=i

Qj

where Qj is the resource usage of module j. For analysis
purposes, we assume that w is sufficiently small such that
we may use a Taylor approximation for a few key functions.
However, as we show in Section V, our predictions still
perform well went w is not small, and, in particular, always
better than predictions made neglecting resource sharing.
Using Definition 2, we find:

Claim 1: The output of module i, yip , when sharing the
resource pool with other genetic circuit modules j = 1, . . . , n
is

yssip (xi) =
yssi0 (xi)

1− Si

(∑
j 6=i

Qj

) +O
(
d2yssi
dw2

w2

)
. (5)

where yi0(xi) is the output of module i measured in isola-
tion, Si is the sensitivity of module i, and w =

∑
j 6=i

Qj is the

resource usage of all modules sharing the cellular resources
except for module i.

Proof: The external disturbance is the sum of the
resource usage w =

∑
j 6=i

Qj . Then, by Definition 2, we have

Si · w =
dyssi (xi)

dw

w

yssi (xi)
. (6)

Substituting for dyssi
dw using the Taylor series for yi with

respect to w and simplifying, we have

Si

∑
j 6=i

Qj

 =
yssip (xi)− yssi0 (xi)

yssip (xi)
+O

(
d2yssi
dw2

w2

)
, (7)

where yssi0 (xi) is the output of module i measured in isolation
for input ui and yssip (xi) is the steady state output of module
i for input to the module ui while sharing resources with
other modules. Solving for yssip (xi) in (7) gives (5).

From Claim 1, it can be seen that the behavior of any
module when sharing the cellular resources with other mod-
ules may be predicted with knowledge of the input/output
behavior measured in isolation, yssi0 (xi), Si for module i,
and Qi for all other modules sharing the cellular resources.
Therefore, we propose a procedure to estimate Qi and Si

from data for a given module. Then, Claim 1 may be used
to predict the output of each module when multiple modules
are present in the cell and share the same resources.

III. MEASUREMENT PROCEDURE

We now present a series of experiments used to estimate
the metrics Qi and Si for module i by measuring the module
with a known resource disturbance and observing the change
on the input/output behavior.

These experiments are separated into two distinct steps.
The first three experiments are used to characterize a distur-
bance to the pool of resources, w. The final two experiments
then characterizes the module’s properties with respect to
resource sharing given that the resource disturbance from
the first three experiments is well characterized.

The proposed measurement procedure consists of mea-
surements of combinations of the module under investiga-
tion, a fluorescent reporter protein to measure the output
of the module (green fluorescent protein, GFP), and an
additional fluorescent reporter (red fluorescent protein, RFP)
representing an external disturbance to the pool of resources,
w. By observing the change in the output of the module
(GFP) and the change in the RFP concentration, we are able
to estimate Q̂i and Ŝi for module i. Any reporter protein may
be substituted, but for brevity we will refer to the output of
the module as GFP and the external disturbance as RFP.

In Experiments 1, 2, and 3, we first use a constitutive
fluorescent reporter protein (yellow fluorescent protein, YFP)
to characterize the RFP disturbance. Then, in Experiments 4
and 5, we characterize the module. Figure 2 shows a diagram
of each experiment for this procedure to estimate Qi and Si.
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Fig. 2. Diagram for all experiments to run to estimate Qi and Si for
module i. The steady state fluorescent concentration must be measured for
each case and for each value of the input to the module, ui.

We present a list of the steps in the proposed experimental
procedure. Each step corresponds to a panel of Figure 2.
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1) Measure the steady state output of a constitutive YFP
reporter in isolation as shown in Figure 2-1. Solving (1)
for the steady state of the output gives the steady state
concentration of YFP, Y ss

1 , as

Y ss
1 =

αY /δ

1 + wY
, (8)

where αY is the scaling factor for protein production, δ
is the dilution due to cell growth, and wY is the resource
usage of the YFP node (compare with

∑
j∈Ii

wjFj(x) in

(1)). The external disturbance in (1) is w(z) = 0 in this
case since there are no modules present external to the
YFP node.

2) Measure the steady state output of a constitutive RFP
reporter in isolation as shown in Figure 2-2. Solving (1)
for the steady state of the output gives the steady state
concentration of RFP, Rss

2 , as

Rss
2 =

αR/δ

1 + wR
, (9)

where αR is the scaling factor for protein production,
and wR is the resource usage of the RFP node (compare
with

∑
j∈Ii

wjFj(x) in (1)). The external disturbance in

(1) is w(z) = 0 in this case since there are no modules
present external to the RFP node.

3) Measure the steady state output of the RFP reporter
and GFP module, both constitutively expressed in the
same host cell as shown in Figure 2-3. Solving (1) for
the steady state of the output gives the steady state
concentration of YFP and RFP, Y ss

3 and Rss
3 , as

Y ss
3 =

αY /δ

1 + wR + wY
Rss

3 =
αR/δ

1 + wR + wY
. (10)

Comparing with (1), we consider the RFP and YFP
nodes to be separate modules, so wY is the internal
resource usage and wR is the external resource usage
for the YFP node, while for the RFP node, wR is the
internal resource usage and wY is the external resource
usage.

4) Measure the output (GFP) of module i at steady state
for various levels of the input to the module, ui, as
shown in Figure 2-4. Solving (1) for the steady state of
the output gives the steady state concentration of GFP,
Gss

4 , as

Gss
4i =

αGiFGi(v4i)/δ

1 +
∑
j∈Ii

wjFj(x4i)
, (11)

where αGi is the scaling factor for GFP production,
FGi(v4i) is the Hill function relating the production
rate of GFP to the input to the GFP node, v4i , and∑
j∈Ii

wjFj(x4i) represents the resources usage by mod-

ule i and the GFP reporter node.
5) Measure the output of module i (GFP) at steady state

for each input value to the module, u, with the RFP
resource disturbance used in Experiments 2 and 3 in
the same host cell, as shown in Figure 2-5. Solving (1)

for the steady state of the output gives the steady state
concentration of GFP and RFP, Gss

5 and Rss
5 , as

Gss
5i =

αGiFGi(v5i)/δ

1 + wR +
∑
j∈Ii

wjFj(x5i)
(12a)

Rss
5i =

αR/δ

1 + wR +
∑
j∈Ii

wjFj(x5i)
, (12b)

where αGi is the scaling factor for GFP production,
FGi(v5i) is the Hill function relating the production
rate of GFP to the input to the GFP node, v5i , and∑
j∈Ii

wjFj(x5i) represents the resources usage by mod-

ule i and the GFP reporter node. For the GFP output,
we consider the RFP node to be external to module i, so
wR is compared to

∑
k/∈Ii

wkFk(z) in (1). Conversely, the

module is considered to be external to module i for the
RFP node, so wR represents the internal resource usage
and

∑
j∈Ii

wjFj(x5i) represents the external resource

usage.

With these five experiments, it is possible to solve for Qi and
Si using the equations for the steady state of each measure-
ment. For the remainder of the analysis, we only consider
steady state concentrations, so the ss will be dropped from
each measured quantity for brevity. If multiple modules need
to be characterized, only Experiments 4 and 5 need to be
repeated for each module.

A. Assumptions

Standard assumptions to model genetic circuits using
deterministic ODE models are listed in Appendix A. All
additional assumptions are listed here.

1) The presence of the synthetic circuit does not affect the
growth of the cell [26] and the growth conditions are
the same for all experiments. Dilution and degradation
of proteins does not require resources and is the same
for all measured proteins in all experiments, i.e δ is the
same for all experiments.

2) Retroactivity [27] does not affect the steady state be-
havior.

3) The resource usage of the module is not significantly
affected by the disturbance, w, i.e.

(
∂Qi
∂xi
· dxidw

)
� 1.

4) The total second derivative of FGi(vi) with respect to
the disturbance is small, i.e

(
∂2FGi
∂v2
i
· d

2vi
dw2

)
� 1.

We discuss the validity of these assumptions further in
Section IV.

IV. ESTIMATING METRICS FROM MEASUREMENTS

We now use the values for the steady states Y1, R2, Y3, R3,
G4i , G5i , and R5i from Experiments 1–5 to find estimators
for Qi and Si.
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A. Characterization of Resource Disturbance

We use the steady state concentrations of YFP and RFP
(Y1, R2, Y3, R3) from Experiments 1, 2, and 3 and solve for
wR and wY . Knowledge of wR will then be used to estimate
Qi and Si for the module. We define the dimensionless
quantities

Ŷ0 ,
Y3
Y1

R̂0 ,
R3

R2
. (13)

Lemma 1: The resource usage for both constitutive YFP,
wY , and constitutive RFP, wR, are given as

wY =
1− R̂0

R̂0 + Ŷ0 − 1
(14a)

wR =
1− Ŷ0

R̂0 + Ŷ0 − 1
. (14b)

Proof: Proof follows by substituting (8), (9), and (10)
into (13) and solving for wR and wY .

B. Characterization of Module

We now find estimators for the metrics Qi and Si in
Theorem 1 using the information obtained in Experiments 4
and 5. Then, Corollary 1 quantifies the error introduced
due to the estimation of these metrics in predicting the
input/output behavior of module i when in the same context
as other genetic modules. We begin by defining the quantities
for each module i

Ĝi =
G5i

G4i

R̂i =
R5i

R2
F̂i =

FGi(v5i)

FGi(v4i)
. (15)

Furthermore, from Definition 1, the total derivative of Qi

with respect to w is given as

dQi

dw
,

d

dwR

∑
j∈Ii

wjFj(x4i)

 =
∑
j∈Ii

wj
∂Fj(x4i)

∂x4i

dx4i

dw
.

(16)
and the second total derivative of the function FGi(vi) with
respect to w is

d2FGi(vi)

dw2
,
∂2FGi(vi)

∂v2i

dv2i
dw2

R

. (17)

Theorem 1: Let the estimator Q̂i for Qi in Definition 1
be

Q̂i ,

(
1

R̂i

− 1

)
(1 + wR) (18)

and let the estimator Ŝi for Si in Definition 2 be

Ŝi ,
Ĝi − 1

Ĝi

(
1 + wR(1− R̂i)

wR(1 + wR)

)
. (19)

Then ∣∣∣Qi − Q̂i

∣∣∣ = O(dQi

dw
wR

)
, (20)

and ∣∣∣Si − Ŝi

∣∣∣ = O(dQi

dw
wR

)
+O

(
d2FGi

dw2
w2

R

)
. (21)

Proof: We combine (9), (11), and (12) with (15), which
gives

Ĝi =
FGi(v5i)

FGi(v4i)

 1 +
∑
j∈Ii

wjFj(x4i)

1 + wR +
∑
j∈Ii

wjFj(x5i)

 (22a)

R̂i =
1 + wR

1 + wR +
∑
j∈Ii

wjFj(x5i)
. (22b)

Using the Taylor approximation for
∑
j∈Ii

wjFj(x5i) with

respect to the disturbance, wR, we have
∑
j∈Ii

wjFj(x5i) =∑
j∈Ii

wjFj(x4i) +O
(

dQi
dw wR

)
. Then (22) becomes

Ĝi = F̂i


1 +

∑
j∈Ii

wjFj(x4i)

1 + wR +
∑
j∈Ii

wjFj(x4i) +O
(

dQi
dw wR

)

(23a)

R̂i =
1 + wR

1 + wR +
∑
j∈Ii

wjFj(x4i) +O
(

dQi
dw wR

) . (23b)

We solve for
∑
j∈Ii

wjFj(x4i) and F̂i in (23) simultaneously

to find∑
j∈Ii

wjFj(x4i) =

(
1

R̂
− 1

)
(1 + wR) +O

(
dQi

dw
wR

)
(24a)

F̂i =
Ĝi(1 + wR)

1 + wR(1− R̂i)
+O

(
dQi

dw
wR

)
.

(24b)

Then, by (24a), the estimator for Qi is given as

Qi =

(
1

R̂i

− 1

)
(1 + wR) +O

(
dQi

dw
wR

)
. (25)

We now use Definition 2 with (12) to find an estimator of
Si as

Ŝi =
dG5i

dwR

1

G5i

(26a)

Ŝi =
1

FGi(v5i)

dFGi(v5i)

dwR
−

1 + dQi
dwR

1 +
∑
j∈Ii

wjFj(x5i) + wR
.

(26b)

We again use the Taylor approximation
∑
j∈Ii

wjFj(x5i) =∑
j∈Ii

wjFj(x4i) + O
(

dQi
dw

)
and approximate the derivative

dFGi (v5)

dwR
=

FGi (v5)−FGi (v4i
)

wR
+O

(
d2FGi
dw2 w2

R

)
. Then we have

Ŝi =
1− 1/F̂i

wR
− 1

1 + wR +
∑
j∈Ii

wjFj(x4i)

+O
(
dQi

dw
wR

)
+O

(
d2FGi

dw2
w2

R

)
. (27)
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Substituting into (27) for
∑
j∈Ii

wjFj(x4i) from (24a) and for

F̂i from (24b) and simplifying, we obtain

Si =
Ĝi − 1

Ĝi

(
1 + wR(1− R̂i)

wR(1 + wR)

)

+O
(
dQi

dw
wR

)
+O

(
d2FGi

dw2
w2

R

)
. (28)

The error quantification of Ŝi follows directly from (28).
Note that the estimation error for both Q̂i and Ŝi are small

if Assumptions 3 and 4 are satisfied. Furthermore, as the
disturbance wR → 0, wR > 0, then Q̂i → Qi and Ŝi → Si.
This is due to the fact that the resource usage

∑
j∈Ii

wjFj(x4)

in Experiment 4 and the resource usage,
∑
j∈Ii

wjFj(x5) in

Experiment 5 becomes closer to each other for smaller wR.
Additionally, the approximation of the derivative, dyssi (x)

dw ,
using the Taylor series expansion in Claim 1 and Theorem 1
becomes better as wR decreases. We discuss the range
of validity of this assumption and the resultant errors in
Section V.

With Theorem 1, we can find estimators Q̂i and Ŝi for
every module and use Claim 1 with these estimators to find
a prediction for the output of module i when perturbed by the
other modules with total resource disturbance w =

∑
j 6=i

Q̂j .

This is stated formally in Corollary 1.
Corollary 1: Let the estimate for the output of module i,

ŷip(xi), be

ŷip(xi) =
yi0(xi)

1− Ŝi

(∑
j 6=i

Q̂j

) , (29)

where yi0(xi) is the output of module i measured in isolation
for the input to the module ui. Then the estimation error is
given as

|ŷip(xi)− yip(xi)| = O
(
d2yi
dw2

w2
R

)
+O

∑
j 6=i

dQ̂j

dw
wR


+O

(
d2FGi

dw2
w2

R

)
. (30)

Proof: The proof follows directly by applying the
estimators Ŝi and Q̂i in Theorem 1 to Claim 1.

V. SIMULATION EXAMPLE

To validate the performance of our procedure at predicting
changes is genetic circuit behavior when combined with
other modules in a host cell we simulate three different mod-
ules, A, B, and C in isolation using the reduced model in (1)
(shown in Figures 3, 4, and 5) and perform Experiments 1–5
for each module to find Q̂i and Ŝi for i ∈ {A,B,C}. We
then simulated the three modules together in all combinations
of pairs (A with B, B with C, and A with C) and compared
the output for each module predicted using Q̂i and Ŝi with
Corollary 1 to the actual output for each.

We simulated all combinations of pairs of modules and
compared the predictions made using the estimators Q̂i and
Ŝi for each module with the actual input/output behavior.
Figures 6, 7, and 8 show the input/output behavior of each
module simulated in isolation and with other modules. The
output of each module when combined with other modules
is compared with the predicted output using Q̂i and Ŝi in
(5). For each of the modules considered, all predictions are
accurate to within 2% of the actual behavior simulated, while
the error introduced by neglecting all resource sharing ranges
from 2.5% to 68%. The estimates using Q̂i and Ŝi are
uniformly better than predictions made neglecting resource
sharing. All parameters used in the simulation are given in
Table I.

Remark 1: In our derivation, we made the assumption that
w is small in order to use the Taylor approximation for the
output yi. Figures 6, 7, and 8 show that this assumption is
valid and gives good prediction results with about 2% error
for w =

∑
j 6=iQj up to approximately 0.7. When w > 1,

this assumption begins to break down and the results become
worse, giving approximately 15–25% error. However, when
w > 1, our approach still gives uniformly better predictions
than an approach that neglects resource sharing which gives
errors on the order of 50–80%.

VI. CONCLUSIONS

In this paper, we introduced two metrics for a genetic
circuit module i: Qi, the quantity of cellular resources used
by a genetic circuit, and Si, the sensitivity of the output of
that circuit to changes in resource availability. We showed
that Qi and Si may be used to predict the changes in output
of a genetic circuit due to changes in the availability of
cellular resources. We then showed that these metrics may
be estimated through a five-step experimental procedure and
found estimators Q̂i and Ŝi for Qi and Si in Theorem 1 from
information obtained through the procedure. In Corollary 1,
we demonstrated that Q̂i and Ŝi may be used to estimate

xA1u xA2
yA

module A

Fig. 3. Module A–a genetic three-protein activation cascade. The input
v activates the protein xA1 which activates xA2 which then activates the
output, yA.

xB1u xB2

yB
module B

Fig. 4. Module B–a genetic three-protein repression cascade. The input v
represses the protein xB1 , which represses the production of xB2 , which
then activates the output, yB.

xC1u xC2

yC
module C

Fig. 5. Module C–a genetic three-protein activation cascade. The input v
activates the production of the protein xC1 , which represses xC2 , which
then activates the output, yC.
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Fig. 6. (left) The input/output relation for various levels of input, u, of
module A is given in blue while the input/output relation for module A
while sharing the resource pool with modules B and C are given in red
and yellow, respectively. The output of module A in isolation increases as
the input is increased, but this is not easily seen due to the scaling of the
figure. The estimated output using Q̂A and ŜA for both cases is given by
the dashed red and yellow lines. (upper right) Resource usage estimator Q̂A

for module A as a function of the input. (lower right) Resource sensitivity
estimator ŜA as a function of the input.
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Fig. 7. (left) The input/output relation for various levels of input, u, of
module B is given in blue while the input/output relation for module B
while sharing the resource pool with modules A and C are given in red
and yellow, respectively. The estimated output using Q̂B and ŜB for both
cases is given by the dashed red and yellow lines. (upper right) Resource
usage estimator Q̂B for module B as a function of the input. (lower right)
Resource sensitivity estimator ŜB as a function of the input.

the output of module i in the context of other genetic circuit
modules sharing cellular resources. By measuring Q̂i and
Ŝi for every module, we are able to predict the output
of each module. This allows genetic circuit modules to be
characterized individually in isolation, then, using Q̂i and Ŝi,
predict the output of the module when combined with other
modules, helping to avoid lengthy, ad hoc genetic circuit
design and may inform design decisions. We performed
the measurement procedure for sample genetic circuits in
simulation to verify our results. The simulations show that
using information about Q̂i and Ŝi improves the predicted
error in output from up to 67% when resource sharing is
neglected to less then 2% using Q̂i and Ŝi for prediction
for all input levels. In the future, we wish to experimentally
verify these metrics and analyze their performance with noisy
measurements.
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Fig. 8. (left) The input/output relation for various levels of input, u, of
module C is given in blue while the input/output relation for module C
while sharing the resource pool with modules A and B are given in red
and yellow, respectively. The estimated output using Q̂C and ŜC for both
cases is given by the dashed red and yellow lines. (upper right) Resource
usage estimator Q̂C for module C as a function of the input. (lower right)
Resource sensitivity estimator ŜC as a function of the input.

TABLE I
VALUES USED FOR SIMULATIONS OF RESOURCE SENSOR

description variable value

DNA copy numbers module A DNAA 134, 324, 503nM
DNA copy numbers module B DNAB 280, 543, 196nM
DNA copy numbers module C DNAC 684, 226, 505nM
RFP copy number DNAR 50nM
DNA transcription rate k1 437h−1

mRNA translation rate k2 551h−1

mRNA degradation rate δ1 7.26h−1

protein degradation rate δ2 1.15h−1

RNAP total concentration RNAPtot 491nM
ribosome total concentration Ribotot 594nM
protein–DNA binding constant module A K0A 98, 722, 121nM
protein–DNA binding constant module B K0B 70, 49, 1.36 × 103 nM
protein–DNA binding constant module C K0C 3.24 × 103 , 26.0, 582nM
leaky RNAP–DNA binding constant module A K′A 1.21 × 105 , 8.28 × 105 ,

9.62 × 103 nM
leaky RNAP–DNA binding constant module B K′B 1.39 × 103 , 1.11 × 104 ,

2.26 × 104 nM
leaky RNAP–DNA binding constant module C K′C 2.94 × 104 , 4.28 × 105 ,

1.15 × 104 nM
RNAP–DNA binding constant module A K1A 1.06 × 105 , 4.52 × 103 ,

9.32 × 103 nM
RNAP–DNA binding constant module B K1B 3.15 × 104 , 2.30 × 104 ,

4.38 × 104 nM
RNAP–DNA binding constant module C K1C 2.92 × 103 , 1.69 × 105 ,

1.04 × 104 nM
mRNA–ribosome binding constant module A K2A 3.93 × 105 , 2.23 × 105 ,

7.68 × 105 nM
mRNA–ribosome binding constant module B K2B 1.27 × 104 , 1.94 × 105 ,

4.37 × 105 nM
mRNA–ribosome binding constant module C K2C 4.20 × 104 , 8.11 × 105 ,

4.03 × 103 nM
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APPENDIX

A. Assumptions

(a) The dynamics of protein production may be modeled
using a deterministic ODE model. This requires that the

cell volume be large enough and protein counts be high
enough (typically larger than 1000).

(b) The complexes formed all reactions reaches the quasi-
steady state significantly faster than the dynamics of
protein production and degradation. Additionally, mRNA
dynamics are much faster than protein dynamics.

(c) The system can be modeled in the form of (1). See [23]
for a derivation of this model.

(d) The cell is well stirred so spacial effects are negligible.
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