
A Computational Approach for Cell Fate Reprogramming 
 
i. Abstract  
 
The notion of reprogramming cell fate is a direct challenge to the traditional view in 
developmental biology that a cell’s phenotypic identity is sealed after undergoing differentiation. 
Direct experimental evidence, beginning with the somatic cell nuclear transfer experiments of 
the 20th century and culminating in the more recent breakthroughs in transdifferentiation and 
induced pluripotent stem cell (iPSC) reprogramming, have rewritten the rules for what is 
possible with cell fate transformation. Research is ongoing in the manipulation of cell fate for 
basic research in disease modeling, drug discovery, as well as in clinical therepeautics. In many 
of these cell fate reprogramming experiments, there is often little known about the genetic and 
molecular changes accompanying the reprogramming process. However, gene regulatory 
networks (GRNs) can in some cases be implicated in the switching of phenotypes, providing a 
starting point for understanding the dynamic changes that accompany a given cell fate 
reprogramming process. In this chapter, we present a framework for computationally analyzing 
cell fate changes by mathematically modeling these GRNs. We provide a user guide with several 
tutorials of a set of techniques from dynamical systems theory that can be used to probe the 
intrinsic properties of GRNs as well as study their responses to external perturbations.  
 
I. Introduction 
  

The probe into the theoretical question of how to reprogram cell fate can be aided by 
identification and understanding of the gene regulatory network(s) (GRNs) that are implied in 
the transformation between one phenotype and another. A common conceptualization of this 
problem is the Waddington view of cellular differentiation (Waddington, 1957) in which a ball 
rolls down a hilly landscape with several different valleys representing the multiple paths that 
undifferentiated cells may take in acquiring their differentiated identity (Figure 1). In an 
energetic landscape sense, differentiation is represented as a spontaneous ‘downhill’ process 
associated with typical development during an organism’s periods of growth and maturation. 
While it was a long-held consensus that this development was a permanent one-way process, 
experimental manipulations of cell fate during the second half of the 20th century (such as 
somatic cell nuclear transfer (Briggs and King, 1952; Gurdon et al., 1958; Campbell et al., 
1996; Wakayama et al., 1998) and transdifferentiation (Tapscott et al., 1988; Davis et al.,1987)) 
began chipping away at this notion. In 2006, it was shattered entirely when Yamanaka and 
colleagues discovered that mouse fibroblasts could be reverted to what was coined an induced 
pluripotent stem cell (iPSC) state (Yamanka et al., 2006), a transition tantamount to an ‘uphill’ 
climb in the Waddington landscape. Remarkably, this transformation was accomplished using 
the mere overexpression of a small cocktail of transcription factors (TFs): Oct4, Sox2, Klf4, and 
c-Myc (also known as ‘OSKM factors’). It is understood that in successfully reprogrammed 
cells, the researchers had transformed the phenotype from fibroblast to iPSC by shifting the 
initial cell state, characterized by low levels of OSKM, to the iPSC state, characterized by higher 
levels of these factors (Radzisheuskaya, 2013).  

  
While Yamanaka’s work and the variations that have followed (González et al., 2013) 

have been remarkable achievements in their own right, much remains to be answered about the 



biochemical and biomolecular changes that accompany many reprogramming processes 
(Buganim et al, 2013; David and Polo, 2014; Back et al, 2014; Yao et al., 2017). Chief among 
these questions are those surrounding the low efficiencies, variable quality, and high latency of 
iPSC formation (Malik and Rao, 2013; Schlaeger and Daheron, 2015; Goh et al., 2013) that 
persist in the laboratory today. Yamanka himself, when describing the first clinical trial with 
iPSCs in 2016, remarked ‘what we learned from the first patient, in which we performed 
autologous iPS cell transplantation, is that the entire process is too expensive. It also took 
almost a year to make iPS cells from the patient’s own cells, to transfer the original cells, and to 
perform all the rigorous quality control tests. It was too expensive, and it took long’ (‘iPS Cells 
10 Years Later’, 2016). Even when other cell fate transitions occur with greater efficiency in the 
laboratory, such as in certain transdifferentiation protocols (Zhou et al., 2008; Pang et al., 2011; 
Xie et al., 2004; Bussmann et al., 2009; Laiosa et al., 2006; Vierbuchen et al., 2010; Forsberg et 
al., 2010), many open questions surrounding the biomolecular changes that take place during the 
reprogramming remain.  

 
As a result, iPSC reprogramming, and more generally cell fate reprogramming, is an 

active area of research. From a theoretical standpoint, understanding the complex dynamics 
associated with the GRNs involved in cell fate determination can be a promising approach to 
provide insight into current bottlenecks and suggest novel approaches. The task of creating 
mathematical models of GRN dynamics is today rendered possible by the vast amounts of 
genomic and molecular data available in the post-genomic era (Yu et al., 2004). In particular, for 
iPSC reprogramming, a key GRN was discovered by Boyer and colleagues in 2005 (Boyer et al., 
2005). This GRN, which is considered to be the core pluripotency network, consists of a ‘fully-
connected-triad’ of mutually activating transcription factors, Oct4, Sox2, and Nanog. Activating 
this network has been implicated as a signature of achieving pluripotency starting from 
differentiated cells, and the network itself is known to be part of an extended regulation network 
involving other TFs, various signaling components, differentiation genes, and chromatin 
remodelers (Boyer et al., 2005; Zhang and Wolynes. 2014; Orkin et al., 2008; Chickarmane and 
Peterson, 2009; Bieberich and Wang, 2013). Other well-studied cell fate reprogramming 
pathways include transdifferentiation pathways between different phenotypes in the 
hematopoietic stem cell (HSC) lineage. For instance, in the transdifferentiation between the 
megakaryocyte lineage and the granulocyte/macrophage lineage, a core GRN involving the 
transcription factors PU.1 and GATA-1 has been implicated, supporting the fact that the two 
lineages are characterized by high GATA-1, low PU.1 levels and high PU.1, low GATA-1 
levels, respectively (Goldfarb, 2007; Friedman, 2007; Gupta et al, 2009).  

 
When sufficient data about a cell fate reprogramming process exists, mathematical 

models of the GRN(s) in question may be constructed and thus used as a representation of the 
reprogramming process itself. The utility of such models lies in the extent to which they can be 
used to explain or predict experimental outcomes, shed light on biomolecular mechanisms taking 
place during the reprogramming process, or suggest new informative experiments. There is a 
plethora of models that have been devised for various cell fate reprogramming contexts. Given 
their importance at the top of the developmental hierarchy, several models have been constructed 
for the various TFs involved in establishing mammalian pluripotency, including those composing 
the core network of Oct4, Nanog, and Sox2 (the ‘triad’) discovered by Boyer and colleagues in 
2005. Shortly after Boyer’s discovery, (Chickarmane et al. 2006) proposed a deterministic model 



of the triad that demonstrated bistability. According to their work, when the triad is expressed 
(the pluripotent state, or ‘on’ state), self-renewal genes that establish pluripotency were also 
shown to be expressed while differentiation genes were off, and vice versa when the triad was 
not expressed. The model also predicted that if input to the system turned on the switch, the 
network could persist in the ‘on’ state without sustained input if the binding strength of Nanog to 
Oct4 and Sox2 was increased or the constitutive transcription level of Nanog was increased. 
(Chickarmane et al. 2009) also constructed a deterministic model of the triad along with two 
other TFs, Cdx2 and Gata6. Their model showed that antagonisms of Cdx2 and Gata6 with Oct4 
and Nanog, respectively, are involved in controlling the murine pluripotent state’s differentiation 
into the trophectoderm and endoderm lineages, respectively. In addition, their work explored 
various reprogramming paths from these differentiated lineages back to the pluripotent state. We 
have also previously used a mathematical model for the triad to explore questions surrounding 
the outcome of reprogramming experiments and how to explain their prevalent failures (Del 
Vecchio et al., 2017; Abdallah et al., 2016). (Olariu et al, 2016) have studied the impact of 
demethylation on the iPSC reprogramming process, constructing a deterministic model of Oct4, 
Nanog, and Tet, which is a protein that demethylates the Oct4 promoter before it can be 
reactivated. This deterministic model was combined with a stochastic description of methylation 
and demethylation at the promoters of Oct4 and Nanog to form a multi-layered model that 
underscored the importance of demethylation in the iPSC reprogramming process.  

Several mathematical models have also been published for the well-studied network 
involving the TFs GATA-1 and PU.1 that govern the decision of the multipotent common 
myeloid precursor (CMP) to differentiate into either the erythroid or myeloid lineages. (Huang et 
al, 2007) used a differential equation model to mathematically describe the differentiation of a 
‘meta-stable’ CMP state into either a stable erythroid or myeloid lineage by way of stochastic 
fluctuations or directed deterministic perturbations. At a mathematical level, the bistability 
underlying this model hinged upon an assumption that the functions describing the interactions 
between the two TFs were sigmoidal. However, high levels of TF cooperativity, which is 
typically what gives these functions sigmoidal shape (Santillán, 2008), was not consistent with 
experimental results on how PU.1 and GATA-1 were interacting (Liew and Rand, 2006). A 
model by (Chickarmane et al, 2009) pointed this out and suggested the need for a potentially 
undiscovered cofactor mechanism to establish the bistability seen experimentally. (Tian and 
Smith-Miles, 2014) constructed a stochastic model of the GATA-1/PU.1 GRN with the TF 
GATA-2 incorporated as well, and showed the existence of three states that correspond to three 
different blood cell phenotypes that could be reached stochastically from the same starting 
conditions (as is the case in real-life development). Another example includes the work by (Zhou 
et al., 2011) which proposes a differential equation model of ten essential genes involved in 
pancreatic cell differentiation that predicts which artificial perturbations are needed to induce 
transitions among the various pancreatic cell types.  
 

The purpose of this chapter is to illustrate in detail how practitioners of cell fate 
reprogramming (including iPSC reprogramming and transdifferentiation) can mathematically 
model their particular process in question if there is already a known GRN implied in the 
transformation between the phenotypes of interest. In Section II, we discuss how to use such 
GRNs to model the resulting dynamics of species in the network using ordinary differential 
equation (ODE) models (Figure 2, top panel). The validity of such modeling techniques rests on 



some key assumptions which will be explained in detail as a prerequisite to the approaches 
applied.  

 
In Section III, we introduce the notion of reprogramming in the state-space domain, while in 
Section IV we provide an introduction to analysis tools from the fields of dynamical systems 
(Strogatz, 2014) that can be used to understand the intrinsic properties and behavior of the GRN 
(Figure 2, middle panel). By moving the reprogramming problem to the state-space domain, it 
becomes possible to characterize the admissible steady state landscapes of the system, 
understand how robust these are to parameter changes, and determine which state transitions are 
possible under the influence of external perturbations. Most importantly, the comparison 
between the outcome of an experiment and the model prediction using these tools can often 
reveal biological mechanisms that are necessary to explain the data. Finally, this workflow will 
culminate in Section V, where we provide a discussion of the analysis of how a GRN responds to 
artificial perturbations, such as those imposed by reprogramming practices (Figure 2, bottom 
panel). Questions that can be addressed at this level of analysis include: how do the steady state 
landscape reconfigure after artificial perturbations? what inter-state transitions can or cannot be 
triggered with external perturbations, and what type of interventions are required to trigger a 
particular transition.  
 
II. Constructing an Ordinary Differential Equation Model of a Gene Regulatory Network  
 
As introduced above, viewing the problem of cell fate reprogramming through the lens of a 
mathematical model can lend many useful insights into the biology of a given reprogramming 
practice and potentially inform future experiments. In this section, we show by way of the 
example in Figure 2 how to construct an ODE model for a GRN. ODE models provide an 
appropriate starting point to gauge a deeper understanding of the GRN dynamics, and hence we 
focus this chapter on them. However, ODE models are suitable only when the molecular counts 
of species are sufficiently high such that the system can be described in terms of concentrations 
(see (Del Vecchio and Murray, 2014) and (Gillespie, 2009) for a detailed overview of 
assumptions behind ODE models of biomolecular systems). In such situations, the ODE models 
provide an accurate description of the mean behavior of the system dynamics. When one is 
interested in stochastic properties, such as determining the response of a system to noise, or the 
system is characterized by low molecular counts, other descriptions than ODEs should be 
considered. The Chemical Langevin Equation (CLE) is a stochastic differential equation that 
describes the system dynamics by adding a noise term to the ODE (Gillespie, 2000). Just like 
ODEs, CLEs can be used only when concentration is a meaningful way of describing the system. 
When this is not the case and molecular counts are very low, the Chemical Master Equation 
(CME) is the appropriate description (Van Kampen, 1992). In these cases, the behavior of an 
ODE model can be dramatically different from the mean behavior of the stochastic model (Al-
Radhawi et al., 2017).   
 
There are many different ODE models that one could write for a GRN of interest (Polynikis et al, 
2009). In our representation, we describe a network involving n TFs, or n ‘nodes,’ using n ODEs, 
with each equation describing the rate of change of the concentration of a single TF. If X = (X1, 
X2, …, Xn) represents the n nodes in a GRN with concentrations 𝑿 = (X1, X2, … Xn) respectively, 
we write an ODE model for their concentrations as follows:  
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where 𝐻((𝑿) is the production rate of TF Xi that lumps together the effects of all activators and 
repressors of gene of Xi and 𝛾( is the decay rate of the TF, which encompasses both active 
degradation and dilution (Del Vecchio and Murray, 2014). We will derive 𝐻( 𝑿 (𝑖 = 1,2) for 
the simple GRN network with nodes X and Y in Figure 2 using a set of molecular interactions 
between these TFs themselves, the genes that encode for them, and the mRNA transcripts from 
which they are translated (we use the nodes X and Y rather than X1 and X2 to simplify notation). 
Though we decide upon these interactions and declare them to be true for illustrative purposes, in 
general these will have to be determined using a literature search surrounding the particular GRN 
being studied: different TFs have different binding behaviors to their gene targets, and this is one 
of the factors that affect the final functional form of 𝐻2(𝑿). Moreover, there is also freedom in 
deciding which molecular species to include in a representation of the interactions based on the 
degree of detail one is interested in capturing. We begin describing these interactions for what 
will be our example in Figure 2 using a biochemical reaction model.  
 
1. From Literature Data to Biochemical Reaction Model 
Formation of Transcription Factor Multimers (“Multimerization”) 
It is common for TFs in a GRN to act as multimers, or proteins consisting of multiple monomers. 
In general, a literature search should be conducted to determine the most probable 
multimerization state of each TF in the network under study. As will be shown, whether a TF is 
acting as a monomer, dimer, trimer, etc., will be captured by a key parameter during ODE 
construction. In our running example, for illustrative purpose we treat TFs X and Y as acting in 
their homo-dimerized forms, Xd and Yd, respectively. The biochemical reactions corresponding 
to these reversible dimerizations are shown in Table 1A.  
 
Transcriptional Level Activation  
In the basic modeling formalism presented here, we assume that regulatory interactions, such as 
the activations between TFs X and Y in Figure 2, occur at the transcriptional level. Other 
regulatory mechanisms are possible, such as regulation of translation rate through microRNAs 
(Agrawal et al, 2003), and regulation of protein activity through covalent modification (Berg et 
al 2002). Here, for simplicity, we only consider transcriptional regulation since it is typically 
better characterized experimentally. In particular, we treat the arrow going from node X to node 
Y (node Y to node X) in the GRN as representing protein product X (Y) activating the promoter 
of gene Y (X). Likewise, the ‘auto-regulating’ arrow going from node X (Y) to X (Y) itself 
represents the TF X (Y) activating its own promoter.   
 
There are a number of ways two TFs can co-bind to a common promoter (Gyorgy and Del 
Vecchio 2014). 
 
Independent Binding: the two TFs bind to the promoter on separate sites and do not affect each 
other’s binding/unbinding.  
 
Cooperative Binding: the second TF only binds to the promoter when the first TF is already 
bound, or vice versa.  



 
Competitive Binding: the two TFs compete for the same binding site, which they mutually 
exclusively occupy. Hence, if one TF is bound to the promoter, the other TF cannot bind.  
  
In general, the mode(s) of binding for each TF in a network will have to be determined from the 
literature. In our model, we treat TFs X and Y as acting independently, which means they can 
occupy their targets alone or together. These configurations are captured by the specific 
association and dissociation rate constants in Table 1B, where we have introduced free DNA 
promoters DX and DY for genes X and Y, respectively. Based on the binding modes shown in 
Table 1, the promoters of gene X and gene Y can exist as:  
 

• DX: this species represents the unbound promoter of gene X.  
• DXX: this species represents DX bound by the homodimer Xd alone.  
• DXY: this species represents DX bound by the homodimer Yd alone. 
• DXXY: this species represents DX bound by the homodimers Xd and Yd. 
• DY: this species represents the unbound promoter of gene Y.  
• DYY: this species represents DY bound by the homodimer Yd alone.  
• DYX: this species represents DY bound by the homodimer Xd alone. 
• DYYX: this species represents DY bound by the homodimers Xd and Yd. 

 
There are a variety of experimental strategies used for the discovery of DNA binding sites for a 
TF of interest (Geertz and Maerkl, 2010). Some common techniques for genome-wide binding 
site discovery are ChIP-on-Chip (Horak and Snyder, 2002) and ChIP-Seq (Park, 2009). In ChIP-
on-Chip, the TFs of interest are cross-linked to chromatin that is then precipitated using 
antibodies specific for each TF, hence revealing their binding site to a particular DNA sequence. 
When done in a high-throughput manner using microarray chips, this is a practical way to reveal 
binding sites at the genome scale. In ChIP-Seq, TFs are similarly cross-linked and precipitated, 
and then the precipitated samples are run through high-throughput sequencing where peak-
finding software tools are used to identify the presumed TF binding sites.  
 
Once it is determined that a protein is acting as a TF, elucidating the direction of transcriptional 
regulation is commonly done by measuring the fold change of transcription in separate 
experiments in which the TF in question is knocked out or overexpressed. Once again, this can 
be done in a high-throughput manner using microarray chips or RNA-sequencing (Wang and 
Snyder, 2009) to determine transcription levels. In addition, experimenters may sometimes find 
the same TF acting in a context-dependent manner as both an activator and repressor. In such 
cases, further investigation is needed to determine if another mechanism, such as context-
dependent cofactors, are influencing the TF’s effect on transcription.  
 
At the biochemical reaction level, the representation for activators and repressors (Figure 3) is 
similar. A repressor R can bind a free promoter D at its target to form a repressed promoter DR. 
The fact that this DNA promoter is repressed rather than activated will be reflected in the fact 
that the relative transcription rate from the promoter configuration DR is less than that from the 
non-repressor bound promoter, D. Likewise, if A is an activator, the transcription rate from the 
promoter configuration representing A bound to its target promoter, DA, will be higher than the 



transcription rate on the non-activated target promoter, D. We illustrate these details in the 
following section for our running example of Figure 2.  
 
Transcription and Translation 
Next we provide biochemical reaction models for transcription and translation. In prokaryotes 
and eukaryotes alike, transcription is an elaborate process involving several steps including 
initiation, elongation, and termination of an mRNA transcript, amongst others (Alberts et al., 
2002). Likewise, translation consists of several steps including polypeptide formation and 
elongation and is followed by protein folding before the protein can reach its active form. A full 
mechanistic model of the transcriptional and translational apparatuses is laid out in equations 
2.10 and 2.11 of Chapter 2 in (Murray and Del Vecchio, 2014). In modeling GRNs for cell fate 
reprogramming, however, this level of detail is not typically important for capturing the 
qualitative behavior of a network and its response to external perturbations. As derived in 
(Murray and Del Vecchio, 2014), we can treat transcription and translation as single step 
reactions with lumped rates that encompass the time it takes for all the steps in the elaborate 
machinery to complete.  
 
For our particular GRN of Figure 2, these one-step biochemical reactions are shown in Table 1C, 
where each DNA promoter state established above produces an mRNA transcript, mX or mY, 
from the genes of X and Y, respectively. Table 1C distinguishes between constitutive, or ‘leaky’ 
transcription that represents the basal rate of transcription of a gene without activation or 
repression, and activated transcription in our example. The degree to which constitutive 
transcription occurs will have to be determined from the literature for each gene in question; 
some genes will constitutively be active while others only transcribe mRNA upon activation. 
Moreover, the ‘activating’ property of these reactions will be encoded in the fact that the rates of 
transcription for activated DNA will be greater than the rate of constitutive transcription, as 
shown in the table.   
 
To summarize Table 1C, the mRNA transcript, mX, of gene X can be produced in 4 ways: 
 
• From the constitutive promoter of gene X, DX, at a rate 𝛼4 (unit time)-1. 
• From the singly-activated promoter DXX at a rate 𝛼45 of mRNA transcripts/unit time. 
• From the singly-activated promoter DXY at a rate 𝛼46 of mRNA transcripts/unit time. 
• From the dually-activated promoter DXXY at a rate 𝛼47 of mRNA transcripts/unit time. 
 
Because the species DXX, DXY, and DXXY represent activated forms of DX, the rates of 
transcription from these species will be greater than from constitutive transcription, i.e. 𝛼45, 𝛼46, 
𝛼47 > 𝛼4. Since the GRN is symmetric, similar representations hold for the way mY is produced.  
 
Note that if these promoters were being repressed rather than activated, the only change would 
be in the relative rates of transcription between free promoters and repressor-bound promoters, 
i.e. 𝛼45, 𝛼46, 𝛼47 < 𝛼4 and 𝛼85, 𝛼86, 𝛼87 < 𝛼8.  
 
  



TABLE 1: Dimerization, DNA-Binding, and Transcription Reactions 
Reaction Type Biochemical Reaction Model Representation 

A. Dimerization 

 

 

 
  

 

Represents TF X reversibly forming a 
homo-dimer, Xd. Units of ax: 
(concentration ⋅ time)-1, dx: (time)-1 

Represents Y reversibly forming a 
homo-dimer, Yd. Units of ay: 
(concentration⋅ time)-1, dy: (time)-1 

 

B. Reversible DNA 
Binding 
 

 

 

 
 

INDEPENDENT ACTIVATION 
AUTO ACTIVATION MUTUAL-ACTIVATION 

 

 
Represents homo-dimer Xd reversibly 
binding its own free promoter, DX, to 
form an activated promoter DXX.  

𝐾5 = 𝑑5/𝑎5 

 

 
Represents homo-dimer Yd reversibly 
binding the free promoter of X, DX, to 
form an activated promoter DXY. 

𝐾6 = 𝑑6/𝑎6 

 
Represents homo-dimer Yd reversibly 
binding to the promoter of Y, DY, to 
form activated promoter DYY. 

𝐾> = 𝑑>/𝑎> 

 
Represents homo-dimer Xd reversibly 
binding to the promoter of Y, DY, to 
form activated promoter DYX. 

𝐾7 = 𝑑7/𝑎5 
CO-ACTIVATION 

 

                     
(left) Represents homo-dimer Yd reversibly binding the promoter of X when Xd is already 
bound (i.e. DXX) to form an independently co-activated promoter DXXY. (right) Represents 
homo-dimer Xd reversibly binding the promoter of X when Yd is already bound (i.e. DXY) 
to form an independently co-activated promoter DXXY. 

𝐾? = 𝑑?/𝑎?,	𝐾A = 𝑑A/𝑎A	 
 

                  
(left) Represents homo-dimer Yd reversibly binding the promoter of Y when Xd is already 
bound (i.e. DYX) to form an independently co-activated promoter DYXX. (right) Represents 
homo-dimer Xd reversibly binding the promoter of Y when Yd is already bound (i.e. DYY) 
to form an independently co-activated promoter DYYX. 

𝐾B = 𝑑B/𝑎B, 𝐾C = 𝑑C/𝑎C 
Units of ai = (concentration⋅unit time)-1. Units of di = ⋅(unit time)-1 (i  𝜖 {1 … 8}) 

 

C. Transcription 

 

CONSTITUTIVE 
TRANSCRIPTION 

ACTIVATED TRANSCRIPTION 

 
 

 

 
 

 

 
 

 
 

 

 
 
 

 
Transcription of genes X and 
Y without activation, i.e. 
“leaky” transcription.  

Represents transcription 
of activated genes of X to 
form species mX. 

Represents transcription of 
activated genes of Y to 
form species mY. 

for activated DNA: 𝛼4( , 𝛼8(  > 𝛼4E, 𝛼8E, for repressed DNA: 𝛼4( , 𝛼8(  < 𝛼4E, 𝛼8E (i  𝜖 {1,4}). 
Units for all rate constants: (unit time)-1 



 
 

TABLE 1 (cont.): Translation, Decay and Ectopic Overexpression Reactions 
Reaction Type Biochemical Reactions 
D. Translation 
 

 

 

  

Represents translation of mRNA transcript 
of gene X into the protein product X. 

Represents translation of mRNA transcript 
of gene Y into the protein product Y. 

 

E. Decay 
 

 

 

DEGRADATION DILUTION 
 

    
 

     
 

Represents the degradation of TFs X and Y 
and mRNA transcripts mG and mH.   

 

            
 

 
Represents the dilution of TFs X and Y 
due to cell-division.  

 

In total, the decay rates 𝛾4 and 𝛾8 of TFs X and Y, respectively, are equal to the sum of 
degradation and dilution rates for each TF: 𝛾4 = 𝛿4 + 𝛽, 𝛾8 = 𝛿8 + 𝛽.  

 
F. Ectopic 
Overexpression 

 

                 
Represents the additional mRNA species mX and mY formed via  

ectopic overexpression at rates ux and uy mRNA species / unit time. 
 
Though we began with several DNA promoter states, these ultimately led to the same two 
mRNA transcripts, mX and mY. At this point under the assumptions we have made, translation 
can also be represented by a one-step process from these transcripts into their protein products as 
shown in Table 1D.  

 
Decay  
While the reactions from above lead to the production of X and Y, we also model the decay of 
these proteins as well as their respective mRNA species. In general, these proteins and mRNA 
species will undergo decay at some rate that is a combination of both active degradation (𝛿4 and 
𝛿8 for proteins X and Y, respectively, and 𝜂4 and 𝜂8 for mRNA species mX and mY, 
respectively) and dilution (𝛽)	, as shown in Table 1E. For proteins X and Y: the total rate of 
decay is 𝛾4 = 𝛿4 + 𝛽	and 𝛾8 = 𝛿8 + 𝛽, respectively.  
 
In general, the degradation parameters can be determined using the following relations (Del 
Vecchio and Murray, 2014):  
 

𝛾( = ln 2 /𝑡5/6, 𝛿( = ln 2 /𝑡5/6, 
 
where 𝑡5/6 represent the half-lives of each protein or mRNA transcript. The half-life of a species 
is the time it takes for its concentration to fall to half of its initial concentration (Zhou 2004), and 
can often be found from the literature. Care should be taken to use the half-life value in a cell 
environment that most closely resembles the phenotypes in question during the reprogramming 



process under study, as half-lives can vary as a function of environment (Kuhar, 2009). 
Likewise, the dilution rate 𝛽 can be calculated using the cell division rate, or doubling time, 
𝑡"EPQR(ST of the cell which the proteins are contained in: 𝛽 ≈ ln	(2) / 𝑡VWXYZ2[\. The doubling time 
of prokaryotic cells such as E. Coli can be on the order of minutes (Sezonov, 2007) while that of 
eukaryotic cells can be approximated by the characteristic human cell cycle time of 
approximately 24 hours (Cooper, 2000).  
 
Overexpression (Artificial Perturbation) 
Thus far we have described the reactions that comprise the endogenous components of our GRN. 
Ultimately, the reprogramming framework we describe will include artificial perturbations to our 
endogenous GRN that can be captured in our model as follows. As described in Section I, 
reprogramming is typically done by artificially overexpressing TFs of the GRN through insertion 
of ectopic DNA (Takahashi and Yamanka, 2016). Therefore, we can model this by adding an 
additional production rate of the TF's mRNA from the ectopic DNA (Table 1F). 
 
As seen above, this is the phase in the modeling process that will require a literature search to 
determine the multimerization state of the TFs in the GRN, the configurations in which they can 
bind the DNA they are regulating, as well as their half-lives and dilution rates. The online 
database bionumbers.org (Milo et al., 2010) can be a useful source for some of these parameters 
in many cases.  
 
2. From Biochemical Reaction Model to ODE 
 
With this biochemical reaction model established, we are ready to construct an ODE model for 
the GRN. Since ODE models are deterministic, they implicitly assume that the species in our 
biochemical reactions exist at sufficiently high copy numbers and in well-stirred volumes 
(Section 2.1, Del Vecchio and Murray, 2014).  
 
The procedure for obtaining the ODE for each species introduced is relatively straightforward, 
with no expertise in differential equations required: one simply must go through every reaction 
listed in Table 1 and add appropriate terms to the differential equations of each species involved 
in that reaction (see Section 2.1 of Del Vecchio and Murray, 2014). For a given species S,  

 
Change in concentration of S = "

"%
𝑆 = 𝑆 = 𝛴 (all biochemical reaction rates involving S) 

 
Doing so for our biochemical reaction network yields: 

 
Table 2: Full 14D Model of GRN 

𝑋" = 𝑎4𝑋6 −	𝑑4𝑋" −	𝑎5𝐷#𝑋" + 𝑑5𝐷## − 𝑎7𝐷`𝑋" + 𝑑7𝐷`# − 𝑎A𝐷#`𝑋" + 𝑑A𝐷##` − 𝑎C𝐷``𝑋" + 𝑑C𝐷``#  (1) 

𝑌" = 𝑎8𝑌6 −	𝑑8𝑌" −	𝑎6𝐷#𝑌" + 𝑑6𝐷#` − 𝑎>𝐷`𝑌" + 𝑑>𝐷`` − 𝑎?𝐷##𝑌" + 𝑑?𝐷##` − 𝑎B𝐷`#𝑌" + 𝑑B𝐷``# (2) 

𝐷# = −𝑎5𝑋"𝐷# + 𝑑5𝐷## − 𝑎6𝑌"𝐷# + 𝑑6𝐷#` (3) 

𝐷` = −𝑎>𝑌"𝐷` + 𝑑>𝐷`` − 𝑎7𝑋"𝐷` + 𝑑7𝐷`# (4) 

𝐷## = 𝑎5𝐷#𝑋" − 𝑑5𝐷## − 𝑎?𝐷##𝑌" + 𝑑?𝐷##` (5) 

𝐷#` = 𝑎6𝐷#𝑌" − 𝑑6𝐷#` − 𝑎A𝐷#`𝑋" + 𝑑A𝐷##` (6) 



 
This 14-dimensional ODE model of the GRN contains a large number of parameters that makes 
it impractical to analyze for cell fate reprogramming. However, if we assume that dimerization, 
DNA binding/unbinding, and mRNA dynamics in Table 1A-1C occur sufficiently faster than 
protein production and decay in Table 1D-1E, the temporal derivatives of the respective species 
can be set to zero, indicating that the species concentration reaches its (quasi) steady state very 
quickly compared to the rest of the system. This is called the quasi-steady state (QSS) 
approximation and is widely used in modeling biochemical reaction systems (Del Vecchio and 
Murray, 2014). In our example, this amounts to setting the temporal derivatives in equations (1-
12) to zero.  
 
Using the QSS approximation and accounting for the fact that DNA is not destroyed, through the 
conservation laws DTX = DX + DXX + DXY + DXXY and DTY = DY + DYY + DYX + DYYX, 
we arrive at the 2D model:  
 

𝑋 =
bcde	

fcc
ghgi

#je
fkc
gjgl

`je mc⋅n
ghgjgigl

#j`j

5e h
ghgi

#je h
gjgl

`je h
ghgjgigl

#j`j
− 𝛾4𝑋 + 𝑢4,  

 

𝑌 =
bkd	e

fck
gigp

#je
fkk
glgq

`je
mk⋅n

gpgqgigl
#j`j

5e h
gigp

#je h
gqgl

`je n
gpgqgigl

#j`j
− 𝛾8𝑌 + 𝑢8,  

 
 
where we have further assumed 𝐾6/𝐾? = 𝐾5/𝐾A = 𝐾>/𝐾B = 𝐾7/𝐾C = 𝑅, and the lumped 
parameters are equal to:  
 
𝛼4E = 𝐷s#𝛼4/𝜂4, 𝛼8E = 𝐷s`𝛼8/𝜂8, 𝑎44 = 𝐷s#𝛼45/𝜂4, 𝑎84 = 𝐷s#𝛼46/𝜂4, 𝑏4 = 𝐷s#𝛼47/𝜂4, 𝑎88 = 𝐷s`𝛼85/𝜂8, 
𝑎84 = 𝐷s`𝛼86/𝜂8, 𝑏8 = 𝐷s`𝛼87/𝜂8, 𝐾# = 𝑑4/𝑎4, 𝐾` = 𝑑8/𝑎8. Without loss of generality, if we take 𝑅 = 1 
and 𝐾# = 𝐾` = 𝐾( = 1	(𝑖 ∈ {1, 2, 3, 4}), we get the model:  
 

𝑋 =
𝛼4E + 	𝑎44𝑋6 + 𝑎84𝑌6 + 𝑏4𝑋6𝑌6

1 + 𝑋6 + 𝑌6 + 𝑋6𝑌6
− 𝛾4 ⋅ 𝑋 + 𝑢4 = 𝐻5 𝑋, 𝑌 − 𝛾4𝑋 + 𝑢4 

(15) 
𝑌 =

𝛼8E 	+ 𝑎48𝑋6 + 𝑎88𝑌6 + 𝑏8𝑋6𝑌6

1 + 𝑋6 + 𝑌6 + 𝑋6𝑌6
− 𝛾8 ⋅ 𝑌 + 𝑢8 = 𝐻6(𝑋, 𝑌) − 𝛾8𝑌 + 𝑢8 

 
In (15), the terms H1(X,Y) and H2(X,Y) are regulatory functions referred to as Hill functions 
(Santillán, 2008). In our regulatory functions, the variables X and Y being raised to the power 2 

𝐷`# = 𝑎7𝐷`𝑋" − 𝑑7𝐷`# − 𝑎B𝐷`#𝑌" + 𝑑B𝐷``# (7) 

𝐷`` = 𝑎>𝐷`𝑌" − 𝑑>𝐷`` − 𝑎C𝐷``𝑋" + 𝑑C𝐷``# (8) 

𝐷##` = 𝑎?𝐷##𝑌" − 𝑑?𝐷##` + 𝑎A𝐷#`𝑋" − 𝑑A𝐷##` (9) 

𝐷``# = 𝑎B𝐷`#𝑌" − 𝑑B𝐷``# + 𝑎C𝐷``𝑋" − 𝑑C𝐷``# (10) 

𝑚# = 𝛼4𝐷# + 𝛼45𝐷## + 𝛼46𝐷#` + 𝛼47𝐷##` − 𝜂4𝑚# + 𝑢4 (11) 

𝑚` = 𝛼8𝐷` + 𝛼85𝐷`` + 𝛼86𝐷`# + 𝛼47𝐷``# − 𝜂8𝑚` + 𝑢8 (12) 

𝑋 = 𝜅4𝑚# − 𝛾4𝑋  (13) 

𝑌 = 𝜅8𝑚` − 𝛾8𝑌 (14) 



stems from fact that X and Y were assumed to act as homo-dimers. In fact, this exponent is more 
generally referred to as the Hill coefficient n (Santillán, 2008), where n = the number of subunits 
in the multimerized state of the TF (i.e. n = 1 for monomers, n = 2 for dimers, n = 3 for trimers, 
etc).  
 
In summary, the assumptions we have made in arriving at the 2D model of our GRN in (15) are:   
 
1. Regulations Take Place at the Transcriptional Level Only: as shown in Table 1B, the 
arrows between nodes in the GRN take place through TF protein products binding at the DNA 
promoters of their targets, where they activate or repress transcription.  
 
2. mRNA Levels Produced via Transcription Reach Steady State Levels Sufficiently Fast. 
During reduction of the dynamics from 14D to 2D above, setting 𝑚# = 𝑚` = 0 was predicated 
on the assumption that mRNA dynamics were sufficiently fast, where sufficiently fast is 
equivalent to assuming that the decay rates of mRNA are much larger than those of proteins (i.e. 
𝜂4, 𝜂8 ≫ 𝛿4, 𝛿8). Protein half-lives are typically longer than mRNA half-lives (Schwanhäusser, 
2013), and this is a good assumption when they are longer on the order of one magnitude or 
more.   
 
3. DNA Binding and Unbinding Rates Are Much Faster than Protein Production and 
Decay: setting the ODEs corresponding to the DNA species to zero during model reduction from 
14D to 2D was predicated on the assumption—known as the adiabatic limit (Zhang and 
Wolynes, 2014)—that DNA binding and unbinding rates in Table 1B are much larger than the 
production and decay rates of the protein products, i.e. 𝑑(, 𝑎𝑖𝑋, 𝑎𝑖𝑌 ≫ 𝛾4, 𝛾8, 𝜅4, 𝜅8	for 𝑖 = 1, … ,8. 
In prokaryotic cells, the adiabatic assumption is typically accurate (Alon, 2006; Del Vecchio and 
Murray, 2014), though in eukaryotic cells the time needed to demethylate DNA and unpack 
chromatin before TFs can bind may mean that the promoter kinetics are slower than assumed 
(Arjun et al., 2006; Yuan et al., 2016; To and Maheshri, 2010; Mariana et al, 2010). When they 
become slower than the protein production and decay, the predictions of the reduced model may 
not be entirely accurate, and it would be preferable to use the full 14D model (i.e. the model 
without reductions based on QSS assumptions). Nonetheless, the steady states of a reduced 
model will be in the same location as the steady states of the full model so we proceed with this 
assumption to illustrate what a first-pass analysis of the qualitative behavior of a GRN looks like.  
 
4. The Species in Question Exist in Sufficiently High Molecular Counts: an assumption that 
has been held throughout this entire ODE modeling scheme is that the species in question exist at 
sufficiently high molecular counts. 
 
Now that we have arrived at this reduced ODE model of our GRN, we are ready to represent the 
Waddington view of cell fate reprogramming from the mathematical perspective.  
 
III. A Dynamical Systems View of Cell Fate Reprogramming 
 
By developing a mathematical model for the cell fate reprogramming problem in Section II, we 
can now study its properties using dynamical systems tools. Within a dynamical systems 
description, a GRN consisting of the n TF species X5, X6, … , X[ has a “state” given by the tuple 



of TF concentrations 𝑋 = (𝑋5, 𝑋6, … , 𝑋S). The GRN can be described using n ODEs representing 
the evolution of these concentrations: 𝑋 = 𝑓(𝑋), in which we use 𝑋 for 𝑑𝑋/𝑑𝑡. We refer to the set 
of points (𝑆5, … , 𝑆�) in state space such that 𝑓 𝑆( = 0 (for 𝑖 = 1…𝑚) as the steady states of this 
dynamical system, which can be either stable or unstable (Strogatz, 2014). Qualitatively, stable 
steady states (SSS) are those that can withstand or damp out small amplitude disturbances, and 
are therefore associated to a phenotype in this context (Kauffman, 1973; Huang and Eichler, 
2005; Huang, 2009)  
 
The distinction between a stable and unstable steady state (USS) can be visualized in Figure 4A, 
which portrays the states of a GRN as a landscape of wells. In this landscape, SSSs are 
equivalent to valley-like depressions while USSs are equivalent to ‘peaks.’ On the one hand, 
under the influence of gravity pointing downwards in the figure, any arbitrarily small 
perturbation applied on a hypothetical ball that is resting on a peak will cause it to permanently 
lose its position on that peak (and hence that state is unstable). On the other hand, a ball resting 
in a depression can withstand some level of perturbation and still converge back into that well 
(and hence that state is stable).  
 
In addition, SSSs have varying degrees of stability, which can in part be captured by the basin of 
attraction surrounding each SSS, which is the set of states (TF concentrations) starting from 
which the system converges autonomously to that SSS. For instance, in Figure 4A, if the SSS 
themselves are the bottom-most points in the wells, then the entire well is the basin of attraction 
of that SSS. Hence in the metaphor of this figure, cell fate reprogramming is akin to enforcing 
transitions from the basin of attraction of the starting phenotype (one well), to the basin of 
attraction of the final phenotype (another well). This is accomplished by artificially perturbing 
(i.e. applying an input to) the endogenous GRN just the right amount such that the landscape 
pushes the system’s state from the basin of attraction of the starting state towards the basin of 
attraction of the desired final state (Figure 4B).  
 
In Figure 5, we depict this reprogramming concept for a prototypical two dimensional system 
consisting of two TFs, X and Y. The state space hence consists of concentrations of these TFs: X 
and Y. In Figure 5A, when no input is applied, the steady state landscape of the endogenous GRN 
alone consists of three SSSs: 𝑆5, 𝑆6, and 𝑆7. As introduced above, we view these states as 
corresponding to distinct phenotypes characterized by the relative concentrations shown, and 
with basins of attraction surrounding each SSS as highlighted in the figure. When an artificial 
perturbation is introduced for the purpose of reprogramming, the steady state landscape morphs 
into one that may have a different number of SSSs at different locations. (Figure 5B). 
Specifically, the original states 𝑆5, 𝑆6, and 𝑆7 disappear and two new stable steady states, 𝑆6� and 
𝑆7′, arise as depicted. As a result, once the perturbation is applied on a system starting in the 
location which was originally 𝑆5, the system’s state will converge towards 𝑆6�. Upon removal of 
input in Figure 5C (i.e. completion of the cell fate reprogramming experiment), the system’s 
state now at 𝑆6� is found in the basin of attraction of the original system’s SSS 𝑆6, and therefore 
the system's state ultimately converges to 𝑆6. In essence, in a dynamical system representation, 
cell fate reprogramming corresponds to morphing the steady state landscape of the GRN through 
external perturbation such that the current system's state (current phenotype) is pushed into the 
basin of attraction of the target state (target phenotype). It is in general non-trivial to determine 
external perturbations that are appropriate to trigger a desired state transition. However, 



mathematical and computational analysis of the ODE model can reveal useful information in this 
regard, as we illustrate in the next sections. 
 
To summarize, Figure 6 juxtaposes the different views of reprogramming at the three levels of 
abstraction discussed thus far: reprogramming as transitions up and across the Waddington 
landscape, as transitions in state space, and as an experimental change in the phenotype itself.  
 
IV. Analysis of Intrinsic Properties of GRN using Tools from Dynamical Systems 
 
Having introduced the notion of SSS as phenotypes, in this section we provide tools for 
mathematical characterization of the steady state landscape by continuing with our running 
example of Figure 2. In particular, we analyze the intrinsic properties of this GRN by analyzing 
the steady state landscape of our system in (15) without input (i.e. 𝑢4 = 𝑢8 = 0). Studying this 
steady state landscape is of utmost importance, as having a correspondence between the 
mathematical steady states of an ODE model and the phenotypes being studied in a particular 
cell fate reprogramming process speaks to the strength of a model and its ability to represent the 
phenotype switching in question. 
 
In general, the mathematical steady states of an ODE model, regardless of its dimensionality, are 
the solutions to simultaneously setting the time derivatives of all species in the GRN to zero. In 
our running example of a GRN in Figure 2, the mathematical steady states of its 2D model in 
(15) are solutions to the equations 𝑑𝑋/𝑑𝑡 = 𝑑𝑌/𝑑𝑡 = 0. One of the benefits of having a 2D 
model is that these solutions can be viewed in a 2D-plane, as depicted in Figure 7. As shown, 
setting these time derivatives to zero yields two equations whose solutions are ‘nullclines’ in the 
X-Y plane. Viewed in this manner, the solutions to 𝑑𝑋/𝑑𝑡	 = 	𝑑𝑌/𝑑𝑡	 = 	0, and hence the steady 
states, are given by the intersection of these nullclines.  
 
Stability of Steady States 
 
Once the steady states of a system have been determined, there are different options for 
determining their stability, depending on the dimensionality of the model. For a system 𝑋 = 𝑓(𝑋) 
with 𝑋 = (𝑋5, 𝑋6, … , 𝑋S) and 𝑓(𝑋) = (𝑓5 𝑋 , … , 𝑓S(𝑋)), the vector 𝑓(𝑋) is known as the vector field, 
which has a different length and direction as a function of 𝑋.	Qualitatively, plotting this vector at 
different points across the state space indicates the local direction and speed at which a point in 
state space would move under the dynamics of the system. Hence arrows in a vector field point 
towards SSSs while they point away from USSs.  (Del Vecchio and Murray, 2014). For systems 
with dimension higher than 2, plotting the vector field may not be practical and therefore 
algebraic tools, such as the Jacobian matrix are more informative. We illustrate the vector field 
approach with the 2D model in (15), and then illustrate the Jacobian matrix approach using a 3D 
GRN model.  
 
2D Geometric Analysis 
With the choice of parameters shown in Figure 7, there are five intersections, or steady states.  
In the code block of the Figure, we use the Mathematica functions ContourPlot and 
VectorPlot to simultaneously plot these nullclines and the vector field, respectively. As 
shown, this allows for a very simple visual inspection of stability at each steady state, and we can 



see that our system has three SSSs and two USSs. The same principles allow for simple visual 
inspection of stability for 1D systems, an example of which is shown in Appendix Figure 1.   
 
n-D Computational Analysis 
In GRNs with more than two TFs, such as the three node network shown in Figure 8A, the 
reduced ODE system that can be obtained through the workflow from Section II has greater than 
two dimensions. Equation (16) of Figure 8A shows the reduced 3D ODE model that can be 
obtained for the GRN shown. In these cases, the steady state landscape may be inferred using 
computational techniques outlined in Figure 9. This workflow is based on standard theory from 
dynamical systems and linear algebra (Strang, 1993; Strogatz, 2014), though in-depth knowledge 
of these concepts is not required for use of the code we provide.  
 
The workflow is as follows: one can first solve for the steady states of an n-D system using an 
algebraic solver such as vpasolve in Matlab (Fig. 9A). Then, to determine the stability of these 
steady states, a standard method is to use a Jacobian matrix (that can be found using the function 
jacobian in Matlab, Fig. 9B), which results from linearization of the nonlinear system. The 
linearization of the system at a steady state of interest provides a good approximation of the 
system dynamics in the near proximity of the steady state. Since this approximation is linear, we 
can infer the stability of the linearization by determining the eigenvalues of the Jacobian matrix 
evaluated at that steady state (Fig. 9C-D). Stability (all eigenvalues with negative real part) or 
instability (some eigenvalue with positive real part) directly translates into stability or instability 
of the original system's steady state. Marginal stability of the linearization (when one eigenvalue 
has zero real part with all others having negative real parts) is inconclusive for the original 
nonlinear system (Del Vecchio and Murray, 2014; Khalil 2014).  
 
In Figure 8C-8D, we show the results of this workflow, the list of steady states and their 
eigenvalues for the 3D model in equation (16). These results indicate that the system possesses 
two SSS and one USS. Figures 10A and 10B implement the Matlab code used to compute these 
steady states and eigenvalues, which can be adapted for other systems by simply adding the 
relevant ODEs and parameters. In Figure 8B, we also show in 3D how the steady states are 
distributed in the 3D state space, by plotting the surfaces obtained by setting the time derivatives 
of X, Y, and Z in (16) equal to zero (which are the 3D equivalents of nullclines), and seeing that 
intersections of these surfaces occur at the same points computed by vpasolve. 
 
To summarize the Jacobian matrix method of determining stability, for each steady state:  
 

� Case #1: if all eigenvalues of the Jacobian matrix evaluated at that steady state have 
negative real parts, the state is a stable steady state for the original nonlinear system.  

� Case #2: if any eigenvalues of the Jacobian matrix evaluated at that steady state has a 
positive real part, the state is an unstable steady state for the original nonlinear system.  

� Case #3: if none of the real parts of eigenvalues of the Jacobian matrix evaluated at that 
steady state are positive, but one or more are zero, the Jacobian Linearization method is 
inconclusive, and other methods must be used.  

 



In the rare Case #3, more advanced methods from nonlinear dynamical systems theory, including 
Lyupanov Theory (Slotine and Li, 1991) or the Center Manifold Theorem (Wiggins, 2003; Carr, 
1981) can be used to investigate stability.  
 
Basins of Attraction 
 
Once the SSSs of a model are identified, determining the basin of attraction around each one can 
be an informative next step in understanding the landscape. For our running example in equation 
(15), Figure 11 shows how to compute this basin of attraction numerically in Matlab. As shown 
in the figure, the basins of attraction around each of the three SSS 𝑆5, 𝑆6, and 𝑆7 are the blue, 
pink, and purple-shaded regions, respectively. These represent the sets of concentrations of X and 
Y starting from which the system converges autonomously to each respective SSS.  
 
Parameter Analysis 
Thus far in our study of the steady state landscape, we have taken for granted a certain set of 
parameters in our model for the 2D GRN, though in reality the values of parameters used can 
have major consequences on the location, number, and stability of steady states. As discussed in 
Section II, when constructing a biochemical reaction model of a GRN, care should be taken at 
every step to use parameters from the literature, when available, that most accurately reflect the 
reactions that take place in reality. However, there will often be large variability on many 
parameter values and some reactions may have unknown parameters. It is therefore important to 
assess how variations in parameters affect the steady state landscape of the GRN.  
 
Here, we describe three different tools that can be used to this end. Specifically, for a single 
parameter variation at a time, parameter bifurcation analysis is the most commonly used 
approach (Wiggins, 2003). To evaluate the effect of all parameters changing at the same time, 
local parameter sensitivity analysis (Khalil, 2014; Del Vecchio et al, 2014) can be performed, 
which provides insight for sufficiently small changes in parameters. This tool can also be used to 
locally determine the parameters to which the system is more sensitive. Finally, for the effect of 
changing all parameters at the same time within given ranges, global sensitivity analysis can be 
performed (Saltelli et al, 2008), which is a computationally intensive approach. In the examples 
that follow, we implement our code in Matlab for the sake of introducing the concepts. However, 
several software tools are available, especially for parameter bifurcation analysis, including 
AUTO (http://indy.cs.concordia.ca/auto/) and Oscill8 (http://oscill8.sourceforge.net/). 
 
Single-Parameter Bifurcations 
 
One way to assess the impact of a given parameter on the steady state landscape is to hold all 
other parameters constant and plot the location of the steady states as that parameter is changed, 
with attention given to how the number and stability of steady states change, or bifurcates 
(Strogatz, 2014). Figure 12 demonstrates this method for the parameter axx in equation (15). The 
two plots in this figure show the steady states of the system, (𝑋∗, 𝑌∗), and their stability, as this 
bifurcation parameter axx is varied from the values 2 to 2.8, as an example. As shown, the 
system begins with 5 steady states at axx = 2 (the nominal value used in Figures 7 and 11), and 
loses two steady states at about axx = 2.45. Stability analysis using the Jacobian matrix method 
(implemented in the code block of the figure) shows that of the remaining 3 steady states, two 



are stable while one is unstable. In this case, we say that the system goes through a bifurcation at 
axx ≈ 2.5. In particular, for the intermediate stable and unstable steady states, this is a case where 
the stable and unstable steady states "collide" and annihilate each other, which is known as a 
saddle-node bifurcation (Wiggins, 2003). This is an important insight since, as we have 
described, SSSs represent phenotypes and so this model would indicate that at least one 
phenotype could potentially disappear if this parameter is somehow perturbed experimentally. 
These notions will become important when we discuss how some external perturbations to ODEs 
can be modeled by changes in parameters in Section V, which will lend insight into possible 
explanations for how external stimulation during reprogramming changes the steady state 
landscape. 
 
Local Sensitivity Analysis 
 
A more systematic way of assessing how the steady state landscape changes in response to small 
parameter perturbations is the use of sensitivity matrices. As depicted, in Figure 13A, the 
sensitivity matrix, 𝑆G,�, of a system with state X = (X5, X6, . . , X[) and parameters Θ =
(θ5, θ6, … , θ�) at a stable steady state 𝑋∗ and nominal parameter values 𝛩𝒐 represents the local 
change in the stable steady state coordinates when small changes are applied to the parameters. 
The theory behind this method is described in detail in Section 3.2 of (Del Vecchio and Murray, 
2014), though the general result can be used directly if an ODE model for a GRN is given. For a 
general n dimensional system with ODEs described by 𝑋5 = 𝑓5 𝑋, 𝛩 ,… , 𝑋S = 𝑓S 𝑋, 𝛩 , the 
sensitivity matrix within the vicinity of steady state 𝑋∗ and around a nominal set of parameters 
𝛩𝒐 is:  
  

𝑆G,� ≔
"G
"�
= − ��

�#	 (#∗,�d)

�5 ��
��	 (#∗,�d)

	 (17) 

 
where 𝑓 = [𝑓5, … , 𝑓S]’. 
 
In the normalized version of this sensitivity matrix,  
 

𝑆𝑿,𝚯
∗ = 𝐷#∗ �5

⋅ 𝑆𝑿,𝚯 ⋅ 𝐷�
∗ 

 

where 𝐷𝑋
∗ �5

= 𝑑𝑖𝑎𝑔{𝑋∗} and	𝐷�d = 𝑑𝑖𝑎𝑔{𝛩𝑜}, the entries of this matrix can be compared to 
each other to assess the parameters to which the system’s steady state is most sensitive. In Figure 
13B, a Matlab code block is provided that carries out this computation for our 2D system in 
equation (15). As seen in the figure, this matrix can be computed at different SSS (as specified 
by the parameter ‘state_index’). For the nominal parameters used, ODE model (15) has three 
SSS (recall Figure 7). Using this code, the normalized sensitivity matrix at the SSS 𝑆6 from 
Figure 7, for instance, is:  
 

 𝜶𝒐𝒙 𝜶𝒐𝒙 𝒂𝒙𝒙 𝒂𝒚𝒙 𝒃𝒙 𝒂𝒙𝒚 𝒂𝒚𝒚 𝒃𝒚 𝜸𝒙 𝜸𝒚 

X* 0.0033 0.0273 2.1682 0.1437 0.3498 0.0728 0.7706 17.7313 0.1175 0.3814 

Y* 0.0004 0.0070 0.2290 0.0152 0.0370 0.0174 0.1844 4.5339 0.0300 0.0975 



 
A quick glance at this matrix shows that both the X and Y components of 𝑆6 are most sensitive 
to the parameter 𝑏8 compared to the rest of the parameters. Note that the sensitivity matrix can 
be computed only at steady state/parameter combinations where the Jacobian matrix 𝑑𝑓/𝑑𝑋	is 
non-singular, and therefore cannot be computed at bifurcation points. 
 
Global Sensitivity Analysis 
Global sensitivity analysis can offer a wider glimpse into how parameters affect the salient 
properties of a system. In this type of analysis, Monte Carlo methods (Saltelli et al., 2008) can be 
used to randomly sample several parameters at a time over a sufficiently large number of 
repetitions. In doing so, any output that one may be interested in as these parameters are varied, 
such as the number of SSS, their locations, or the dominant eigenvalues associated with them, is 
observed in the aggregate across a statistically representative set of outputs.  
 
The crucial part of this process is running a sufficient number of repetitions so that the parameter 
sets used are representative of the entire parameter space such that, in turn, the outputs realized 
are statistically representative of the output space. As the number of parameters increase, running 
a sufficient number of repetitions becomes more challenging due to the curse of dimensionality 
(Saltelli et al., 2008).  
 
There are various computational techniques that can be used to control the sample generation 
process of Monte Carlo methods so that a statistically representative parameter set is formed 
without an intractable number of samples needed (McKay et al, 1979). Latin hypercube sampling 
(LHS) is one such method that partitions the parameter space into a grid and enforces sampling 
rules such that every sample resides in a unique row and column (Stein, 1987). Figure 14 depicts 
this with a simple example in 2D parameter space. A Latin hypercube is shown with five 
samples in the parameter space axy and axx. Without LHS (Fig. 14A), the 2D parameter space 
might not efficiently cover the space, while with LHS (Fig. 14B), there is some level of spread 
enforced by the fact that every sample is the only one in the row and column of the grid formed 
by partitioning the parameter space.  
 
In Figure 14C, we provide Matlab code that generates the number of steady states in the model 
of equation (15) as the six parameters axx, axy, bxy, ayy, ayx, by are collectively randomly sampled. 
The code uses the function lhsnorm to generate a 6D normal Latin hypercube, where each 
parameter is sampled from a normal distribution with the means at nominal values from Figure 7 
and variances as specified in Figure 14. For N = 1000 samples, we see that our model has 3 total 
steady states around 70% of the time, 5 total steady states about 18% of the time, and 1 total 
steady state about 12% of the time.  
 
We note that the distributions from which the parameters are being sampled can have a 
significant difference on the results of a global sensitivity analysis. If sampling from normal 
distributions, increasing variances of these distributions would include more extreme values 
away from the nominal means. In addition, the Matlab function lhsdesign offers LHS from 
uniform distributions, which may be used if those are considered better representative of the 
parameters in a model. Ultimately, these are decisions that one has to make in accordance with 
the degree of global sensitivity one is interested in capturing, and the claims made about global 



sensitivity should be explained in the context of assumptions made on the parameter distributions 
used.  
 
In summary, the collection of tools we have provided a tutorial for in this section can be used 
towards understanding the properties of arbitrary GRNs that abide by the assumptions at the end 
of Section II. Using the Matlab and Mathematica implementations of these various tools for our 
running GRN example, practitioners can adapt the code we provide according to the architecture 
of their networks.  
 
V. Modeling Cell Fate Reprogramming: Response of GRNs to Artificial Perturbations 
 
The dynamical systems tools discussed in Section IV were introduced as a means of garnering 
insight into the intrinsic properties of GRNs. In this section, we use these tools to analyze the 
response of GRNs to artificial perturbations that can capture the manipulations that 
experimentalists exert during cell fate reprogramming. 
 
In the overexpression reactions of Table 1F for our example GRN in Figure 2, we modeled these 
artificial perturbations as constant production terms, 𝑢4 and 𝑢8, on the mRNA species mX and 
mY, respectively. Following reduction of our model to two dimensions in equation 15, the 
protein species X and Y display constant production terms 𝑢4 and 𝑢8 (proportional to the 
original overexpression terms), respectively, in their dynamics. When modeling TF-mediated 
cell fate reprogramming, these constant overexpression terms are responsible for the change in 
the steady state landscape in such a way as to induce the desired transition between two SSSs. 
However, with nonlinear systems such as ours, it is in general non-trivial to determine what 
types and levels of artificial perturbation can trigger a desired transition.  
 
To begin elucidating the ways in which artificial perturbations might be applied to trigger a 
certain transition, we can observe the qualitative change in the steady state landscape as we 
change parameters that correspond to potential artificial perturbations, assuming these stay 
approximately constant once applied. We will consider ectopic overexpression and enhanced 
degradation of TFs as the possible artificial perturbations to our model in (15).  
 
Open-Loop Overexpression 
 
In Figure 15, we use the nullclines and bifurcation tools discussed in Section IV to observe the 
response of the steady state landscape of the system to increasing values of 𝑢4 and 𝑢8. In Figure 
15A, we see that the landscape again begins with three SSS: 𝑆5, 𝑆6, 𝑆7. From a control design 
point of view (Astrom and Murray, 2016), we can regard prefixed overexpression of TFs as an 
"open loop" control strategy, wherein the input of the system (overexpression level) is prefixed at 
the beginning of the experiment and is not adjusted based on the TF levels throughout the 
experiment (Figure 15B). In panels C and D, we note the form in which the nullclines change as 
a result of increasing 𝑢4 and 𝑢8, respectively. And though it is difficult, given the nonlinearity of 
the system, to pinpoint systematically how the nullclines will change shape or move across the 
X-Y plane, we can qualitatively see that increasing 𝑢4 (perturbation #1) causes 𝑆5 to disappear 
first followed by 𝑆6 while increasing 𝑢8 (perturbation #2) causes 𝑆6 to disappear first, followed 
by 𝑆5 (Figure 15C-F). In either case, sufficiently high overexpression will leave only one SSS, 



𝑆7�, in the proximity of 𝑆7 (i.e. in the basin of attraction of 𝑆7; see bifurcation plots in figure Fig. 
15E-F for 𝑢4 and 𝑢8 very high). This is important insight for the reprogramming strategy. 
Specifically, if the starting state (phenotype) is 𝑆5 and our objective is to trigger a transition into 
𝑆6, overexpression of 𝑢4 may be a preferable approach to overexpression of 𝑢8.  
 
In panels G-H of Figure 15, we simulate a reprogramming experiment using open-loop 
overexpression with an intermediate level of 𝑢4 to facilitate a transition from 𝑆5 to 𝑆6. Starting 
with the system at 𝑆5 (Fig. 15G), we apply 𝑢4 = 0.2	(a level informed by the bifurcation plots of 
Fig. 15E) and see that the nullclines and vector field change in a fashion that forces the state to 
transition to 𝑆6�. Upon removal of this input in Fig. 15H, we see that the system transitions from 
𝑆6� to 𝑆6, and hence the reprogramming from 𝑆5 to 𝑆6 is complete. We note that even though 
overexpression was possible with this intermediate level of 𝑢4, very high overexpression of 
either TF will not be a successful strategy to triggering transitions from 𝑆5 to 𝑆6 as the system's 
state will ultimately approach 𝑆7 instead (see bifurcation plots in Fig. 15E-F). At best with 𝑢4 
there is a finite window of overexpression that is required for triggering the desired transition 
and it may not be experimentally trivial to set the overexpression level precisely in that window. 
So, overexpression may in practice fail for this example GRN. 
 
Cooperative Monotone Systems: Fundamental Limitations on Re-programmability 
 
Our model makes some potentially useful predictions about possible reprogramming strategies 
using open-loop overexpression. In particular, it indicates that there may be a fundamental flaw 
in these types of perturbations for certain transitions, such as the one from 𝑆5 to 𝑆6. There is a 
fundamental reason why certain transitions from states characterized by lower concentrations 
(𝑆5) to states characterized by higher, but not maximal, concentrations (𝑆6) cannot be guaranteed 
with the open-loop overexpression described in Figure 15. It is because our example GRN of 
Figure 2 only has activating arrows between the TFs. At an intuitive level, this means that both 
genes are always upregulating themselves as well as each other, so stimulating these nodes 
artificially (via open-loop ectopic overexpression) very easily sets off an upregulation positive-
feedback cascade that pushes concentrations of both to higher and higher levels so that the 
system becomes monostable at maximal (i.e. non-intermediate) values. In fact, reprogramming 
GRNs to intermediate states is a difficult task to achieve in an even more general class of GRNs 
that can be described as ‘cooperative1 monotone’ systems (Del Vecchio et al, 2017), of which 
our example is a type. Hence, it is not possible using these reprogramming paradigms to 
guarantee that reprogramming from states with lower concentrations to states with intermediate 
concentrations (such as the transition from 𝑆5 to 𝑆6) will be successful. 
 
Enhanced Degradation  
 
Another way to experimentally perturb our GRN is by adding proteases or microRNA (Agrawal, 
2003; to artificially enhance the degradation rate of TFs X and Y. In our model in (15), this is 
akin to increasing the values of the overall decay rates 𝛾4 and 𝛾8, respectively. In Figure 16, we 
repeat the analysis from above, this time analyzing the effect of increasing these decay rates from 
their nominal values in Figure 7. As demonstrated by the changing nullclines and bifurcation 

                                                
1 Cooperative networks should not be confused with cooperative co-binding modes discussed in Section II. 



plots in panels 16C-H, we see that enhancing the degradation rate of 𝛾4 (perturbation #3) causes 
the SSS 𝑆6 to disappear first, followed by 𝑆7. Likewise, enhancing the degradation rate of 𝛾8 
(perturbation #4) causes the SSS 𝑆7 to disappear first, and maintains the SSSs in the proximity of 
𝑆5 and 𝑆6.  
 
Based on the way increasing degradation rates changes the steady state landscape, another 
perturbation we might consider for use in transitioning from 𝑆5 to 𝑆6 is appropriately combining 
overexpression with enhanced degradation (perturbations 1 and 4) so that both 𝑆5 and 𝑆7 
disappear while keeping a state 𝑆6� in the vicinity of 𝑆6. Figure 17 shows the results of 
simulating this experiment, in which we use the same level of intermediate overexpression as in 
the experiment above, in addition to increasing the degradation on TF Y enough to make 𝑆7 
disappear (informed by the bifurcation plots of Fig. 16F). This causes the system to transition to 
a state 𝑆6� near 𝑆6 (Fig. 17C), so that upon cessation of both artificial perturbations (Fig. 17D), 
the system transitions to 𝑆6, and reprogramming is complete.  
 
Closed-Loop Overexpression 
 
The crucial conclusion from these theoretical results is that open-loop overexpression, whether 
or not it is combined with enhanced degradation, cannot be guaranteed to be a winning strategy 
for certain reprogramming tasks. To address this, in previous work (Del Vecchio et al., 2017) we 
have proposed an entirely new paradigm called closed-loop, or feedback overexpression (Figure 
18A), in which the level of ectopic overexpression is not merely set once at the beginning of an 
experiment. Rather, if TF X in our system needs to be steered to a target concentration X* (where 
𝑋∗ may be the concentration seen in a target phenotype in a reprogramming experiment) the 
actual concentration is measured throughout the experiment and the level of overexpression or 
degradation 𝑢x is altered in proportion to the distance between the current state and target state, 
i.e. 𝑢x = G(X*- X). Our theory shows that with high enough values of G, known as the gain of the 
feedback controller, any starting state can in principle be steered to arbitrary levels 𝑋∗ of 
concentrations for each node in the network that is overexpressed via feedback overexpression. 
This is true of any system regardless of the initial shape of the nullclines, which demonstrates 
that this strategy is not dependent upon the specific dynamics or parameters of a GRN.  
 
In Figure 18B, we demonstrate what this means for the nullclines for our model in (15). As the 
figure shows, as the values of gain G are increased, the nullclines morph into increasingly 
straight lines that intersect at the target state (𝑋∗, 𝑌∗). In panels C-D of Figure 18, we simulate a 
reprogramming experiment in our running example from 𝑆5 to 𝑆6 via closed-loop 
overexpression.  
 
Realizing Genetic Feedback Control 
In the feedback overexpression paradigm we have presented, which contrasts with the status quo 
of ‘open-loop’ overexpression paradigms used in most TF-mediated reprogramming 
experiments, transitions to intermediate states can in fact be theoretically guaranteed 
(demonstrated in the theory shown in (Del Vecchio et al, 2017)). In addition, we have shown that 
one way to realize this closed-loop overexpression without requiring continuous measurements 
of concentration, (which may be difficult experimentally) is by use of a synthetic genetic 
feedback controller that simultaneously ectopically overexpresses and degrades the mRNA of a 



species under control using short-interfering RNA (siRNA) (Figure 19). By the appropriate 
balancing of these two artificial perturbations using inducers that control the expression levels of 
mRNA using a synthetic gene and the expression levels of the siRNA, the system can be in 
principle steered to arbitrary concentrations independent of network dynamics and parameters. 
Moreover, we have shown in detail in (Del Vecchio et al, 2017) that the high gain G needed 
according to the theory can be achieved by increasing the copy number of the ectopic DNA on 
which the synthetic circuit is encoded. At an intuitive level, this is tantamount to having a 
sufficient amount of the synthetic circuit inside the cell being reprogrammed that it dominates 
the effect of endogenous dynamics and takes over the network to steer it to arbitrary 
concentration levels. 
 
VI. Conclusion 
 
The topics we have discussed in this chapter comprise the basic steps in the computational 
approach to cell fate reprogramming. At the root of the approach we have described is the 
existence of a GRN that has been implicated in the cell fate change of interest. Moreover, in 
order to obtain an ODE model, we have made certain kinetic assumptions about how the species 
of that GRN interact. By way of a running example of a GRN with two TFs mutually and auto-
activating, we have gone through a series of tutorials on methods from dynamical systems theory 
that can be used to probe the intrinsic properties of GRNs, and shown their implementations 
using Mathematica and Matlab. These include methods that identify the number and location of 
stable steady states of a GRN (corresponding to phenotypes) as well as various ways to 
understand the model’s dependence on parameters. The code blocks we have provided can in 
many cases straightforwardly be adapted to suit practitioners’ ODE models corresponding to 
GRNs with various topologies. We then provided a discussion for how to use these tools to 
understand GRNs’ responses to artificial perturbations, which model the stimulations that 
experimenters apply to a GRN during cell fate reprogramming. Ultimately, this is the purpose of 
these models: to understand the response of a GRN in silico to various types of artificial 
perturbations so that one can inform in vitro and in vivo experiments (see Sections III-V). 
 
Throughout this chapter, the differential equation models we have used were deterministic. As 
noted in Section II, this is because ODE models are an appropriate starting point for a first pass 
understanding of the qualitative behavior of GRNs. However, they are only appropriate to 
describe the mean behavior of species’ dynamics when molecular counts are high enough to be 
stated in terms of concentrations. The next step after understanding GRNs in the deterministic 
realm is typically to use stochastic differential equation (SDE) models, such as the Chemical 
Langevin Equation (CLE), which can capture the effects of the prevalent intrinsic and extrinsic 
noise in biological systems (Swain and Elowitz, 2002; Elowitz et al., 2002). The Chemical 
Master Equation (CME) is most appropriate when molecular counts are low while the Chemical 
Langevin Equation (CLE) is appropriate when concentration is still a meaningful description of 
molecular counts. When molecular counts are low, practitioners may find that the GRN 
behaviors observed in an ODE model are dramatically different from the mean behavior of a 
stochastic model (Al-Radhawi et al., 2017).  
 
Another dimension that we have not considered in this chapter is the epigenetic transformation 
that might often take place during a cell fate reprogramming process. In the past decade, it has 



become increasingly clear that the unpacking of genes from their condensed chromatin states, as 
well as methylome reprogramming of DNA base pairs on the promoters of GRNs are key events 
(Allis et al., 2015; Bagci and Fisher, 2013; De Carvalho, 2010; Huang and Fan, 2017) that take 
place during what has typically been assumed to be genetic reprogramming alone. In general, the 
degree of epigenetic transformation that takes place during a given cell fate reprogramming 
process should be investigated and potentially included in mathematical models of 
reprogramming. 
  



  

Figure 1: Waddington Landscape of Cell Differentiation. In this 
metaphor for differentiation, cell fate specification is akin to a marble 
rolling down a hill with several different valleys that represent the diverse 
fates that cells with the same genetic encoding ultimately adopt. Along the  
way to differentiation, these cells are often lumped under the umbrella term 
of ‘stem cells,’ though they have different potencies depending on  their 
degree of differentiation. Zygotes and embryonic stem cells (ESCs) in the 
first few divisions after fertilization are totipotent, and can give rise to an 
entire organism including the placenta and umbilical cord. When ESCs 
become pluripotent, they can continue to give rise to all three germ layers 
and thus an entire organism. Multipotent cells are adult stem cells that retain 
some potential for further differentiation, which is typically limited to a 
particular tissue type (e.g. haematopoietic cells, neural stem cells, 
mesenchymal stem cells) (Mitalipov and Wolf, 2009). iPS reprogramming 
as depicted is tantamount to an ‘uphill’ movement from a somatic state (e.g. 
fibroblast) to the pluripotent state. Transdifferentiation as depicted is 
tantamount to directly transforming from one lineage to another (e.g. B-cell 
to macrophage, as shown in Xie et. al, 2004).  



Figure 2: The Dynamical Systems Approach to Cell Fate Reprogramming (top panel) If a known GRN is implied 
during a phenotype change in a cell fate transformation experiment, a biochemical reaction model of the network can be 
constructed. Under certain assumptions about this biochemical reaction model that are detailed in Section II, ODE 
models can be constructed that describe the endogenous dynamics of the system and also incorporate the effect of 
artificial perturbations. (middle panel) Once an ODE model is constructed, the dynamical systems toolbox can be 
applied towards the goal of understanding the intrinsic properties of the GRN in question. Notably, these tools seek to 
understand the number and location of stable steady states implied by the mathematical model, including an 
assessment of how these depend on the model’s parameters. (bottom panel) The response of the GRN to artificial 
perturbations is the ultimate goal of formulating the reprogramming problem into these mathematical terms. By 
understanding how the number, location, and extent of basins of attraction surrounding the stable steady states 
determined in step (II) will change in response to artificial perturbations such as ectopic overexpression, practitioners 
can understand the advantages and limitations of different reprogramming paradigms, which may be used to inform 
experiments.  
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Figure 4: Visual Depiction of Stable and Unstable Steady States. (A) Unstable steady states (USS) are 
analogous to the ‘peaks’ in a valley landscape while stable steady states (SSS) are analogous to well-like 
depressions in the landscape. If a ball is resting in a SSS, it can withstand some degree of disturbance and still 
return to the SSS autonomously. However, if it is resting on a peak (USS), then any nonzero disturbance will 
permanently push it off that peak and hence out of that steady state. (B) Cell fate reprogramming is akin to 
transitioning between wells by altering the landscape through artificial perturbation. If a ball begins at state S1, it 
can be forced to transition to S2 or S3 by appropriately changing the valley landscape as shown.  



  

Figure 5: Cell Fate Reprogramming as Morphing the Steady State Landscape (A) Without any 
artificial perturbation, the system possesses three stable steady states (SSS): 𝑆5, 𝑆6, and 𝑆7 that 
represent phenotypes characterized by relative concentration levels of the TFs X and Y. The basin of 
attraction of each SSS (phenotype) is the set of states (TF concentrations) starting from which the 
system converges autonomously to the corresponding SSS (phenotype), as depicted by the shaded 
regions. (B) When a certain degree of artificial perturbation to the network is applied, the steady state 
landscape changes shape so as to push the system starting from 𝑆5 to a location 𝑆6� in the basin of 
attraction of the original state 𝑆6 of the system without overexpression. (C) Upon removal of the artificial 
perturbation, the system’s state moves from 𝑆6�	to 𝑆6, and the transition from 𝑆5 to 𝑆6 has been 
completed.  



 

Figure 6: The Reprogramming Concept Viewed at Different Levels of Abstraction (A) At a 
high-level, cell fate reprogramming is akin to traveling ‘uphill’ in the Waddington landscape. (B) 
Identification of a GRN motif controlling the relevant cell fates allows for the framing of 
reprogramming as enforcing a transition between stable steady states in the ‘state-space’ of an 
ODE model of that GRN. These stable steady states are characterized by relative concentration 
levels of TFs in the GRN that in principle map to relative concentration levels seen in the 
phenotypes being represented. (C) Ultimately, the dynamic model of reprogramming is meant to 
inform improved experimental cell fate reprogramming strategies, which transform one phenotype 
to another.  
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Nullclines 

Figure 7: Steady states of a 2D ODE and Their Stability (top) One way to find the steady states of our ODE model 
is to set the time derivatives of each species to zero and solve for the curves in the plane that result. (bottom left) 
[lines 1-6] The Solve function in Mathematica can be used to solve for nullclines if there is an explicit solution. These 
could then be plotted using the Plot function in Mathematica (not shown). [lines 8-11] Parameter value definitions. 
[lines 13-24] The ContourPlot function in Mathematica can also be used to plot nullclines, whether or not there is an 
explicit solution, as the two ODEs are specified as {dX/dt == 0, dY/dt == 0} in the input. The VectorPlot function, can 
be used to plot the vector field of the system. The two ODEs are specified as {dX/dt, dY/dt } in the input. [line 26] The 
Show function can be used to overlay the nullclines and vector field.  

Note that the plot shown includes styling not specified in the code shown. The optional parameters that can be used to format plots can be found in the 
documentation of the ContourPlot and VectorPlot functions.  
Documentation for Solve: http://reference.wolfram.com/language/ref/Solve.html 
Documentation for ContourPlot in Mathematica: http://reference.wolfram.com/language/ref/ContourPlot.html 
Documentation for VectorPlot in Mathematica: http://reference.wolfram.com/language/ref/VectorPlot.html 
Note that overlaid nullcline and vector plot could also be generated using the plot and quiver functions, respectively, in Matlab. 
Documentation for plot in Matlab: https://www.mathworks.com/help/matlab/ref/plot.html 
Documentation for quiver in Matlab: https://www.mathworks.com/help/matlab/ref/quiver.html 

 

2D Geometric Analysis 

Mathematica Code Block 
 

Solve[(alphaxo + axx*X^2 + ayx*Y^2 + 
bx*(X^2)*(Y^2))/(1 + X^2 + Y^2 + X^2*Y^2) - 
gammax*X + uxbar == 0, Y] 
Solve[(alphayo + axy*X^2 + ayy*Y^2 + 
by*(X^2)*(Y^2))/(1 + X^2 + Y^2 + X^2*Y^2) - 
gammay*Y + uybar == 0, X] 
 
alphaxo = 0.01;alphayo = 0.01; axx = 2; ayx = 10; 
axy = 0.17; ayy = 1.8; 
bx = 7.5; by = 2; gammax = 1; gammay = 1; uxbar = 
0.00; uybar = 0.00; 
 
dXdt = (alphaxo + ayx*Y^2 + axx*X^2 + 
bx*X^2*Y^2)/(1 + X^2 + Y^2 + X^2*Y^2) - gammax*X 
+ uxbar;  
 
dYdt = (alphayo + ayy*Y^2 + axy*X^2 + 
by*X^2*Y^2)/(1 + X^2 + Y^2 + X^2*Y^2) - gammay*Y 
+ uybar; 
 
nullclines = ContourPlot[{dYdt == 0, dXdt == 0}, 
{X, 0, 7}, {Y, 0, 1.5}]; 
vectorField = VectorPlot[{dXdt, dYdt}, {X, 0, 7}, 
{Y, 0, 1.5}, VectorStyle -> Arrowheads[0.03]]; 
 
Show[nullclines, vectorField] 
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Figure 8: Steady State Landscape Analysis of a 3D GRN: (A) The ODEs in (16) represent the reduced system 
that would be obtained by applying the workflow and assumptions of Section II on the GRN shown, with three 
mutually activating TFs: X,Y,Z (B) The surfaces 𝑋∗, 𝑌∗, 𝑍∗ are obtained by setting the time derivatives of 𝑋, 𝑌, 𝑍, 
respectively, equal to zero and solving for each variable. Intersections of all three surfaces represent the steady 
states of the system, of which there are three as shown. (C) These same three steady states can be equivalently 
computed using vpasolve in Matlab, as implemented in Figure 10A. (D) Using Jacobian matrices as explained in 
Figure 9 and implemented in Figure 10B, the stability of each steady state can be determined using the 
eigenvalues of the Jacobian matrix evaluated at that steady state.   



  

Figure 9: Using Jacobian Matrices to Determine Stability of Steady States in n-D 
Models. (A) The steady states of an n-D ODE model can be computed using the vpasolve 
function in Matlab. (B) The Jacobian matrix, J, of the n-D ODE model can also be computed 
in symbolic terms using the jacobian function in Matlab. (C)-(D) The outputs of results 
from (A) and (B) can be combined to evaluate the symbolic J at each of the k steady states 
using the symbolic substitution function subs, and the n eigenvalues of each Jacobian 
matrix can be calculated using the function eig (note: some eigenvalues may be repeated).  



 
  

n-D Computational Analysis - Find All Steady States – surf, vpasolve 
 colormap winter % set coloring for 3D plots 

a = 1.5; ayx = a; azx = a; azy = a; axy = a; axz = a; ayz = a; % set parameters  
g = .75; gammaX = g; gammaY = g; gammaZ = g; % decay rates of proteins X,Y,Z 
alpha0x=0.01;alpha0y=0.01;alpha0z=0.01;%leaky transcription rates of mX,mY,mZ 
% plot the surface X* = f(Y,Z) 
dp = 0.05; max = 3; 
[Y,Z] = meshgrid(0:dp:max,0:dp:max); 
Xnullcline = (1/gammaZ)*(alpha0x + azx*(Z.^2) + ayx*(Y.^2))./(1+ Y.^2 + Z.^2);  
C = .25*ones(length(Y),length(Z)); % set color 
sx = surf(Xnullcline,Y,Z,C); hold on;   
% plot the surface Y* = f(X,Z) 
[X,Z] = meshgrid(0:dp:max,0:dp:max); 
Ynullcline = (1/gammaY)*(alpha0y + azy*(Z.^2) + axy*(X.^2))./(1+ X.^2 + Z.^2); 
C = 0.55*ones(length(X),length(Z)); % set color  
sy = surf(X,Ynullcline,Z,C); hold on;  
% plot the surface Z* = f(X,Y) 
[X,Y] = meshgrid(0:dp:max,0:dp:max); 
Znullcline = (1/gammaZ)*(alpha0z + axz*(X.^2) + ayz*(Y.^2))./(1+ X.^2 + Y.^2); 
C = 0.75*ones(length(X),length(Y)); 
sz = surf(X,Y,Znullcline,C); hold on;  
% format plots and add axes labels 
xlabel('[X]','FontSize',15);ylabel('[Y]','FontSize',15);zlabel('[Z]','FontSize',15) 
alpha(sx,0.4); alpha(sy,0.4); alpha(sz,0.4); % apply transparency on the surfaces 
% overlay numerically computed solutions on nullclines 
% (Figure 9A) calculate steady states using vpasolve  
syms X Y Z % define variables and dynamics 
dXdt = (alpha0x + azx*(Z.^2) + ayx*(Y.^2))./(1+ Y.^2 + Z.^2) - gammaX*X;  
dYdt = (alpha0y + azx*(Z.^2) + ayx*(X.^2))./(1+ X.^2 + Z.^2) - gammaY*Y; 
dZdt = (alpha0z + ayx*(X.^2) + azx*(Y.^2))./(1+ X.^2 + Y.^2) - gammaZ*Z;  
[sol_X, sol_Y, sol_Z] = vpasolve([dXdt == 0, dYdt == 0, dZdt == 0],... 
    [X, Y, Z],'random',true); 
% extract indices of real solutions solutions 
indices1 = find(imag(sol_Y)==0);  
indices2 = find(imag(sol_Y)==0);  
indices3 = find(imag(sol_Z)==0);  
% store real solutions in matrix and save 
steady_states=double([sol_X(indices1(3:5)),sol_Y(indices2(3:5)), sol_Z(indices3(3:5))]) 
% plot solutions in 3D space (overlay) 
for i=1:3 
 scatter3(steady_states(i,1),steady_states(i,2),steady_states(i,3),300,'k','filled');   
hold on; 
end;  
 

Figure 10A: Finding Steady States using surf and vpasolve in Matlab: [lines 1-23] Use surf to plot 3D 
surfaces using the 3D ‘nullclines’ obtained by solving for X,Y,Z after setting the temporal derivatives of these 
variables to zero in equation (16) of Figure 8A. [lines 25-38] Use vpasolve to numerically compute steady 
states of model in eq. 16. Note that in line 37, we use the solution indices 3-5 since the solutions 
corresponding to indices 1 and 2 are incorrect (verified manually). Since vpasolve is only a numeric solver, 
solutions should always be cross-checked by plugging them back into the ODEs. [lines 39-42] Overlay the 
steady states computed numerically using vpasolve on top of the intersecting surfaces. The steady states 
returned from this code-block, stored in the variable ‘steady_states,’ are shown in Figure 8C.  

Documentation for vpasolve  in Matlab: https://www.mathworks.com/help/symbolic/vpasolve.html 
Documentation for surf  in Matlab: https://www.mathworks.com/help/matlab/ref/surf.html 
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% (Figure 9B) find jacobian, in symbolic terms, for 3D system defined above 
J_sym = jacobian([dXdt,dYdt,dZdt],[X,Y,Z]);   
Lambda = zeros(size(steady_states)); %create matrix to store eigvals at each SS 
for i =1:length(steady_states) %loop through steady states 
    x = steady_states(i,1); 
    y = steady_states(i,2); 
    z = steady_states(i,3); 
    %(Figure 9C) evaluate Jacobian matrix at each steady state 
    J_numerical = subs(J_sym,[X,Y,Z],[x,y,z]);  
    %(Figure 9D) compute eigenvalues of Jacobian evaluated at each steady state 
    eigVals = eig(J_numerical); 
    %(store eigenvalues at each SSS)  
    Lambda(i,1) = eigVals(1); 
    Lambda(i,2) = eigVals(2); 
    Lambda(i,3) = eigVals(3);  
end  
 
Lambda % display all eigenvalues  

n-D: Computational Analysis - Determine Stability: jacobian, subs, eig 
 

Figure 10B: Computationally Determining the Stability of Numerically Computed Steady States. This code 
block continues from Figure 10A and implements the Jacobian matrix method outlined in Figure 9. Output of this 
code block, a matrix ‘Lambda’ where each row is the set of eigenvalues of a steady state, is shown in Figure 8D.  

Documentation for jacobian in Matlab: https://www.mathworks.com/help/symbolic/vpasolve.html 
Documentation for eig in Matlab: https://www.mathworks.com/help/symbolic/eig.html 

Documentation for subs in Matlab: https://www.mathworks.com/help/symbolic/subs.htm 
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Figure 11: Basins of Attraction for 2D System: (A) In Matlab, the 
basins of attraction around each SSS can be found numerically by 
repeatedly simulating the system using one of Matlab’s ODE solvers, 
and starting from a grid of points surrounding the SSSs (B) We 
implement this numerical calculation of basins of attraction using the 
ode23s solver to simulate the system starting from each point in the 
grid. In addition, we overlay nullclines on top of the numerically 
computed basins using the plot function in Matlab. (C), We define the 
ODE function  ‘ODE_model’ passed to the solver on line (33) of panel (B) 
in a separate file of the same name.  

Documentation for available Matlab solvers:  
mathworks.com/help/matlab/math/choose-an-ode-solver.html 



 
 
  

B – Compute Basin of Attraction Numerically – ode23s, plot 
% Part 1: compute steady states of 2D system in equation (15) with vpasolve  
% define variables, parameters and ODEs 
syms X Y;  
alpha0x = 0.01; alpha0y = 0.01; axx = 2; ayx = 10; bx = 7.5; 
axy = 0.17; ayy = 1.8; by = 2; gammaX = 1; gammabar = 1; uxbar = 0; uybar = 0;  
dXdt = (alpha0x + ayx*Y^2 + axx*X^2 + bx*(X^2)*(Y^2)) ... 
    /(1 + X^2 + Y^2 + (X^2)*(Y^2)) - gammaXbar*X + uxbar; 
dYdt = (alpha0y +  ayy*Y^2 + axy*X^2 + by*(X^2)*(Y^2)) ... 
    /(1 + X^2 + Y^2 + (X^2)*(Y^2)) - gammaYbar*Y + uybar; 
% find numerical solutions and extract real ones 
[sol_X, sol_Y] = vpasolve([dXdt == 0, dYdt == 0],[X, Y]); 
% find real solutions and put in matrix ‘steady_states’ 
sol_X = sort(sol_X(find(imag(sol_X)==0))); sol_Y = 
sort(sol_Y(find(imag(sol_Y)==0))); 
steady_states = [sol_X, sol_Y] 
x1 = steady_states (1,1); y1 = steady_states (1,2); %coordinates of S1 
x2 = steady_states (3,1); y2 = steady_states (3,2); %coordinates of S2 
x3 = steady_states (5,1); y3 = steady_states (5,2); %coordinates of S3 
% Part 2: Compute basins of attraction around each SSS 
%set colors for each SSS’s basin of attraction 
S3_col = [198 208 255]/256; S2_col = [255 224 255]/256; S1_col = [115 254 255]/256; 
%set range of values to simulate system from (extent of basin of attraction)  
maxX = 6; maxY = 1.35; deltax = 0.05; deltay = 0.01; 
Xrange = [0:deltax:maxX]; Yrange = [0:deltay:maxY]; 
for i=1:length(Xrange) % loop through X values 
    x_start = Xrange(i); 
    for j = 1:length(Yrange) % loop through Y values 
      y_start = Yrange(j); 
      initial_states = [double(x_start), double(y_start)];  
        t_end = 100; % length of simulation  
        p = [alpha0x, alpha0y , axx, ayx , bx , axy , ayy, ... 
            by , gammaXbar, gammaYbar, uxbar, uybar]; %put params in vector 
        % run system using solver (ode23s) 
      [t,out]=ode23s(@(t,out) ODE_model(t,out,p), [0 t_end], initial_states); 
        x_trajectory = out(:,1); xsim = x_trajectory(end); 
        y_trajectory = out(:,2); ysim = y_trajectory(end); 
        thres = 0.05; % threshold for comparison 
        % compare final state to all basins and mark I.C. according to SSS 
        if abs((xsim - x1)) < thres & abs((ysim -y1)) < thres   
            plot(x_start,y_start,'*','Color',S1_col); hold on;     
        elseif abs((xsim - x2)) < thres & abs((ysim - y2)) < thres             
            plot(x_start,y_start,'*','Color',S2_col); hold on; 
        elseif abs((xsim - x3)) < thres & abs((ysim - y3)) < thres  
            plot(x_start,y_start,'*','Color',S3_col); hold on; 
        else 
            display('none of these'); 
        end  
    end 
end 
% overlay nullclines on top of basin of attractions 
X = [0:0.005:maxX];  
Ystar = sqrt((axx*X.^2 + alpha0x - gammaXbar.*(X + X.^3))./... 
    (-ayx - bx*X.^2 + gammaXbar*(X+X.^3))); 
Y = [0:0.005:maxY]; 
Xstar = sqrt((ayy*Y.^2 + alpha0y - gammaYbar.*(Y + Y.^3))./... 
     (-axy - by*Y.^2 + gammaYbar*(Y+Y.^3))); 
plot(X,Ystar,'LineWidth',1.5,'Color',blue); hold on; 
plot(Xstar,Y,'LineWidth',1.5,'Color',green); hold on; 
xlim([0 maxX]); ylim([0 maxY]) 
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function dydt = ODE_model(t,y,params) 
    % load the parameters passed as input 
    alpha0x = params(1); alpha0y = params(2);  
    axx = params(3); ayx = params(4);  
    bx = params(5); axy = params(6);  
    ayy = params(7); by = params(8);  
    gammaXbar = params(9);  
    gammaYbar = params(10);  
    uxbar = params(11);  
    uybar = params(12);      
    % define dynamic variables 
    X = y(1); 
    Y = y(2);  
    % define differential equations 
    numStates = 2; dydt = zeros(numStates,1); 
    dydt(1) = (alpha0x + ayx*Y^2 + axx*X^2 + bx*(X^2)*(Y^2)) ... 
        /(1 + X^2 + Y^2 + (X^2)*(Y^2)) - gammaXbar*X + uxbar; 
    dydt(2) = (alpha0y +  ayy*Y^2 + axy*X^2 + by*(X^2)*(Y^2)) ... 
        /(1 + X^2 + Y^2 + (X^2)*(Y^2)) - gammaYbar*Y + uybar;     
end 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

ODE_model.m 

C –  ODE Function Used by ode23s  



 
 
  

Figure 12: Bifurcation with Parameter axx: (A) Bifurcation plot for the steady state (X*, Y*) for the 
ODE model in equation (15). For values of axx under approximately 2.45, there are a total of 5 
steady states, three of which are stable and two of which are unstable. The system bifurcates 
above axx ≈ 2.45, as a stable and an unstable steady state collide and annihilate each other (also, 
called a saddle node bifurcation: Strogatz, 2014). (B) Matlab code for looping through a value 
range for the parameter axx while holding all other parameters constant (lines 5-6). To bifurcate 
along any other parameter, define a parameter range in line 1 and adjust lines 4-6 appropriately. 

B – Single Parameter Bifurcation 
%% bifurcate along axx 
axx_list = [2:0.02:2.8]; % parameter range to loop through 
for i=1:length(axx_list) 
    axx = axx_list(i); % parameters 
    uxbar = 0; uybar = 0; alpha0x = 0.01; alpha0y = 0.01;ayx = 10; 
    bx = 7.5; axy= 0.17; ayy = 1.8; by = 2; gammaX = 1; gammaY = 1;  
    % compute symbolic Jacobian with these parameters 
    syms X Y 
    dXdt = (alpha0x+axx*X^2+ayx*Y^2+bx*(X^2)*(Y^2)) ... 
    /(1+X^2+Y^2+(X^2)*(Y^2))-gammaX*X + uxbar; 
    dYdt = (alpha0y+axy*X^2+ayy*Y^2+by*(X^2)*(Y^2)) ... 
    /(1+X^2+Y^2+(X^2)*(Y^2))-gammaY*Y + uybar; 
    J_sym = jacobian([dXdt,dYdt],[X,Y]); 
    [sol_X, sol_Y] = vpasolve([dXdt==0,dYdt==0],[X, Y]);%numerical solutions 
    % find real solutions 
    sol_X = double(sort(sol_X(find(imag(sol_X)==0)))); 
    sol_Y = double(sort(sol_Y(find(imag(sol_Y)==0)))); 
    % store solutions in a matrix  
    steady_states = [sol_X, sol_Y]; 
    % loop through the steady states just computed, determine stability 
    for j = 1:length(sol_X) 
        x = steady_states(j,1); y = steady_states(j,2);  
        % evaluate jacobian at steady state and calculate eigenvalues  
        J_numerical = double(subs(J_sym,[X,Y],[x,y]));  
        eigVals = eig(J_numerical); 
        anypositives = find(eigVals > 0); % check if any eigenvalues are 
+      
        if length(anypositives) > 0 % unstable  
            figure(1);  scatter(axx,sol_X(j),80,'b'); hold on; 
            figure(2);  scatter(axx,sol_Y(j),80,'r'); hold on; 
        else % stable 
            figure(1);  scatter(axx,sol_X(j),80,'b','filled'); hold on; 
            figure(2);  scatter(axx,sol_Y(j),80,'r','filled'); hold on;  
        end 
    end 
end  
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% Part I: % compute matrix df/dx (f = [f1, f2], x = [X, Y]) 
% use nominal parameter values 
alpha0x = 0.01; alpha0y = 0.01; axx = 2; ayx = 10; bx = 7.5; axy = 0.17; ayy = 1.8; 
by = 2; gammaX = 1; gammaY = 1; Dtheta = diag([alpha0x alpha0y axx ayx bx axy ayy 
by gammaX gammaY]); 
syms X Y % define system 
f1=(alpha0x+ayx*Y^2+axx*X^2+bx*(X^2)*(Y^2))/(1+X^2+Y^2+(X^2)*(Y^2))-gammaX*X; 
f2=(alpha0y+ayy*Y^2+axy*X^2+by*(X^2)*(Y^2))/(1+X^2+Y^2+(X^2)*(Y^2))-gammaY*Y;  
df1dx(X,Y) = diff(f1,X); df1dy(X,Y) = diff(f1,Y); 
df2dx(X,Y) = diff(f2,X); df2dy(X,Y) = diff(f2,Y); 
% compute all steady states 
[sol_X, sol_Y] = vpasolve([f1==0,f2==0],[X, Y]); 
sol_X = double(sort(sol_X(find(imag(sol_X)==0)))); 
sol_Y = double(sort(sol_Y(find(imag(sol_Y)==0)))); 
% store steady states in matrix, each row is steady state 
steady_states = [sol_X, sol_Y]  
state_index = 3;%choose steady state by row #. Sensitivity matrix evaluated here. 
X_SS = steady_states(state_index,1);  
Y_SS = steady_states(state_index,2); 
% evaluate df/dx at this steady state 
dfdx=[df1dx(X_SS,Y_SS),df1dy(X_SS,Y_SS);df2dx(X_SS,Y_SS),df2dy(X_SS,Y_SS)]; 
% Part II: compute matrix df/dtheta evaluated at (x,y) = (x_e,y_e) 
syms alpha0x alpha0y axx ayx bx axy ayy by gamma1 gamma2 
X = X_SS; Y = Y_SS;  
f1 = (alpha0x+ayx*Y^2+axx*X^2+bx*(X^2)*(Y^2)) ... 
        /(1+X^2+Y^2+(X^2)*(Y^2))-gammaX*X; 
f2 = (alpha0y+ayy*Y^2+axy*X^2+by*(X^2)*(Y^2)) ... 
        /(1+X^2+Y^2+(X^2)*(Y^2))-gammaY*Y;  
% compute derivatives at this steady state 
row1= [diff(f1,alpha0x) diff(f1,alpha0y) diff(f1,axx) diff(f1,ayx) diff(f1,bx) diff(f1,gammaX) diff(f1,gammaY) 
diff(f1,axy) diff(f1,ayy) diff(f1,by)]; 
row2 = [diff(f2,alpha0x) diff(f2,alpha0y) diff(f2,axx) diff(f2,ayx) diff(f2,bx) diff(f2,gammaX) diff(f2,gammaY) 
diff(f2,axy) diff(f2,ayy) diff(f2,by)]; 
dfdtheta = [row1; row2]; 
% compute sensitivity matrix and normalized version 
Sxtheta = double(-inv(dfdx)*dfdtheta); 
Dx = diag([X, X]);  
Sx_theta_normalized = double(inv(Dx)*Sxtheta*Dtheta) 

B. Local Sensitivity Analysis – diff  

Figure 13: Sensitivity Matrices for Local Sensitivity Analysis At Steady States and Nominal Parameters 
(A) Depiction of the information captured in a sensitivity matrix. (B) Code used to implement equation 17 for 
the 2D system in equation 15.  

Documentation for diff in Matlab: https://www.mathworks.com/help/symbolic/diff.html 
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Figure 14: Global Sensitivity Analysis using 
Latin Hypercube Sampling (LHS) (A)-(B) The 
filling of a 2D–parameter space is conceptually 
shown for 5 samples. Without LHS, the samples 
may not efficiently cover the entire parameter 
space. LHS enforces sampling rules such that 
each sample must be the only one in its row 
and column in a grid generated by the 
partitioning of the parameter space, resulting in 
a more uniform covering of the sample space 
while still being random. Partitioning of the 
parameter space is accomplished by 
partitioning each individual distribution from 
which each parameter is sampled (C) Using the 
lhsnorm function in Matlab, we implement a 
Latin hypercube sampling of the parameters axx, 
axy, bxy, ayy, ayx, by of our 2D example in 
equation (15) and calculate the number of total 
steady states in the model across 1000 
repetitions. Each parameter is sampled from a 
normal distribution centered at its nominal value 
from Figure 7, with variances as shown. (D) For 
the distributions used here, the system 
possesses three steady states most frequently. 
Note that  this could change as the means and 
variances are changed, and that uniform 
distributions could even be used with the 
lhsdesign function in Matlab. 
  
Documentation for lhsnorm in Matlab: 
https://www.mathworks.com/help/stats/lhsnorm.html 
Documentation for lhsdesign in Matlab: 

 

C. Latin Hypercube Sampling – lhsnorm 
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N = 1000; % # of samples (partitions in each direction) 
% set means and std devs of normal distributionss 
mu_axx = 2; mu_ayx = 10; mu_bx = 7.5;  
mu_axy = 0.17; mu_ayy = 1.8; mu_by = 2;  
mu_list = [mu_axx, mu_ayx, mu_bx, mu_axy, mu_ayy, mu_by]; 
sigma_axx = 0.2; sigma_ayx = 0.2; sigma_bx = 0.2; 
sigma_axy = 0.01; sigma_ayy= 0.2; sigma_by = 0.2; 
sigma_list = diag([sigma_axx,sigma_ayx, ... 
    sigma_bx,sigma_axy,sigma_ayy,sigma_by]) 
% generate a latin hypercube sample 
hypercube = lhsnorm(mu_list,sigma_list,N) 
totals = []; % vector to store # total steady states 
for i =1:N % loop through hypercube 
    syms X Y; % define variables  
    % constant params 
    alpha0x = 0.01; alpha0y = 0.01; 
    gammaXbar = 1; gammaYbar = 1; 
    uxbar = 0; uybar = 0;  
    % params sampled from LHS space 
    tuple = hypercube(i,:); 
    axx = tuple(1); ayx = tuple(2); bx = tuple(3); 
    axy = tuple(4); ayy = tuple(5); by = tuple(6); 
    % define ODEs  
    dXdt =(alpha0x+ayx*Y^2+axx*X^2+bx*(X^2)*(Y^2)) ... 
        /(1+X^2+Y^2+(X^2)*(Y^2))-gammaXbar*X + uxbar; 
    dYdt =(alpha0y+ayy*Y^2+axy*X^2+ by*(X^2)*(Y^2))... 
        /(1+X^2+Y^2+(X^2)*(Y^2))-gammaYbar*Y + uybar; 
    % find numerical solutions 
    [sol_X,sol_Y]=vpasolve([dXdt == 0, dYdt == 0],[X, Y]); 
    % find real solutions & store total # of steady states 
    sol_X = sort(sol_X(find(imag(sol_X)==0))); 
    sol_Y = sort(sol_Y(find(imag(sol_Y)==0))); 
    totals(i) = (length(sol_X)); %add totals to vector 
end 
histogram(totals) %display totals vector with histogram 
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Figure 15: Educating Overexpression 
Strategies in Reprogramming (A) In the 
steady state landscape of our model in (15), 
there are three SSS when the model is not 
artificially perturbed (same parameters used 
as in Fig. 7). (B) From a control systems point 
of view, we can regard ectopic 
overexpression of TFs as ‘open-loop’ control 
in the sense that the perturbation is applied 
at constant, preset, levels (𝑢¥4 and 𝑢¥8 ) that are 
not changed in response to how the 
concentrations of TFs change during the 
experiment (C) The effect of increasing 𝑢¥4 is 
to cause the nullcline 𝑋̇ = 0	to change in a 
fashion that causes the steady state S1 to 
disappear before S2 and S3 (D) The effect of 
increasing 𝑢¥8 is to cause the nullcline 𝑌̇ =
0	to change in a fashion that causes S2 to 
disappear first, followed by the 
disappearance of S1 and the persistence of 
only one SSS in the proximity of S3 (E) 
Bifurcation plots confirm that S1, followed by 
S2, disappears as 𝑢¥4 is increased. (F) 
Bifurcation plots confirm that as 𝑢¥8 is 
increased, S2 disappears followed by S1, with 
only one state remaining in the proximity of 
S3. (G) If the system starts at S1, applying an 
intermediate level overexpression, 𝑢¥4 = 0.2, 
temporarily changes the landscape such that 
a transition to 𝑆6� is induced. (H) Upon 
removal of this artificial overexpression, the 
system transitions from 𝑆6� to 𝑆6. 



 

  

Figure 16: Educating 
Enhanced Degradation 
Strategies in 
Reprogramming (A) In the 
steady state landscape of 
our model in (15), there are 
three SSS when the model 
is not artificially perturbed 
(same parameters used as 
in Fig. 7). (B) We can model 
enhanced degradation of 
TFs X and Y via artificial 
additions of proteases or 
microRNA as akin to 
increasing the decay rates 
∆𝛾4 and ∆𝛾8, respectively. 
(C) The effect of increasing 
𝛾4 is to cause the nullcline 
𝑋̇ = 0	to change in a 
fashion that causes the 
steady state S2 to 
disappear first, followed by 
S3. (D) The effect of 
increasing 𝛾8 is to cause 
the nullcline 𝑌̇ = 0	to 
change in a fashion that 
causes only S3 to 
disappear, with two states 
in the proximity of S1 and 
S2 remaining. (E)-(F) 
Bifurcation plots confirm 
these observations.  



 

Figure 17 Reprogramming via Combination of Overexpression and Enhanced 
Degradation: (A) Overexpression of TF X and enhanced degradation of TF Y are modeled 
as the addition of constant term to the dynamics of X (𝑢¥4) and an increased degradation 
(∆𝛾8 ) in the dynamics of Y, respectively. (B) Without artificial perturbations, the landscape 
possesses the SSSs S1, S2, S3. (C) If the system starts at S1, applying an intermediate 
level of overexpression, 𝑢¥4 = 0.2, combined with an increase in degradation of Y, 𝛥𝛾8 = 
+0.1, temporarily changes the landscape such that a transition to 𝑆6� is induced. (C) Upon 
removal of this artificial overexpression and enhanced degradation, the system transitions 
from 𝑆6� to 𝑆6. 
 



  

Figure 18: Reprogramming via Closed-Loop Feedback Overexpression (A) In 
closed-loop overexpression, measurements of the state (X,Y) are taken throughout 
the experiment, and the overexpression is adjusted in proportion to the distance 
between the current state (X,Y) and the target state (X*,Y*). (B) As the values of gain 
G are increased, the nullclines increasingly morph into straight lines that intersect 
at the target state. (C) If a feedback reprogramming experiment begins in state S1, 
and there is high enough gain (G = 5), then feedback overexpression can be used 
to steer the system to any desired point S2’

2’ given by the coordinates (X*, Y*) in the 
basin of attraction of S2. (D) Upon removal of feedback overexpression, the system 
transitions from S2’ to S2. 



  

Figure 19: Realizing Feedback Overexpression with a Synthetic Genetic 
Circuit Feedback overexpression of a TF X can be realized with a synthetic 
construct consisting of inducer-activated synthetic gene X along with an inducer-
activated siRNA sequence that degrades the mRNA of X. With high enough copy 
number for the synthetic circuit, the right balance of these inducers allows for 
steering the system’s state to arbitrary concentration levels of X, as explained in 
detail in (Del Vecchio et al, 2017).  
 



 
  
  

1D Geometric Analysis (Mathematica) 

𝑑
𝑑𝑡
(𝑋) =

𝛼E4 + 	𝑎4𝑋6

1 + 𝑋6
− 𝛾#𝑋	

	

= 𝐻5(𝑋) − 𝛾#𝑋 

ODE 

𝑑𝑋/𝑑𝑡 = 0 

𝐻5(𝑋) =
𝛼E4 + 	𝑎4𝑋6

1 + 𝑋6
= 𝛾#𝑋 

Nullclines 

𝛼ox = 0.1; ax = 2; = 1.; 𝛾x=1; 
Plot[{(𝛼ox+ax*X^2)/(1+X^2),	𝛾x*X},{X,0,2}] 

Appendix Figure 1: Geometric Analysis of Steady State Landscape in in 1D. (left) The GRN 
consists of a single TF, X, auto-activating itself. Using the workflow in Section II, the 1D ODE 
model shown can be derived to describe the change in concentration of X over time. The location 
of steady states for the value of X can be found by setting the time derivative equal to zero, which 
is equivalent to finding the intersections between the Hill function, H1(X), and the line 𝛾#𝑋. (right) 
These intersections mark the boundaries at which the sign of X changes, and divide the line into 
discrete regions in which the sign of 𝑋̇ should be determined as shown. This allows for a picture of 
the ‘flow’ of the system along the line X as follows: when 𝑋̇ > 0, flow is to the right (X increasing) 
and when  𝑋̇ < 0, flow is to the left (X decreasing). Steady states which have arrows pointing 
towards them are stable while steady states which have arrows pointing away from them are 
unstable.  

Documentation for Plot in Mathematica: http://reference.wolfram.com/language/ref/Plot.html 
 

GRN 

X 

Mathematica Code Block 
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