
A Computational Approach for Cell Fate Reprogramming

i. Abstract

The notion of reprogramming cell fate is a direct challenge to the traditional view in
developmental biology that a cell’s phenotypic identity is sealed after undergoing differentiation.
Direct experimental evidence, beginning with the somatic cell nuclear transfer experiments of
the 20th century and culminating in the more recent breakthroughs in transdifferentiation and
induced pluripotent stem cell (iPSC) reprogramming, have rewritten the rules for what is
possible with cell fate transformation. Research is ongoing in the manipulation of cell fate for
basic research in disease modeling, drug discovery, as well as in clinical therepeautics. In many
of these cell fate reprogramming experiments, there is often little known about the genetic and
molecular changes accompanying the reprogramming process. However, gene regulatory
networks (GRNs) can in some cases be implicated in the switching of phenotypes, providing a
starting point for understanding the dynamic changes that accompany a given cell fate
reprogramming process. In this chapter, we present a framework for computationally analyzing
cell fate changes by mathematically modeling these GRNs. We provide a user guide with several
tutorials of a set of techniques from dynamical systems theory that can be used to probe the
intrinsic properties of GRNs as well as study their responses to external perturbations.

I. Introduction

The probe into the theoretical question of how to reprogram cell fate can be aided by
identification and understanding of the gene regulatory network(s) (GRNs) that are implied in
the transformation between one phenotype and another. A common conceptualization of this
problem is the Waddington view of cellular differentiation (Waddington, 1957) in which a ball
rolls down a hilly landscape with several different valleys representing the multiple paths that
undifferentiated cells may take in acquiring their differentiated identity (Figure 1). In an
energetic landscape sense, differentiation is represented as a spontaneous ‘downhill’ process
associated with typical development during an organism’s periods of growth and maturation.
While it was a long-held consensus that this development was a permanent one-way process,
experimental manipulations of cell fate during the second half of the 20th century (such as
somatic cell nuclear transfer (Briggs and King, 1952; Gurdon et al., 1958; Campbell et al.,
1996; Wakayama et al., 1998) and transdifferentiation (Tapscott et al., 1988; Davis et al.,1987))
began chipping away at this notion. In 2006, it was shattered entirely when Yamanaka and
colleagues discovered that mouse fibroblasts could be reverted to what was coined an induced
pluripotent stem cell (iPSC) state (Yamanka et al., 2006), a transition tantamount to an ‘uphill’
climb in the Waddington landscape. Remarkably, this transformation was accomplished using
the mere overexpression of a small cocktail of transcription factors (TFs): Oct4, Sox2, Klf4, and
c-Myc (also known as ‘OSKM factors’). It is understood that in successfully reprogrammed
cells, the researchers had transformed the phenotype from fibroblast to iPSC by shifting the
initial cell state, characterized by low levels of OSKM, to the iPSC state, characterized by higher
levels of these factors (Radzisheuskaya, 2013).

While Yamanaka’s work and the variations that have followed (González et al., 2013)

have been remarkable achievements in their own right, much remains to be answered about the

biochemical and biomolecular changes that accompany many reprogramming processes
(Buganim et al, 2013; David and Polo, 2014; Back et al, 2014; Yao et al., 2017). Chief among
these questions are those surrounding the low efficiencies, variable quality, and high latency of
iPSC formation (Malik and Rao, 2013; Schlaeger and Daheron, 2015; Goh et al., 2013) that
persist in the laboratory today. Yamanka himself, when describing the first clinical trial with
iPSCs in 2016, remarked ‘what we learned from the first patient, in which we performed
autologous iPS cell transplantation, is that the entire process is too expensive. It also took
almost a year to make iPS cells from the patient’s own cells, to transfer the original cells, and to
perform all the rigorous quality control tests. It was too expensive, and it took long’ (‘iPS Cells
10 Years Later’, 2016). Even when other cell fate transitions occur with greater efficiency in the
laboratory, such as in certain transdifferentiation protocols (Zhou et al., 2008; Pang et al., 2011;
Xie et al., 2004; Bussmann et al., 2009; Laiosa et al., 2006; Vierbuchen et al., 2010; Forsberg et
al., 2010), many open questions surrounding the biomolecular changes that take place during the
reprogramming remain.

As a result, iPSC reprogramming, and more generally cell fate reprogramming, is an

active area of research. From a theoretical standpoint, understanding the complex dynamics
associated with the GRNs involved in cell fate determination can be a promising approach to
provide insight into current bottlenecks and suggest novel approaches. The task of creating
mathematical models of GRN dynamics is today rendered possible by the vast amounts of
genomic and molecular data available in the post-genomic era (Yu et al., 2004). In particular, for
iPSC reprogramming, a key GRN was discovered by Boyer and colleagues in 2005 (Boyer et al.,
2005). This GRN, which is considered to be the core pluripotency network, consists of a ‘fully-
connected-triad’ of mutually activating transcription factors, Oct4, Sox2, and Nanog. Activating
this network has been implicated as a signature of achieving pluripotency starting from
differentiated cells, and the network itself is known to be part of an extended regulation network
involving other TFs, various signaling components, differentiation genes, and chromatin
remodelers (Boyer et al., 2005; Zhang and Wolynes. 2014; Orkin et al., 2008; Chickarmane and
Peterson, 2009; Bieberich and Wang, 2013). Other well-studied cell fate reprogramming
pathways include transdifferentiation pathways between different phenotypes in the
hematopoietic stem cell (HSC) lineage. For instance, in the transdifferentiation between the
megakaryocyte lineage and the granulocyte/macrophage lineage, a core GRN involving the
transcription factors PU.1 and GATA-1 has been implicated, supporting the fact that the two
lineages are characterized by high GATA-1, low PU.1 levels and high PU.1, low GATA-1
levels, respectively (Goldfarb, 2007; Friedman, 2007; Gupta et al, 2009).

When sufficient data about a cell fate reprogramming process exists, mathematical

models of the GRN(s) in question may be constructed and thus used as a representation of the
reprogramming process itself. The utility of such models lies in the extent to which they can be
used to explain or predict experimental outcomes, shed light on biomolecular mechanisms taking
place during the reprogramming process, or suggest new informative experiments. There is a
plethora of models that have been devised for various cell fate reprogramming contexts. Given
their importance at the top of the developmental hierarchy, several models have been constructed
for the various TFs involved in establishing mammalian pluripotency, including those composing
the core network of Oct4, Nanog, and Sox2 (the ‘triad’) discovered by Boyer and colleagues in
2005. Shortly after Boyer’s discovery, (Chickarmane et al. 2006) proposed a deterministic model

of the triad that demonstrated bistability. According to their work, when the triad is expressed
(the pluripotent state, or ‘on’ state), self-renewal genes that establish pluripotency were also
shown to be expressed while differentiation genes were off, and vice versa when the triad was
not expressed. The model also predicted that if input to the system turned on the switch, the
network could persist in the ‘on’ state without sustained input if the binding strength of Nanog to
Oct4 and Sox2 was increased or the constitutive transcription level of Nanog was increased.
(Chickarmane et al. 2009) also constructed a deterministic model of the triad along with two
other TFs, Cdx2 and Gata6. Their model showed that antagonisms of Cdx2 and Gata6 with Oct4
and Nanog, respectively, are involved in controlling the murine pluripotent state’s differentiation
into the trophectoderm and endoderm lineages, respectively. In addition, their work explored
various reprogramming paths from these differentiated lineages back to the pluripotent state. We
have also previously used a mathematical model for the triad to explore questions surrounding
the outcome of reprogramming experiments and how to explain their prevalent failures (Del
Vecchio et al., 2017; Abdallah et al., 2016). (Olariu et al, 2016) have studied the impact of
demethylation on the iPSC reprogramming process, constructing a deterministic model of Oct4,
Nanog, and Tet, which is a protein that demethylates the Oct4 promoter before it can be
reactivated. This deterministic model was combined with a stochastic description of methylation
and demethylation at the promoters of Oct4 and Nanog to form a multi-layered model that
underscored the importance of demethylation in the iPSC reprogramming process.

Several mathematical models have also been published for the well-studied network
involving the TFs GATA-1 and PU.1 that govern the decision of the multipotent common
myeloid precursor (CMP) to differentiate into either the erythroid or myeloid lineages. (Huang et
al, 2007) used a differential equation model to mathematically describe the differentiation of a
‘meta-stable’ CMP state into either a stable erythroid or myeloid lineage by way of stochastic
fluctuations or directed deterministic perturbations. At a mathematical level, the bistability
underlying this model hinged upon an assumption that the functions describing the interactions
between the two TFs were sigmoidal. However, high levels of TF cooperativity, which is
typically what gives these functions sigmoidal shape (Santillán, 2008), was not consistent with
experimental results on how PU.1 and GATA-1 were interacting (Liew and Rand, 2006). A
model by (Chickarmane et al, 2009) pointed this out and suggested the need for a potentially
undiscovered cofactor mechanism to establish the bistability seen experimentally. (Tian and
Smith-Miles, 2014) constructed a stochastic model of the GATA-1/PU.1 GRN with the TF
GATA-2 incorporated as well, and showed the existence of three states that correspond to three
different blood cell phenotypes that could be reached stochastically from the same starting
conditions (as is the case in real-life development). Another example includes the work by (Zhou
et al., 2011) which proposes a differential equation model of ten essential genes involved in
pancreatic cell differentiation that predicts which artificial perturbations are needed to induce
transitions among the various pancreatic cell types.

The purpose of this chapter is to illustrate in detail how practitioners of cell fate
reprogramming (including iPSC reprogramming and transdifferentiation) can mathematically
model their particular process in question if there is already a known GRN implied in the
transformation between the phenotypes of interest. In Section II, we discuss how to use such
GRNs to model the resulting dynamics of species in the network using ordinary differential
equation (ODE) models (Figure 2, top panel). The validity of such modeling techniques rests on

some key assumptions which will be explained in detail as a prerequisite to the approaches
applied.

In Section III, we introduce the notion of reprogramming in the state-space domain, while in
Section IV we provide an introduction to analysis tools from the fields of dynamical systems
(Strogatz, 2014) that can be used to understand the intrinsic properties and behavior of the GRN
(Figure 2, middle panel). By moving the reprogramming problem to the state-space domain, it
becomes possible to characterize the admissible steady state landscapes of the system,
understand how robust these are to parameter changes, and determine which state transitions are
possible under the influence of external perturbations. Most importantly, the comparison
between the outcome of an experiment and the model prediction using these tools can often
reveal biological mechanisms that are necessary to explain the data. Finally, this workflow will
culminate in Section V, where we provide a discussion of the analysis of how a GRN responds to
artificial perturbations, such as those imposed by reprogramming practices (Figure 2, bottom
panel). Questions that can be addressed at this level of analysis include: how do the steady state
landscape reconfigure after artificial perturbations? what inter-state transitions can or cannot be
triggered with external perturbations, and what type of interventions are required to trigger a
particular transition.

II. Constructing an Ordinary Differential Equation Model of a Gene Regulatory Network

As introduced above, viewing the problem of cell fate reprogramming through the lens of a
mathematical model can lend many useful insights into the biology of a given reprogramming
practice and potentially inform future experiments. In this section, we show by way of the
example in Figure 2 how to construct an ODE model for a GRN. ODE models provide an
appropriate starting point to gauge a deeper understanding of the GRN dynamics, and hence we
focus this chapter on them. However, ODE models are suitable only when the molecular counts
of species are sufficiently high such that the system can be described in terms of concentrations
(see (Del Vecchio and Murray, 2014) and (Gillespie, 2009) for a detailed overview of
assumptions behind ODE models of biomolecular systems). In such situations, the ODE models
provide an accurate description of the mean behavior of the system dynamics. When one is
interested in stochastic properties, such as determining the response of a system to noise, or the
system is characterized by low molecular counts, other descriptions than ODEs should be
considered. The Chemical Langevin Equation (CLE) is a stochastic differential equation that
describes the system dynamics by adding a noise term to the ODE (Gillespie, 2000). Just like
ODEs, CLEs can be used only when concentration is a meaningful way of describing the system.
When this is not the case and molecular counts are very low, the Chemical Master Equation
(CME) is the appropriate description (Van Kampen, 1992). In these cases, the behavior of an
ODE model can be dramatically different from the mean behavior of the stochastic model (Al-
Radhawi et al., 2017).

There are many different ODE models that one could write for a GRN of interest (Polynikis et al,
2009). In our representation, we describe a network involving n TFs, or n ‘nodes,’ using n ODEs,
with each equation describing the rate of change of the concentration of a single TF. If X = (X1,
X2, …, Xn) represents the n nodes in a GRN with concentrations 𝑿 = (X1, X2, … Xn) respectively,
we write an ODE model for their concentrations as follows:

"#$
"%
= 𝐻(𝑿 − 𝛾(𝑋(,

where 𝐻((𝑿) is the production rate of TF Xi that lumps together the effects of all activators and
repressors of gene of Xi and 𝛾(is the decay rate of the TF, which encompasses both active
degradation and dilution (Del Vecchio and Murray, 2014). We will derive 𝐻(𝑿 (𝑖 = 1,2) for
the simple GRN network with nodes X and Y in Figure 2 using a set of molecular interactions
between these TFs themselves, the genes that encode for them, and the mRNA transcripts from
which they are translated (we use the nodes X and Y rather than X1 and X2 to simplify notation).
Though we decide upon these interactions and declare them to be true for illustrative purposes, in
general these will have to be determined using a literature search surrounding the particular GRN
being studied: different TFs have different binding behaviors to their gene targets, and this is one
of the factors that affect the final functional form of 𝐻2(𝑿). Moreover, there is also freedom in
deciding which molecular species to include in a representation of the interactions based on the
degree of detail one is interested in capturing. We begin describing these interactions for what
will be our example in Figure 2 using a biochemical reaction model.

1. From Literature Data to Biochemical Reaction Model
Formation of Transcription Factor Multimers (“Multimerization”)
It is common for TFs in a GRN to act as multimers, or proteins consisting of multiple monomers.
In general, a literature search should be conducted to determine the most probable
multimerization state of each TF in the network under study. As will be shown, whether a TF is
acting as a monomer, dimer, trimer, etc., will be captured by a key parameter during ODE
construction. In our running example, for illustrative purpose we treat TFs X and Y as acting in
their homo-dimerized forms, Xd and Yd, respectively. The biochemical reactions corresponding
to these reversible dimerizations are shown in Table 1A.

Transcriptional Level Activation
In the basic modeling formalism presented here, we assume that regulatory interactions, such as
the activations between TFs X and Y in Figure 2, occur at the transcriptional level. Other
regulatory mechanisms are possible, such as regulation of translation rate through microRNAs
(Agrawal et al, 2003), and regulation of protein activity through covalent modification (Berg et
al 2002). Here, for simplicity, we only consider transcriptional regulation since it is typically
better characterized experimentally. In particular, we treat the arrow going from node X to node
Y (node Y to node X) in the GRN as representing protein product X (Y) activating the promoter
of gene Y (X). Likewise, the ‘auto-regulating’ arrow going from node X (Y) to X (Y) itself
represents the TF X (Y) activating its own promoter.

There are a number of ways two TFs can co-bind to a common promoter (Gyorgy and Del
Vecchio 2014).

Independent Binding: the two TFs bind to the promoter on separate sites and do not affect each
other’s binding/unbinding.

Cooperative Binding: the second TF only binds to the promoter when the first TF is already
bound, or vice versa.

Competitive Binding: the two TFs compete for the same binding site, which they mutually
exclusively occupy. Hence, if one TF is bound to the promoter, the other TF cannot bind.

In general, the mode(s) of binding for each TF in a network will have to be determined from the
literature. In our model, we treat TFs X and Y as acting independently, which means they can
occupy their targets alone or together. These configurations are captured by the specific
association and dissociation rate constants in Table 1B, where we have introduced free DNA
promoters DX and DY for genes X and Y, respectively. Based on the binding modes shown in
Table 1, the promoters of gene X and gene Y can exist as:

• DX: this species represents the unbound promoter of gene X.
• DXX: this species represents DX bound by the homodimer Xd alone.
• DXY: this species represents DX bound by the homodimer Yd alone.
• DXXY: this species represents DX bound by the homodimers Xd and Yd.
• DY: this species represents the unbound promoter of gene Y.
• DYY: this species represents DY bound by the homodimer Yd alone.
• DYX: this species represents DY bound by the homodimer Xd alone.
• DYYX: this species represents DY bound by the homodimers Xd and Yd.

There are a variety of experimental strategies used for the discovery of DNA binding sites for a
TF of interest (Geertz and Maerkl, 2010). Some common techniques for genome-wide binding
site discovery are ChIP-on-Chip (Horak and Snyder, 2002) and ChIP-Seq (Park, 2009). In ChIP-
on-Chip, the TFs of interest are cross-linked to chromatin that is then precipitated using
antibodies specific for each TF, hence revealing their binding site to a particular DNA sequence.
When done in a high-throughput manner using microarray chips, this is a practical way to reveal
binding sites at the genome scale. In ChIP-Seq, TFs are similarly cross-linked and precipitated,
and then the precipitated samples are run through high-throughput sequencing where peak-
finding software tools are used to identify the presumed TF binding sites.

Once it is determined that a protein is acting as a TF, elucidating the direction of transcriptional
regulation is commonly done by measuring the fold change of transcription in separate
experiments in which the TF in question is knocked out or overexpressed. Once again, this can
be done in a high-throughput manner using microarray chips or RNA-sequencing (Wang and
Snyder, 2009) to determine transcription levels. In addition, experimenters may sometimes find
the same TF acting in a context-dependent manner as both an activator and repressor. In such
cases, further investigation is needed to determine if another mechanism, such as context-
dependent cofactors, are influencing the TF’s effect on transcription.

At the biochemical reaction level, the representation for activators and repressors (Figure 3) is
similar. A repressor R can bind a free promoter D at its target to form a repressed promoter DR.
The fact that this DNA promoter is repressed rather than activated will be reflected in the fact
that the relative transcription rate from the promoter configuration DR is less than that from the
non-repressor bound promoter, D. Likewise, if A is an activator, the transcription rate from the
promoter configuration representing A bound to its target promoter, DA, will be higher than the

transcription rate on the non-activated target promoter, D. We illustrate these details in the
following section for our running example of Figure 2.

Transcription and Translation
Next we provide biochemical reaction models for transcription and translation. In prokaryotes
and eukaryotes alike, transcription is an elaborate process involving several steps including
initiation, elongation, and termination of an mRNA transcript, amongst others (Alberts et al.,
2002). Likewise, translation consists of several steps including polypeptide formation and
elongation and is followed by protein folding before the protein can reach its active form. A full
mechanistic model of the transcriptional and translational apparatuses is laid out in equations
2.10 and 2.11 of Chapter 2 in (Murray and Del Vecchio, 2014). In modeling GRNs for cell fate
reprogramming, however, this level of detail is not typically important for capturing the
qualitative behavior of a network and its response to external perturbations. As derived in
(Murray and Del Vecchio, 2014), we can treat transcription and translation as single step
reactions with lumped rates that encompass the time it takes for all the steps in the elaborate
machinery to complete.

For our particular GRN of Figure 2, these one-step biochemical reactions are shown in Table 1C,
where each DNA promoter state established above produces an mRNA transcript, mX or mY,
from the genes of X and Y, respectively. Table 1C distinguishes between constitutive, or ‘leaky’
transcription that represents the basal rate of transcription of a gene without activation or
repression, and activated transcription in our example. The degree to which constitutive
transcription occurs will have to be determined from the literature for each gene in question;
some genes will constitutively be active while others only transcribe mRNA upon activation.
Moreover, the ‘activating’ property of these reactions will be encoded in the fact that the rates of
transcription for activated DNA will be greater than the rate of constitutive transcription, as
shown in the table.

To summarize Table 1C, the mRNA transcript, mX, of gene X can be produced in 4 ways:

• From the constitutive promoter of gene X, DX, at a rate 𝛼4 (unit time)-1.
• From the singly-activated promoter DXX at a rate 𝛼45 of mRNA transcripts/unit time.
• From the singly-activated promoter DXY at a rate 𝛼46 of mRNA transcripts/unit time.
• From the dually-activated promoter DXXY at a rate 𝛼47 of mRNA transcripts/unit time.

Because the species DXX, DXY, and DXXY represent activated forms of DX, the rates of
transcription from these species will be greater than from constitutive transcription, i.e. 𝛼45, 𝛼46,
𝛼47 > 𝛼4. Since the GRN is symmetric, similar representations hold for the way mY is produced.

Note that if these promoters were being repressed rather than activated, the only change would
be in the relative rates of transcription between free promoters and repressor-bound promoters,
i.e. 𝛼45, 𝛼46, 𝛼47 < 𝛼4 and 𝛼85, 𝛼86, 𝛼87 < 𝛼8.

TABLE 1: Dimerization, DNA-Binding, and Transcription Reactions
Reaction Type Biochemical Reaction Model Representation

A. Dimerization

Represents TF X reversibly forming a
homo-dimer, Xd. Units of ax:
(concentration ⋅ time)-1, dx: (time)-1

Represents Y reversibly forming a
homo-dimer, Yd. Units of ay:
(concentration⋅ time)-1, dy: (time)-1

B. Reversible DNA
Binding

INDEPENDENT ACTIVATION
AUTO ACTIVATION MUTUAL-ACTIVATION

Represents homo-dimer Xd reversibly
binding its own free promoter, DX, to
form an activated promoter DXX.

𝐾5 = 𝑑5/𝑎5

Represents homo-dimer Yd reversibly
binding the free promoter of X, DX, to
form an activated promoter DXY.

𝐾6 = 𝑑6/𝑎6

Represents homo-dimer Yd reversibly
binding to the promoter of Y, DY, to
form activated promoter DYY.

𝐾> = 𝑑>/𝑎>

Represents homo-dimer Xd reversibly
binding to the promoter of Y, DY, to
form activated promoter DYX.

𝐾7 = 𝑑7/𝑎5
CO-ACTIVATION

(left) Represents homo-dimer Yd reversibly binding the promoter of X when Xd is already
bound (i.e. DXX) to form an independently co-activated promoter DXXY. (right) Represents
homo-dimer Xd reversibly binding the promoter of X when Yd is already bound (i.e. DXY)
to form an independently co-activated promoter DXXY.

𝐾? = 𝑑?/𝑎?,	𝐾A = 𝑑A/𝑎A	

(left) Represents homo-dimer Yd reversibly binding the promoter of Y when Xd is already
bound (i.e. DYX) to form an independently co-activated promoter DYXX. (right) Represents
homo-dimer Xd reversibly binding the promoter of Y when Yd is already bound (i.e. DYY)
to form an independently co-activated promoter DYYX.

𝐾B = 𝑑B/𝑎B, 𝐾C = 𝑑C/𝑎C
Units of ai = (concentration⋅unit time)-1. Units of di = ⋅(unit time)-1 (i 𝜖 {1 … 8})

C. Transcription

CONSTITUTIVE
TRANSCRIPTION

ACTIVATED TRANSCRIPTION

Transcription of genes X and
Y without activation, i.e.
“leaky” transcription.

Represents transcription
of activated genes of X to
form species mX.

Represents transcription of
activated genes of Y to
form species mY.

for activated DNA: 𝛼4(, 𝛼8(> 𝛼4E, 𝛼8E, for repressed DNA: 𝛼4(, 𝛼8(< 𝛼4E, 𝛼8E (i 𝜖 {1,4}).
Units for all rate constants: (unit time)-1

TABLE 1 (cont.): Translation, Decay and Ectopic Overexpression Reactions
Reaction Type Biochemical Reactions
D. Translation

Represents translation of mRNA transcript
of gene X into the protein product X.

Represents translation of mRNA transcript
of gene Y into the protein product Y.

E. Decay

DEGRADATION DILUTION

Represents the degradation of TFs X and Y
and mRNA transcripts mG and mH.

Represents the dilution of TFs X and Y
due to cell-division.

In total, the decay rates 𝛾4 and 𝛾8 of TFs X and Y, respectively, are equal to the sum of
degradation and dilution rates for each TF: 𝛾4 = 𝛿4 + 𝛽, 𝛾8 = 𝛿8 + 𝛽.

F. Ectopic
Overexpression

Represents the additional mRNA species mX and mY formed via

ectopic overexpression at rates ux and uy mRNA species / unit time.

Though we began with several DNA promoter states, these ultimately led to the same two
mRNA transcripts, mX and mY. At this point under the assumptions we have made, translation
can also be represented by a one-step process from these transcripts into their protein products as
shown in Table 1D.

Decay
While the reactions from above lead to the production of X and Y, we also model the decay of
these proteins as well as their respective mRNA species. In general, these proteins and mRNA
species will undergo decay at some rate that is a combination of both active degradation (𝛿4 and
𝛿8 for proteins X and Y, respectively, and 𝜂4 and 𝜂8 for mRNA species mX and mY,
respectively) and dilution (𝛽)	, as shown in Table 1E. For proteins X and Y: the total rate of
decay is 𝛾4 = 𝛿4 + 𝛽	and 𝛾8 = 𝛿8 + 𝛽, respectively.

In general, the degradation parameters can be determined using the following relations (Del
Vecchio and Murray, 2014):

𝛾(= ln 2 /𝑡5/6, 𝛿(= ln 2 /𝑡5/6,

where 𝑡5/6 represent the half-lives of each protein or mRNA transcript. The half-life of a species
is the time it takes for its concentration to fall to half of its initial concentration (Zhou 2004), and
can often be found from the literature. Care should be taken to use the half-life value in a cell
environment that most closely resembles the phenotypes in question during the reprogramming

process under study, as half-lives can vary as a function of environment (Kuhar, 2009).
Likewise, the dilution rate 𝛽 can be calculated using the cell division rate, or doubling time,
𝑡"EPQR(ST of the cell which the proteins are contained in: 𝛽 ≈ ln	(2) / 𝑡VWXYZ2[\. The doubling time
of prokaryotic cells such as E. Coli can be on the order of minutes (Sezonov, 2007) while that of
eukaryotic cells can be approximated by the characteristic human cell cycle time of
approximately 24 hours (Cooper, 2000).

Overexpression (Artificial Perturbation)
Thus far we have described the reactions that comprise the endogenous components of our GRN.
Ultimately, the reprogramming framework we describe will include artificial perturbations to our
endogenous GRN that can be captured in our model as follows. As described in Section I,
reprogramming is typically done by artificially overexpressing TFs of the GRN through insertion
of ectopic DNA (Takahashi and Yamanka, 2016). Therefore, we can model this by adding an
additional production rate of the TF's mRNA from the ectopic DNA (Table 1F).

As seen above, this is the phase in the modeling process that will require a literature search to
determine the multimerization state of the TFs in the GRN, the configurations in which they can
bind the DNA they are regulating, as well as their half-lives and dilution rates. The online
database bionumbers.org (Milo et al., 2010) can be a useful source for some of these parameters
in many cases.

2. From Biochemical Reaction Model to ODE

With this biochemical reaction model established, we are ready to construct an ODE model for
the GRN. Since ODE models are deterministic, they implicitly assume that the species in our
biochemical reactions exist at sufficiently high copy numbers and in well-stirred volumes
(Section 2.1, Del Vecchio and Murray, 2014).

The procedure for obtaining the ODE for each species introduced is relatively straightforward,
with no expertise in differential equations required: one simply must go through every reaction
listed in Table 1 and add appropriate terms to the differential equations of each species involved
in that reaction (see Section 2.1 of Del Vecchio and Murray, 2014). For a given species S,

Change in concentration of S = "

"%
𝑆 = 𝑆 = 𝛴 (all biochemical reaction rates involving S)

Doing so for our biochemical reaction network yields:

Table 2: Full 14D Model of GRN

𝑋" = 𝑎4𝑋6 −	𝑑4𝑋" −	𝑎5𝐷#𝑋" + 𝑑5𝐷## − 𝑎7𝐷`𝑋" + 𝑑7𝐷`# − 𝑎A𝐷#`𝑋" + 𝑑A𝐷##` − 𝑎C𝐷``𝑋" + 𝑑C𝐷``# (1)

𝑌" = 𝑎8𝑌6 −	𝑑8𝑌" −	𝑎6𝐷#𝑌" + 𝑑6𝐷#` − 𝑎>𝐷`𝑌" + 𝑑>𝐷`` − 𝑎?𝐷##𝑌" + 𝑑?𝐷##` − 𝑎B𝐷`#𝑌" + 𝑑B𝐷``# (2)

𝐷# = −𝑎5𝑋"𝐷# + 𝑑5𝐷## − 𝑎6𝑌"𝐷# + 𝑑6𝐷#` (3)

𝐷` = −𝑎>𝑌"𝐷` + 𝑑>𝐷`` − 𝑎7𝑋"𝐷` + 𝑑7𝐷`# (4)

𝐷## = 𝑎5𝐷#𝑋" − 𝑑5𝐷## − 𝑎?𝐷##𝑌" + 𝑑?𝐷##` (5)

𝐷#` = 𝑎6𝐷#𝑌" − 𝑑6𝐷#` − 𝑎A𝐷#`𝑋" + 𝑑A𝐷##` (6)

This 14-dimensional ODE model of the GRN contains a large number of parameters that makes
it impractical to analyze for cell fate reprogramming. However, if we assume that dimerization,
DNA binding/unbinding, and mRNA dynamics in Table 1A-1C occur sufficiently faster than
protein production and decay in Table 1D-1E, the temporal derivatives of the respective species
can be set to zero, indicating that the species concentration reaches its (quasi) steady state very
quickly compared to the rest of the system. This is called the quasi-steady state (QSS)
approximation and is widely used in modeling biochemical reaction systems (Del Vecchio and
Murray, 2014). In our example, this amounts to setting the temporal derivatives in equations (1-
12) to zero.

Using the QSS approximation and accounting for the fact that DNA is not destroyed, through the
conservation laws DTX = DX + DXX + DXY + DXXY and DTY = DY + DYY + DYX + DYYX,
we arrive at the 2D model:

𝑋 =
bcde	

fcc
ghgi

#je
fkc
gjgl

`je mc⋅n
ghgjgigl

#j`j

5e h
ghgi

#je h
gjgl

`je h
ghgjgigl

#j`j
− 𝛾4𝑋 + 𝑢4,

𝑌 =
bkd	e

fck
gigp

#je
fkk
glgq

`je
mk⋅n

gpgqgigl
#j`j

5e h
gigp

#je h
gqgl

`je n
gpgqgigl

#j`j
− 𝛾8𝑌 + 𝑢8,

where we have further assumed 𝐾6/𝐾? = 𝐾5/𝐾A = 𝐾>/𝐾B = 𝐾7/𝐾C = 𝑅, and the lumped
parameters are equal to:

𝛼4E = 𝐷s#𝛼4/𝜂4, 𝛼8E = 𝐷s`𝛼8/𝜂8, 𝑎44 = 𝐷s#𝛼45/𝜂4, 𝑎84 = 𝐷s#𝛼46/𝜂4, 𝑏4 = 𝐷s#𝛼47/𝜂4, 𝑎88 = 𝐷s`𝛼85/𝜂8,
𝑎84 = 𝐷s`𝛼86/𝜂8, 𝑏8 = 𝐷s`𝛼87/𝜂8, 𝐾# = 𝑑4/𝑎4, 𝐾` = 𝑑8/𝑎8. Without loss of generality, if we take 𝑅 = 1
and 𝐾# = 𝐾` = 𝐾(= 1	(𝑖 ∈ {1, 2, 3, 4}), we get the model:

𝑋 =
𝛼4E + 	𝑎44𝑋6 + 𝑎84𝑌6 + 𝑏4𝑋6𝑌6

1 + 𝑋6 + 𝑌6 + 𝑋6𝑌6
− 𝛾4 ⋅ 𝑋 + 𝑢4 = 𝐻5 𝑋, 𝑌 − 𝛾4𝑋 + 𝑢4

(15)
𝑌 =

𝛼8E 	+ 𝑎48𝑋6 + 𝑎88𝑌6 + 𝑏8𝑋6𝑌6

1 + 𝑋6 + 𝑌6 + 𝑋6𝑌6
− 𝛾8 ⋅ 𝑌 + 𝑢8 = 𝐻6(𝑋, 𝑌) − 𝛾8𝑌 + 𝑢8

In (15), the terms H1(X,Y) and H2(X,Y) are regulatory functions referred to as Hill functions
(Santillán, 2008). In our regulatory functions, the variables X and Y being raised to the power 2

𝐷`# = 𝑎7𝐷`𝑋" − 𝑑7𝐷`# − 𝑎B𝐷`#𝑌" + 𝑑B𝐷``# (7)

𝐷`` = 𝑎>𝐷`𝑌" − 𝑑>𝐷`` − 𝑎C𝐷``𝑋" + 𝑑C𝐷``# (8)

𝐷##` = 𝑎?𝐷##𝑌" − 𝑑?𝐷##` + 𝑎A𝐷#`𝑋" − 𝑑A𝐷##` (9)

𝐷``# = 𝑎B𝐷`#𝑌" − 𝑑B𝐷``# + 𝑎C𝐷``𝑋" − 𝑑C𝐷``# (10)

𝑚# = 𝛼4𝐷# + 𝛼45𝐷## + 𝛼46𝐷#` + 𝛼47𝐷##` − 𝜂4𝑚# + 𝑢4 (11)

𝑚` = 𝛼8𝐷` + 𝛼85𝐷`` + 𝛼86𝐷`# + 𝛼47𝐷``# − 𝜂8𝑚` + 𝑢8 (12)

𝑋 = 𝜅4𝑚# − 𝛾4𝑋 (13)

𝑌 = 𝜅8𝑚` − 𝛾8𝑌 (14)

stems from fact that X and Y were assumed to act as homo-dimers. In fact, this exponent is more
generally referred to as the Hill coefficient n (Santillán, 2008), where n = the number of subunits
in the multimerized state of the TF (i.e. n = 1 for monomers, n = 2 for dimers, n = 3 for trimers,
etc).

In summary, the assumptions we have made in arriving at the 2D model of our GRN in (15) are:

1. Regulations Take Place at the Transcriptional Level Only: as shown in Table 1B, the
arrows between nodes in the GRN take place through TF protein products binding at the DNA
promoters of their targets, where they activate or repress transcription.

2. mRNA Levels Produced via Transcription Reach Steady State Levels Sufficiently Fast.
During reduction of the dynamics from 14D to 2D above, setting 𝑚# = 𝑚` = 0 was predicated
on the assumption that mRNA dynamics were sufficiently fast, where sufficiently fast is
equivalent to assuming that the decay rates of mRNA are much larger than those of proteins (i.e.
𝜂4, 𝜂8 ≫ 𝛿4, 𝛿8). Protein half-lives are typically longer than mRNA half-lives (Schwanhäusser,
2013), and this is a good assumption when they are longer on the order of one magnitude or
more.

3. DNA Binding and Unbinding Rates Are Much Faster than Protein Production and
Decay: setting the ODEs corresponding to the DNA species to zero during model reduction from
14D to 2D was predicated on the assumption—known as the adiabatic limit (Zhang and
Wolynes, 2014)—that DNA binding and unbinding rates in Table 1B are much larger than the
production and decay rates of the protein products, i.e. 𝑑(, 𝑎𝑖𝑋, 𝑎𝑖𝑌 ≫ 𝛾4, 𝛾8, 𝜅4, 𝜅8	for 𝑖 = 1, … ,8.
In prokaryotic cells, the adiabatic assumption is typically accurate (Alon, 2006; Del Vecchio and
Murray, 2014), though in eukaryotic cells the time needed to demethylate DNA and unpack
chromatin before TFs can bind may mean that the promoter kinetics are slower than assumed
(Arjun et al., 2006; Yuan et al., 2016; To and Maheshri, 2010; Mariana et al, 2010). When they
become slower than the protein production and decay, the predictions of the reduced model may
not be entirely accurate, and it would be preferable to use the full 14D model (i.e. the model
without reductions based on QSS assumptions). Nonetheless, the steady states of a reduced
model will be in the same location as the steady states of the full model so we proceed with this
assumption to illustrate what a first-pass analysis of the qualitative behavior of a GRN looks like.

4. The Species in Question Exist in Sufficiently High Molecular Counts: an assumption that
has been held throughout this entire ODE modeling scheme is that the species in question exist at
sufficiently high molecular counts.

Now that we have arrived at this reduced ODE model of our GRN, we are ready to represent the
Waddington view of cell fate reprogramming from the mathematical perspective.

III. A Dynamical Systems View of Cell Fate Reprogramming

By developing a mathematical model for the cell fate reprogramming problem in Section II, we
can now study its properties using dynamical systems tools. Within a dynamical systems
description, a GRN consisting of the n TF species X5, X6, … , X[has a “state” given by the tuple

of TF concentrations 𝑋 = (𝑋5, 𝑋6, … , 𝑋S). The GRN can be described using n ODEs representing
the evolution of these concentrations: 𝑋 = 𝑓(𝑋), in which we use 𝑋 for 𝑑𝑋/𝑑𝑡. We refer to the set
of points (𝑆5, … , 𝑆�) in state space such that 𝑓 𝑆(= 0 (for 𝑖 = 1…𝑚) as the steady states of this
dynamical system, which can be either stable or unstable (Strogatz, 2014). Qualitatively, stable
steady states (SSS) are those that can withstand or damp out small amplitude disturbances, and
are therefore associated to a phenotype in this context (Kauffman, 1973; Huang and Eichler,
2005; Huang, 2009)

The distinction between a stable and unstable steady state (USS) can be visualized in Figure 4A,
which portrays the states of a GRN as a landscape of wells. In this landscape, SSSs are
equivalent to valley-like depressions while USSs are equivalent to ‘peaks.’ On the one hand,
under the influence of gravity pointing downwards in the figure, any arbitrarily small
perturbation applied on a hypothetical ball that is resting on a peak will cause it to permanently
lose its position on that peak (and hence that state is unstable). On the other hand, a ball resting
in a depression can withstand some level of perturbation and still converge back into that well
(and hence that state is stable).

In addition, SSSs have varying degrees of stability, which can in part be captured by the basin of
attraction surrounding each SSS, which is the set of states (TF concentrations) starting from
which the system converges autonomously to that SSS. For instance, in Figure 4A, if the SSS
themselves are the bottom-most points in the wells, then the entire well is the basin of attraction
of that SSS. Hence in the metaphor of this figure, cell fate reprogramming is akin to enforcing
transitions from the basin of attraction of the starting phenotype (one well), to the basin of
attraction of the final phenotype (another well). This is accomplished by artificially perturbing
(i.e. applying an input to) the endogenous GRN just the right amount such that the landscape
pushes the system’s state from the basin of attraction of the starting state towards the basin of
attraction of the desired final state (Figure 4B).

In Figure 5, we depict this reprogramming concept for a prototypical two dimensional system
consisting of two TFs, X and Y. The state space hence consists of concentrations of these TFs: X
and Y. In Figure 5A, when no input is applied, the steady state landscape of the endogenous GRN
alone consists of three SSSs: 𝑆5, 𝑆6, and 𝑆7. As introduced above, we view these states as
corresponding to distinct phenotypes characterized by the relative concentrations shown, and
with basins of attraction surrounding each SSS as highlighted in the figure. When an artificial
perturbation is introduced for the purpose of reprogramming, the steady state landscape morphs
into one that may have a different number of SSSs at different locations. (Figure 5B).
Specifically, the original states 𝑆5, 𝑆6, and 𝑆7 disappear and two new stable steady states, 𝑆6� and
𝑆7′, arise as depicted. As a result, once the perturbation is applied on a system starting in the
location which was originally 𝑆5, the system’s state will converge towards 𝑆6�. Upon removal of
input in Figure 5C (i.e. completion of the cell fate reprogramming experiment), the system’s
state now at 𝑆6� is found in the basin of attraction of the original system’s SSS 𝑆6, and therefore
the system's state ultimately converges to 𝑆6. In essence, in a dynamical system representation,
cell fate reprogramming corresponds to morphing the steady state landscape of the GRN through
external perturbation such that the current system's state (current phenotype) is pushed into the
basin of attraction of the target state (target phenotype). It is in general non-trivial to determine
external perturbations that are appropriate to trigger a desired state transition. However,

mathematical and computational analysis of the ODE model can reveal useful information in this
regard, as we illustrate in the next sections.

To summarize, Figure 6 juxtaposes the different views of reprogramming at the three levels of
abstraction discussed thus far: reprogramming as transitions up and across the Waddington
landscape, as transitions in state space, and as an experimental change in the phenotype itself.

IV. Analysis of Intrinsic Properties of GRN using Tools from Dynamical Systems

Having introduced the notion of SSS as phenotypes, in this section we provide tools for
mathematical characterization of the steady state landscape by continuing with our running
example of Figure 2. In particular, we analyze the intrinsic properties of this GRN by analyzing
the steady state landscape of our system in (15) without input (i.e. 𝑢4 = 𝑢8 = 0). Studying this
steady state landscape is of utmost importance, as having a correspondence between the
mathematical steady states of an ODE model and the phenotypes being studied in a particular
cell fate reprogramming process speaks to the strength of a model and its ability to represent the
phenotype switching in question.

In general, the mathematical steady states of an ODE model, regardless of its dimensionality, are
the solutions to simultaneously setting the time derivatives of all species in the GRN to zero. In
our running example of a GRN in Figure 2, the mathematical steady states of its 2D model in
(15) are solutions to the equations 𝑑𝑋/𝑑𝑡 = 𝑑𝑌/𝑑𝑡 = 0. One of the benefits of having a 2D
model is that these solutions can be viewed in a 2D-plane, as depicted in Figure 7. As shown,
setting these time derivatives to zero yields two equations whose solutions are ‘nullclines’ in the
X-Y plane. Viewed in this manner, the solutions to 𝑑𝑋/𝑑𝑡	 = 	𝑑𝑌/𝑑𝑡	 = 	0, and hence the steady
states, are given by the intersection of these nullclines.

Stability of Steady States

Once the steady states of a system have been determined, there are different options for
determining their stability, depending on the dimensionality of the model. For a system 𝑋 = 𝑓(𝑋)
with 𝑋 = (𝑋5, 𝑋6, … , 𝑋S) and 𝑓(𝑋) = (𝑓5 𝑋 , … , 𝑓S(𝑋)), the vector 𝑓(𝑋) is known as the vector field,
which has a different length and direction as a function of 𝑋.	Qualitatively, plotting this vector at
different points across the state space indicates the local direction and speed at which a point in
state space would move under the dynamics of the system. Hence arrows in a vector field point
towards SSSs while they point away from USSs. (Del Vecchio and Murray, 2014). For systems
with dimension higher than 2, plotting the vector field may not be practical and therefore
algebraic tools, such as the Jacobian matrix are more informative. We illustrate the vector field
approach with the 2D model in (15), and then illustrate the Jacobian matrix approach using a 3D
GRN model.

2D Geometric Analysis
With the choice of parameters shown in Figure 7, there are five intersections, or steady states.
In the code block of the Figure, we use the Mathematica functions ContourPlot and
VectorPlot to simultaneously plot these nullclines and the vector field, respectively. As
shown, this allows for a very simple visual inspection of stability at each steady state, and we can

see that our system has three SSSs and two USSs. The same principles allow for simple visual
inspection of stability for 1D systems, an example of which is shown in Appendix Figure 1.

n-D Computational Analysis
In GRNs with more than two TFs, such as the three node network shown in Figure 8A, the
reduced ODE system that can be obtained through the workflow from Section II has greater than
two dimensions. Equation (16) of Figure 8A shows the reduced 3D ODE model that can be
obtained for the GRN shown. In these cases, the steady state landscape may be inferred using
computational techniques outlined in Figure 9. This workflow is based on standard theory from
dynamical systems and linear algebra (Strang, 1993; Strogatz, 2014), though in-depth knowledge
of these concepts is not required for use of the code we provide.

The workflow is as follows: one can first solve for the steady states of an n-D system using an
algebraic solver such as vpasolve in Matlab (Fig. 9A). Then, to determine the stability of these
steady states, a standard method is to use a Jacobian matrix (that can be found using the function
jacobian in Matlab, Fig. 9B), which results from linearization of the nonlinear system. The
linearization of the system at a steady state of interest provides a good approximation of the
system dynamics in the near proximity of the steady state. Since this approximation is linear, we
can infer the stability of the linearization by determining the eigenvalues of the Jacobian matrix
evaluated at that steady state (Fig. 9C-D). Stability (all eigenvalues with negative real part) or
instability (some eigenvalue with positive real part) directly translates into stability or instability
of the original system's steady state. Marginal stability of the linearization (when one eigenvalue
has zero real part with all others having negative real parts) is inconclusive for the original
nonlinear system (Del Vecchio and Murray, 2014; Khalil 2014).

In Figure 8C-8D, we show the results of this workflow, the list of steady states and their
eigenvalues for the 3D model in equation (16). These results indicate that the system possesses
two SSS and one USS. Figures 10A and 10B implement the Matlab code used to compute these
steady states and eigenvalues, which can be adapted for other systems by simply adding the
relevant ODEs and parameters. In Figure 8B, we also show in 3D how the steady states are
distributed in the 3D state space, by plotting the surfaces obtained by setting the time derivatives
of X, Y, and Z in (16) equal to zero (which are the 3D equivalents of nullclines), and seeing that
intersections of these surfaces occur at the same points computed by vpasolve.

To summarize the Jacobian matrix method of determining stability, for each steady state:

� Case #1: if all eigenvalues of the Jacobian matrix evaluated at that steady state have
negative real parts, the state is a stable steady state for the original nonlinear system.

� Case #2: if any eigenvalues of the Jacobian matrix evaluated at that steady state has a
positive real part, the state is an unstable steady state for the original nonlinear system.

� Case #3: if none of the real parts of eigenvalues of the Jacobian matrix evaluated at that
steady state are positive, but one or more are zero, the Jacobian Linearization method is
inconclusive, and other methods must be used.

In the rare Case #3, more advanced methods from nonlinear dynamical systems theory, including
Lyupanov Theory (Slotine and Li, 1991) or the Center Manifold Theorem (Wiggins, 2003; Carr,
1981) can be used to investigate stability.

Basins of Attraction

Once the SSSs of a model are identified, determining the basin of attraction around each one can
be an informative next step in understanding the landscape. For our running example in equation
(15), Figure 11 shows how to compute this basin of attraction numerically in Matlab. As shown
in the figure, the basins of attraction around each of the three SSS 𝑆5, 𝑆6, and 𝑆7 are the blue,
pink, and purple-shaded regions, respectively. These represent the sets of concentrations of X and
Y starting from which the system converges autonomously to each respective SSS.

Parameter Analysis
Thus far in our study of the steady state landscape, we have taken for granted a certain set of
parameters in our model for the 2D GRN, though in reality the values of parameters used can
have major consequences on the location, number, and stability of steady states. As discussed in
Section II, when constructing a biochemical reaction model of a GRN, care should be taken at
every step to use parameters from the literature, when available, that most accurately reflect the
reactions that take place in reality. However, there will often be large variability on many
parameter values and some reactions may have unknown parameters. It is therefore important to
assess how variations in parameters affect the steady state landscape of the GRN.

Here, we describe three different tools that can be used to this end. Specifically, for a single
parameter variation at a time, parameter bifurcation analysis is the most commonly used
approach (Wiggins, 2003). To evaluate the effect of all parameters changing at the same time,
local parameter sensitivity analysis (Khalil, 2014; Del Vecchio et al, 2014) can be performed,
which provides insight for sufficiently small changes in parameters. This tool can also be used to
locally determine the parameters to which the system is more sensitive. Finally, for the effect of
changing all parameters at the same time within given ranges, global sensitivity analysis can be
performed (Saltelli et al, 2008), which is a computationally intensive approach. In the examples
that follow, we implement our code in Matlab for the sake of introducing the concepts. However,
several software tools are available, especially for parameter bifurcation analysis, including
AUTO (http://indy.cs.concordia.ca/auto/) and Oscill8 (http://oscill8.sourceforge.net/).

Single-Parameter Bifurcations

One way to assess the impact of a given parameter on the steady state landscape is to hold all
other parameters constant and plot the location of the steady states as that parameter is changed,
with attention given to how the number and stability of steady states change, or bifurcates
(Strogatz, 2014). Figure 12 demonstrates this method for the parameter axx in equation (15). The
two plots in this figure show the steady states of the system, (𝑋∗, 𝑌∗), and their stability, as this
bifurcation parameter axx is varied from the values 2 to 2.8, as an example. As shown, the
system begins with 5 steady states at axx = 2 (the nominal value used in Figures 7 and 11), and
loses two steady states at about axx = 2.45. Stability analysis using the Jacobian matrix method
(implemented in the code block of the figure) shows that of the remaining 3 steady states, two

are stable while one is unstable. In this case, we say that the system goes through a bifurcation at
axx ≈ 2.5. In particular, for the intermediate stable and unstable steady states, this is a case where
the stable and unstable steady states "collide" and annihilate each other, which is known as a
saddle-node bifurcation (Wiggins, 2003). This is an important insight since, as we have
described, SSSs represent phenotypes and so this model would indicate that at least one
phenotype could potentially disappear if this parameter is somehow perturbed experimentally.
These notions will become important when we discuss how some external perturbations to ODEs
can be modeled by changes in parameters in Section V, which will lend insight into possible
explanations for how external stimulation during reprogramming changes the steady state
landscape.

Local Sensitivity Analysis

A more systematic way of assessing how the steady state landscape changes in response to small
parameter perturbations is the use of sensitivity matrices. As depicted, in Figure 13A, the
sensitivity matrix, 𝑆G,�, of a system with state X = (X5, X6, . . , X[) and parameters Θ =
(θ5, θ6, … , θ�) at a stable steady state 𝑋∗ and nominal parameter values 𝛩𝒐 represents the local
change in the stable steady state coordinates when small changes are applied to the parameters.
The theory behind this method is described in detail in Section 3.2 of (Del Vecchio and Murray,
2014), though the general result can be used directly if an ODE model for a GRN is given. For a
general n dimensional system with ODEs described by 𝑋5 = 𝑓5 𝑋, 𝛩 ,… , 𝑋S = 𝑓S 𝑋, 𝛩 , the
sensitivity matrix within the vicinity of steady state 𝑋∗ and around a nominal set of parameters
𝛩𝒐 is:

𝑆G,� ≔
"G
"�
= − ��

�#	 (#∗,�d)

�5 ��
��	 (#∗,�d)

	 (17)

where 𝑓 = [𝑓5, … , 𝑓S]’.

In the normalized version of this sensitivity matrix,

𝑆𝑿,𝚯
∗ = 𝐷#∗ �5

⋅ 𝑆𝑿,𝚯 ⋅ 𝐷�
∗

where 𝐷𝑋
∗ �5

= 𝑑𝑖𝑎𝑔{𝑋∗} and	𝐷�d = 𝑑𝑖𝑎𝑔{𝛩𝑜}, the entries of this matrix can be compared to
each other to assess the parameters to which the system’s steady state is most sensitive. In Figure
13B, a Matlab code block is provided that carries out this computation for our 2D system in
equation (15). As seen in the figure, this matrix can be computed at different SSS (as specified
by the parameter ‘state_index’). For the nominal parameters used, ODE model (15) has three
SSS (recall Figure 7). Using this code, the normalized sensitivity matrix at the SSS 𝑆6 from
Figure 7, for instance, is:

 𝜶𝒐𝒙 𝜶𝒐𝒙 𝒂𝒙𝒙 𝒂𝒚𝒙 𝒃𝒙 𝒂𝒙𝒚 𝒂𝒚𝒚 𝒃𝒚 𝜸𝒙 𝜸𝒚

X* 0.0033 0.0273 2.1682 0.1437 0.3498 0.0728 0.7706 17.7313 0.1175 0.3814

Y* 0.0004 0.0070 0.2290 0.0152 0.0370 0.0174 0.1844 4.5339 0.0300 0.0975

A quick glance at this matrix shows that both the X and Y components of 𝑆6 are most sensitive
to the parameter 𝑏8 compared to the rest of the parameters. Note that the sensitivity matrix can
be computed only at steady state/parameter combinations where the Jacobian matrix 𝑑𝑓/𝑑𝑋	is
non-singular, and therefore cannot be computed at bifurcation points.

Global Sensitivity Analysis
Global sensitivity analysis can offer a wider glimpse into how parameters affect the salient
properties of a system. In this type of analysis, Monte Carlo methods (Saltelli et al., 2008) can be
used to randomly sample several parameters at a time over a sufficiently large number of
repetitions. In doing so, any output that one may be interested in as these parameters are varied,
such as the number of SSS, their locations, or the dominant eigenvalues associated with them, is
observed in the aggregate across a statistically representative set of outputs.

The crucial part of this process is running a sufficient number of repetitions so that the parameter
sets used are representative of the entire parameter space such that, in turn, the outputs realized
are statistically representative of the output space. As the number of parameters increase, running
a sufficient number of repetitions becomes more challenging due to the curse of dimensionality
(Saltelli et al., 2008).

There are various computational techniques that can be used to control the sample generation
process of Monte Carlo methods so that a statistically representative parameter set is formed
without an intractable number of samples needed (McKay et al, 1979). Latin hypercube sampling
(LHS) is one such method that partitions the parameter space into a grid and enforces sampling
rules such that every sample resides in a unique row and column (Stein, 1987). Figure 14 depicts
this with a simple example in 2D parameter space. A Latin hypercube is shown with five
samples in the parameter space axy and axx. Without LHS (Fig. 14A), the 2D parameter space
might not efficiently cover the space, while with LHS (Fig. 14B), there is some level of spread
enforced by the fact that every sample is the only one in the row and column of the grid formed
by partitioning the parameter space.

In Figure 14C, we provide Matlab code that generates the number of steady states in the model
of equation (15) as the six parameters axx, axy, bxy, ayy, ayx, by are collectively randomly sampled.
The code uses the function lhsnorm to generate a 6D normal Latin hypercube, where each
parameter is sampled from a normal distribution with the means at nominal values from Figure 7
and variances as specified in Figure 14. For N = 1000 samples, we see that our model has 3 total
steady states around 70% of the time, 5 total steady states about 18% of the time, and 1 total
steady state about 12% of the time.

We note that the distributions from which the parameters are being sampled can have a
significant difference on the results of a global sensitivity analysis. If sampling from normal
distributions, increasing variances of these distributions would include more extreme values
away from the nominal means. In addition, the Matlab function lhsdesign offers LHS from
uniform distributions, which may be used if those are considered better representative of the
parameters in a model. Ultimately, these are decisions that one has to make in accordance with
the degree of global sensitivity one is interested in capturing, and the claims made about global

sensitivity should be explained in the context of assumptions made on the parameter distributions
used.

In summary, the collection of tools we have provided a tutorial for in this section can be used
towards understanding the properties of arbitrary GRNs that abide by the assumptions at the end
of Section II. Using the Matlab and Mathematica implementations of these various tools for our
running GRN example, practitioners can adapt the code we provide according to the architecture
of their networks.

V. Modeling Cell Fate Reprogramming: Response of GRNs to Artificial Perturbations

The dynamical systems tools discussed in Section IV were introduced as a means of garnering
insight into the intrinsic properties of GRNs. In this section, we use these tools to analyze the
response of GRNs to artificial perturbations that can capture the manipulations that
experimentalists exert during cell fate reprogramming.

In the overexpression reactions of Table 1F for our example GRN in Figure 2, we modeled these
artificial perturbations as constant production terms, 𝑢4 and 𝑢8, on the mRNA species mX and
mY, respectively. Following reduction of our model to two dimensions in equation 15, the
protein species X and Y display constant production terms 𝑢4 and 𝑢8 (proportional to the
original overexpression terms), respectively, in their dynamics. When modeling TF-mediated
cell fate reprogramming, these constant overexpression terms are responsible for the change in
the steady state landscape in such a way as to induce the desired transition between two SSSs.
However, with nonlinear systems such as ours, it is in general non-trivial to determine what
types and levels of artificial perturbation can trigger a desired transition.

To begin elucidating the ways in which artificial perturbations might be applied to trigger a
certain transition, we can observe the qualitative change in the steady state landscape as we
change parameters that correspond to potential artificial perturbations, assuming these stay
approximately constant once applied. We will consider ectopic overexpression and enhanced
degradation of TFs as the possible artificial perturbations to our model in (15).

Open-Loop Overexpression

In Figure 15, we use the nullclines and bifurcation tools discussed in Section IV to observe the
response of the steady state landscape of the system to increasing values of 𝑢4 and 𝑢8. In Figure
15A, we see that the landscape again begins with three SSS: 𝑆5, 𝑆6, 𝑆7. From a control design
point of view (Astrom and Murray, 2016), we can regard prefixed overexpression of TFs as an
"open loop" control strategy, wherein the input of the system (overexpression level) is prefixed at
the beginning of the experiment and is not adjusted based on the TF levels throughout the
experiment (Figure 15B). In panels C and D, we note the form in which the nullclines change as
a result of increasing 𝑢4 and 𝑢8, respectively. And though it is difficult, given the nonlinearity of
the system, to pinpoint systematically how the nullclines will change shape or move across the
X-Y plane, we can qualitatively see that increasing 𝑢4 (perturbation #1) causes 𝑆5 to disappear
first followed by 𝑆6 while increasing 𝑢8 (perturbation #2) causes 𝑆6 to disappear first, followed
by 𝑆5 (Figure 15C-F). In either case, sufficiently high overexpression will leave only one SSS,

𝑆7�, in the proximity of 𝑆7 (i.e. in the basin of attraction of 𝑆7; see bifurcation plots in figure Fig.
15E-F for 𝑢4 and 𝑢8 very high). This is important insight for the reprogramming strategy.
Specifically, if the starting state (phenotype) is 𝑆5 and our objective is to trigger a transition into
𝑆6, overexpression of 𝑢4 may be a preferable approach to overexpression of 𝑢8.

In panels G-H of Figure 15, we simulate a reprogramming experiment using open-loop
overexpression with an intermediate level of 𝑢4 to facilitate a transition from 𝑆5 to 𝑆6. Starting
with the system at 𝑆5 (Fig. 15G), we apply 𝑢4 = 0.2	(a level informed by the bifurcation plots of
Fig. 15E) and see that the nullclines and vector field change in a fashion that forces the state to
transition to 𝑆6�. Upon removal of this input in Fig. 15H, we see that the system transitions from
𝑆6� to 𝑆6, and hence the reprogramming from 𝑆5 to 𝑆6 is complete. We note that even though
overexpression was possible with this intermediate level of 𝑢4, very high overexpression of
either TF will not be a successful strategy to triggering transitions from 𝑆5 to 𝑆6 as the system's
state will ultimately approach 𝑆7 instead (see bifurcation plots in Fig. 15E-F). At best with 𝑢4
there is a finite window of overexpression that is required for triggering the desired transition
and it may not be experimentally trivial to set the overexpression level precisely in that window.
So, overexpression may in practice fail for this example GRN.

Cooperative Monotone Systems: Fundamental Limitations on Re-programmability

Our model makes some potentially useful predictions about possible reprogramming strategies
using open-loop overexpression. In particular, it indicates that there may be a fundamental flaw
in these types of perturbations for certain transitions, such as the one from 𝑆5 to 𝑆6. There is a
fundamental reason why certain transitions from states characterized by lower concentrations
(𝑆5) to states characterized by higher, but not maximal, concentrations (𝑆6) cannot be guaranteed
with the open-loop overexpression described in Figure 15. It is because our example GRN of
Figure 2 only has activating arrows between the TFs. At an intuitive level, this means that both
genes are always upregulating themselves as well as each other, so stimulating these nodes
artificially (via open-loop ectopic overexpression) very easily sets off an upregulation positive-
feedback cascade that pushes concentrations of both to higher and higher levels so that the
system becomes monostable at maximal (i.e. non-intermediate) values. In fact, reprogramming
GRNs to intermediate states is a difficult task to achieve in an even more general class of GRNs
that can be described as ‘cooperative1 monotone’ systems (Del Vecchio et al, 2017), of which
our example is a type. Hence, it is not possible using these reprogramming paradigms to
guarantee that reprogramming from states with lower concentrations to states with intermediate
concentrations (such as the transition from 𝑆5 to 𝑆6) will be successful.

Enhanced Degradation

Another way to experimentally perturb our GRN is by adding proteases or microRNA (Agrawal,
2003; to artificially enhance the degradation rate of TFs X and Y. In our model in (15), this is
akin to increasing the values of the overall decay rates 𝛾4 and 𝛾8, respectively. In Figure 16, we
repeat the analysis from above, this time analyzing the effect of increasing these decay rates from
their nominal values in Figure 7. As demonstrated by the changing nullclines and bifurcation

1 Cooperative networks should not be confused with cooperative co-binding modes discussed in Section II.

plots in panels 16C-H, we see that enhancing the degradation rate of 𝛾4 (perturbation #3) causes
the SSS 𝑆6 to disappear first, followed by 𝑆7. Likewise, enhancing the degradation rate of 𝛾8
(perturbation #4) causes the SSS 𝑆7 to disappear first, and maintains the SSSs in the proximity of
𝑆5 and 𝑆6.

Based on the way increasing degradation rates changes the steady state landscape, another
perturbation we might consider for use in transitioning from 𝑆5 to 𝑆6 is appropriately combining
overexpression with enhanced degradation (perturbations 1 and 4) so that both 𝑆5 and 𝑆7
disappear while keeping a state 𝑆6� in the vicinity of 𝑆6. Figure 17 shows the results of
simulating this experiment, in which we use the same level of intermediate overexpression as in
the experiment above, in addition to increasing the degradation on TF Y enough to make 𝑆7
disappear (informed by the bifurcation plots of Fig. 16F). This causes the system to transition to
a state 𝑆6� near 𝑆6 (Fig. 17C), so that upon cessation of both artificial perturbations (Fig. 17D),
the system transitions to 𝑆6, and reprogramming is complete.

Closed-Loop Overexpression

The crucial conclusion from these theoretical results is that open-loop overexpression, whether
or not it is combined with enhanced degradation, cannot be guaranteed to be a winning strategy
for certain reprogramming tasks. To address this, in previous work (Del Vecchio et al., 2017) we
have proposed an entirely new paradigm called closed-loop, or feedback overexpression (Figure
18A), in which the level of ectopic overexpression is not merely set once at the beginning of an
experiment. Rather, if TF X in our system needs to be steered to a target concentration X* (where
𝑋∗ may be the concentration seen in a target phenotype in a reprogramming experiment) the
actual concentration is measured throughout the experiment and the level of overexpression or
degradation 𝑢x is altered in proportion to the distance between the current state and target state,
i.e. 𝑢x = G(X*- X). Our theory shows that with high enough values of G, known as the gain of the
feedback controller, any starting state can in principle be steered to arbitrary levels 𝑋∗ of
concentrations for each node in the network that is overexpressed via feedback overexpression.
This is true of any system regardless of the initial shape of the nullclines, which demonstrates
that this strategy is not dependent upon the specific dynamics or parameters of a GRN.

In Figure 18B, we demonstrate what this means for the nullclines for our model in (15). As the
figure shows, as the values of gain G are increased, the nullclines morph into increasingly
straight lines that intersect at the target state (𝑋∗, 𝑌∗). In panels C-D of Figure 18, we simulate a
reprogramming experiment in our running example from 𝑆5 to 𝑆6 via closed-loop
overexpression.

Realizing Genetic Feedback Control
In the feedback overexpression paradigm we have presented, which contrasts with the status quo
of ‘open-loop’ overexpression paradigms used in most TF-mediated reprogramming
experiments, transitions to intermediate states can in fact be theoretically guaranteed
(demonstrated in the theory shown in (Del Vecchio et al, 2017)). In addition, we have shown that
one way to realize this closed-loop overexpression without requiring continuous measurements
of concentration, (which may be difficult experimentally) is by use of a synthetic genetic
feedback controller that simultaneously ectopically overexpresses and degrades the mRNA of a

species under control using short-interfering RNA (siRNA) (Figure 19). By the appropriate
balancing of these two artificial perturbations using inducers that control the expression levels of
mRNA using a synthetic gene and the expression levels of the siRNA, the system can be in
principle steered to arbitrary concentrations independent of network dynamics and parameters.
Moreover, we have shown in detail in (Del Vecchio et al, 2017) that the high gain G needed
according to the theory can be achieved by increasing the copy number of the ectopic DNA on
which the synthetic circuit is encoded. At an intuitive level, this is tantamount to having a
sufficient amount of the synthetic circuit inside the cell being reprogrammed that it dominates
the effect of endogenous dynamics and takes over the network to steer it to arbitrary
concentration levels.

VI. Conclusion

The topics we have discussed in this chapter comprise the basic steps in the computational
approach to cell fate reprogramming. At the root of the approach we have described is the
existence of a GRN that has been implicated in the cell fate change of interest. Moreover, in
order to obtain an ODE model, we have made certain kinetic assumptions about how the species
of that GRN interact. By way of a running example of a GRN with two TFs mutually and auto-
activating, we have gone through a series of tutorials on methods from dynamical systems theory
that can be used to probe the intrinsic properties of GRNs, and shown their implementations
using Mathematica and Matlab. These include methods that identify the number and location of
stable steady states of a GRN (corresponding to phenotypes) as well as various ways to
understand the model’s dependence on parameters. The code blocks we have provided can in
many cases straightforwardly be adapted to suit practitioners’ ODE models corresponding to
GRNs with various topologies. We then provided a discussion for how to use these tools to
understand GRNs’ responses to artificial perturbations, which model the stimulations that
experimenters apply to a GRN during cell fate reprogramming. Ultimately, this is the purpose of
these models: to understand the response of a GRN in silico to various types of artificial
perturbations so that one can inform in vitro and in vivo experiments (see Sections III-V).

Throughout this chapter, the differential equation models we have used were deterministic. As
noted in Section II, this is because ODE models are an appropriate starting point for a first pass
understanding of the qualitative behavior of GRNs. However, they are only appropriate to
describe the mean behavior of species’ dynamics when molecular counts are high enough to be
stated in terms of concentrations. The next step after understanding GRNs in the deterministic
realm is typically to use stochastic differential equation (SDE) models, such as the Chemical
Langevin Equation (CLE), which can capture the effects of the prevalent intrinsic and extrinsic
noise in biological systems (Swain and Elowitz, 2002; Elowitz et al., 2002). The Chemical
Master Equation (CME) is most appropriate when molecular counts are low while the Chemical
Langevin Equation (CLE) is appropriate when concentration is still a meaningful description of
molecular counts. When molecular counts are low, practitioners may find that the GRN
behaviors observed in an ODE model are dramatically different from the mean behavior of a
stochastic model (Al-Radhawi et al., 2017).

Another dimension that we have not considered in this chapter is the epigenetic transformation
that might often take place during a cell fate reprogramming process. In the past decade, it has

become increasingly clear that the unpacking of genes from their condensed chromatin states, as
well as methylome reprogramming of DNA base pairs on the promoters of GRNs are key events
(Allis et al., 2015; Bagci and Fisher, 2013; De Carvalho, 2010; Huang and Fan, 2017) that take
place during what has typically been assumed to be genetic reprogramming alone. In general, the
degree of epigenetic transformation that takes place during a given cell fate reprogramming
process should be investigated and potentially included in mathematical models of
reprogramming.

Figure 1: Waddington Landscape of Cell Differentiation. In this
metaphor for differentiation, cell fate specification is akin to a marble
rolling down a hill with several different valleys that represent the diverse
fates that cells with the same genetic encoding ultimately adopt. Along the
way to differentiation, these cells are often lumped under the umbrella term
of ‘stem cells,’ though they have different potencies depending on their
degree of differentiation. Zygotes and embryonic stem cells (ESCs) in the
first few divisions after fertilization are totipotent, and can give rise to an
entire organism including the placenta and umbilical cord. When ESCs
become pluripotent, they can continue to give rise to all three germ layers
and thus an entire organism. Multipotent cells are adult stem cells that retain
some potential for further differentiation, which is typically limited to a
particular tissue type (e.g. haematopoietic cells, neural stem cells,
mesenchymal stem cells) (Mitalipov and Wolf, 2009). iPS reprogramming
as depicted is tantamount to an ‘uphill’ movement from a somatic state (e.g.
fibroblast) to the pluripotent state. Transdifferentiation as depicted is
tantamount to directly transforming from one lineage to another (e.g. B-cell
to macrophage, as shown in Xie et. al, 2004).

Figure 2: The Dynamical Systems Approach to Cell Fate Reprogramming (top panel) If a known GRN is implied
during a phenotype change in a cell fate transformation experiment, a biochemical reaction model of the network can be
constructed. Under certain assumptions about this biochemical reaction model that are detailed in Section II, ODE
models can be constructed that describe the endogenous dynamics of the system and also incorporate the effect of
artificial perturbations. (middle panel) Once an ODE model is constructed, the dynamical systems toolbox can be
applied towards the goal of understanding the intrinsic properties of the GRN in question. Notably, these tools seek to
understand the number and location of stable steady states implied by the mathematical model, including an
assessment of how these depend on the model’s parameters. (bottom panel) The response of the GRN to artificial
perturbations is the ultimate goal of formulating the reprogramming problem into these mathematical terms. By
understanding how the number, location, and extent of basins of attraction surrounding the stable steady states
determined in step (II) will change in response to artificial perturbations such as ectopic overexpression, practitioners
can understand the advantages and limitations of different reprogramming paradigms, which may be used to inform
experiments.

R Xi

Repression

A Xi
Activation

Figure 3: Representing
Activation and Repression
Between Nodes in a GRN

Figure 4: Visual Depiction of Stable and Unstable Steady States. (A) Unstable steady states (USS) are
analogous to the ‘peaks’ in a valley landscape while stable steady states (SSS) are analogous to well-like
depressions in the landscape. If a ball is resting in a SSS, it can withstand some degree of disturbance and still
return to the SSS autonomously. However, if it is resting on a peak (USS), then any nonzero disturbance will
permanently push it off that peak and hence out of that steady state. (B) Cell fate reprogramming is akin to
transitioning between wells by altering the landscape through artificial perturbation. If a ball begins at state S1, it
can be forced to transition to S2 or S3 by appropriately changing the valley landscape as shown.

Figure 5: Cell Fate Reprogramming as Morphing the Steady State Landscape (A) Without any
artificial perturbation, the system possesses three stable steady states (SSS): 𝑆5, 𝑆6, and 𝑆7 that
represent phenotypes characterized by relative concentration levels of the TFs X and Y. The basin of
attraction of each SSS (phenotype) is the set of states (TF concentrations) starting from which the
system converges autonomously to the corresponding SSS (phenotype), as depicted by the shaded
regions. (B) When a certain degree of artificial perturbation to the network is applied, the steady state
landscape changes shape so as to push the system starting from 𝑆5 to a location 𝑆6� in the basin of
attraction of the original state 𝑆6 of the system without overexpression. (C) Upon removal of the artificial
perturbation, the system’s state moves from 𝑆6�	to 𝑆6, and the transition from 𝑆5 to 𝑆6 has been
completed.

Figure 6: The Reprogramming Concept Viewed at Different Levels of Abstraction (A) At a
high-level, cell fate reprogramming is akin to traveling ‘uphill’ in the Waddington landscape. (B)
Identification of a GRN motif controlling the relevant cell fates allows for the framing of
reprogramming as enforcing a transition between stable steady states in the ‘state-space’ of an
ODE model of that GRN. These stable steady states are characterized by relative concentration
levels of TFs in the GRN that in principle map to relative concentration levels seen in the
phenotypes being represented. (C) Ultimately, the dynamic model of reprogramming is meant to
inform improved experimental cell fate reprogramming strategies, which transform one phenotype
to another.

𝒅
𝒅𝒕
(𝑿) =

𝜶𝒙𝒐 + 𝒂𝒙𝒙𝑿𝟐 + 𝒂𝒚𝒙𝒀𝟐 + 𝒃𝒙𝑿𝟐𝒀𝟐

𝟏 + 𝑿𝟐 + 𝒀𝟐 + 𝑿𝟐𝒀𝟐
− 𝜸𝒙𝑿 + 𝒖£𝑿

𝒅
𝒅𝒕
(𝒀) =

𝜶𝒚𝒐 + 𝒂𝒙𝒚𝑿𝟐 + 𝒂𝒚𝒚𝒀𝟐 + 𝒃𝒚𝑿𝟐𝒀𝟐

𝟏 + 𝑿𝟐 + 𝒀𝟐 + 𝑿𝟐𝒀𝟐
− 𝜸𝒚𝒀 + 𝒖£𝑿

ODEs 𝑑𝑋/𝑑𝑡 = 0
𝑑𝑌/𝑑𝑡 = 0

𝑌 =
¤−𝑢¥4 − 𝑋6(𝑢¥4 + 𝑎44) − 𝛼4E + 𝛾4(𝑋 + 𝑋7)
¤𝑢¥4 + (𝑢¥4 + 𝑏4)𝑋6 + 𝑎84 − 𝛾4(𝑋 + 𝑋7)				

𝑋 =
¦�P£k	�	`j§P£k	e	¨kk©�bkdeªk(`	e	`p)

¦P£k		e		§P£k		e		Qk©`je¨ck�ªk(`e	`p)
			

Nullclines

Figure 7: Steady states of a 2D ODE and Their Stability (top) One way to find the steady states of our ODE model
is to set the time derivatives of each species to zero and solve for the curves in the plane that result. (bottom left)
[lines 1-6] The Solve function in Mathematica can be used to solve for nullclines if there is an explicit solution. These
could then be plotted using the Plot function in Mathematica (not shown). [lines 8-11] Parameter value definitions.
[lines 13-24] The ContourPlot function in Mathematica can also be used to plot nullclines, whether or not there is an
explicit solution, as the two ODEs are specified as {dX/dt == 0, dY/dt == 0} in the input. The VectorPlot function, can
be used to plot the vector field of the system. The two ODEs are specified as {dX/dt, dY/dt } in the input. [line 26] The
Show function can be used to overlay the nullclines and vector field.

Note that the plot shown includes styling not specified in the code shown. The optional parameters that can be used to format plots can be found in the
documentation of the ContourPlot and VectorPlot functions.
Documentation for Solve: http://reference.wolfram.com/language/ref/Solve.html
Documentation for ContourPlot in Mathematica: http://reference.wolfram.com/language/ref/ContourPlot.html
Documentation for VectorPlot in Mathematica: http://reference.wolfram.com/language/ref/VectorPlot.html
Note that overlaid nullcline and vector plot could also be generated using the plot and quiver functions, respectively, in Matlab.
Documentation for plot in Matlab: https://www.mathworks.com/help/matlab/ref/plot.html
Documentation for quiver in Matlab: https://www.mathworks.com/help/matlab/ref/quiver.html

2D Geometric Analysis

Mathematica Code Block

Solve[(alphaxo + axx*X^2 + ayx*Y^2 +
bx*(X^2)*(Y^2))/(1 + X^2 + Y^2 + X^2*Y^2) -
gammax*X + uxbar == 0, Y]
Solve[(alphayo + axy*X^2 + ayy*Y^2 +
by*(X^2)*(Y^2))/(1 + X^2 + Y^2 + X^2*Y^2) -
gammay*Y + uybar == 0, X]

alphaxo = 0.01;alphayo = 0.01; axx = 2; ayx = 10;
axy = 0.17; ayy = 1.8;
bx = 7.5; by = 2; gammax = 1; gammay = 1; uxbar =
0.00; uybar = 0.00;

dXdt = (alphaxo + ayx*Y^2 + axx*X^2 +
bx*X^2*Y^2)/(1 + X^2 + Y^2 + X^2*Y^2) - gammax*X
+ uxbar;

dYdt = (alphayo + ayy*Y^2 + axy*X^2 +
by*X^2*Y^2)/(1 + X^2 + Y^2 + X^2*Y^2) - gammay*Y
+ uybar;

nullclines = ContourPlot[{dYdt == 0, dXdt == 0},
{X, 0, 7}, {Y, 0, 1.5}];
vectorField = VectorPlot[{dXdt, dYdt}, {X, 0, 7},
{Y, 0, 1.5}, VectorStyle -> Arrowheads[0.03]];

Show[nullclines, vectorField]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Figure 8: Steady State Landscape Analysis of a 3D GRN: (A) The ODEs in (16) represent the reduced system
that would be obtained by applying the workflow and assumptions of Section II on the GRN shown, with three
mutually activating TFs: X,Y,Z (B) The surfaces 𝑋∗, 𝑌∗, 𝑍∗ are obtained by setting the time derivatives of 𝑋, 𝑌, 𝑍,
respectively, equal to zero and solving for each variable. Intersections of all three surfaces represent the steady
states of the system, of which there are three as shown. (C) These same three steady states can be equivalently
computed using vpasolve in Matlab, as implemented in Figure 10A. (D) Using Jacobian matrices as explained in
Figure 9 and implemented in Figure 10B, the stability of each steady state can be determined using the
eigenvalues of the Jacobian matrix evaluated at that steady state.

Figure 9: Using Jacobian Matrices to Determine Stability of Steady States in n-D
Models. (A) The steady states of an n-D ODE model can be computed using the vpasolve
function in Matlab. (B) The Jacobian matrix, J, of the n-D ODE model can also be computed
in symbolic terms using the jacobian function in Matlab. (C)-(D) The outputs of results
from (A) and (B) can be combined to evaluate the symbolic J at each of the k steady states
using the symbolic substitution function subs, and the n eigenvalues of each Jacobian
matrix can be calculated using the function eig (note: some eigenvalues may be repeated).

n-D Computational Analysis - Find All Steady States – surf, vpasolve
 colormap winter % set coloring for 3D plots

a = 1.5; ayx = a; azx = a; azy = a; axy = a; axz = a; ayz = a; % set parameters
g = .75; gammaX = g; gammaY = g; gammaZ = g; % decay rates of proteins X,Y,Z
alpha0x=0.01;alpha0y=0.01;alpha0z=0.01;%leaky transcription rates of mX,mY,mZ
% plot the surface X* = f(Y,Z)
dp = 0.05; max = 3;
[Y,Z] = meshgrid(0:dp:max,0:dp:max);
Xnullcline = (1/gammaZ)*(alpha0x + azx*(Z.^2) + ayx*(Y.^2))./(1+ Y.^2 + Z.^2);
C = .25*ones(length(Y),length(Z)); % set color
sx = surf(Xnullcline,Y,Z,C); hold on;
% plot the surface Y* = f(X,Z)
[X,Z] = meshgrid(0:dp:max,0:dp:max);
Ynullcline = (1/gammaY)*(alpha0y + azy*(Z.^2) + axy*(X.^2))./(1+ X.^2 + Z.^2);
C = 0.55*ones(length(X),length(Z)); % set color
sy = surf(X,Ynullcline,Z,C); hold on;
% plot the surface Z* = f(X,Y)
[X,Y] = meshgrid(0:dp:max,0:dp:max);
Znullcline = (1/gammaZ)*(alpha0z + axz*(X.^2) + ayz*(Y.^2))./(1+ X.^2 + Y.^2);
C = 0.75*ones(length(X),length(Y));
sz = surf(X,Y,Znullcline,C); hold on;
% format plots and add axes labels
xlabel('[X]','FontSize',15);ylabel('[Y]','FontSize',15);zlabel('[Z]','FontSize',15)
alpha(sx,0.4); alpha(sy,0.4); alpha(sz,0.4); % apply transparency on the surfaces
% overlay numerically computed solutions on nullclines
% (Figure 9A) calculate steady states using vpasolve
syms X Y Z % define variables and dynamics
dXdt = (alpha0x + azx*(Z.^2) + ayx*(Y.^2))./(1+ Y.^2 + Z.^2) - gammaX*X;
dYdt = (alpha0y + azx*(Z.^2) + ayx*(X.^2))./(1+ X.^2 + Z.^2) - gammaY*Y;
dZdt = (alpha0z + ayx*(X.^2) + azx*(Y.^2))./(1+ X.^2 + Y.^2) - gammaZ*Z;
[sol_X, sol_Y, sol_Z] = vpasolve([dXdt == 0, dYdt == 0, dZdt == 0],...
 [X, Y, Z],'random',true);
% extract indices of real solutions solutions
indices1 = find(imag(sol_Y)==0);
indices2 = find(imag(sol_Y)==0);
indices3 = find(imag(sol_Z)==0);
% store real solutions in matrix and save
steady_states=double([sol_X(indices1(3:5)),sol_Y(indices2(3:5)), sol_Z(indices3(3:5))])
% plot solutions in 3D space (overlay)
for i=1:3
 scatter3(steady_states(i,1),steady_states(i,2),steady_states(i,3),300,'k','filled');
hold on;
end;

Figure 10A: Finding Steady States using surf and vpasolve in Matlab: [lines 1-23] Use surf to plot 3D
surfaces using the 3D ‘nullclines’ obtained by solving for X,Y,Z after setting the temporal derivatives of these
variables to zero in equation (16) of Figure 8A. [lines 25-38] Use vpasolve to numerically compute steady
states of model in eq. 16. Note that in line 37, we use the solution indices 3-5 since the solutions
corresponding to indices 1 and 2 are incorrect (verified manually). Since vpasolve is only a numeric solver,
solutions should always be cross-checked by plugging them back into the ODEs. [lines 39-42] Overlay the
steady states computed numerically using vpasolve on top of the intersecting surfaces. The steady states
returned from this code-block, stored in the variable ‘steady_states,’ are shown in Figure 8C.

Documentation for vpasolve in Matlab: https://www.mathworks.com/help/symbolic/vpasolve.html
Documentation for surf in Matlab: https://www.mathworks.com/help/matlab/ref/surf.html

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

% (Figure 9B) find jacobian, in symbolic terms, for 3D system defined above
J_sym = jacobian([dXdt,dYdt,dZdt],[X,Y,Z]);
Lambda = zeros(size(steady_states)); %create matrix to store eigvals at each SS
for i =1:length(steady_states) %loop through steady states
 x = steady_states(i,1);
 y = steady_states(i,2);
 z = steady_states(i,3);
 %(Figure 9C) evaluate Jacobian matrix at each steady state
 J_numerical = subs(J_sym,[X,Y,Z],[x,y,z]);
 %(Figure 9D) compute eigenvalues of Jacobian evaluated at each steady state
 eigVals = eig(J_numerical);
 %(store eigenvalues at each SSS)
 Lambda(i,1) = eigVals(1);
 Lambda(i,2) = eigVals(2);
 Lambda(i,3) = eigVals(3);
end

Lambda % display all eigenvalues

n-D: Computational Analysis - Determine Stability: jacobian, subs, eig

Figure 10B: Computationally Determining the Stability of Numerically Computed Steady States. This code
block continues from Figure 10A and implements the Jacobian matrix method outlined in Figure 9. Output of this
code block, a matrix ‘Lambda’ where each row is the set of eigenvalues of a steady state, is shown in Figure 8D.

Documentation for jacobian in Matlab: https://www.mathworks.com/help/symbolic/vpasolve.html
Documentation for eig in Matlab: https://www.mathworks.com/help/symbolic/eig.html

Documentation for subs in Matlab: https://www.mathworks.com/help/symbolic/subs.htm

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Figure 11: Basins of Attraction for 2D System: (A) In Matlab, the
basins of attraction around each SSS can be found numerically by
repeatedly simulating the system using one of Matlab’s ODE solvers,
and starting from a grid of points surrounding the SSSs (B) We
implement this numerical calculation of basins of attraction using the
ode23s solver to simulate the system starting from each point in the
grid. In addition, we overlay nullclines on top of the numerically
computed basins using the plot function in Matlab. (C), We define the
ODE function ‘ODE_model’ passed to the solver on line (33) of panel (B)
in a separate file of the same name.

Documentation for available Matlab solvers:
mathworks.com/help/matlab/math/choose-an-ode-solver.html

B – Compute Basin of Attraction Numerically – ode23s, plot
% Part 1: compute steady states of 2D system in equation (15) with vpasolve
% define variables, parameters and ODEs
syms X Y;
alpha0x = 0.01; alpha0y = 0.01; axx = 2; ayx = 10; bx = 7.5;
axy = 0.17; ayy = 1.8; by = 2; gammaX = 1; gammabar = 1; uxbar = 0; uybar = 0;
dXdt = (alpha0x + ayx*Y^2 + axx*X^2 + bx*(X^2)*(Y^2)) ...
 /(1 + X^2 + Y^2 + (X^2)*(Y^2)) - gammaXbar*X + uxbar;
dYdt = (alpha0y + ayy*Y^2 + axy*X^2 + by*(X^2)*(Y^2)) ...
 /(1 + X^2 + Y^2 + (X^2)*(Y^2)) - gammaYbar*Y + uybar;
% find numerical solutions and extract real ones
[sol_X, sol_Y] = vpasolve([dXdt == 0, dYdt == 0],[X, Y]);
% find real solutions and put in matrix ‘steady_states’
sol_X = sort(sol_X(find(imag(sol_X)==0))); sol_Y =
sort(sol_Y(find(imag(sol_Y)==0)));
steady_states = [sol_X, sol_Y]
x1 = steady_states (1,1); y1 = steady_states (1,2); %coordinates of S1
x2 = steady_states (3,1); y2 = steady_states (3,2); %coordinates of S2
x3 = steady_states (5,1); y3 = steady_states (5,2); %coordinates of S3
% Part 2: Compute basins of attraction around each SSS
%set colors for each SSS’s basin of attraction
S3_col = [198 208 255]/256; S2_col = [255 224 255]/256; S1_col = [115 254 255]/256;
%set range of values to simulate system from (extent of basin of attraction)
maxX = 6; maxY = 1.35; deltax = 0.05; deltay = 0.01;
Xrange = [0:deltax:maxX]; Yrange = [0:deltay:maxY];
for i=1:length(Xrange) % loop through X values
 x_start = Xrange(i);
 for j = 1:length(Yrange) % loop through Y values
 y_start = Yrange(j);
 initial_states = [double(x_start), double(y_start)];
 t_end = 100; % length of simulation
 p = [alpha0x, alpha0y , axx, ayx , bx , axy , ayy, ...
 by , gammaXbar, gammaYbar, uxbar, uybar]; %put params in vector
 % run system using solver (ode23s)
 [t,out]=ode23s(@(t,out) ODE_model(t,out,p), [0 t_end], initial_states);
 x_trajectory = out(:,1); xsim = x_trajectory(end);
 y_trajectory = out(:,2); ysim = y_trajectory(end);
 thres = 0.05; % threshold for comparison
 % compare final state to all basins and mark I.C. according to SSS
 if abs((xsim - x1)) < thres & abs((ysim -y1)) < thres
 plot(x_start,y_start,'*','Color',S1_col); hold on;
 elseif abs((xsim - x2)) < thres & abs((ysim - y2)) < thres
 plot(x_start,y_start,'*','Color',S2_col); hold on;
 elseif abs((xsim - x3)) < thres & abs((ysim - y3)) < thres
 plot(x_start,y_start,'*','Color',S3_col); hold on;
 else
 display('none of these');
 end
 end
end
% overlay nullclines on top of basin of attractions
X = [0:0.005:maxX];
Ystar = sqrt((axx*X.^2 + alpha0x - gammaXbar.*(X + X.^3))./...
 (-ayx - bx*X.^2 + gammaXbar*(X+X.^3)));
Y = [0:0.005:maxY];
Xstar = sqrt((ayy*Y.^2 + alpha0y - gammaYbar.*(Y + Y.^3))./...
 (-axy - by*Y.^2 + gammaYbar*(Y+Y.^3)));
plot(X,Ystar,'LineWidth',1.5,'Color',blue); hold on;
plot(Xstar,Y,'LineWidth',1.5,'Color',green); hold on;
xlim([0 maxX]); ylim([0 maxY])

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

function dydt = ODE_model(t,y,params)
 % load the parameters passed as input
 alpha0x = params(1); alpha0y = params(2);
 axx = params(3); ayx = params(4);
 bx = params(5); axy = params(6);
 ayy = params(7); by = params(8);
 gammaXbar = params(9);
 gammaYbar = params(10);
 uxbar = params(11);
 uybar = params(12);
 % define dynamic variables
 X = y(1);
 Y = y(2);
 % define differential equations
 numStates = 2; dydt = zeros(numStates,1);
 dydt(1) = (alpha0x + ayx*Y^2 + axx*X^2 + bx*(X^2)*(Y^2)) ...
 /(1 + X^2 + Y^2 + (X^2)*(Y^2)) - gammaXbar*X + uxbar;
 dydt(2) = (alpha0y + ayy*Y^2 + axy*X^2 + by*(X^2)*(Y^2)) ...
 /(1 + X^2 + Y^2 + (X^2)*(Y^2)) - gammaYbar*Y + uybar;
end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

ODE_model.m

C – ODE Function Used by ode23s

Figure 12: Bifurcation with Parameter axx: (A) Bifurcation plot for the steady state (X*, Y*) for the
ODE model in equation (15). For values of axx under approximately 2.45, there are a total of 5
steady states, three of which are stable and two of which are unstable. The system bifurcates
above axx ≈ 2.45, as a stable and an unstable steady state collide and annihilate each other (also,
called a saddle node bifurcation: Strogatz, 2014). (B) Matlab code for looping through a value
range for the parameter axx while holding all other parameters constant (lines 5-6). To bifurcate
along any other parameter, define a parameter range in line 1 and adjust lines 4-6 appropriately.

B – Single Parameter Bifurcation
%% bifurcate along axx
axx_list = [2:0.02:2.8]; % parameter range to loop through
for i=1:length(axx_list)
 axx = axx_list(i); % parameters
 uxbar = 0; uybar = 0; alpha0x = 0.01; alpha0y = 0.01;ayx = 10;
 bx = 7.5; axy= 0.17; ayy = 1.8; by = 2; gammaX = 1; gammaY = 1;
 % compute symbolic Jacobian with these parameters
 syms X Y
 dXdt = (alpha0x+axx*X^2+ayx*Y^2+bx*(X^2)*(Y^2)) ...
 /(1+X^2+Y^2+(X^2)*(Y^2))-gammaX*X + uxbar;
 dYdt = (alpha0y+axy*X^2+ayy*Y^2+by*(X^2)*(Y^2)) ...
 /(1+X^2+Y^2+(X^2)*(Y^2))-gammaY*Y + uybar;
 J_sym = jacobian([dXdt,dYdt],[X,Y]);
 [sol_X, sol_Y] = vpasolve([dXdt==0,dYdt==0],[X, Y]);%numerical solutions
 % find real solutions
 sol_X = double(sort(sol_X(find(imag(sol_X)==0))));
 sol_Y = double(sort(sol_Y(find(imag(sol_Y)==0))));
 % store solutions in a matrix
 steady_states = [sol_X, sol_Y];
 % loop through the steady states just computed, determine stability
 for j = 1:length(sol_X)
 x = steady_states(j,1); y = steady_states(j,2);
 % evaluate jacobian at steady state and calculate eigenvalues
 J_numerical = double(subs(J_sym,[X,Y],[x,y]));
 eigVals = eig(J_numerical);
 anypositives = find(eigVals > 0); % check if any eigenvalues are
+
 if length(anypositives) > 0 % unstable
 figure(1); scatter(axx,sol_X(j),80,'b'); hold on;
 figure(2); scatter(axx,sol_Y(j),80,'r'); hold on;
 else % stable
 figure(1); scatter(axx,sol_X(j),80,'b','filled'); hold on;
 figure(2); scatter(axx,sol_Y(j),80,'r','filled'); hold on;
 end
 end
end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

A

% Part I: % compute matrix df/dx (f = [f1, f2], x = [X, Y])
% use nominal parameter values
alpha0x = 0.01; alpha0y = 0.01; axx = 2; ayx = 10; bx = 7.5; axy = 0.17; ayy = 1.8;
by = 2; gammaX = 1; gammaY = 1; Dtheta = diag([alpha0x alpha0y axx ayx bx axy ayy
by gammaX gammaY]);
syms X Y % define system
f1=(alpha0x+ayx*Y^2+axx*X^2+bx*(X^2)*(Y^2))/(1+X^2+Y^2+(X^2)*(Y^2))-gammaX*X;
f2=(alpha0y+ayy*Y^2+axy*X^2+by*(X^2)*(Y^2))/(1+X^2+Y^2+(X^2)*(Y^2))-gammaY*Y;
df1dx(X,Y) = diff(f1,X); df1dy(X,Y) = diff(f1,Y);
df2dx(X,Y) = diff(f2,X); df2dy(X,Y) = diff(f2,Y);
% compute all steady states
[sol_X, sol_Y] = vpasolve([f1==0,f2==0],[X, Y]);
sol_X = double(sort(sol_X(find(imag(sol_X)==0))));
sol_Y = double(sort(sol_Y(find(imag(sol_Y)==0))));
% store steady states in matrix, each row is steady state
steady_states = [sol_X, sol_Y]
state_index = 3;%choose steady state by row #. Sensitivity matrix evaluated here.
X_SS = steady_states(state_index,1);
Y_SS = steady_states(state_index,2);
% evaluate df/dx at this steady state
dfdx=[df1dx(X_SS,Y_SS),df1dy(X_SS,Y_SS);df2dx(X_SS,Y_SS),df2dy(X_SS,Y_SS)];
% Part II: compute matrix df/dtheta evaluated at (x,y) = (x_e,y_e)
syms alpha0x alpha0y axx ayx bx axy ayy by gamma1 gamma2
X = X_SS; Y = Y_SS;
f1 = (alpha0x+ayx*Y^2+axx*X^2+bx*(X^2)*(Y^2)) ...
 /(1+X^2+Y^2+(X^2)*(Y^2))-gammaX*X;
f2 = (alpha0y+ayy*Y^2+axy*X^2+by*(X^2)*(Y^2)) ...
 /(1+X^2+Y^2+(X^2)*(Y^2))-gammaY*Y;
% compute derivatives at this steady state
row1= [diff(f1,alpha0x) diff(f1,alpha0y) diff(f1,axx) diff(f1,ayx) diff(f1,bx) diff(f1,gammaX) diff(f1,gammaY)
diff(f1,axy) diff(f1,ayy) diff(f1,by)];
row2 = [diff(f2,alpha0x) diff(f2,alpha0y) diff(f2,axx) diff(f2,ayx) diff(f2,bx) diff(f2,gammaX) diff(f2,gammaY)
diff(f2,axy) diff(f2,ayy) diff(f2,by)];
dfdtheta = [row1; row2];
% compute sensitivity matrix and normalized version
Sxtheta = double(-inv(dfdx)*dfdtheta);
Dx = diag([X, X]);
Sx_theta_normalized = double(inv(Dx)*Sxtheta*Dtheta)

B. Local Sensitivity Analysis – diff

Figure 13: Sensitivity Matrices for Local Sensitivity Analysis At Steady States and Nominal Parameters
(A) Depiction of the information captured in a sensitivity matrix. (B) Code used to implement equation 17 for
the 2D system in equation 15.

Documentation for diff in Matlab: https://www.mathworks.com/help/symbolic/diff.html

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

 Parameter
1 (𝜽𝟏)

Parameter
2 (𝜽𝟐)

… Parameter
𝒎	(𝜽𝒎)

X1
* S11 S12 … S1n

X2
* S21 S22 … S2n

…

…

…
 …

Xn
* Sn1 Sn2 … Snm

SX£,	Θ£ := for a system with n
dimensions:

X£ = (X5, . . , X[)

and m parameters:

𝛳	£ = [𝜃1	
1
 𝜃2

2
 … 𝜃m

m
]

A.

Sensitivity of 𝑋¥ around equilibrium 𝑋∗ to local changes
in parameters 𝛳	£ around nominal values 𝛩¥E .

Figure 14: Global Sensitivity Analysis using
Latin Hypercube Sampling (LHS) (A)-(B) The
filling of a 2D–parameter space is conceptually
shown for 5 samples. Without LHS, the samples
may not efficiently cover the entire parameter
space. LHS enforces sampling rules such that
each sample must be the only one in its row
and column in a grid generated by the
partitioning of the parameter space, resulting in
a more uniform covering of the sample space
while still being random. Partitioning of the
parameter space is accomplished by
partitioning each individual distribution from
which each parameter is sampled (C) Using the
lhsnorm function in Matlab, we implement a
Latin hypercube sampling of the parameters axx,
axy, bxy, ayy, ayx, by of our 2D example in
equation (15) and calculate the number of total
steady states in the model across 1000
repetitions. Each parameter is sampled from a
normal distribution centered at its nominal value
from Figure 7, with variances as shown. (D) For
the distributions used here, the system
possesses three steady states most frequently.
Note that this could change as the means and
variances are changed, and that uniform
distributions could even be used with the
lhsdesign function in Matlab.

Documentation for lhsnorm in Matlab:
https://www.mathworks.com/help/stats/lhsnorm.html
Documentation for lhsdesign in Matlab:

C. Latin Hypercube Sampling – lhsnorm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

N = 1000; % # of samples (partitions in each direction)
% set means and std devs of normal distributionss
mu_axx = 2; mu_ayx = 10; mu_bx = 7.5;
mu_axy = 0.17; mu_ayy = 1.8; mu_by = 2;
mu_list = [mu_axx, mu_ayx, mu_bx, mu_axy, mu_ayy, mu_by];
sigma_axx = 0.2; sigma_ayx = 0.2; sigma_bx = 0.2;
sigma_axy = 0.01; sigma_ayy= 0.2; sigma_by = 0.2;
sigma_list = diag([sigma_axx,sigma_ayx, ...
 sigma_bx,sigma_axy,sigma_ayy,sigma_by])
% generate a latin hypercube sample
hypercube = lhsnorm(mu_list,sigma_list,N)
totals = []; % vector to store # total steady states
for i =1:N % loop through hypercube
 syms X Y; % define variables
 % constant params
 alpha0x = 0.01; alpha0y = 0.01;
 gammaXbar = 1; gammaYbar = 1;
 uxbar = 0; uybar = 0;
 % params sampled from LHS space
 tuple = hypercube(i,:);
 axx = tuple(1); ayx = tuple(2); bx = tuple(3);
 axy = tuple(4); ayy = tuple(5); by = tuple(6);
 % define ODEs
 dXdt =(alpha0x+ayx*Y^2+axx*X^2+bx*(X^2)*(Y^2)) ...
 /(1+X^2+Y^2+(X^2)*(Y^2))-gammaXbar*X + uxbar;
 dYdt =(alpha0y+ayy*Y^2+axy*X^2+ by*(X^2)*(Y^2))...
 /(1+X^2+Y^2+(X^2)*(Y^2))-gammaYbar*Y + uybar;
 % find numerical solutions
 [sol_X,sol_Y]=vpasolve([dXdt == 0, dYdt == 0],[X, Y]);
 % find real solutions & store total # of steady states
 sol_X = sort(sol_X(find(imag(sol_X)==0)));
 sol_Y = sort(sol_Y(find(imag(sol_Y)==0)));
 totals(i) = (length(sol_X)); %add totals to vector
end
histogram(totals) %display totals vector with histogram

D

Figure 15: Educating Overexpression
Strategies in Reprogramming (A) In the
steady state landscape of our model in (15),
there are three SSS when the model is not
artificially perturbed (same parameters used
as in Fig. 7). (B) From a control systems point
of view, we can regard ectopic
overexpression of TFs as ‘open-loop’ control
in the sense that the perturbation is applied
at constant, preset, levels (𝑢¥4 and 𝑢¥8) that are
not changed in response to how the
concentrations of TFs change during the
experiment (C) The effect of increasing 𝑢¥4 is
to cause the nullcline 𝑋̇ = 0	to change in a
fashion that causes the steady state S1 to
disappear before S2 and S3 (D) The effect of
increasing 𝑢¥8 is to cause the nullcline 𝑌̇ =
0	to change in a fashion that causes S2 to
disappear first, followed by the
disappearance of S1 and the persistence of
only one SSS in the proximity of S3 (E)
Bifurcation plots confirm that S1, followed by
S2, disappears as 𝑢¥4 is increased. (F)
Bifurcation plots confirm that as 𝑢¥8 is
increased, S2 disappears followed by S1, with
only one state remaining in the proximity of
S3. (G) If the system starts at S1, applying an
intermediate level overexpression, 𝑢¥4 = 0.2,
temporarily changes the landscape such that
a transition to 𝑆6� is induced. (H) Upon
removal of this artificial overexpression, the
system transitions from 𝑆6� to 𝑆6.

Figure 16: Educating
Enhanced Degradation
Strategies in
Reprogramming (A) In the
steady state landscape of
our model in (15), there are
three SSS when the model
is not artificially perturbed
(same parameters used as
in Fig. 7). (B) We can model
enhanced degradation of
TFs X and Y via artificial
additions of proteases or
microRNA as akin to
increasing the decay rates
∆𝛾4 and ∆𝛾8, respectively.
(C) The effect of increasing
𝛾4 is to cause the nullcline
𝑋̇ = 0	to change in a
fashion that causes the
steady state S2 to
disappear first, followed by
S3. (D) The effect of
increasing 𝛾8 is to cause
the nullcline 𝑌̇ = 0	to
change in a fashion that
causes only S3 to
disappear, with two states
in the proximity of S1 and
S2 remaining. (E)-(F)
Bifurcation plots confirm
these observations.

Figure 17 Reprogramming via Combination of Overexpression and Enhanced
Degradation: (A) Overexpression of TF X and enhanced degradation of TF Y are modeled
as the addition of constant term to the dynamics of X (𝑢¥4) and an increased degradation
(∆𝛾8) in the dynamics of Y, respectively. (B) Without artificial perturbations, the landscape
possesses the SSSs S1, S2, S3. (C) If the system starts at S1, applying an intermediate
level of overexpression, 𝑢¥4 = 0.2, combined with an increase in degradation of Y, 𝛥𝛾8 =
+0.1, temporarily changes the landscape such that a transition to 𝑆6� is induced. (C) Upon
removal of this artificial overexpression and enhanced degradation, the system transitions
from 𝑆6� to 𝑆6.

Figure 18: Reprogramming via Closed-Loop Feedback Overexpression (A) In
closed-loop overexpression, measurements of the state (X,Y) are taken throughout
the experiment, and the overexpression is adjusted in proportion to the distance
between the current state (X,Y) and the target state (X*,Y*). (B) As the values of gain
G are increased, the nullclines increasingly morph into straight lines that intersect
at the target state. (C) If a feedback reprogramming experiment begins in state S1,
and there is high enough gain (G = 5), then feedback overexpression can be used
to steer the system to any desired point S2’

2’ given by the coordinates (X*, Y*) in the
basin of attraction of S2. (D) Upon removal of feedback overexpression, the system
transitions from S2’ to S2.

Figure 19: Realizing Feedback Overexpression with a Synthetic Genetic
Circuit Feedback overexpression of a TF X can be realized with a synthetic
construct consisting of inducer-activated synthetic gene X along with an inducer-
activated siRNA sequence that degrades the mRNA of X. With high enough copy
number for the synthetic circuit, the right balance of these inducers allows for
steering the system’s state to arbitrary concentration levels of X, as explained in
detail in (Del Vecchio et al, 2017).

1D Geometric Analysis (Mathematica)

𝑑
𝑑𝑡
(𝑋) =

𝛼E4 + 	𝑎4𝑋6

1 + 𝑋6
− 𝛾#𝑋	

	

= 𝐻5(𝑋) − 𝛾#𝑋

ODE

𝑑𝑋/𝑑𝑡 = 0

𝐻5(𝑋) =
𝛼E4 + 	𝑎4𝑋6

1 + 𝑋6
= 𝛾#𝑋

Nullclines

𝛼ox = 0.1; ax = 2; = 1.; 𝛾x=1;
Plot[{(𝛼ox+ax*X^2)/(1+X^2),	𝛾x*X},{X,0,2}]

Appendix Figure 1: Geometric Analysis of Steady State Landscape in in 1D. (left) The GRN
consists of a single TF, X, auto-activating itself. Using the workflow in Section II, the 1D ODE
model shown can be derived to describe the change in concentration of X over time. The location
of steady states for the value of X can be found by setting the time derivative equal to zero, which
is equivalent to finding the intersections between the Hill function, H1(X), and the line 𝛾#𝑋. (right)
These intersections mark the boundaries at which the sign of X changes, and divide the line into
discrete regions in which the sign of 𝑋̇ should be determined as shown. This allows for a picture of
the ‘flow’ of the system along the line X as follows: when 𝑋̇ > 0, flow is to the right (X increasing)
and when 𝑋̇ < 0, flow is to the left (X decreasing). Steady states which have arrows pointing
towards them are stable while steady states which have arrows pointing away from them are
unstable.

Documentation for Plot in Mathematica: http://reference.wolfram.com/language/ref/Plot.html

GRN

X

Mathematica Code Block

References

iPS Cells 10 Years Later (2016) Cell Volume 166, Issue 6, Pages 1356-1359
https://doi.org/10.1016/j.cell.2016.08.043

Abdallah H, Del Vecchio D, Qian Y, Collins JJ. (2016). A Dynamical Model for the Low
Efficiency of Induced Pluripotent Stem Cell Reprogramming. Proceedings of American Control
Conference.

Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. (2003).
RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 67(4): 657-
685

Akashi K, Traver D, Miyamoto T, Weissman IL. (2000). A clonogenic common myeloid
progenitor that gives rise to all myeloid lineages. Nature, 404(6774):193-197.

Alberts B, Johnson A, Lewis J, et al. (2002). Molecular Biology of the Cell. 4th edition. New
York: Garland Science; From DNA to RNA. Available from:
https://www.ncbi.nlm.nih.gov/books/NBK26887/

Allis D. C., Caparros M.-L., Reinberg D., and Lachlan M. (2015). Epigenetics. Cold Spring
Harbor, New York: Cold Spring Harbor Laboratory Press, second ed.

Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological Circuits.
CRC press.

Al-Radhawi MA, Sontag E, Del Vecchio D. (2017). Multi-modality in gene regulatory networks
with slow gene binding. arXiv:1705.02330

Astrom KJ, Murray, RM. (2008). Feedback Systems: An Introduction for Scientists and
Engineers. Princeton UP.

Back W de, Zimm R, Brusch L. (2013). Transdifferentiation of pancreatic cells by loss of
contact-mediated signaling. BMC Systems Biology 7:77. doi:10.1186/1752-0509-7-77.

Bagci H. and Fisher AG. (2013). Dna demethylation in pluripotency and reprogramming: The
role of tet proteins and cell division. Cell Stem Cell, vol. 13, pp. 265-269, 9.

Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H Freeman; 2002.
Section 10.4, Covalent Modification Is a Means of Regulating Enzyme Activity.

Bieberich E. and Wang G. and Bhartiya D. and Lenka N. (2013). Molecular Mechanisms
Underlying Pluripotency. Ch. 08

Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM,
Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, and Young RA. (2005). Core

transcriptional regulatory circuitry in human embryonic stem cells. Cell, vol. 122, no. 6, pp. 947–
956

Briggs R and King T. J. (1952). Transplantation of Living Nuclei From Blastula Cells into
Enucleated Frogs' Eggs Proceedings of the National Academy of Sciences of the United States of
America 38 455--463

Buganim Y., Faddah DA, Jaenisch R; (2013). Mechanisms and models of somatic cell
reprogramming. Nat Rev Genet. June ; 14(6): 427–439. doi:10.1038/nrg3473

Bussmann LH, Schubert A, Vu Manh TP, De Andres L, Desbordes SC, Parra M, Zimmermann
T, Rapino F, Rodriguez-Ubreva J, Ballestar E, et al. (2009). A robust and highly efficient
immune cell reprogramming system. Cell Stem Cell 5: 554–566.

Campbell, K. H., McWhir, J., Ritchie, W. A., and Wilmut, I. (1996). Sheep cloned by nuclear
transfer from a cultured cell line. Nature 380, 64–66. doi: 10.1038/380064a0

Carr J. Applications of Centre Manifold Theory. Springer, 1981.

Chickarmane, V., Enver, T. & Peterson, C. (2009). Computational modeling of the
hematopoietic erythroid-myeloid switch reveals insights into cooperativity, priming, and
irreversibility. PLoS Comput. Biol. 5, e1000268

Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C (2006) Transcriptional Dynamics
of the Embryonic Stem Cell Switch. PLoS Comput Biol 2(9): e123.
https://doi.org/10.1371/journal.pcbi.0020123

Cooper GM. (2000.). The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer
Associates; The Eukaryotic Cell Cycle. Available from:
https://www.ncbi.nlm.nih.gov/books/NBK9876/

David L, Polo JM (2014) Review: Phases of reprogramming. Stem Cell Research
Volume 12, Issue 3, Pages 754-761

Davis RL, Weintraub H, Lassar AB. (1987). Expression of a single transfected cDNA converts
fibroblasts to myoblasts. Cell 51: 987–1000.

De Carvalho D. D., You J. S., and Jones P. A. (2010). Dna methylation and cellular
reprogramming. Trends in cell biology, vol. 20, pp. 609-617, 10

Del Vecchio D, Murray RM, Biomolecular Feedback Systems. Princeton UP, 2014.

Del Vecchio D, Abdallah H, Qian Y, Collins JJ. (2017). A Blueprint for a Synthetic Genetic
Feedback Controller to Reprogram Cell Fate. Cell Systems.

Elowitz M.B., Levine A.J., Siggia E.D., and Swain P.S. (2002). Stochastic gene expression in a
single cell. Science, 297.

Forsberg M, Carlén M, Meletis K, Yeung MSY, Barnabé-Heider F., and Persson M. A. A.,
Aarum J., Frisén J. (2010). Efficient reprogramming of adult neural stem cells to monocytes by
ectopic expression of a single gene Proceedings of the National Academy of Sciences 107 14657-
-14661

Friedman AD. (2007). Transcriptional control of granulocyte and monocyte development.
Oncogene, 26(47):6816-6828.

Geertz M, Maerkl SJ. (2010). Experimental strategies for studying transcription factor–DNA
binding specificities. Briefings in Functional Genomics 9(5-6):362-373.
doi:10.1093/bfgp/elq023.

Gillespie, DT. (2000). The chemical langevin equation. The Journal of Chemical Physics,
113(1):297–306

Gillespie, DT. (2009). Deterministic Limit of Stochastic Chemical Kinetics
The Journal of Physical Chemistry B 113 (6), 1640-1644 DOI: 10.1021/jp806431b

Goh P. A., Caxaria S., and Casper. (2013). A systematic evaluation of integration free
reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem
(ips) cells. PLoS ONE, vol. 8, no. 11

Goldfarb AN (2007). Transcriptional control of megakaryocyte development. Oncogene.

González F. and Boué S. and Belmonte J. C. I. (2011). Methods for making induced pluripotent
stem cells: reprogramming àla carte. Nature Reviews Genetics 12 231 EP

Gupta P, Gurudutta GU, Saluja D, Tripathi RP. (2009). PU.1 and partners: regulation of
haematopoietic stem cell fate in normal and malignant haematopoiesis. J Cell Mol Med, 13(11-
12):4349-4363

Gurdon, JB, Elsdale, TR, Fischberg, M. (1958). Sexually mature individuals of Xenopus laevis
from the transplantation of single somatic nuclei. Nature 182, 64–65. doi: 10.1038/182064a0

Gurdon J. B. and Byrne J. A. (2003). The first half-century of nuclear transplantation
Proceedings of the National Academy of Sciences of the United States of America 100 8048--
8052

Gyorgy A, Del Vecchio D. (2014) Modular Composition of Gene Transcription Networks. PLoS
Comput Biol 10(3): e1003486.

Horak CE, Snyder M. (2002). ChIP-chip: a genomic approach for identifying transcription factor
binding sites. Meth Enzymol 350:469–83.

Huang, S., G. Eichler, D. Ingber. (2005). Cell fates as high-dimensional attractor states of a
complex gene regulatory network. Phys. Rev. Lett. 94:128701.

Huang K. and Fan G. (2010). Dna methylation in cell dierentiation and reprogramming: an
emerging systematic view. Regenerative Medicine, vol. 5, pp. 531-544.

Huang, S. (2009). Reprogramming cell fates: reconciling rarity with robustness. BioEssays.
31:546–560.

Huang S, Guo YP, May G, Enver T. (2007). Bifurcation dynamics in lineage-commitment in
bipotent progenitor cells. Dev Biol. 305(2):695-713.

Kauffman, S. (1973). Control circuits for determination and transdetermination. Science.
181:310–318.

Kim, Jonghwan et al. (2008). An extended transcriptional network for pluripotency of embryonic
stem cells. Cell , Volume 132 , Issue 6 , 1049 – 1061

Kuhar MJ. (2010). Measuring levels of proteins by various technologies: can we learn more by
measuring turnover? Biochemical pharmacology 79(5):665-668. doi:10.1016/j.bcp.2009.09.029.

Laiosa, Catherine V. et al. (2006). Reprogramming of Committed T Cell Progenitors to
Macrophages and Dendritic Cells by C/EBPα and PU.1 Transcription Factors. Immunity ,
Volume 25 , Issue 5 , 731 – 744.

Liew CW, Rand KD, Simpson RJ, Yung WW, Mansfield RE, et al. (2006) Molecular analysis of
the interaction between the hematopoietic master transcription factors GATA-1 and PU.1. J Biol
Chem 281: 28296–28306.

Malik N. and Rao M. S. (2013). A review of the methods for human ipsc derivation,” Methods in
molecular biology (Clifton, N.J.), vol. 997, pp. 23–33.

Mariani, L, Schulz EG, Lexberg MH, Helmstetter C, Radbruch A, Lohning M, and Hofer T.
(2003). Short-term memory in gene induction reveals the regulatory principle behind stochastic
il-4 expression. Molecular systems biology, 6(1):359, 2010.

Mckay and Beckman (1979). A Comparison of Three Methods for Selecting Values of Input
Variables in the Analysis of Output from a Computer Code;

Milo, R., Jorgensen, P., Moran, U., Weber, G., and Springer, M. (2010). BioNumbers—the
database of key numbers in molecular and cell biology. Nucleic Acids Res. 38: D750–D753

Mitalipov S., Wolf D. (2009) Totipotency, Pluripotency and Nuclear Reprogramming. In: Martin
U. (eds) Engineering of Stem Cells. Advances in Biochemical Engineering / Biotechnology, vol
114. Springer, Berlin, Heidelberg

Olariu V. and Lövkvist C. and Sneppen K. (2016). Nanog, Oct4 and Tet1 interplay in
establishing pluripotency. Scientific Reports 6 25438 EP

Orkin SH, Wang J, Kim J, Chu J, Rao S, Theunissen TW, Shen X, Levasseur DN. (2008). The
Transcriptional Network Controlling Pluripotency in ES Cells Cold Spring Harbor Symposia on
Quantitative Biology 73 195--202

Pang Z. P. and Yang N. and Vierbuchen T. and Ostermeier A. and Fuentes D. R. and Yang T. Q.
and Citri A. and Sebastiano V. and Marro S. and Südhof T. C. and Wernig M. (2011). Induction
of human neuronal cells by defined transcription factors Nature 476 220 EP

Park PJ. (2009). ChIP-seq: advantages and challenges of a maturing technology. Nat Rev
Genet.10:669–80.

Polynikis A, Hogan SJ, di Bernardo M. (2009). Comparing different ODE modelling approaches
for gene regulatory networks. J Theor Biol. 261(4):511-30.

Radzisheuskaya A, Chia Gle B, dos Santos RL, Theunissen TW, Castro LF, Nichols J, Silva JC.
(2013). A defined Oct4 level governs cell state transitions of pluripotency entry and
differentiation into all embryonic lineages. Nat Cell Biol. 2013 Jun;15(6):579-90.

Raj A, Peskin CS, Tranchina D, Vargas DY, and Tyagi S. (2006). Stochastic mRNA synthesis in
mammalian cells. PLoS Biol, 4(10):e309

Santillán, M. (2008). On the Use of the Hill Functions in Mathematical Models of Gene
Regulatory Networks. Mathematical Modelling of Natural Phenomena, 3(2), 85-97.
doi:10.1051/mmnp:2008056

Schlaeger T. M. and Daheron. (2015). A comparison of non-integrating reprogramming
methods,” Nat Biotech, vol. 33, no. 1, pp. 58–63.

Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J, Chen W, Selbach, M.
(2011). Global quantification of mammalian gene expression control. Nature 473 337 EP

Sezonov G, Joseleau-Petit D, D'Ari R. (2007). Escherichia coli physiology in Luria-Bertani
broth. J Bacteriol. 189(23):8746-9.

Stein, M. (1987). Large sample properties of simulations using latin hypercube
sampling. Technometrics. Vol. 29, No. 2, pp. 143–151. Correction, Vol. 32, p. 367.

Strang, G. (2009). Introduction to Linear Algebra, Wellesley-Cambridge Press.

Strogatz, S. (2014). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering (Studies in Nonlinearity) 2nd Edition

Swain P. S., Elowitz M. B., and Siggia E.D. (2002). Intrinsic and extrinsic contributions to
stochasticity in gene expression. In Proc. Natl Acad. Sci. USA 99, 2002.

Takahashi K. and Yamanaka S. (2006). Induction of pluripotent stem cells from mouse
embryonic and adult fibroblast cultures by defined factors. Cell, vol. 126, no. 4, pp. 663–676.

Takahashi K. and Yamanaka S. (2016). A decade of transcription factor-mediated
reprogramming to pluripotency. Nature Reviews Molecular Cell Biology 17 183 EP

Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB (1988). MyoD1: a
nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts
Science21 405-411

To T-L, Maheshri N. (2010). Noise can induce bimodality in positive transcriptional feedback
loops without bistability. Science, 327(5969):1142–1145.

Tian, T., Smith-Miles, K. (2014). Mathematical modeling of GATA-switching for regulating the
differentiation of hematopoietic stem cell. BMC Syst Biol. 2014; 8(Suppl 1): S8.

Van Kampen, NG. (1992). Stochastic processes in physics and chemistry, volume 1. Elsevier.

Vierbuchen T. and Ostermeier A. and Pang Z. P. and Kokubu Y. and Südhof T. C. and Wernig
M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors
Nature 463 1035 EP

Waddington, C.H. (1957). The Strategy of Genes (New York: Routledge).

Wang Z, Gerstein M, Snyder M. (2009). RNA-Seq: a revolutionary tool for
transcriptomics. Nature reviews Genetics 10(1):57-63. doi:10.1038/nrg2484.

Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998). Full-
term development of mice from enucleated oocytes injected with cumulus cell
nuclei. Nature 394, 369–374. doi: 10.1038/28615

Wiggins S. (2003). Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer.

Xie H, Ye M, Feng R, Graf T. (2004). Stepwise reprogramming of B cells into macrophages.
Cell. May 28;117(5):663-76.

Yao E, Lin C, Wu Q, Zhang K, Song H, Chuang PT. (2017). Notch Signaling Controls
Transdifferentiation of Pulmonary Neuroendocrine Cells in Response to Lung Injury. Stem
Cells.

Yuan L, Chan GC, Beeler D, Janes L, Spokes KC, Dharaneeswaran H, Mojiri A, Adams WJ,
Sciuto T, Garcia-Cardéna G, et al. (2016). A role of stochastic phenotype switching in generating
mosaic endothelial cell heterogeneity. Nature communications, 7:10160

Yu Ungsik, Lee SH, Kim YJ and Kim S. (2004). Review: Bioinformatics in the Post-genome
Era. Journal of Biochemistry and Molecular Biology, Vol. 37, No. 1, January 2004, pp. 75-82

Zhang, B., and P. Wolynes. (2014). Stem cell differentiation as a manybody problem. Proc. Natl.
Acad. Sci. USA. 111:10185–10190.

Zhou J.X., Brusch, L., and Huang, S. (2011). Predicting Pancreas Cell Fate Decisions and
Reprogramming with a Hierarchical Multi-Attractor Model. PLoS One.

Zhou P. (2004). Determining Protein Half-Lives. Signal Transduction Protocols pp 67-77

Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. (2008). In vivo reprogramming of adult
pancreatic exocrine cells to b-cells. Nature 455: 627–632.

