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Abstract. Continuous-time Markov chains are frequently used as stochastic models for
chemical reaction networks, especially in the growing field of systems biology. A fundamen-
tal problem for these Stochastic Chemical Reaction Networks (SCRNs) is to understand
the dependence of the stochastic behavior of these systems on the chemical reaction rate
parameters. Towards solving this problem, in this paper we develop theoretical tools called
comparison theorems that provide stochastic ordering results for SCRNs. These theorems
give sufficient conditions for monotonic dependence on parameters in these network models,
which allow us to obtain, under suitable conditions, information about transient and steady
state behavior. These theorems exploit structural properties of SCRNs, beyond those of
general continuous-time Markov chains. Furthermore, we derive two theorems to compare
stationary distributions and mean first passage times for SCRNs with different parame-
ter values, or with the same parameters and different initial conditions. These tools are
developed for SCRNs taking values in a generic (finite or countably infinite) state space
and can also be applied for non-mass-action kinetics models. When propensity functions
are bounded, our method of proof gives an explicit method for coupling two comparable
SCRNs, which can be used to simultaneously simulate their sample paths in a comparable
manner. We illustrate our results with applications to models of enzymatic kinetics and
epigenetic regulation by chromatin modifications.

Keywords. Stochastic chemical reaction networks, monotonicity.

1 Introduction

1.1 Overview

Stochastic Chemical Reaction Networks (SCRNs) are a class of continuous-time Markov
chain models used to describe the stochastic dynamics of a chemical system undergoing a
series of reactions which change the numbers of molecules of a finite set of species over time.
These models provide a framework for the theoretical study of biochemical systems in areas
such as intracellular viral kinetics (see Srivastava et al. [25] and Haseltine & Rawlings [17]),
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enzymatic kinetics (see Kang et al. [20] for example) and epigenetic regulation by chromatin
modifications (see Bruno et al. [8] for a recently developed model of chromatin regulation).
One of the most interesting questions for biochemical system models is: “What effect

does changing reaction rate parameters have on system dynamics?” Indeed, different rate
parameters for chemical processes can lead to different stochastic behaviors. One possible
approach to evaluate the effect of parameter variations on system dynamics is through
comparison theorems for stochastic processes. More precisely, this type of theorem provides
inequalities between stochastic processes (see Muller & Stoyan [24] for a general reference
on this topic).
In this paper, we employ uniformization and coupling methods (see Grassmann [14] and

Keilson [21]) to derive comparison theorems for SCRNs under verifiable sufficient condi-
tions. These theoretical results enable us to develop two novel theorems yielding a direct
comparison of mean first passage times and stationary distributions between SCRNs with
different rate parameters or initial conditions. We apply these theorems to several exam-
ples to illustrate how they can be used to understand how key biological parameters affect
stochastic behavior. While a major motivator for our work has been the study of SCRNs,
we state our theorems in the context of continuous-time Markov chains, for which the state
space is a subset of Zd

+ (the set of d-dimensional vectors with non-negative integer entries),
and the set of all possible transition vectors is a finite set. This thereby allows for other ap-
plications that have similar characteristics to SCRNs. In addition, for the case of bounded
transition intensities satisfying our conditions, we give an explicit concrete coupling of two
comparable Markov chains, which can be used to simultaneously simulate them in such a
way that their sample paths are monotonically related.
The paper is structured as follows: in Section 2 we introduce some background on stochas-

tic chemical reaction networks needed for this article. We present the main results in Section
3, with proofs provided in Section 5. In Section 4 we apply our theoretical tools to several
examples, such as epigenetic regulation by chromatin modifications and enzymatic kinetics.
Concluding remarks are presented in Section 6. The Supplementary information (SI) file
contains some further details and extensions of the main results and examples in the paper.

1.2 Related work

Due to the growing field of systems biology, the mathematical study of chemical reaction
networks has seen a wealth of activity lately. Concerning comparison results, considerable
work has been conducted on monotonicity properties for deterministic models of chemical
reaction networks, i.e., systems of ordinary differential equations describing the dynamics of
species concentrations. For example, Angeli et al. [5] proposed a graphical method, based
on the monotonicity properties of the reaction rates with respect to species concentrations,
to determine global stability properties for the models. More recently, Gori et al. [13]
introduced sufficient conditions to verify the existence of a monotonicity property for the
concentrations of species for any positive time with respect to their initial concentrations.
However, these works do not address how changing parameters affects the behavior of
stochastic models.
To the best of our knowledge, no systematic study of stochastic ordering has been con-

ducted for stochastic chemical reaction networks. On a more general level, theorems have
been established for stochastic processes and have been specialized for particular classes
such as for queueing systems and point processes (see Muller & Stoyan [24] for an introduc-
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tion to the topic). For Markov chains, the work of Massey [22] is of special interest, since
he establishes criteria for comparison of continuous-time Markov chains in terms of their
infinitesimal generators. For relevant work prior to Massey, there is a nice summary in [22].
In particular, Kamae et al. [19] showed that for Markov processes, a comparison between
transition probability functions, at all fixed times and for all partially ordered starting
points, can be realized in a pathwise stochastic comparison between versions of the Markov
processes. In relation to Massey’s work, our results provide simplified conditions and ex-
tended results for stochastic comparisons, which exploit the structure of stochastic chemical
reaction networks. Furthermore, unlike Massey, we do not require a uniform bound on the
rates of leaving each state. In addition, under the latter assumption, we explicitly construct
versions of the stochastic processes on the same probability space that have comparable
sample paths. More detail on the relationship of our work to that of Massey is given in
Remark 3.2. In contrast to work on sensitivity analysis of distributions at a finite set of
times and which considers only local changes in parameters (see for example Gunawan et
al. [15], Gupta & Khammash [16] and references therein), our work provides a sample path
comparison between stochastic processes for global changes in their parameters.

1.3 Notation and Terminology

Denote by Z+ = {0, 1, 2, . . .} the set of non-negative integers. For an integer d ≥ 1 we
denote by Zd

+ the set of d-dimensional vectors with entries in Z+. For any integer d ≥ 1,
let Rd denote the d-dimensional Euclidean space. We usually write R for R1. We denote
by Rd

+ the set of vectors x ∈ Rd such that xi ≥ 0 for every 1 ≤ i ≤ d. For x ∈ Rd, let
∥x∥∞ = sup1≤i≤d |xi| be the supremum norm. In this paper, the sum over the empty set is
considered to be 0.
A binary relation ≼ on a set X will be called reflexive if x ≼ x for every x ∈ X , transitive

if x ≼ y and y ≼ z implies x ≼ z for every x, y, z ∈ X and antisymmetric if x ≼ y and
y ≼ x implies x = y for every x, y ∈ X . A preorder is a binary relation that is reflexive and
transitive. A partial order is a preorder that is antisymmetric.
In this paper, a probability space (Ω,F ,P) will consist of a sample space Ω, a σ-algebra of

events F and a probability measure P on (Ω,F). We will say that two real-valued random
variables Y, Y ′ (defined on possibly different probability spaces) are equal in distribution,

denoted as Y ′ dist= Y , if their cumulative distribution functions agree. All stochastic processes
considered in this paper will have right-continuous sample paths that also have finite left-
limits.

2 Stochastic Chemical Reaction Networks (SCRNs)

In this section we provide necessary background on Stochastic Chemical Reaction Networks.
The reader is referred to Anderson & Kurtz [3] for an introduction to this subject.
We assume there is a finite non-empty set S = {S1, . . . ,Sd} of d species, and a finite non-

empty set R ⊆ Zd
+ ×Zd

+ that represents chemical reactions. We assume that (w,w) /∈ R
for every w ∈ Zd

+. The set S represents d different molecular species in a system subject to
reactions R which change the number of molecules of each species. For each (v−, v+) ∈ R,
the d-dimensional vector v− (the reactant vector) counts how many molecules of each
species are consumed in the reaction, while v+ (the product vector) counts how many
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molecules of each species are produced. The reaction is usually written as

d∑
i=1

(v−)iSi −→
d∑

i=1

(v+)iSi. (2.1)

To avoid the use of unnecessary symbols, we will assume that for each 1 ≤ i ≤ d, there
exists a vector w = (a1, . . . , ad)

T ∈ Zd
+ with ai > 0 such that (w, v) or (v, w) is in R for

some v ∈ Zd
+, i.e., each species is either a reactant or a product in some reaction.

The net change in the quantity of molecules of each species due to a reaction (v−, v+) ∈ R
is described by v+− v− and it is called the associated reaction vector. We denote the set
of reaction vectors V := {v ∈ Zd | v = v+− v− for some (v−, v+) ∈ R}, let n := |V| the size
of V and enumerate the members of V as {v1, . . . , vn}. Note that V does not contain the
zero vector because R has no elements of the form (w,w). Different reactions might have
the same reaction vector. For each vj ∈ V we consider the set Rvj := {(v−, v+) ∈ R | vj =
v+− v−}. The reaction vectors generate the stoichiometric subspace L := span(V). For
z ∈ Rd, we call z + L a stoichiometric compatibility class.
Given (S ,R) we will consider an associated continuous-time Markov chainX = (X1, . . . , Xd),

with a state space X contained in Zd
+, which tracks the number of molecules of each species

over time. Roughly speaking, the dynamics of X will be given by the following: given
a current state x = (x1, . . . , xd) ∈ X ⊆ Zd

+, for each reaction (v−, v+) ∈ R, there is a
clock which will ring at an exponentially distributed time (with rate Λ(v−,v+)(x)). The
clocks for distinct reactions are independent of one another. If the clock corresponding to
(v−, v+) ∈ R rings first, the system moves from x to x + v+ − v− at that time, and then
the process repeats. We now define the Markov chain in more detail.
Consider a set of species S and of reactions R, a set X ⊆ Zd

+ and a collection of
functions {Λ(v−,v+) : X −→ R+}(v−,v+)∈R such that for each x ∈ X and (v−, v+) ∈ R, if
x+ v+ − v− /∈ X , then Λ(v−,v+)(x) = 0. Now, for 1 ≤ j ≤ n, vj ∈ V, define

Υj(x) :=
∑

(v−,v+)∈Rvj

Λ(v−,v+)(x). (2.2)

Note that for each x ∈ X and 1 ≤ j ≤ n, if x + vj /∈ X , then Υj(x) = 0. A stochastic
chemical reaction network (SCRN) is a Markov chain X with state space X and
infinitesimal generator1 Q given for x, y ∈ X by

Qx,y =


Υj(x) if y − x = vj for some 1 ≤ j ≤ n,

−
∑n

j=1Υj(x) if y = x,

0 otherwise.

(2.3)

The functions {Λ(v−,v+) : X −→ R+}(v−,v+)∈R are called propensity or intensity func-
tions. A common form for the propensity functions is the following associated with mass
action kinetics:

Λ(v−,v+)(x) = κ(v−,v+)

d∏
i=1

(xi)(v−)i , (2.4)

1Note that Q is sometimes called an infinitesimal transition matrix although it may have countably many
“rows” and “columns”. The entries Qx,y for x ̸= y are the infinitesimal transition rates of going from x to
y: P[X(t+ h) = y|X(t) = x] = Qx,yh+ o(h) as h → 0.
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where {κ(v−,v+)}(v−,v+)∈R are positive constants and for m, ℓ ∈ Z+, the quantity (m)ℓ is
the falling factorial, i.e., (m)0 := 1 and (m)ℓ := m(m− 1) . . . (m− ℓ+ 1).

Remark 2.1. Our definition of SCRN allows for some model flexibility. Notice that the
propensity functions are not necessarily defined on the whole lattice Zd

+ and they are not
necessarily of the form (2.4). Indeed, in some of our applications, mass-conservation laws
restrict the possible values that X may take (see Example 4.4). In addition, there may be
other types of kinetics, such as those described by Hill functions (see Example 4.5).

A convenient way to represent such a Markov chain is given in Theorem 6.4.1 of Ethier
& Kurtz [12]. For this, consider a probability space (Ω,F ,P) equipped with independent
unit rate Poisson processes N1, . . . , Nn. There is a version of X defined on (Ω,F ,P) such
that

X(t) = X(0) +
n∑

j=1

vjNj

(∫ t

0
Υj (X(s)) ds

)
, (2.5)

for every 0 ≤ t < τ , where τ is the explosion time for X (which may be +∞). From (2.5), it
is easy to see that for a SCRN X with initial state z ∈ X , X(t) will stay in the stoichiometric
compatibility class z + L intersected with Zd

+ for all time 0 ≤ t < τ , with probability one.
For this reason, sometimes it will be convenient to choose X = (z + L) ∩ Zd

+, for a fixed
z ∈ Zd

+.
While our work was initially motivated by questions for SCRNs, we will first develop our

results in a more general context of continuous-time Markov chains, for which the state
space is contained in Zd

+ and the set of all possible transition vectors is a finite set, and
then illustrate them for SCRNs.

3 Main Results

The general stochastic ordering results provided in this paper are relative to a preorder
relation on a state space X ⊆ Zd

+ ⊆ Rd. We will define the preorder on all of Rd and
then restrict it to various subsets. We introduce this notation and related notation in
Section 3.1. In Section 3.2 we present the main results of this article, and in Section
3.3 we discuss relevant consequences for the comparison of (mean) first passage times and
stationary distributions.

3.1 Preorders in Rd

Let m, d ≥ 1 be integers. Denote by ≤ the usual componentwise partial order on Rd, i.e.,
for x, y ∈ Rd, x ≤ y whenever xi ≤ yi for every 1 ≤ i ≤ d. Additionally, we write x < y
whenever xi < yi for every 1 ≤ i ≤ d. For the rest of the paper, we consider a matrix
A ∈ Rm×d, where no row of A is identically zero.

Definition 3.1. For x, y ∈ Rd, we say that x ≼A y whenever A(y − x) ≥ 0.

For the matrix A, consider the convex cone KA := {x ∈ Rd |Ax ≥ 0}. Note that x ≼A y
holds if and only if y − x ∈ KA. Moreover, the relation ≼A is reflexive and transitive, and
therefore a preorder on Rd. Also, for this relation,

if x ≼A y, then x+ z ≼A y + z for any z ∈ Rd. (3.1)
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For any x ∈ Rd consider the set

KA + x = {y ∈ Rd |A(y − x) ≥ 0} = {y ∈ Rd | x ≼A y}.

In the coming sections, we will consider the notions of increasing and decreasing sets with
respect to ≼A in a given subset of Zd

+. More concretely, consider a non-empty set X ⊆ Zd
+.

We will say that a set Γ ⊆ X is increasing in X with respect to ≼A if for every x ∈ Γ and
y ∈ X , x ≼A y implies that y ∈ Γ. We observe that, for x ∈ X , the set

(KA + x) ∩ X = {y ∈ X | x ≼A y} (3.2)

is increasing in X by the transitivity property of ≼A. On the other hand, we will say that
a set Γ ⊆ X is decreasing in X with respect to ≼A if for every x ∈ Γ and y ∈ X , y ≼A x
implies that y ∈ Γ. We will say that a point x is maximal (resp. minimal) in X if for
every y ∈ X , x ≼A y (resp. y ≼A x) implies that x = y. In this case, the set Γ = {x} would
be increasing (resp. decreasing) in X .

Remark 3.1. If rank(A) = d, then the relation ≼A will be antisymmetric and therefore
a partial order on Rd. Indeed, if rank(A) = d, then A(y − x) = 0 implies that x = y. In
addition, ≼A will then be a partial order when restricted to X ⊂ Zd

+. Throughout this
article, we will not assume that rank(A) = d and therefore, the relation ≼A might not be a
partial order on X (see Examples 4.1, 4.2, and 4.3).

3.2 Stochastic Comparison Theorems

The fundamental objects in the following results are a non-empty set X ⊆ Zd
+ and a pair

of continuous-time Markov chains X and X̆ with the same state space X and where it is
assumed that the set of all possible transition vectors for X or X̆ is a finite set. We denote
the size of this set by n. A primary example of this setup is two stochastic chemical reaction
networks as described in Section 2 with different propensity functions. We will now formally
introduce the notation for stating our results.

Consider a non-empty set X ⊆ Zd
+, an integer n ≥ 1 and a collection of distinct vectors

v1, . . . , vn in Zd \ {0}, where 0 is the origin in Zd. Consider two collections of functions
Υ = (Υ1, . . . ,Υn) and Ῠ = (Ῠ1, . . . , Ῠn) defined on X and taking values in R+, such that
for every 1 ≤ j ≤ n and x ∈ X :

if x+ vj /∈ X , then Υj(x) = Ῠj(x) = 0. (3.3)

Consider a continuous-time Markov chain X on the state space X with infinitesimal gener-
ator Q = (Qx,y)x,y∈X defined for x, y ∈ X by

Qx,y :=


Υj(x) if y − x = vj for some 1 ≤ j ≤ n,

−
∑n

j=1Υj(x) if x = y,

0 otherwise.

(3.4)

Consider the analogous continuous-time Markov chain X̆ with infinitesimal generator Q̆
as in (3.4) but with functions Ῠ1, . . . , Ῠn instead of Υ1, . . . ,Υn. We call X and X̆ the
continuous-time Markov chains associated with Υ and Ῠ respectively. We will assume that
X and X̆ do not explode in finite time. The following is our main result.
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Conditions
(3.5), (3.6)

hold if:

Figure 1: Pictorial representation of conditions (3.5), (3.6) for a certain (KA +x)∩X in
a two-dimensional lattice. Here, X = {0, 1, 2, 3} × {0, 1, 2, 3}, n = 4, v1 = (0, 1)T , v2 = (1, 0)T ,
v3 = (0,−1)T , v4 = (−1, 0)T , where T denotes transpose, A = [2 − 1], and (KA + x) ∩ X = {w ∈
X | [2 − 1](w−x) ≥ 0}. In the graph, (KA+x)∩X consists of the states (black dots) that lie in the
light orange region and the arrows represent possible transitions along v1, v2, v3, v4 between states.
For the exhibited states x, y ∈ X with x ≼A y, the light green (dark green) and light red (dark red)
arrows represent the transitions with rates Υ2(x) (Ῠ2(y)) and Υ4(x) (Ῠ4(y)) for the Markov chain
X (X̆). Higher transitions rates are associated with thicker arrows. To check the conditions (3.5)
and (3.6), since y + v4 /∈ KA + x and y /∈ KA + x + v2, we need to check that Ῠ4(y) ≤ Υ4(x) and
Ῠ2(y) ≥ Υ2(x).

Theorem 3.1. Consider a non-empty set X ⊆ Zd
+, a collection of distinct vectors v1, . . . , vn

in Zd \ {0} and two collections of non-negative functions on X , Υ = (Υ1, . . . ,Υn) and
Ῠ = (Ῠ1, . . . , Ῠn), such that (3.3) holds and the associated continuous-time Markov chains
do not explode in finite time. Consider a matrix A ∈ Rm×d with non-zero rows and suppose
that for every x, y ∈ X such that x ≼A y the following hold:

Ῠj(y) ≤ Υj(x), for each 1 ≤ j ≤ n such that y + vj ∈ X \ (KA + x), (3.5)

and

Ῠj(y) ≥ Υj(x), for each 1 ≤ j ≤ n such that x+ vj ∈ X and y /∈ KA + x+ vj . (3.6)

Then, for each pair x◦, x̆◦ ∈ X such that x◦ ≼A x̆◦, there exists a probability space (Ω,F ,P)
with two continuous-time Markov chains X = {X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} defined
there, each having state space X ⊆ Zd

+, with infinitesimal generators Q and Q̆, associated

with Υ and Ῠ, respectively, with initial conditions X(0) = x◦ and X̆(0) = x̆◦ and such that:

P
[
X(t) ≼A X̆(t) for every t ≥ 0

]
= 1. (3.7)

An example of checking conditions (3.5) and (3.6) is given in Figure 1. The proof of
Theorem 3.1 is given in Section 5.1. The main idea in the construction of the processes X
and X̆ is uniformization (see Chapter 2 in Keilson [21]) together with a suitable coupling.
Our proof uses a single Poisson process together with a sequence of i.i.d. uniform random
variables to determine potential jumps for the two continuous-time Markov chains, where
for X and X̆, potential jumps in the same direction vj are coupled together, and their prob-
abilities of acceptance are given by normalized versions of their infinitesimal transition rates
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Υj and Ῠj . Uniformization can be done provided the diagonal terms of the infinitesimal
generators are uniformly bounded in size. In the proof of Theorem 3.1, we initially make
this assumption on Q and Q̆ in order to construct X and X̆. We then generalize the result
to Markov chains that do not explode in finite time by using a truncation and limiting
procedure. The construction mentioned here, for the case where the diagonal terms of the
infinitesimal generators are uniformly bounded in size, besides playing a key role in our
proofs, is also the basis for an algorithm described in Section S.4, which provides a way to
simultaneously simulate the processes X and X̆ in a comparable manner.

Remark 3.2. In Theorem 5.3 of Massey [22], the author provides a necessary and sufficient
condition for stochastic comparison of continuous-time Markov chains at each fixed time
for all partially ordered initial conditions. By the work of Kamae et al. [19], the conditions
in [22] imply the existence of a coupling of continuous-time Markov chains so that a relation
such as (3.7) holds. Massey’s condition requires that

∑
w∈ΓQxw ≤

∑
w∈Γ Q̆yw for every

x ≼A y and every set Γ ⊆ X that is increasing in X with respect to ≼A and such that
either x ∈ Γ or y /∈ Γ. These inequalities can often be difficult to check since first, they
involve computing sums of terms in the infinitesimal generators and second, the form of all
increasing sets can be hard to determine. In Theorem 3.1 we overcome these obstacles by
providing simplified sufficient conditions that involve only pointwise comparison of entries
in the infinitesimal generators associated to each of the transition vectors vj . Besides this
practical value, in our context, our results go beyond the work of Massey [22], since he
assumes that ≼A is a partial order (we only assume preorder) and he assumes that the
diagonal entries of the infinitesimal generators are bounded (we generalize to non-exploding
Markov chains). Our proof has a commonality with the work of Massey in the sense that we
also use uniformization. It is different in the sense that, when infinitesimal transition rates
are bounded, we construct an explicit coupling for all time, exploiting the simplified nature
of our conditions, while Massey does not provide an explicit coupling. Instead, he proves
existence of a stochastic comparison for each fixed time, using a semigroup approach.

Conditions (3.5) and (3.6) may be simplified if we consider a particular relation between
the matrix A and the vectors v1, . . . , vn in which A ∈ Zm×d and Avj has entries taking values
only in {−1, 0, 1} for every 1 ≤ j ≤ n. More concretely, let us consider a class of continuous-
time Markov chains such that, for a given matrix A with non-zero rows, if the Markov chain
starts within the set KA + x, then to go outside of it, the process will necessarily hit its
boundary. In this case, we can derive a theorem whose conditions must be checked only
on the boundary of KA + x because the only transitions that can lead the Markov chain
outside or inside the set KA+x are ones starting on the boundary of KA+x. Before stating
the theorem, let us introduce the sets ∂i(KA + x) := {y ∈ KA + x | ⟨Ai•, y⟩ = ⟨Ai•, x⟩} 2 for

2Here, for convenience of notation, let Ai• denote the row vector corresponding to the i-th row of A, for
1 ≤ i ≤ m. In this article we will adopt the convention of considering the inner product ⟨·, ·⟩ as a function
of a row vector in its first entry and as a function of a column vector in the second entry. In particular,
⟨Ai•, x⟩ =

∑d
k=1 Aikxk.
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each 1 ≤ i ≤ m. We can then characterize3 the boundary of KA + x as follows:

∂(KA + x) =
m⋃
i=1

∂i(KA + x). (3.8)

Theorem 3.2. Consider a non-empty set X ⊆ Zd
+, a collection of distinct vectors v1, . . . , vn

in Zd \ {0} and two collections of non-negative functions on X , Υ = (Υ1, . . . ,Υn) and
Ῠ = (Ῠ1, . . . , Ῠn) such that (3.3) holds and the associated continuous-time Markov chains
do not explode in finite time. Consider a matrix A ∈ Zm×d with non-zero rows and suppose
that both of the following conditions hold:

(i) For each 1 ≤ j ≤ n, the vector Avj has entries in {−1, 0, 1} only.

(ii) For each x ∈ X , 1 ≤ i ≤ m and y ∈ ∂i(KA + x) ∩ X we have that

Ῠj(y) ≤ Υj(x), for each 1 ≤ j ≤ n such that ⟨Ai•, vj⟩ < 0, (3.9)

and
Ῠj(y) ≥ Υj(x), for each 1 ≤ j ≤ n such that ⟨Ai•, vj⟩ > 0. (3.10)

Then, for each pair x◦, x̆◦ ∈ X such that x◦ ≼A x̆◦, there exists a probability space (Ω,F ,P)
with two continuous-time Markov chains X = {X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} defined
there, each having state space X ⊆ Zd

+, with infinitesimal generators given by Q and Q̆,

associated with Υ and Ῠ respectively, with initial conditions X(0) = x◦ and X̆(0) = x̆◦, and
such that:

P
[
X(t) ≼A X̆(t) for every t ≥ 0

]
= 1. (3.11)

The proof of this theorem is given in Section 5.2 and involves checking that (3.5) and
(3.6) of Theorem 3.1 hold, using conditions (i) and (ii) of Theorem 3.2.

Remark 3.3. In the context of Theorem 3.2, it is possible that for x ∈ X , and y ∈
∂i1(KA+x)∩∂i2(KA+x)∩X with i1 ̸= i2, it happens that ⟨Ai1•, vj⟩ < 0 and ⟨Ai2•, vj⟩ > 0
for some 1 ≤ j ≤ n. For condition (ii) to hold, we must then have Ῠj(y) = Υj(x).

When there are multiple vectors vj with a common value for Avj , the pointwise compar-
ison in j, for 1 ≤ j ≤ n, in conditions (3.9) and (3.10) in Theorem 3.2, can be weakened.
To this end, let us introduce the set of distinct vectors {η1, . . . , ηs} formed by Avj , for
1 ≤ j ≤ n, where s denotes the cardinality of this set. Consider the subsets of indices

Gk := {j | 1 ≤ j ≤ n and Avj = ηk}, for 1 ≤ k ≤ s. (3.12)

Then we have the following theorem.

3The fact that A does not contain zero rows allows for equation (3.8) to hold. In fact, let A ∈ Rm×d be a
matrix that is not identically zero and let Ā be the matrix obtained from A by erasing any rows that contain
all zeros. Then, for x, y ∈ Rd, A(y−x) ≥ 0 if and only if Ā(y−x) ≥ 0, and so KA+x = KĀ+x and x ≼A y
if and only if x ≼Ā y. However, if A contains a row Ai• such that Ai• = 0, then ∂i(KA + x) = KA + x
and if KA + x has nonempty interior, then equation (3.8) will not hold. Consequently, we have made the
assumption that A has no zero rows.
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Theorem 3.3. Consider a non-empty set X ⊆ Zd
+, a collection of distinct vectors v1, . . . , vn

in Zd \ {0} and two collections of non-negative functions on X , Υ = (Υ1, . . . ,Υn) and
Ῠ = (Ῠ1, . . . , Ῠn) such that (3.3) holds and the associated continuous-time Markov chains
do not explode in finite time. Consider a matrix A ∈ Zm×d with non-zero rows and suppose
that both of the following conditions hold:

(i) For each 1 ≤ j ≤ n, the vector Avj has entries in {−1, 0, 1} only.

(ii) For each x ∈ X , 1 ≤ i ≤ m and y ∈ ∂i(KA + x) ∩ X we have that∑
j∈Gk

Ῠj(y) ≤
∑
j∈Gk

Υj(x), for each k such that ηki < 0, (3.13)

and ∑
j∈Gk

Ῠj(y) ≥
∑
j∈Gk

Υj(x), for each k such that ηki > 0. (3.14)

Then, for each pair x◦, x̆◦ ∈ X such that x◦ ≼A x̆◦, there exists a probability space (Ω,F ,P)
with two continuous-time Markov chains X = {X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} defined
there, each having state space X ⊆ Zd

+, with infinitesimal generators Q and Q̆, associated

with Υ and Ῠ respectively, with initial conditions X(0) = x◦ and X̆(0) = x̆◦ and such that:

P
[
X(t) ≼A X̆(t) for every t ≥ 0

]
= 1. (3.15)

The proof of this theorem is given in Section 5.3.

Remark 3.4. If Υ = Ῠ, Theorems 3.1, 3.2 and 3.3 give sufficient conditions for monotonic
dependence of the stochastic dynamic behavior on the initial condition. In the sense of
Massey [22], this notion corresponds to constructing a strongly monotone Markov chain.

Remark 3.5. For deterministic dynamical systems, there is a considerable literature giving
monotonicity conditions with respect to initial conditions (see e.g., Hirsch & Smith [18]).
Furthermore, Angeli & Sontag [4] extended the concept of monotone systems to systems
having external inputs (i.e., ẋ = f(x, u), with x representing the state and u representing
the input). More precisely, they developed tools to prove monotonic dependence of the
deterministic dynamic behavior on the initial condition and external input, provided that
certain sign conditions on the first partial derivatives of the function f(x, u) are satisfied
on the entire state and input space. These theoretical tools can be used also to study how
changing a system parameter affects the deterministic behavior of the system, by viewing
u as the system parameter of interest.

Remark 3.6. Checking the conditions in Theorems 3.2 and 3.3 (if they hold) is less cum-
bersome than checking the conditions in Theorem 3.1. In fact, compared to Theorem 3.1,
for Theorems 3.2 and 3.3, the conditions must be checked only on the boundaries of KA+x,
given that condition (i) there is assumed to hold. Furthermore, Theorem 3.3 has less re-
strictive conditions (i.e., comparing sums of infinitesimal rates associated with transitions
inwards or outwards with respect to the hyperplanes {z ∈ Rd |⟨Ai•, z⟩ = ⟨Ai•, x⟩ = ⟨Ai•, y⟩},
1 ≤ i ≤ m, instead of comparing transition rates one-by-one for 1 ≤ j ≤ n).
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3.3 Monotonicity properties for (Mean) First Passage Times and Sta-
tionary Distributions

The first consequence of our main results is for first passage times and it is related to
stochastic orderings of real-valued random variables. Let Y and Z be real-valued random
variables with cumulative distribution functions FY and FZ respectively. We say that Y is
smaller than Z in the usual stochastic order, written Y ≼st Z if FY (t) ≥ FZ(t) for every
t ∈ R. The relation Y ≼st Z is equivalent to the existence of a probability space (Ω,F ,P)
with random variables Y ′ dist

= Y and Z ′ dist
= Z defined there such that P(Y ′ ≤ Z ′) = 1.

Furthermore, it is equivalent to the condition:
∫∞
−∞ f(x)dFY (x) ≤

∫∞
−∞ f(x)dFZ(x) for

every bounded increasing function f : R −→ R. The reader may consult Chapter 1 in
Muller & Stoyan [24] for the corresponding proofs and further properties of this notion.

Theorem 3.4. Consider a non-empty set X ⊆ Zd
+, a collection of distinct vectors v1, . . . , vn

in Zd \ {0} and two collections of non-negative functions on X , Υ = (Υ1, . . . ,Υn) and
Ῠ = (Ῠ1, . . . , Ῠn), such that (3.3) holds and the associated continuous-time Markov chains
do not explode in finite time. Consider a matrix A ∈ Rm×d with non-zero rows and suppose
that at least one of the following holds:

(i) For every x, y ∈ X such that x ≼A y, conditions (3.5) and (3.6) are satisfied.

(ii) The matrix A has integer-valued entries and conditions (i) and (ii) in Theorem 3.2
are satisfied.

(iii) The matrix A has integer-valued entries and conditions (i) and (ii) in Theorem 3.3
are satisfied.

Let x◦, x̆◦ ∈ X be such that x◦ ≼A x̆◦ and let X = {X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} be
two continuous-time Markov chains (possibly defined on different probability spaces), each
having state space X ⊆ Zd

+, with infinitesimal generators Q and Q̆, associated with Υ and

Ῠ respectively, and with initial conditions X(0) = x◦ and X̆(0) = x̆◦. For a non-empty set
Γ ⊆ X , consider TΓ := inf{t ≥ 0 | X(t) ∈ Γ} and T̆Γ := inf{t ≥ 0 | X̆(t) ∈ Γ}. If Γ is
increasing in X with respect to the relation ≼A, then

T̆Γ ≼st TΓ, (3.16)

and the mean first passage time of X̆ from x̆◦ to Γ is dominated by the mean first passage
time of X from x◦ to Γ. If Γ is decreasing in X with respect to the relation ≼A, then

TΓ ≼st T̆Γ, (3.17)

and the mean first passage time of X from x◦ to Γ is dominated by the mean first passage
time of X̆ from x̆◦ to Γ.

Proof. By Theorem 3.1, 3.2 or 3.3, we can construct two versions of the processes X and X̆
on a common probability space (Ω,F ,P) with initial conditions x◦ and x̆◦, respectively and
such that (3.7) or (3.11) or (3.15) hold. We denote these versions again by X and X̆, and we
observe that to show (3.16), it suffices to show that for an increasing set Γ, P[T̆Γ ≤ TΓ] = 1
for TΓ and T̆Γ associated with these versions of X and X̆. To see that this holds, let Ω̃ be
a set of probability one on which

X(t) ≼A X̆(t), for all t ≥ 0 (3.18)
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(this exists by (3.7), (3.11) or (3.15)). On {TΓ = +∞}, it is clear that T̆Γ ≤ TΓ. For each
ω ∈ {TΓ < +∞} ∩ Ω̃ and ε > 0 there is τε(ω) ∈ [TΓ(ω), TΓ(ω) + ε) such that X(τε(ω)) ∈ Γ
and by (3.18), X(τε(ω)) ≼A X̆(τε(ω)). And then, since Γ is increasing, X̆(τε(ω)) ∈ Γ. It
follows that T̆Γ(ω) ≤ TΓ(ω) + ε and letting ε→ 0 we obtain that T̆Γ(ω) ≤ TΓ(ω). It follows
that P[T̆Γ ≤ TΓ] = 1. For the result on mean first passage times, let F TΓ

:= 1 − FTΓ

and F T̆Γ
:= 1− FT̆Γ

represent the complementary cumulative distribution functions for TΓ

and T̆Γ, respectively. Observe that (3.16) implies that F T̆Γ
≤ F TΓ

. For a non-negative
random variable, the mean of the random variable is given by the Lebesgue integral of
the complementary cumulative distribution function. Consequently, the mean first passage
time for X̆ from x̆◦ to Γ is given by

∫∞
0 F T̆Γ

(t)dt ≤
∫∞
0 F TΓ

(t)dt, where the latter is the
mean first passage time for X from x◦ to Γ. If Γ is decreasing, analogous arguments yield
the results stated for that case.

The second consequence of our results provides a comparison result for stationary distri-
butions.

Theorem 3.5. Consider a non-empty set X ⊆ Zd
+, a collection of distinct vectors v1, . . . , vn

in Zd \ {0} and two collections of non-negative functions on X , Υ = (Υ1, . . . ,Υn) and
Ῠ = (Ῠ1, . . . , Ῠn), such that (3.3) holds and the associated continuous-time Markov chains
do not explode in finite time. Consider a matrix A ∈ Rm×d with non-zero rows and suppose
that at least one of the following holds:

(i) For every x, y ∈ X such that x ≼A y, conditions (3.5) and (3.6) are satisfied.

(ii) The matrix A has integer-valued entries and conditions (i) and (ii) in Theorem 3.2
are satisfied.

(iii) The matrix A has integer-valued entries and conditions (i) and (ii) in Theorem 3.3
are satisfied.

Assume that the two continuous-time Markov chains on the set X with infinitesimal gener-
ators Q and Q̆, associated with Υ and Ῠ respectively, are irreducible and positive recurrent
on X , and denote the associated stationary distributions by π and π̆, respectively. If Γ ⊆ X
is a non-empty set that is increasing in X with respect to ≼A, then∑

x∈Γ
πx ≤

∑
x∈Γ

π̆x. (3.19)

If Γ ⊆ X is a non-empty set that is decreasing in X with respect to ≼A, then∑
x∈Γ

π̆x ≤
∑
x∈Γ

πx. (3.20)

Proof. As in the proof of Theorem 3.4, we can construct two versions of the processes X and
X̆ on a common probability space (Ω,F ,P) for some pair of initial conditions x◦ ≼A x̆◦. If
Γ ⊆ X is increasing, equation (3.7) or (3.11) or (3.15) yields that P(X(t) ∈ Γ) ≤ P(X̆(t) ∈
Γ) for every t ≥ 0. By letting t→∞ and observing that the stationary distribution is the
steady-state distribution under our assumptions of irreducibility and positive recurrence,
we obtain (3.19). If Γ is decreasing, an analogous argument yields (3.20).
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Remark 3.7. A special case of Theorems 3.4 and 3.5 is when Γ = {x} for some maximal
or minimal element x ∈ X .

In the next section, we give examples which illustrate Theorem 3.2 (see Examples 4.1, 4.2,
4.4 and 4.5), Theorem 3.3 (see Example 4.3), Theorem 3.4 and Theorem 3.5 for continuous-
time Markov chains that are stochastic chemical reaction networks. For Examples 4.1, 4.2
and 4.3, the state space X will be a stoichiometric compatibility class z+L intersected with
Zd

+. For Examples 4.4 and 4.5, we work with reduced Markov chains and the state space
X will be a projection of a suitable higher dimensional stoichiometric compatibility class
z + L intersected with Zd

+.

4 Examples

In this section, we apply the theoretical tools developed in the paper to several examples.
While in Examples 4.1, 4.3 and 4.4 the Markov chains analyzed have a finite state space,
in Examples 4.2 and 4.5 the Markov chains have a countably infinite state space, but it
is straightforward to verify that they do not explode (see SI - Sections S.1.2 and S.1.3,
respectively). The choice of matrix A in each example is based on the specific monotonicity
relationship of interest. While for simpler cases the choice of A is straightforward, for more
complicated systems the choice can be more subtle. In many cases, in order to study the
monotonicity properties for the stochastic behavior of our system, we can rely on Theorem
3.2, which provides a reasonable approach to narrow down the choices for suitable A. The
approach consists in solving, for each row i, the system of equations

∑d
k=1Aik(vj)k = bij ,

with bij equal to 1,−1, or 0 depending, based on the monotonicity relationship of interest,
whether we expect that the Markov chain transition in the direction vj leads inside, outside,
or is parallel to the boundary of the region KA + x. Finally, it is worth noticing that,
while all the following examples compare two identical reaction networks with different rate
constants, our theory can also be applied to compare two different reaction networks as long
as they have the same net reaction vectors {vj}nj=1.

Example 4.1. Enzyme kinetics I
Let us consider a classic model of enzyme kinetics (see Michaelis & Menten [23] and
Kang et al. [20]), where an enzyme catalyzes the conversion of a substrate to a product.
The species considered here are substrate (S), enzyme (E), intermediate enzyme-substrate
complex (SE), and product (P), and the chemical reaction system is depicted in Fig. 2(a).
We are interested in how the rate constant κ3 affects the time to convert the substrate to
the final product.
To this end, let us first introduce the set of species S = {S,P,E,SE}, and the set of

reactions R = {(v−1 , v
+
1 ), (v

−
2 , v

+
2 ), (v

−
3 , v

+
3 )}, where v−1 = v+2 = (1, 0, 1, 0)T , v+1 = v−2 =

v−3 = (0, 0, 0, 1)T , v+3 = (0, 1, 1, 0)T , where T denotes transpose. At a given time, let the
counts of each of the species S, P, E and SE be denoted by nS, nP, nE and nSE, respectively.
The state of the associated Markov chain is (nS, nP, nE, nSE). The potential transitions of
the Markov chain are in three possible directions:

v1 = v+1 − v−1 = (−1, 0,−1, 1)T , v2 = v+2 − v−2 = (1, 0, 1,−1)T , v3 = v+3 − v−3 = (0, 1, 1,−1)T .

Fixing integers Stot,Etot > 0, we have a stoichiometric compatibility class z + L with
z = (Stot, 0,Etot, 0) and L := span{v1, v2, v3}, which is contained in a two-dimensional
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(a) (b) (c)

1 2

3

Figure 2: Reaction model and corresponding Markov chain for enzymatic kinetics I
example. (a) Chemical reaction system. The numbers on the arrows correspond to the associated
reactions. (b) Projected Markov chain graph for one stoichiometric compatibility class with two
conservation laws nS + nP + nSE = Stot = 3 and nE + nSE = Etot = 2. The projection takes a state
x = (nS, nP, nE, nSE) = (nS, nP,Etot− Stot +nS +nP,Stot−nS−nP) to x̄ = (nS, nP). We use black
dots to represent the states, red double-ended arrows to represent transitions in both directions and
red single-ended arrows to represent transitions in one direction. Note that x̄ = (0, 0) is not a vertex
in the graph because 0 ≤ nE = Etot − Stot + nS + nP, and so nS + nP ≥ 3− 2 = 1. We use orange
to highlight the projection of the region KA + x intersected with the stoichiometric compatibility
class, where A is defined in (4.2). (c) The projections of the directions of the possible transitions of
the Markov chain. The transition rates Υ1(x), Υ2(x), and Υ3(x) are defined in (4.1).

affine subspace of four dimensional space. Then, the state space of the Markov chain is

X = (z + L) ∩Z4
+ = {(x1, x2, x3, x4) ∈ Z4

+|x1 + x2 + x4 = Stot, x3 + x4 = Etot}.

The two constraints described in the last expression for X characterize the two linearly
independent conservation laws for this chemical reaction system: nS + nP + nSE = Stot and
nE + nSE = Etot.
Given a state x = (x1, x2, x3, x4) ∈ X , following mass-action kinetics, the infinitesimal

transition rates are

Υ1(x) = κ1x1x3, Υ2(x) = κ2x4, Υ3(x) = κ3x4, (4.1)

for constants κ1, κ2, κ3 > 0. Here, we have used κj as an abbreviation for κ(v−j ,v+j ), j = 1, 2, 3.

We will use similar abbreviations in the other examples too.
We note that the projected process (X1, X2)(·) is still a continuous-time Markov chain,

and we could apply our theory to it. However, when the functions Υj , j = 1, 2, 3, are written
in terms of these two components, they will have a more complex, non-mass action form.
Here we apply our theory directly to our four dimensional Markov chain. For the purpose
of visualization, Fig. 2(b) shows the two dimensional projection of the four dimensional
Markov chain graph for one stoichiometric compatibility class. In Examples 4.2 and 4.3, we
also analyze Markov chains without projections, and in Examples 4.4 and 4.5, we analyze
projected Markov chains.
In order to study how the rate constant κ3 affects the time to convert the substrate to the

final product, let us define the state (0,Stot,Etot, 0) associated with nP = Stot as p, the state
(Stot, 0,Etot, 0) associated with nS = Stot as s, and the mean first passage time to reach the
state p, starting from s, as Es[Tp]. We will verify that the assumptions of Theorems 3.2, 3.4
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hold and exploit them to determine how κ3 affects Es[Tp]. To this end, define the matrix

A =

[
−1 0 0 0
0 1 0 0

]
(4.2)

and consider the preorder x ≼A y, defined by A(y − x) ≥ 0, and the set KA + x = {w ∈
R4 |x ≼A w}. Let us also consider the infinitesimal transition rates Ῠ1(x), Ῠ2(x) and Ῠ3(x)
defined as for Υ1(x),Υ2(x) and Υ3(x), but with κ̆1 = κ1, κ̆2 = κ2, κ̆3 > κ3 in place of κ1,
κ2, κ3, respectively. Condition (i) of Theorem 3.2 (i.e., for every 1 ≤ j ≤ n, the vector
Avj has entries in {−1, 0, 1}) holds since Av1 = (1, 0)T , Av2 = (−1, 0)T and Av3 = (0, 1)T .
Condition (ii) of Theorem 3.2 also holds, as shown in the paragraph below.
Verification of condition (ii) of Theorem 3.2. We first consider x ∈ X and y ∈

∂1(KA + x) ∩ X , where

∂1(KA + x) ∩ X
= {w ∈ Z4

+ | x1 = w1, x2 ≤ w2} ∩ X
= {w ∈ Z4

+ | x1 = w1, x2 ≤ w2, x1 + x2 + x4 = w1 + w2 + w4 = Stot, x3 + x4 = w3 + w4 = Etot}
= {w ∈ Z4

+ | x1 = w1, x2 ≤ w2, x3 ≤ w3, x4 ≥ w4, w1 + w2 + w4 = Stot, w3 + w4 = Etot}
= {w ∈ X | x1 = w1, x2 ≤ w2, x3 ≤ w3, x4 ≥ w4}.

Since ⟨A1•, v1⟩ = 1, ⟨A1•, v2⟩ = −1, we need to check that Υ1(x) ≤ Ῠ1(y) and Υ2(x) ≥
Ῠ2(y). The first inequality holds because y ∈ ∂1(KA + x) ∩ X implies x1 = y1 and x3 ≤ y3
so that Υ1(x) = κ1x1x3 ≤ κ1y1y3 = κ̆1y1y3 = Ῠ1(y). The second inequality holds because
y ∈ ∂1(KA+x)∩X implies x4 ≥ y4 so that Υ2(x) = κ2x4 ≥ κ2y4 = κ̆2y4 = Ῠ2(y). Secondly,
we consider x ∈ X , y ∈ ∂2(KA + x) ∩ X = {w ∈ X | x1 ≥ w1, x2 = w2, x3 ≥ w3, x4 ≤ w4}.
Then, since ⟨A2•, v3⟩ = 1, we need to check that Υ3(x) ≤ Ῠ3(y). This holds because
y ∈ ∂2(KA + x) ∩ X implies x4 ≤ y4 so that Υ3(x) = κ3x4 ≤ κ3y4 ≤ κ̆3y4 = Ῠ3(y).
Since all of the hypotheses of Theorem 3.2 hold, we can conclude that, for each x◦, x̆◦ ∈ X

with x◦ ≼A x̆◦, there exists a probability space (Ω,F ,P) with two Markov chains X =
{X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} associated with Υ and Ῠ, respectively, such that
X(0) = x◦, X̆(0) = x̆◦ and

P
[
X(t) ≼A X̆(t) for every t ≥ 0

]
= 1.

Furthermore, applying Theorem 3.4 with the set Γ = {p} = {(0, Stot,Etot, 0)}, which is
increasing in X with respect to ≼A, we see that the mean first passage time from s to p,
Es[Tp], is a decreasing function of κ3.
Because the Markov chain has one absorbing state, p, per stoichiometric compatibility

class, the stationary distribution on a given stoichiometric compatibility class is trivial, and
hence so too are its monotonicity properties.

Example 4.2. Enzyme kinetics II
Let us consider an extension of the enzymatic kinetics model introduced in the previous
example, in which the substrate S can enter and leave the system and the product can
revert to the substrate. This is a simplified version of the enzymatic kinetics considered by
Anderson et al. [2]. The chemical reaction system is depicted in Fig. 3(a). Now, for this case
study, we first determine how the reaction rate constant κ5 affects the stochastic behavior of
the system and then we will study properties of the system with respect to initial conditions.
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(a)
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Figure 3: Reaction model and corresponding Markov chain for enzymatic kinetics II
example. (a) Chemical reaction system. The numbers on the arrows correspond to the associated
reactions. (b) Projected Markov chain graph for one stoichiometric compatibility class with the
conservation law nE + nSE = Etot = 2. The projection takes a state x = (nS, nP, nE, nSE) =
(nS, nP, nE,Etot − nE) ∈ X to x̄ = (nS, nP, nE) ∈ Z3

+ : 0 ≤ nE ≤ 2. Here, we use black dots to
represent the states, red double-ended arrows to represent transitions in both directions associated
with the reactions represented by the red arrows in (a) and blue double-ended arrows to represent
transitions in both directions associated with the reactions represented by the blue arrows in (a). We
use dotted arrowed-lines to indicate that the pattern of Markov chain transitions extends to infinity.
We use orange to highlight the projections of the region KA + x intersected with the stoichiometric
compatibility class, where A is defined in (4.4). (c) The projections of the directions of the possible
transitions of the Markov chain within a stoichiometric compatibility class. The transition rates
Υi(x), i = 1, 2, 3, 4, 5, 6, are defined in (4.3).

To this end, let us introduce the set of species S = {S,P,E,SE}, and, similar to Example
4.1, we let (nS, nP, nE, nSE) be the state of the Markov chain that records the number of
molecules of each species. The potential transitions of the Markov chain are in six possible
directions, vj for j = 1, ..., 6, where v1 = −v2 = (−1, 0,−1, 1)T , v3 = −v4 = (0, 1, 1,−1)T ,
and v5 = −v6 = (1, 0, 0, 0)T (see SI-Section S.2.1 for the derivation of the vj , j = 1, ..., 6).
Since there is one linearly independent conservation law in this chemical reaction system:
nE+nSE = Etot, each stoichiometric compatibility class is contained in a three-dimensional
affine subspace of four dimensional space, denoted as z + L, where z = (0, 0,Etot, 0) and
L := span{v1, v3, v5}, with fixed integer Etot > 0. Then, we can choose the state space
of the Markov chain to be X = (z + L) ∩ Z4

+ = {(x1, x2, x3, x4) ∈ Z4
+|x3 + x4 = Etot}.

Furthermore, given a state x = (x1, x2, x3, x4) ∈ X , following mass-action kinetics, the
associated infinitesimal transition rates are given by

Υ1(x) = κ1x1x3, Υ2(x) = κ2x4, Υ3(x) = κ3x4,

Υ4(x) = κ4x2x3, Υ5(x) = κ5, Υ6(x) = κ6x1,
(4.3)

for κ1, κ2, κ3, κ4, κ5, κ6 > 0. As in Example 4.1, we apply our theory directly to our four
dimensional Markov chain, but, for the purpose of illustration, Fig. 3(b) shows the three
dimensional projection of the Markov chain graph for one stoichiometric compatibility class.
Now, for the first analysis (determining how κ5 affects the stochastic behavior of the system),
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we verify that the assumptions of Theorems 3.2 and 3.5 hold and use them to determine
how κ5 affects the stationary distribution.
To this end, define the matrix

A =

1 0 0 0
0 1 0 0
0 0 −1 0

 (4.4)

and consider the preorder x ≼A y, defined by A(y − x) ≥ 0. For x ∈ X , KA + x = {w ∈
R4 | x ≼A w}. Furthermore, let us consider the infinitesimal transition rates Ῠ1(x), Ῠ2(x),
Ῠ3(x), Ῠ4(x), Ῠ5(x) and Ῠ6(x) defined as for Υ1(x),Υ2(x),Υ3(x),Υ4(x),Υ5(x) and Υ6(x),
but with κ̆i in place of κi, where κ̆i = κi, for i = 1, 2, 3, 4, 6, and κ̆5 ≥ κ5. Given that
Av1 = (−1, 0, 1)T , Av2 = (1, 0,−1)T , Av3 = (0, 1,−1)T , Av4 = (0,−1, 1)T , Av5 = (1, 0, 0)T

and Av6 = (−1, 0, 0)T , we have that condition (i) of Theorem 3.2 holds. Condition (ii) of
that theorem also holds, as shown in the next paragraph.
Verification of condition (ii) of Theorem 3.2. First consider x ∈ X and y ∈

∂1(KA + x) ∩ X , where ∂1(KA + x) ∩ X = {w ∈ X | x1 = w1, x2 ≤ w2, x3 ≥ w3, x4 ≤ w4}.
Since ⟨A1•, v2⟩ = ⟨A1•, v5⟩ = 1 and ⟨A1•, v1⟩ = ⟨A1•, v6⟩ = −1, we need to check that
Υ1(x) ≥ Ῠ1(y),Υ6(x) ≥ Ῠ6(y),Υ2(x) ≤ Ῠ2(y), and Υ5(x) ≤ Ῠ5(y). Given that y ∈
∂1(KA + x) ∩ X , the first inequality holds because Υ1(x) = κ1x1x3 ≥ κ1y1y3 = κ̆1y1y3 =
Ῠ1(y), the second inequality holds because Υ6(x) = κ6x1 = κ6y1 = κ̆6y1 = Ῠ6(y), the
third inequality holds because Υ2(x) = κ2x4 ≤ κ2y4 = κ̆2y4 = Ῠ2(y), and the fourth
inequality holds because Υ5(x) = κ5 ≤ κ̆5 = Ῠ5(y). Secondly, we consider x ∈ X and
y ∈ ∂2(KA + x) ∩ X = {w ∈ X | x1 ≤ w1, x2 = w2, x3 ≥ w3, x4 ≤ w4}. Given that
⟨A3•, v3⟩ = 1 and ⟨A3•, v4⟩ = −1, we need to check that Υ4(x) ≥ Ῠ4(y) and Υ3(x) ≤ Ῠ3(y).
The first inequality holds because Υ4(x) = κ4x2x3 ≥ κ4y2y3 = κ̆4y2y3 = Ῠ4(y) and the
second inequality holds because Υ3(x) = κ3x4 ≤ κ3y4 = κ̆3y4 = Ῠ3(y). Finally, consider
x ∈ X and y ∈ ∂3(KA + x) ∩ X = {w ∈ X | x1 ≤ w1, x2 ≤ w2, x3 = w3, x4 = w4}.
Since ⟨A3•, v1⟩ = ⟨A3•, v4⟩ = 1 and ⟨A3•, v2⟩ = ⟨A3•, v3⟩ = −1, we need to check that
Υ2(x) ≥ Ῠ2(y), Υ3(x) ≥ Ῠ3(y), Υ1(x) ≤ Ῠ1(y), and Υ4(x) ≤ Ῠ4(y). Indeed, we have that
Υ2(x) = κ2x4 = κ2y4 = κ̆2y4 = Ῠ2(y), Υ3(x) = κ3x4 = κ3y4 = κ̆3y4 = Ῠ3(y), Υ1(x) =
κ1x1x3 ≤ κ1y1y3 = κ̆1y1y3 = Ῠ1(y), and Υ4(x) = κ4x2x3 ≤ κ4y2y3 = κ̆4y2y3 = Ῠ4(y).
Thus, all of the hypothesis of Theorem 3.2 are verified, and so, for each pair x◦, x̆◦ ∈ X

satisfying x◦ ≼A x̆◦, there exists a probability space (Ω,F ,P) with two Markov chains
X = {X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} associated with Υ and Ῠ, respectively, such that

X(0) = x◦, X̆(0) = x̆◦ and P
[
X(t) ≼A X̆(t) for every t ≥ 0

]
= 1. The Markov chains X, X̆

are irreducible and positive recurrent (see SI - Section S.1.1). Furthermore, for the increasing
set in X with respect to ≼A defined as Γ(x) = {w ∈ X |x1 ≤ w1, x2 ≤ w2, x3 ≥ w3, x4 ≤ w4},
we can apply Theorem 3.5 and obtain that

∑
w∈Γ(x) πw ≤

∑
w∈Γ(x) π̆w. Loosely speaking,

this means that increasing κ5 causes the stationary distribution π(x) to shift mass towards
states characterized by lower x3 and higher x1, x2 and x4.
For this specific case, in which we have a stochastic chemical reaction network associ-

ated with a complex balanced dynamical system, an explicit expression for the stationary
distribution can be obtained by applying Theorem 4.1 in Anderson et al. [2]. Analysis of
this formula would provide results in agreement with the ones obtained by applying the
theoretical tools developed in this paper. Specifically, πx can be written as a product of
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two Poisson distributions and a binomial distribution, i.e.,

πx =

(
e−c1 c

x1
1

x1!

)(
e−c2 c

x2
2

x2!

)(
Etot!

cx3
3

x3!

cx4
4

x4!

)
, x ∈ X , (4.5)

in which (c1, c2, c3, c4) represents the complex balanced equilibrium for the deterministic
model, where

c1 =
κ5
κ6

, c2 =
κ1κ3κ5
κ2κ4κ6

, c3 =
1

1 + κ1κ5
κ2κ6

, and c4 =
κ1κ5
κ2κ6

1 + κ1κ5
κ2κ6

. (4.6)

In most cases, it is not possible to derive an analytical formula for the stationary distribu-
tion, but our theorems can still be applied and then monotonicity properties for π can still
be determined even without an explicit expression for π. For instance, in the context of the
above example, if the infinitesimal transition rates Υi do not follow mass-action kinetics, the
deficiency zero theorem and Theorem 4.1 in Anderson et al. [2] do not apply. Nevertheless,
our theory can still be easily applied to study monotonicity properties for sample paths and
stationary distributions.
As pointed out in Remark 3.4, we can also exploit our theoretical tools to determine

monotonicity properties of the system with respect to the initial conditions. For this,
suppose that κ̆i = κi for i = 1, 2, 3, 4, 5, 6. Then, by the analysis above, Theorem 3.2 holds
and yields monotonically (with preorder induced by the matrix A) with respect to the initial
conditions.

Example 4.3. A network topology arising in Braess’ paradox A natural question in
synthetic biology may involve the prediction of whether an engineered biological circuit with
additional reactions will lead to the desired effect of accelerating the process or unexpected
behaviors. Now, we consider an example inspired by Braess’ paradox, which arises from
transportation networks, where adding one or more roads to a road network can slow down
overall traffic flow through the network (see Braess [7] and see also a related state-dependent
queuing network model in Calvert et al. [9]). A simple network of this type is one where
there are two routes to get from the start to the final destination, and adding a linkage
road between the routes can in some cases increase travel times. Fig. 4(a) shows a reaction
network analogue of the Braess’ network topology. Of course, our chemical reaction network
is a little different from a road network since there is no congestion nor competition between
molecules and pathways are chosen randomly with certain probabilities instead of routing
decisions being based on the number of cars on the routes. Nevertheless, the example
considered here is interesting because adding a reaction to cross-link two pathways might
intuitively be interpreted as a detour and be expected to increase the time to the final
destination, while this is sometimes not the case in this example.
The chemical reaction system is depicted in Fig. 4(a), which involves four species

S = {S1, S2,S3,S4}. The state of the Markov chain is (nS1 , nS2 , nS3 , nS4) where nSi is
the number of copies of Si for i = 1, 2, 3, 4. The potential transitions of the Markov chain
are in five possible directions, vj , j = 1, ..., 5, where v1 = (−1, 1, 0, 0)T , v2 = (0,−1, 0, 1)T ,
v3 = (−1, 0, 1, 0)T , v4 = (0, 0,−1, 1)T and v5 = (0,−1, 1, 0)T (see SI-Section S.2.2 for the
derivation of the vj , j = 1, ..., 5). Fixing an integer Stot > 0, the associated stoichiometric
compatibility class is z + L with z = (Stot, 0, 0, 0) and L := span{v1, v2, v3, v4, v5}. The set
z+L is a three-dimensional affine subspace of four dimensional space. We choose the state
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(a) (b) (c)

1

2

3

4

5

Figure 4: Circuit inspired by Braess’ paradox and corresponding Markov chain. (a)
Chemical reaction system. The numbers on the arrows correspond to the associated reactions.
(b) Projected Markov chain graph for one stoichiometric compatibility class with the conservation
law nS1 + nS2 + nS3 + nS4 = Stot = 2. The projection takes a state x = (nS1 , nS2 , nS3 , nS4) =
(Stot − nS2

− nS3
− nS4

, nS2
, nS3

, nS4
) ∈ X to x̄ = (nS2

, nS3
, nS4

). Here, we use black dots to
represent the states and red (blue, green) arrows to represent transitions in directions associated
with the reactions represented by the red (blue, green) arrows in (a). We use orange to highlight the
projection of the region KA + x intersected with the stoichiometric compatibility class, where A is
defined in (4.3). (c) The projections of the directions of the possible transitions of the Markov chain
within a stoichiometric compatibility class. The transition rates Υi(x), i = 1, 2, 3, 4, 5, are given in
(4.7).

space of our Markov chain to be X = (z+L)∩Z4
+ = {(x1, x2, x3, x4) ∈ Z4

+|x1+x2+x3+x4 =
Stot}. The constraint introduced in the last expression for X follows from the conservation
law in this chemical reaction system, that is nS1 + nS2 + nS3 + nS4 = Stot. Given a generic
state x = (x1, x2, x3, x4), following mass-action kinetics, the infinitesimal transition rates
are

Υ1(x) = κ1x1, Υ2(x) = κ2x2, Υ3(x) = κ3x1, Υ4(x) = κ4x3, Υ5(x) = κ5x2. (4.7)

For the purpose of illustration, Fig. 4(b) shows the three dimensional projection of the
Markov chain graph for one stoichiometric compatibility class.
A natural question is how the time T(0,0,0,Stot) to reach the state (0, 0, 0,Stot) from

(Stot, 0, 0, 0) depends on the rate constants κ1,κ2,κ3,κ4 and κ5. For this, we use Theorem
3.4. Let

A =

[
−1 0 0 0
0 −1 −1 0

]
.

The matrix A here defines a preorder that is not a partial order of X . For x ∈ X ,
consider infinitesimal transition rates Ῠ1(x), Ῠ2(x), Ῠ3(x), Ῠ4(x) and Ῠ5(x) defined as for
Υ1(x),Υ2(x),Υ3(x),Υ4(x) and Υ5(x), but with κ̆i in place of κi where κ̆i = κi, for i =
1, 2, 3, 4, and κ̆5 ̸= κ5. Suppose that κ2 = κ4. Now, let us verify that the assumptions of
Theorem 3.3 hold. Condition (i) holds since Av1 = (1,−1)T , Av2 = (0, 1)T , Av3 = (1,−1)T ,
Av4 = (0, 1)T and Av5 = (0, 0)T . Condition (ii) of Theorem 3.3 also holds, as shown in the
paragraph below.
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Verification of condition (ii) of Theorem 3.3. Let x ∈ X , and first consider x ∈ X
and y ∈ ∂1(KA+x)∩X , where ∂1(KA+x)∩X = {w ∈ X |x1 = w1, x2+x3 ≥ w2+w3, x4 ≤
w4}. Given that Av2 = Av4, Av1 = Av3, and ⟨A1•, v1⟩ = ⟨A1•, v3⟩ = 1, we need to check that
Υ1(x) + Υ3(x) ≤ Ῠ1(y) + Ῠ3(y). Since y ∈ ∂1(KA + x) ∩ X , then Υ1(x) = κ1x1 = κ1y1 =
κ̆1y1 = Ῠ1(y) and Υ3(x) = κ3x1 = κ3y1 = κ̆3y1 = Ῠ3(y), and so the desired inequality
holds with equality. Secondly, consider y ∈ ∂2(KA + x) ∩ X = {w ∈ X | x1 ≥ w1, x2 + x3 =
w2 + w3, x4 ≤ w4}. Given that Av2 = Av4, Av1 = Av3, and ⟨A1•, v1⟩ = ⟨A1•, v3⟩ = −1
and ⟨A1•, v2⟩ = ⟨A1•, v4⟩ = 1, we need to check that Υ2(x) + Υ4(x) ≤ Ῠ2(y) + Ῠ4(y) and
Υ1(x) + Υ3(x) ≥ Ῠ1(y) + Ῠ3(y). For x ∈ X and y ∈ ∂2(KA + x) ∩ X , we have that
Υ2(x) + Υ4(x) = κ2x2 + κ4x3 = κ2(x2 + x3) ≤ κ2(y2 + y3) = κ̆2(y2 + y3) = Ῠ2(y) + Ῠ4(y)
and Υ1(x) = κ1x1 ≥ κ1y1 = κ̆1y1 = Ῠ1(y), Υ3(x) = κ3x1 ≥ κ3y1 = κ̆3y1 = Ῠ3(y).
Thus, all hypotheses of Theorem 3.3 hold, and so for every x◦, x̆◦ ∈ X where x◦ ≼A x̆◦

there there exists a probability space (Ω,F ,P) with two Markov chains X = {X(t), t ≥ 0}
and X̆ = {X̆(t), t ≥ 0} associated with Υ and Ῠ, respectively, such that X(0) = x◦, X̆(0) =

x̆◦ and P
[
X(t) ≼A X̆(t) for every t ≥ 0

]
= 1. Let Γ = {(0, 0, 0,Stot)}. This is an increasing

set in X with respect to the relation ≼A. Let T(0,0,0,Stot), respectively T̆(0,0,0,Stot) be the first

time that the Markov chain X, respectively X̆, reaches the set Γ. Then, by Theorem 3.4,
if X(0) = X̆(0) = (Stot, 0, 0, 0), we have that T̆(0,0,0,Stot) ≼st T(0,0,0,Stot). By interchanging

Ῠ5 and κ5, we can conclude that T̆(0,0,0,Stot) and T(0,0,0,Stot) are stochastically equivalent
(equal in distribution). It follows that the mean first passage time from (Stot, 0, 0, 0) to
(0, 0, 0,Stot) is insensitive to κ5 when κ2 = κ4. This is naively counter-intuitive: since the
fifth reaction re-routes some samples to another state where the last reaction has the same
rate constant as the final reaction without re-routing, it should take a longer expected time
since re-routing also takes some time. However, in reality, the presence of the fifth reaction
also fastens the rate to transition from S2, and this balances the time of re-routing. Most
importantly, our theorem is able to capture this result without explicitly calculating the
mean first passage time and allows us to reach the conclusion easily. We expect that in
more complex situations, our method will be a valuable tool to establish monotonicity and
insensitivity results.
Given that the Markov chain has one absorbing state per stoichiometric compatibility

class, the stationary distribution for a given stoichiometric compatibility class is trivial,
and hence so too are its monotonicity properties.
Theorem S.2 allows us to conclude further interesting properties for this network. Using

two other A matrices (see SI - Section S.3.2), we can conclude that adding reaction 5○
(changing from κ5 = 0 to κ5 > 0) causes the mean first passage time from (Stot, 0, 0, 0) to
(0, 0, 0,Stot) to increase if κ2 > κ4 or to decrease if κ2 < κ4. More explicitly, this shows
that there can be opposing effects on the mean first passage time with different choices of
κ2 and κ4 when reaction 5○ is added.

Example 4.4. Epigenetic regulation by chromation modifications
Epigenetic regulation is the modification of the DNA structure, due to chromatin mod-
ifications, that determines if a gene is active or repressed. There are several chromatin
modifications that can affect the DNA structure. Here, we will focus only on histone modi-
fications. More precisely, we consider a ubiquitous model for a histone modification circuit
(see Dodd et al. [11] and Bruno et al. [8]). The species considered are nucleosomes that are
unmodified (D), modified with repressive modifications (DR), and modified with activating
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Figure 5: Histone modification circuit and corresponding Markov chain. (a) Original
chemical reaction system. The numbers on the arrows correspond to the associated reactions. (b)
Markov chain graph associated with the reduced chemical reaction system. Here, we consider Dtot =
3, we use black dots to represent the states and red double-ended arrows to represent transitions in
both directions. We use orange to highlight the region (KA + x) ∩ X , with A defined in (4.11). (c)
Direction of the possible transitions of the Markov chains, whose rates are given in equation (4.10).

modifications (DA), and, in terms of molecular interactions, each histone modification au-
tocatalyzes itself and promotes the erasure of the other one. The chemical reaction system
considered is depicted in Fig. 5(a). The amount of each species is represented by nD, nDR

and nDA , respectively, and their sum is conserved, that is nD+nDR +nDA = Dtot, with Dtot

representing the total number of nucleosomes within the gene.
By fixing an integer Dtot > 0, we fix one stoichiometric compatibility class. The projected

process (X1, X2)(·) = (nDR , nDA) is still a continuous-time Markov chain, and in this ex-
ample we choose to apply our theory to this reduced system. This is the same as studying
the reduced chemical reaction system defined as follows:

1○ ∅ −−→ DA, 2○ ∅ −−→ DR, 3○ DA −−→ ∅, 4○ DR −−→ ∅, (4.8)

with two species S = {DR,DA} and four reactions R = {(v−1 , v
+
1 ), (v

−
2 , v

+
2 ), (v

−
3 , v

+
3 ), (v

−
4 , v

+
4 )},

where v−1 = v−2 = v+3 = v+4 = (0, 0)T , v+2 = v−4 = (1, 0)T , v+1 = v−3 = (0, 1)T , and with
associated propensity functions of non mass-action type defined as follows:

Λ(v−1 ,v+1 )(x) = (Dtot − (x1 + x2)) (κ1a + κ1bx2) ,

Λ(v−2 ,v+2 )(x) = (Dtot − (x1 + x2)) (κ2a + κ2bx1) , (4.9)

Λ(v−3 ,v+3 )(x) = x2 (κ3a + x1κ3b) , Λ(v−4 ,v+4 )(x) = x1µ (cκ3a + x2κ3b) ,

in which κ1a, κ1b, κ3a, κ3b, κ2a, κ2b, κ4a = µcκ3a, κ4b = µκ3b are the rate constants that go
with each of the reactions shown in Fig. 5(a), respectively.
The state space for the Markov chain is X = {(x1, x2) ∈ Z2

+ | x1 + x2 ≤ Dtot}. Given
a generic state x = (x1, x2) ∈ X , the potential transitions of the Markov chain are in four
possible directions vj = v+j − v−j , j = 1, 2, 3, 4, that can be written as v1 = (0, 1)T , v2 =

(1, 0)T , v3 = (0,−1)T and v4 = (−1, 0)T , with associated infinitesimal transition rates

Υ1(x) = Λ(v−1 ,v+1 )(x), Υ2(x) = Λ(v−2 ,v+2 )(x), Υ3(x) = Λ(v−3 ,v+3 )(x), Υ4(x) = Λ(v−4 ,v+4 )(x).

(4.10)
We are interested in determining how the asymmetry of the system, represented by the
parameter µ affects the stochastic behavior of the system. In particular, we will focus
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on studying the stationary distribution and the time to memory loss of the active and
repressed state, defined as the mean first passage time to reach the fully repressed state (r =
(nDR , nDA) = (Dtot, 0)), starting from the fully active state (a = (nDR , nDA) = (0,Dtot)),
and vice versa (i.e., ha,r = Ea[Tr] and hr,a = Er[Ta]). To this end, we first verify that we
can apply Theorem 3.2.
Let

A =

[
−1 0
0 1

]
. (4.11)

For x ∈ X , KA+x = {w ∈ R2 |x ≼A w} and (KA+x)∩X = {w ∈ X |x ≼A w}. See Fig. 5(b)
for an example of X and (KA + x) ∩ X for Dtot = 3. We introduce infinitesimal transition
rates Ῠ1(x), Ῠ2(x), Ῠ3(x) and Ῠ4(x) defined as for Υ1(x),Υ2(x),Υ3(x) and Υ4(x), with all
the parameters having the same values except that µ is replaced by µ̆, where µ̆ ≥ µ. Since
Av1 = (0, 1)T , Av2 = (−1, 0)T , Av3 = (0,−1)T and Av4 = (1, 0)T , we have that condition
(i) of Theorem 3.2 holds. Condition (ii) also holds, as shown in the paragraph below.
Verification of condition (ii) of Theorem 3.2. Consider x ∈ X and y ∈ ∂1(KA+x)∩
X , where ∂1(KA+x)∩X = {w ∈ X |x1 = w1, x2 ≤ w2}. Since ⟨A1•, v4⟩ = 1 and ⟨A1•, v2⟩ =
−1, we must check that Υ2(x) ≥ Ῠ2(y) and Υ4(x) ≤ Ῠ4(y). Since y ∈ ∂1(KA + x) ∩ X
implies x1 = y1 and x2 ≤ y2, we have Υ2(x) = (Dtot − (x1 + x2)) (κ2a + κ2bx1) ≥ (Dtot −
(y1 + y2)) (κ2a + κ2by1) = Ῠ2(y) and Υ4(x) = x1µ (cκ3a + x2κ3b) ≤ y1µ (cκ3a + y2κ3b) ≤
y1µ̆ (cκ3a + y2κ3b) = Ῠ4(y), and so both inequalities hold. Similarly, for x ∈ X and y ∈
∂2(KA + x) ∩ X = {w ∈ X | x1 ≥ w1, x2 = w2}, since ⟨A2•, v1⟩ = 1 and ⟨A2•, v3⟩ = −1,
we need to check that Υ1(x) ≤ Ῠ1(y) and Υ3(x) ≥ Ῠ3(y). Indeed, Υ1(x) = (Dtot − (x1 +
x2)) (κ1a + κ1bx2) ≤ (Dtot−(y1+y2)) (κ1a + κ1by2) = Ῠ1(y) and Υ3(x) = x2 (κ3a + x1κ3b) ≥
y2 (κ3a + y1κ3b) = Ῠ3(y).
Since all of the hypotheses of Theorem 3.2 hold, for each pair x◦, x̆◦ ∈ X satisfying x◦ ≼A

x̆◦, there exists a probability space (Ω,F ,P) with two Markov chainsX = {X(t), t ≥ 0} and
X̆ = {X̆(t), t ≥ 0} associated with Υ and Ῠ, respectively, such that X(0) = x◦, X̆(0) = x̆◦

and P
[
X(t) ≼A X̆(t) for every t ≥ 0

]
= 1.

We can also apply Theorem 3.5. The Markov chains X and X̆ are irreducible and, having
only finitely many states, are positive recurrent. Based on the order ≼A we introduced, the
fully active state a = (0,Dtot) is maximal in X and the fully repressed state r = (Dtot, 0)
is minimal in X . Then, by Theorem 3.5, we can conclude that πa ≤ π̆a and πr ≥ π̆r. This
implies that increasing µ increases the probability of the system in steady-state to be in
the active state a to the detriment of the repressed state r (and vice versa for decreasing
µ). We can also apply Theorem 3.4. Since {a} is increasing and {r} is decreasing, then
by Theorem 3.4, h̆r,a = Er[T̆a] ≤ Er[Ta] = hr,a and ha,r = Ea[Tr] ≤ Ea[T̆r] = h̆a,r. Since
the only difference between the two systems was that µ ≤ µ̆, these results imply that the
time to memory loss of the active state increases for higher values of µ, while the time to
memory loss of the repressed state decreases for higher values of µ.

Example 4.5. Epigenetic regulation by chromatin modifications with positive
TF-enabled autoregulation
Now, we consider the histone modification circuit considered in the previous example with
an additional positive autoregulation loop. For this, we assume that a protein expressed by
the gene of interest recruits writers for the activating histone modifications. Consequently,
we introduce the gene product P as an additional species for our system and add the
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Figure 6: Histone modification circuit with positive TF-enabled autoregulation and
corresponding Markov chain. (a) Original chemical reaction system. The numbers on the
arrows correspond to the associated reactions. (b) Markov chain graph. Here, we consider Dtot = 3,
we use black dots to represent the states and red double-ended arrows to represent transitions in
both directions associated with the reactions represented by the red arrows in (a). Similarly we use
blue double-ended (single-ended) arrows to represent transitions in both directions (in one direction)
associated with the reactions represented by the blue arrows in (a). We use blue dotted lines to show
that, in the vertical direction, the Markov chain has countably infinitely many states, connected by
transitions in both directions. Finally, we use orange to highlight the region KA+x intersected with
the state space X , with A defined in (4.15). (c) Direction of the possible transitions of the Markov
chain starting from a state x, whose rates are defined in equation (4.14).

following reactions to the ones shown in Fig. 5(a):

5a○ DA −−→ DA + P, 6a○ P −−→ ∅. (4.12)

Furthermore, given the P-enabled autoregulation loop (Fig. 6(a)), let us consider the rate
constant that goes with 1a○ in Fig. 5(a) as κ1a = κ01a + κ11ag(nP), with κ01a and κ11a rep-
resenting the rate constants that go with the DA basal de-novo establishment process and
with the DA de-novo establishment process enhanced by nP, respectively, and g(nP) rep-
resenting a non-negative, bounded, monotonically increasing function of nP (see Bruno et
al. [8], Section 3.4).
Here, we are interested in determining how the reaction rate constant κ5a affects the

reactivation time of the gene. As before, we have the conservation law nD + nDR + nDA =
Dtot, with Dtot representing the total number of nucleosomes within the gene, and by
fixing Dtot > 0, we fix one stoichiometric compatibility class and the projected process
(X1, X2, X3)(·) = (nDR , nDA , nP) is a continuous-time Markov chain. This is the same as
studying the reduced chemical reaction system:

1○ ∅ −−→ DA, 2○ ∅ −−→ DR, 3○ DA −−→ ∅,
4○ DR −−→ ∅, 5○ DA −−→ DA + P, 6○ P −−→ ∅,

(4.13)

with set of species S = {DR,DA,P}, set of reactions R = {(v−1 , v
+
1 ), (v

−
2 , v

+
2 ), (v

−
3 , v

+
3 ),

(v−4 , v
+
4 ), (v

−
5 , v

+
5 ), (v

−
6 , v

+
6 )}, where v−1 = v−2 = v+3 = v+4 = v+6 = (0, 0, 0)T , v+2 = v−4 =
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(1, 0, 0)T , v+1 = v−3 = v−5 = (0, 1, 0)T , v+5 = (0, 1, 1)T , v−6 = (0, 0, 1)T , and with associated
propensity functions of non mass-action type defined as follows:

Λ(v−1 ,v+1 )(x) = (Dtot − (x1 + x2))
(
κ01a + κ11ag(x3) + κ1bx2

)
,

Λ(v−2 ,v+2 )(x) = (Dtot − (x1 + x2)) (κ2a + κ2bx1) , Λ(v−3 ,v+3 )(x) = x2 (κ3a + x1κ3b) ,

Λ(v−4 ,v+4 )(x) = x1µ (cκ3a + x2κ3b) , Λ(v−5 ,v+5 )(x) = κ5ax2, Λ(v−6 ,v+6 )(x) = κ6ax3,

in which κ5a and κ6a are the rate constants that go with reactions 5a○ and 6a○ in (4.12),
respectively, and all the other rate constants are defined as for (4.9).
The state space for the Markov chain is X = {(x1, x2, x3) ∈ Z3

+ | x1 + x2 ≤ Dtot}. Given
a generic state x = (x1, x2, x3), the transitions of the Markov chain are in six possible di-
rections vj = v+j − v−j , j ∈ {1, ..., 6}, that can be written as v1 = (0, 1, 0)T , v2 = (1, 0, 0)T ,

v3 = (0,−1, 0)T , v4 = (−1, 0, 0)T , v5 = (0, 0, 1)T , v6 = (0, 0,−1)T , with associated infinites-
imal transition rates:

Υ1(x) = Λ(v−1 ,v+1 )(x), Υ2(x) = Λ(v−2 ,v+2 )(x), Υ3(x) = Λ(v−3 ,v+3 )(x),

Υ4(x) = Λ(v−4 ,v+4 )(x), Υ5(x) = Λ(v−5 ,v+5 )(x), Υ6(x) = Λ(v−6 ,v+6 )(x).
(4.14)

As mentioned before, we are interested in determining how the protein production rate κ5a
affects the reactivation time of the gene, defined as hr,Θ = Er[TΘ], where r = (Dtot, 0, 0)
and Θ = {w ∈ X |w = (0,Dtot, i), i ∈ Z+} corresponds to the set of states characterized by
the fully active state nDA = Dtot. We first check that the assumptions of Theorem 3.2 hold.
Let

A =

−1 0 0
0 1 0
0 0 1

 . (4.15)

For x ∈ X , x ≼A y and the set KA + x = {y ∈ R3 | x ≼A y}. For our example, the region
(KA+x)∩X is depicted in orange in Fig. 6(b). We introduce infinitesimal transition rates
Ῠ1(x), Ῠ2(x), Ῠ3(x), Ῠ4(x), Ῠ5(x) and Ῠ6(x) defined as for Υ1(x),Υ2(x),Υ3(x),Υ4(x),Υ5(x)
and Υ6(x), with all the parameters having the same values except that κ5a is replaced by
κ̆5a > κ5a. Condition (i) of Theorem 3.2 holds since Av1 = (0, 1, 0)T , Av2 = (−1, 0, 0)T ,
Av3 = (0,−1, 0)T , Av4 = (1, 0, 0)T , Av5 = (0, 0, 1)T , Av6 = (0, 0,−1)T . Condition (ii) also
holds, as shown in the paragraph below.
Verification of condition (ii) of Theorem 3.2. First consider x ∈ X and y ∈

∂1(KA + x) ∩ X = {w ∈ X | x1 = w1, x2 ≤ w2, x3 ≤ w3}. Since ⟨A1•, v4⟩ = 1 and
⟨A1•, v2⟩ = −1, we need to check that Υ4(x) ≤ Ῠ4(y) and Υ2(x) ≥ Ῠ2(y). Since x1 =
y1, x2 ≤ y2, x3 ≤ y3, we have that Υ4(x) = x1µ (cκ3a + x2κ3b) ≤ y1µ (cκ3a + y2κ3b) = Ῠ4(y)
and Υ2(x) = (Dtot − (x1 + x2)) (κ2a + κ2bx1) ≥ (Dtot − (y1 + y2)) (κ2a + κ2by1) = Ῠ2(y).
Secondly, consider x ∈ X and y ∈ ∂2(KA + x) ∩ X = {w ∈ X | x1 ≥ w1, x2 = w2, x3 ≤
w3}. Since ⟨A2•, v1⟩ = 1 and ⟨A2•, v3⟩ = −1, we need to check that Υ1(x) ≤ Ῠ1(y)
and Υ3(x) ≥ Ῠ3(y). Since x1 ≥ y1, x2 = y2, x3 ≤ y3, we have Υ1(x) = (Dtot − (x1 +
x2))

(
κ01a + κ11ag(x3) + κ1bx2

)
≤ (Dtot − (y1 + y2))

(
κ01a + κ11ag(y3) + κ1by2

)
= Ῠ1(y) and

Υ3(x) = x2 (κ3a + x1κ3b) ≥ y2 (κ3a + y1κ3b) = Ῠ3(y). Finally, consider x ∈ X and y ∈
∂3(KA+x)∩X = {w ∈ X |x1 ≥ w1, x2 ≤ w2, x3 = w3}. Since ⟨A3•, v5⟩ = 1 and ⟨A3•, v6⟩ =
−1, we must check that Υ5(x) ≤ Ῠ5(y) and Υ6(x) ≥ Ῠ6(y). Since x1 ≥ y1, x2 ≤ y2, x3 = y3,
we obtain Υ5(x) = κ5ax2 ≤ κ5ay2 ≤ κ̆5ay2 = Ῠ5(y) and Υ6(x) = κ6ax3 = κ6ay3 = Ῠ6(y).
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Since all the hypotheses of Theorem 3.2 hold, for each x◦, x̆◦ ∈ X satisfying x◦ ≼A x̆◦,
there exists a probability space (Ω,F ,P) with two Markov chains X = {X(t), t ≥ 0} and
X̆ = {X̆(t), t ≥ 0} associated with Υ and Ῠ, respectively, such that X(0) = x◦, X̆(0) = x̆◦

and P
[
X(t) ≼A X̆(t) for every t ≥ 0

]
= 1.

Furthermore, since the hypotheses of Theorem 3.2 hold, we can also apply Theorem 3.4.
Specifically, for r = (Dtot, 0, 0) and Θ = {y ∈ X |y = (0,Dtot, i), i ∈ Z+}, since Θ is an
increasing set in X with respect to the relation ≼A, then hr,Θ ≥ h̆r,Θ. This implies that,
assuming that the only difference between the two systems is in the value of the protein
production rate parameter, κ5a, higher protein production rates reduce the mean reaction
time for the gene.

5 Proofs of the Main Results

5.1 Proof of Theorem 3.1.

Consider a non-empty set X ⊆ Zd
+, a collection of distinct vectors v1, . . . , vn in Zd \{0} and

two collections of non-negative functions on X , Υ = (Υ1, . . . ,Υn) and Ῠ = (Ῠ1, . . . , Ῠn),
such that (3.3) holds. Let Q = (Qx,y)x,y∈X and Q̆ = (Q̆x,y)x,y∈X denote the infinitesimal

generators for the continuous-time Markov chains associated with Υ and Ῠ, respectively.
In the following, let A ∈ Rm×d be a matrix with non-zero rows and consider the relation
≼A as defined in Definition 3.1.
For the proof of Theorem 3.1, we first assume that

sup
x∈X

Υj(x) <∞ and sup
x∈X

Ῠj(x) <∞ for every 1 ≤ j ≤ n. (5.1)

This restriction will be relaxed later. Then, we define a constant λ > 0 and a pair of
functions Φλ and Φ̆λ, which will be key to our construction of the coupled processes X and
X̆. Let λ > 0 such that:

λ > nmax

sup
x∈X

n∑
j=1

Υj(x), sup
x∈X

n∑
j=1

Ῠj(x)

 . (5.2)

Note that both
Υj(x)

λ and
Ῠj(x)

λ are less than 1
n for every x ∈ X and 1 ≤ j ≤ n. For x ∈ X ,

consider the sets

Ij(x) :=

[
j − 1

n
,
j − 1

n
+

Υj(x)

λ

)
, 1 ≤ j ≤ n. (5.3)

If Υj(x) = 0, then Ij(x) is the empty set. On the other hand, if Υj(x) > 0, then Ij(x) is an
interval that is a strict subset of [ j−1

n , j
n). Define the function Φλ(·, ·) : X × [0, 1] −→ X by

Φλ(x, u) := x+
n∑

j=1

vj1Ij(x)(u), x ∈ X , u ∈ [0, 1]. (5.4)

For x ∈ X , the sets I1(x), . . . , In(x) are mutually disjoint and so for any u ∈ [0, 1] either
Φλ(x, u) = x or Φλ(x, u) = x+ vj for some 1 ≤ j ≤ n. In the second case, this will happen
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if and only if u ∈ Ij(x) for the corresponding index j. The latter condition implies that
Ij(x) ̸= ∅, hence by (5.3), Υj(x) > 0 and by (3.3), x+ vj ∈ X .
This shows that Φλ(·, ·) is well-defined as an X -valued function. We define intervals

Ĭj(x), 1 ≤ j ≤ n, x ∈ X and a function Φ̆λ : X × [0, 1] −→ X in an analogous manner to
that above, where Φ̆λ is defined as in (5.4), but with the intervals Ij(x) replaced by Ĭj(x),
where these are defined as in (5.3), but with Υj(x) replaced by Ῠj(x).

Lemma 5.1. Suppose that x, y ∈ X are such that x ≼A y and the following hold:

Ῠj(y) ≤ Υj(x), for each 1 ≤ j ≤ n such that y + vj ∈ X \ (KA + x), (5.5)

and

Ῠj(y) ≥ Υj(x), for each 1 ≤ j ≤ n such that x+ vj ∈ X and y /∈ KA + x+ vj . (5.6)

Then, for each u ∈ [0, 1],
Φλ(x, u) ≼A Φ̆λ(y, u). (5.7)

Proof. First, we note that Φλ, Φ̆λ have the following property: for every u ∈ [0, 1] and
1 ≤ j ≤ n,

if Φλ(x, u) = x+ vj , then Φ̆λ(y, u) ∈ {y, y + vj}, (5.8)

since Ij(x), Ĭj(y) ⊆ [ j−1
n , j

n). Similarly,

if Φ̆λ(y, u) = y + vj , then Φλ(x, u) ∈ {x, x+ vj}. (5.9)

Furthermore, if Ῠj(y) ≥ Υj(x), then

Φλ(x, u) = x+ vj implies that Φ̆λ(y, u) = y + vj , (5.10)

since under this condition, Ij(x) ⊆ Ĭj(y). Similarly, if Ῠj(y) ≤ Υj(x), then

Φ̆λ(y, u) = y + vj implies that Φλ(x, u) = x+ vj . (5.11)

Now, to prove (5.7), fix u ∈ [0, 1]. We consider two cases.

Case 1: Φ̆λ(y, u) = y + vj for some 1 ≤ j ≤ n.

Fix such an index j. Then, by (5.9), either Φλ(x, u) = x+ vj or Φλ(x, u) = x.

a) If Φλ(x, u) = x+vj , then, by (3.1), x+vj ≼A y+vj and therefore Φλ(x, u) ≼A Φ̆λ(y, u).

b) If Φλ(x, u) = x, then y + vj ∈ KA + x. To see this, we note that y + vj ∈ X by
(3.3) and since Ῠj(y) > 0 because Ĭj(y) ̸= ∅. Then, if y + vj /∈ KA + x, by (5.5), we
would have Ῠj(y) ≤ Υj(x), which would imply that Φλ(x, u) = x+ vj by (5.11). But
this contradicts the assumption that Φλ(x, u) = x. Thus, y + vj ∈ KA + x and so
Φλ(x, u) = x ≼A y + vj = Φ̆λ(y, u).

Case 2: Φ̆λ(y, u) = y. Again, we consider two subcases.

a) If Φλ(x, u) = x, then (5.7) holds, since x ≼A y by assumption.
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b) If Φλ(x, u) = x+ vj for some 1 ≤ j ≤ n, then y ∈ KA + x+ vj for the corresponding
value of j. To see this, fix the value of j for which Φλ(x, u) = x+ vj and notice that
x+ vj ∈ X by (3.3) and since Υj(x) > 0. If y /∈ KA + x+ vj , then by (5.6) we would
have Υj(x) ≤ Ῠj(y), which would imply that Φ̆λ(y, u) = y + vj . This contradicts
the assumption that Φ̆λ(y, u) = y. Thus, we must have y ∈ KA + x + vj and then
Φλ(x, u) = x+ vj ≼A y = Φ̆λ(y, u).

Now that all these preliminaries have been established under assumption (5.1), we proceed
with the main part of the proof of Theorem 3.1 with this assumption. For this proof, we
assume that all of the conditions of Theorem 3.1 hold and in addition that condition (5.1)
holds. The latter ensures that the pair of continuous-time Markov chains with infinitesimal
generators Q and Q̆ are uniformizable (see Chapter 2 in Keilson [21]). With λ > 0 as
in (5.2), the (possibly infinite) matrices 4 Pλ(Q) := 1

λQ + I and Pλ(Q̆) := 1
λQ̆ + I are

stochastic 5, where I = (Ix,y)x,y∈X is the identity matrix. Indeed, for x ∈ X , (Pλ(Q))x,x =
Qx,x

λ +1 = 1− |Qx,x|
λ ∈ [1− 1

n , 1], for y ̸= x, (Pλ(Q))x,y =
Qx,y

λ ∈ [0, 1
n ] and

∑
y∈X (Pλ(Q))x,y =∑

y∈X
1
λQx,y + 1 = 1.

Now, let x◦, x̆◦ ∈ X be such that x◦ ≼A x̆◦. Consider a probability space (Ω,F ,P) where
the following are defined:

(i) A Poisson process N = {N(t), 0 ≤ t <∞} of rate λ > 0.

(ii) A sequence of independent and identically distributed (i.i.d.) random variables U =
(Uk)k≥1 where each Uk has the uniform distribution on [0, 1].

Additionally, choose N to be independent of U . We construct two discrete-time processes,
Y = (Yk)k≥0 and Y̆ = (Y̆k)k≥0, by defining Y0 := x◦, Y̆0 := x̆◦, and for k ≥ 0,

Yk+1 := Φλ(Yk, Uk+1), Y̆k+1 := Φ̆λ(Y̆k, Uk+1). (5.12)

Then Y and Y̆ are discrete-time Markov chains with transition matrices Pλ(Q) and Pλ(Q̆),
respectively. Now, define the processes

X(t) := YN(t), X̆(t) := Y̆N(t), t ≥ 0. (5.13)

According to Section 2.1 in Keilson [21] (see the discussion around Equation 2.1.6), X and
X̆ are continuous-time Markov chains with infinitesimal generators Q and Q̆ respectively,
and with initial conditions X(0) = x◦ and X̆(0) = x̆◦.
In order to prove (3.7), it suffices to check that the following holds:

P[Yk ≼A Y̆k] = 1, for every k ≥ 0. (5.14)

Indeed, if this is true, then P[Yk ≼A Y̆k for every k ≥ 0] = 1 and therefore P[YN(t) ≼A

Y̆N(t) for every t ≥ 0] = 1. We will prove (5.14) by induction on k. We already know that

x◦ ≼A x̆◦ and so (5.14) holds for k = 0. Now, assume P[Yk ≼A Y̆k] = 1 for some k ≥ 0.

4These “matrices” may have countably many rows and columns, in which case they could be considered
as operators on ℓ∞. For convenience, we still call them matrices here.

5Stochastic here means that all entries take values in [0, 1] and all row sums equal one.
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Since conditions (3.5) and (3.6) hold for every x, y ∈ X such that x ≼A y, by Lemma 5.1
we obtain that on a set of probability one, on which Yk ≼A Y̆k,

Yk+1 = Φλ(Yk, Uk+1) ≼A Φ̆λ(Y̆k, Uk+1) = Y̆k+1, (5.15)

and so (5.14) holds with k + 1 in place of k. This completes the induction step and so
Theorem 3.1 is proved whenever (5.1) holds.

For the case where (5.1) does not hold, we construct the corresponding continuous-time
Markov chains as a limit in distribution of appropriately coupled continuous-time Markov
chains with truncated propensity functions for which (5.1) holds. Many elements for this
case are similar to the previous case, although the use of Lemma 5.1 is different. We provide
the details below, where we assume that the hypotheses of Theorem 3.1 hold.
We consider truncations of the propensity functions Υ and Ῠ. More concretely, for x◦, x̆◦ ∈
X such that x◦ ≼A x̆◦, let M0 ≥ 1 be an integer such that ∥x◦∥∞, ∥x̆◦∥∞ ≤ M0. For every
integer M ≥ M0, consider the finite set XM := {x ∈ X | ∥x∥∞ ≤ M}, together with
the functions ΥM

j , ῨM
j : X −→ R+ defined by ΥM

j (x) := Υj(x)1XM
(x) and ῨM

j (x) :=

Ῠj(x)1XM
(x) for 1 ≤ j ≤ n and x ∈ X . We see that for every M ≥ M0, (3.3) holds

with the functions ΥM = (ΥM
1 , . . . ,ΥM

n ) and ῨM = (ῨM
1 , . . . , ῨM

n ) in place of Υ and Ῠ.
Also, since XM is a finite set, supx∈X ΥM

j (x) = supx∈XM
Υj(x) < ∞ and supx∈X ῨM

j (x) =

supx∈XM
Ῠj(x) <∞ for every 1 ≤ j ≤ n. Furthermore, by (3.5) and (3.6), we have that for

every pair x, y ∈ XM such that x ≼A y,

ῨM
j (y) ≤ ΥM

j (x), for every 1 ≤ j ≤ n such that y + vj ∈ X \ (KA + x), and

ῨM
j (y) ≥ ΥM

j (x), for every 1 ≤ j ≤ n such that x+ vj ∈ X and y /∈ KA + x+ vj .

(5.16)

Let QM and Q̆M denote the infinitesimal generators associated with ΥM and ῨM re-
spectively. We define an increasing sequence {λM}M≥M0 of positive numbers such that

λM −→ ∞ as M −→ ∞ and λM > nmax
{
supx∈X

∑n
j=1Υ

M
j (x), supx∈X

∑n
j=1 Ῠ

M
j (x)

}
for

every M ≥ M0. Define ΦλM
(·, ·), Φ̆λM

(·, ·) : X × [0, 1] −→ X as in (5.4), but with ΥM

and ῨM in place of Υ and Ῠ, respectively. Since (5.16) holds, applying Lemma 5.1 with
ΥM , ῨM , λM ,ΦλM

, Φ̆λM
in place of Υ, Ῠ, λ,Φλ, Φ̆λ yields that

ΦλM
(x, u) ≼A Φ̆λM

(y, u) for every x, y ∈ XM such that x ≼A y and u ∈ [0, 1]. (5.17)

Now, for each M ≥ M0 consider a probability space (ΩM ,FM ,PM ) where the following
are defined:

(i) A Poisson process NM = {NM (t), 0 ≤ t <∞} of rate λM > 0.

(ii) An i.i.d. sequence UM = (UM
k )k≥1 of uniform [0, 1] random variables.

Additionally, choose NM to be independent of UM . For every M ≥ M0, we construct
two discrete-time processes, Y M = (Y M

k )k≥0 and Y̆ M = (Y̆ M
k )k≥0, by defining Y M

0 := x◦,

Y̆ M
0 := x̆◦ and for k ≥ 0,

Y M
k+1 := ΦλM

(Y M
k , UM

k+1), Y̆ M
k+1 := Φ̆λM

(Y̆ M
k , UM

k+1). (5.18)
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Similarly to the previous case, Y M and Y̆ M are discrete-time Markov chains with transition
matrices PλM

(QM ) := 1
λM

QM + I and PλM
(Q̆M ) := 1

λM
Q̆M + I, respectively.

Now, we claim that for each M ≥M0:

PM
[
Y M
k∧SM ≼A Y̆ M

k∧SM for every k ≥ 0
]
= 1. (5.19)

where SM := inf{k ≥ 0 | Y M
k /∈ XM or Y̆ M

k /∈ XM}. In fact, (5.19) is equivalent to proving

that PM
[
Y M
k∧SM ≼A Y̆ M

k∧SM

]
= 1 for every k ≥ 0, which we do by induction. We already

know that Y M
0 ≼A Y̆ M

0 . Assuming the statement is true for some k ≥ 0, to establish it
for k + 1 we distinguish between two cases. First, on {SM ≤ k}, Y M

(k+1)∧SM = Y M
k∧SM ≼A

Y̆ M
k∧SM = Y̆ M

(k+1)∧SM , PM -a.s.. Second, on {SM > k}, Y M
k ∈ XM , Y̆ M

k ∈ XM , and by the

induction assumption, Y M
k ≼A Y̆ M

k , PM -a.s.. Applying Lemma 5.1, we obtain PM -a.s. on
{SM > k} that

Y M
(k+1)∧SM = Y M

k+1 = ΦλM
(Y M

k , UM
k+1) ≼A Φ̆λM

(Y̆ M
k , UM

k+1) = Y̆ M
(k+1)∧SM , (5.20)

where we have used (5.17).
Now, for each M ≥M0, we define the processes

XM (t) := Y M
NM (t), X̆M (t) := Y̆ M

NM (t), t ≥ 0. (5.21)

Then, XM and X̆M are continuous-time Markov chains with infinitesimal generators QM

and Q̆M respectively, and with initial conditions XM (0) = x◦ and X̆M (0) = x̆◦. Define
TM := inf{t ≥ 0 |XM (t) /∈ XM or X̆M (t) /∈ XM} and, because Y M and Y̆ M are the discrete
time skeletons for XM and X̆M , we have that PM -a.s.

TM = inf{t ≥ 0 |NM (t) = SM}. (5.22)

Then, it follows from (5.19) that

PM
[
XM (t ∧ TM ) ≼A X̆M (t ∧ TM ) for every t ≥ 0

]
= 1. (5.23)

We now prove that for every t ≥ 0,

PM [TM < t] −→ 0, as M −→∞. (5.24)

For this, let TM
XM := inf{t ≥ 0 |XM (t) /∈ XM} and TM

X̆M
:= inf{t ≥ 0 | X̆M (t) /∈ XM}. Since

TM = TM
XM ∧ TM

X̆M
, then

PM [TM < t] ≤ PM [TM
XM < t] + PM [TM

X̆M < t], for every t ≥ 0. (5.25)

Now, since QM
x,y = Qx,y for x ∈ XM and y ∈ X , XM (·∧TM

XM ) will have the same distribution
as a Markov chain with infinitesimal generator Q and initial condition x◦, stopped at the
first time it leaves XM . Because of this, TM

XM has the same distribution as the first time a
continuous-time Markov chain with infinitesimal generatorQ leaves XM . Since a continuous-
time Markov chain with infinitesimal generator Q has been assumed to not explode in finite
time, we obtain that PM [TM

XM < t] −→ 0 as M → ∞. Similar reasoning holds for TM
X̆M

.
Combining with (5.25), we obtain (5.24).
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Denote by D([0,∞),X 2) the space of right-continuous functions from [0,∞) into X 2 that
also have finite left-limits. As usual, this space is endowed with Skorokhod’s J1 topol-
ogy. The pair (XM , X̆M ) have paths in D([0,∞),X 2) and we obtain (X, X̆) as a limit
in distribution of (XM , X̆M ) as M → ∞. We first verify that the sequence of processes
{(XM , X̆M )}M≥M0 is tight. For this, it suffices to check that each sequence {XM}M≥M0

and {X̆M}M≥M0 is tight, which we do by means of Theorem 7.2 in Chapter 3 of Ethier
& Kurtz [12]. Condition (a) there (compact containment) is satisfied, because of (5.24)

and because for M̃ ≥ M ≥ M0 we have that XM̃ (· ∧ TM
XM̃

) under PM̃ has the same law

as XM (· ∧ TM
XM ) under PM , where TM

XM̃
:= inf{t ≥ 0 | XM̃ (t) /∈ XM}. To verify condi-

tion (b) in Theorem 7.2 of [12], for t0 > 0 fixed and η > 0, let Mη ≥ M0 be such that
PM [TM

XM < t0] ≤ η
2 for all M ≥Mη. Then,

PM [w′(XM , δ, t0) ≥ η] ≤ PM [w′(XM , δ, t0) ≥ η ; TM
XM ≥ t0] + P

M [TM
XM < t0]

≤ P̃[w′(X̃, δ, t0) ≥ η ; τM
X̃
≥ t0] +

η

2

≤ P̃[w′(X̃, δ, t0) ≥ η] +
η

2
,

where w′(·, ·, ·) is the modulus of continuity, as defined in Equation (6.2), Chapter 3 of [12],
X̃ under P̃ is a realization of the Markov chain associated with the infinitesimal generator
Q that starts with x◦, and τM

X̃
:= inf{t ≥ 0 | X̃(t) /∈ XM}. Since X̃ under P̃ is a single

process with right-continuous paths having finite left-limits, the tightness applies to it and
so the term P̃[w′(X̃, δ, t0) ≥ η] can be made less than η

2 by choosing δ sufficiently small
and so condition (b) of Theorem 7.2 of [12] is satisfied. It follows that {XM}M≥M0 is tight.
Similar reasoning yields tightness for {X̆M}M≥M0 .
It follows that there exists a probability space (Ω,F ,P) with two processes X and X̆

defined there, having paths that are right-continuous with finite left-limits, and a sub-
sequence {Mk}k≥1 such that Mk → ∞ as k → ∞, and the sequence {(XMk , X̆Mk)}k≥1

converges in distribution to the pair of processes (X, X̆). To identify the law of the limit,
note that since {QMk}k≥1 converges pointwise to Q, for any function f with bounded sup-

port in X , f(X(t)) −
∫ t
0 Qf(X(s))ds will inherit the martingale property of f(XMk(t)) −∫ t

0 Q
Mkf(XMk(s))ds. It follows from the martingale characterization thatX is a continuous-

time Markov chain with infinitesimal generator Q (see Chapter 4 in Ethier & Kurtz [12]).
Similarly, X̆ will be a continuous-time Markov chain with infinitesimal generator Q̆. In
addition, the processes have inherited initial conditions X(0) = x◦ and X̆(0) = x̆◦.
Finally, to show that (3.7) holds, consider the set

F = {(f, g) ∈ D([0,∞),X 2) | f(t) ≼A g(t) for all t ≥ 0}, (5.26)

which is closed in the Skorokhod topology. From (5.23) we know that the stopped processes
satisfy PMk [(XMk(· ∧ TMk), X̆Mk(· ∧ TMk)) ∈ F ] = 1 for every k ≥ 1. Furthermore,
from (5.24) we know that TMk −→ ∞ in probability as k → ∞. The reader may verify
that this last fact, along with the convergence of (XMk , X̆Mk) to (X, X̆), implies that
(XMk(· ∧ TMk), X̆Mk(· ∧ TMk)) converges in distribution to (X, X̆) as k → ∞. By the
Portmanteau Theorem (see Theorem 2.1 in Billingsley [6]),

1 = lim sup
k→∞

PMk [(XMk(· ∧ TMk), X̆Mk(· ∧ TMk)) ∈ F ] ≤ P[(X, X̆) ∈ F ] (5.27)

and we obtain (3.7).
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Remark 5.1. The proof of Theorem 3.1 provides a method to simulate the sample paths
for the continuous-time Markov chains X and X̆ in a coupled manner for the case where
(5.1) holds. Roughly speaking, the procedure consists of determining λ > 0 as in (5.2),
Φλ, Φ̆λ as in (5.4), Y, Y̆ as in (5.12) and X, X̆ as in (5.13). For the benefit of the reader,
this method is described as an algorithm in Section S.4, which yields coupled sample paths
under the assumptions of Theorem 3.2, 3.3 and S.2.

5.2 Proof of Theorem 3.2

By Theorem 3.1, it suffices to prove that for every x, y ∈ X such that x ≼A y, conditions
(3.5) and (3.6) hold. For this, we make some observations first. Consider x, y ∈ X such that
x ≼A y and let 1 ≤ j ≤ n. Observe that x ≼A y+vj will hold if and only if A(y+vj−x) ≥ 0
which is equivalent to:

⟨Ai•, y − x⟩+ ⟨Ai•, vj⟩ ≥ 0, for every 1 ≤ i ≤ m. (5.28)

Similarly, x+ vj ≼A y will hold if and only if

⟨Ai•, y − x⟩ − ⟨Ai•, vj⟩ ≥ 0, for every 1 ≤ i ≤ m. (5.29)

Since x ≼A y, then ⟨Ai•, y − x⟩ ≥ 0 for every 1 ≤ i ≤ m. Now, consider i ∈ {1, ...,m} such
that ⟨Ai•, y − x⟩ > 0. Since A ∈ Zm×d and y − x ∈ Zd, then ⟨Ai•, y − x⟩ ≥ 1. This yields
that

⟨Ai•, y − x⟩+ ⟨Ai•, vj⟩ ≥ 1 + ⟨Ai•, vj⟩ ≥ 0, (5.30)

since ⟨Ai•, vj⟩ ∈ {−1, 0, 1}. Similarly, ⟨Ai•, y − x⟩ − ⟨Ai•, vj⟩ ≥ 1 − ⟨Ai•, vj⟩ ≥ 0. By
observing that the interior of KA + x is of the form int(KA + x) = {y ∈ Rd |Ax < Ay}, the
latter argument shows that for every x ∈ X and y ∈ int(KA + x) ∩ X , we have

x ≼A y + vj and x+ vj ≼A y, for every 1 ≤ j ≤ n. (5.31)

Now, lets check condition (3.5). For this, let x, y ∈ X be such that x ≼A y and let
1 ≤ j ≤ n be such that y+vj ∈ X\(KA+x). By (5.31), y /∈ int(KA+x) and since y ∈ KA+x,
we must have y ∈ ∂(KA + x) = {z ∈ KA + x | ⟨Ai•, z⟩ = ⟨Ai•, x⟩ for some 1 ≤ i ≤ m}, the
boundary of KA + x. Consider the set of indices Ky := {i | ⟨Ai•, y⟩ = ⟨Ai•, x⟩, 1 ≤ i ≤ m},
which is non-empty. Observe that for every i /∈ Ky, ⟨Ai•, y − x⟩ > 0 and from (5.30),
⟨Ai•, (y + vj)− x⟩ ≥ 0, while for i ∈ Ky, ⟨Ai•, (y + vj)− x⟩ = ⟨Ai•, vj⟩. From this, we can
infer that there exists an ik ∈ Ky such that ⟨Aik•, vj⟩ < 0. Indeed, if this was not the case,
then ⟨Ai•, (y + vj) − x⟩ ≥ 0 for every i ∈ Ky and consequently (5.28) would hold. This
contradicts the fact that y + vj /∈ KA + x. By (3.9), we know that ⟨Aik•, vj⟩ < 0 implies
Ῠj(y) ≤ Υj(x) and we conclude that (3.5) holds.
To check condition (3.6), let x, y ∈ X be such that x ≼A y and let 1 ≤ j ≤ n be such that

x+vj ∈ X and y /∈ KA+x+vj . Again, by (5.31), we obtain that y ∈ ∂(KA+x) and Ky ̸= ∅.
For every i /∈ Ky, ⟨Ai•, y − (x+ vj)⟩ ≥ 0, while for i ∈ Ky, ⟨Ai•, y − (x+ vj)⟩ = −⟨Ai•, vj⟩.
From this, we can infer that there exists an ik ∈ Ky such that ⟨Aik•, vj⟩ > 0. By (3.10), we
know that ⟨Aik•, vj⟩ > 0 implies Ῠj(y) ≥ Υj(x) and we conclude that (3.6) holds.
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5.3 Proof of Theorem 3.3

The proof of this result uses similar general ideas to the ones used in the proof of Theorem
3.1. However, since the conditions involve sums, the construction is somewhat different
and more complex and we provide the details below. Let us consider again a non-empty
set X ⊆ Zd

+, a collection of distinct vectors v1, . . . , vn in Zd \ {0} and two collections of

non-negative functions on X , Υ = (Υ1, . . . ,Υn) and Ῠ = (Ῠ1, . . . , Ῠn) such that (3.3) holds.
In the following, let A ∈ Zm×d be a matrix with non-zero rows such that condition (i) of
Theorem 3.3 holds.
We initially assume that supx∈X Υj(x) <∞ and supx∈X Ῠj(x) <∞ for every 1 ≤ j ≤ n,

and let λ > 0 such that (5.2) holds. We shall relax these assumptions later. We start
by defining functions analogous to Φλ and Φ̆λ as defined in (5.4), although this time, the
construction is more involved.
Recall that s denotes the size of the set {Avj | 1 ≤ j ≤ n} and that the index sets

Gk ̸= ∅, 1 ≤ k ≤ s, defined in (3.12), are such that Avj = ηk for all j ∈ Gk, 1 ≤ k ≤ s.
Consider a bijection σ : {1, . . . , n} −→ {1, . . . , n} such that the vectors vσ(1), . . . , vσ(n) have
the property that the first |G1| vectors have indices in G1, the next |G2| vectors have indices
in G2, and so on. More precisely, the bijection σ is such that for 1 ≤ k ≤ s, Avσ(q) = ηk,

whenever
∑k−1

ℓ=1 |Gℓ| + 1 ≤ q ≤
∑k

ℓ=1 |Gℓ|. Recall for this that a sum over an empty set is
taken to equal zero.
For x ∈ X , we define a family of intervals {Ik(x) | 1 ≤ k ≤ s} as follows. Let p0 := 0, and

for 1 ≤ k ≤ s, inductively define pk :=
∑k

ℓ=1 |Gℓ|, and

Ik(x) :=

pk⋃
q=pk−1+1

Ikq (x), (5.32)

where for pk−1 + 1 ≤ q ≤ pk,

Ikq (x) :=

pk−1

n
+

q−1∑
ℓ=pk−1+1

Υσ(ℓ)(x)

λ
,
pk−1

n
+

q∑
ℓ=pk−1+1

Υσ(ℓ)(x)

λ

 . (5.33)

The sets Ikq (x), with 1 ≤ k ≤ s and pk−1 + 1 ≤ q ≤ pk, are mutually disjoint, and

by (5.2), the length of Ik(x) is less than
pk−pk−1

n = |Gk|
n , and so the sum of the lengths of

{Ik(x)|1 ≤ k ≤ s} is less than 1
n

∑s
k=1 |Gk| = 1. Now, let us define Ψλ(·, ·) : X×[0, 1] −→ X

by

Ψλ(x, u) := x+
s∑

k=1

pk∑
q=pk−1+1

vσ(q)1Ikq (x)(u), x ∈ X , u ∈ [0, 1]. (5.34)

Note that Avσ(q) = ηk for pk−1 + 1 ≤ q ≤ pk, 1 ≤ k ≤ s. From the above properties of

Ikq (x), we have that for any u ∈ [0, 1], either u /∈
⋃s

k=1 I
k(x) or u ∈ Ikq (x) for exactly one

k and q such that Ikq (x) ̸= ∅. The latter condition implies, by (5.33), that Υσ(q)(x) > 0
and then, by (3.3), x + vσ(q) ∈ X . This shows that Ψλ(·, ·) is well-defined as an X -valued
function.
In an analogous manner to that above, we can define intervals Ĭk(x), Ĭkq (x), 1 ≤ k ≤

s, pk−1 + 1 ≤ q ≤ pk, x ∈ X and a function Ψ̆λ : X × [0, 1] −→ X , as in (5.32) – (5.34), but
with Ῠj(x), Ĭ

k(x), Ĭkq (x), Ψ̆λ in place of Υj(x), I
k(x), Ikq (x), Ψλ.
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Lemma 5.2. Suppose that x, y ∈ X are such that x ≼A y and the following hold: whenever
y ∈ ∂i(KA + x) ∩ X for some 1 ≤ i ≤ m, we have∑

j∈Gk

Ῠj(y) ≤
∑
j∈Gk

Υj(x), for every k such that ηki < 0, (5.35)

and ∑
j∈Gk

Ῠj(y) ≥
∑
j∈Gk

Υj(x), for every k such that ηki > 0. (5.36)

Then, for each u ∈ [0, 1],
Ψλ(x, u) ≼A Ψ̆λ(y, u). (5.37)

Proof. First, we note that Ψλ, Ψ̆λ have the following properties: for every u ∈ [0, 1], 1 ≤
k ≤ s, j ∈ Gk,

if Ψλ(x, u) = x+ vj , then Ψ̆λ(y, u) ∈ {y + vℓ : ℓ ∈ Gk} ∪ {y}, (5.38)

since Ikσ−1(j)(x), Ĭ
k
σ−1(ℓ)(y) ⊆ [

pk−1

n , pkn ) for ℓ ∈ Gk. Similarly,

if Ψ̆λ(y, u) = y + vj , then Ψλ(x, u) ∈ {x+ vℓ : ℓ ∈ Gk} ∪ {x}. (5.39)

Furthermore, for 1 ≤ k ≤ s, j ∈ Gk, if
∑

ℓ∈Gk Ῠℓ(y) ≥
∑

ℓ∈Gk Υℓ(x), then

Ψλ(x, u) = x+ vj implies that Ψ̆λ(y, u) = y + vℓ for some ℓ ∈ Gk, (5.40)

since under the condition, Ik(x) ⊆ Ĭk(y). Similarly, if
∑

ℓ∈Gk Ῠℓ(y) ≤
∑

ℓ∈Gk Υℓ(x), then

Ψ̆λ(y, u) = y + vj implies that Ψλ(x, u) = x+ vℓ for some ℓ ∈ Gk. (5.41)

We also have that, for 1 ≤ k ≤ s and j ∈ Gk, x ≼A y + vj if and only if

⟨Ai•, y − x⟩+ ⟨Ai•, vj⟩ ≥ 0, for every 1 ≤ i ≤ m. (5.42)

Similarly, x+ vj ≼A y if and only if

⟨Ai•, y − x⟩ − ⟨Ai•, vj⟩ ≥ 0, for every 1 ≤ i ≤ m. (5.43)

Furthermore, for 1 ≤ k ≤ s and j, ℓ ∈ Gk, since Avj = Avℓ and x ≼A y, then

⟨Ai•, y − x⟩+ ⟨Ai•, (vj − vℓ)⟩ = ⟨Ai•, y − x⟩ ≥ 0, for every 1 ≤ i ≤ m. (5.44)

To prove (5.37), we first consider the situation where y ∈ int(KA + x) = {w ∈ Rd |Ax <
Aw}. Then, for each 1 ≤ i ≤ m, ⟨Ai•, y − x⟩ > 0 and since A ∈ Zm×d and y − x ∈ Zd, we
have ⟨Ai•, y − x⟩ ≥ 1. This implies that for 1 ≤ k ≤ s and j ∈ Gk,

⟨Ai•, y − x⟩+ ⟨Ai•, vj⟩ ≥ 1 + ⟨Ai•, vj⟩ ≥ 0, for every 1 ≤ i ≤ m, (5.45)

since ⟨Ai•, vj⟩ ∈ {−1, 0, 1} by condition (i) of Theorem 3.3. Similarly, for 1 ≤ k ≤ s and
j ∈ Gk,

⟨Ai•, y − x⟩ − ⟨Ai•, vj⟩ ≥ 1− ⟨Ai•, vj⟩ ≥ 0, for every 1 ≤ i ≤ m. (5.46)
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It follows from (5.44) – (5.46) that if y ∈ int(KA + x) ∩ X , then for any 1 ≤ k ≤ s and
j, ℓ ∈ Gk:

x ≼A y + vj , x+ vj ≼A y and x+ vℓ ≼A y + vj . (5.47)

We also have, by assumption, that x ≼A y. It follows that if y ∈ int(KA + x) ∩ X , then
{x, x+ vℓ | ℓ ∈ Gk} ≼A {y, y + vj | j ∈ Gk} for 1 ≤ k ≤ s and consequently (5.37) holds for
all u ∈ [0, 1].
Now, we turn to the other situation where y ∈ ∂i(KA+x)∩X for some 1 ≤ i ≤ m. Then

Ky := {i | ⟨Ai•, y⟩ = ⟨Ai•, x⟩, 1 ≤ i ≤ m} is non-empty. Let u ∈ [0, 1]. We consider two
cases.

Case 1: Ψ̆λ(y, u) = y + vj for some 1 ≤ j ≤ n.

Fix such an index j. Consider the unique 1 ≤ k ≤ s such that j ∈ Gk. Then, by (5.39),
either Ψλ(x, u) = x+ vℓ for some ℓ ∈ Gk, or Ψλ(x, u) = x.

a) If Ψλ(x, u) = x + vℓ for some ℓ ∈ Gk, then, since x ≼A y and Avj = Avℓ, we have
x+ vℓ ≼A y + vj . Hence, Ψλ(x, u) ≼A Ψ̆λ(y, u) and (5.37) holds.

b) If Ψλ(x, u) = x, we claim that y + vj ∈ KA + x. To see this, observe that for every
i /∈ Ky, ⟨Ai•, y − x⟩ > 0 and as for (5.45), ⟨Ai•, (y + vj) − x⟩ ≥ 0, while for i ∈ Ky,
⟨Ai•, (y + vj) − x⟩ = ⟨Ai•, vj⟩ ∈ {−1, 0, 1}. For each i ∈ Ky, if ⟨Ai•, vj⟩ = −1,
then by (5.35), we would have

∑
ℓ∈Gk Ῠℓ(y) ≤

∑
ℓ∈Gk Υℓ(x), which would imply that

Ψλ(x, u) = x+vℓ for some ℓ ∈ Gk, but this contradicts the assumption that Ψλ(x, u) =
x. So we must have ⟨Ai•, vj⟩ ≥ 0 and hence ⟨Ai•, (y + vj) − x⟩ ≥ 0 for all i ∈ Ky.
Thus, y + vj ∈ KA + x and so Ψλ(x, u) = x ≼A y + vj = Ψ̆λ(y, u) holds.

Case 2: Ψ̆λ(y, u) = y. Again, we consider two subcases.

a) If Ψλ(x, u) = x, then (5.37) holds, because x ≼A y.

b) If Ψλ(x, u) = x + vj for some 1 ≤ j ≤ n, we claim that y ∈ KA + x + vj for the
corresponding value of j. To see this, fix the value of j for which Ψλ(x, u) = x + vj ,
let 1 ≤ k ≤ s be such that j ∈ Gk, and observe that for every i /∈ Ky, ⟨Ai•, y−x⟩ > 0
and as for (5.46), ⟨Ai•, y − (x + vj)⟩ ≥ 0, while for i ∈ Ky, ⟨Ai•, y − (x + vj)⟩ =
−⟨Ai•, vj⟩ ∈ {−1, 0, 1}. For each i ∈ Ky, if ⟨Ai•, vj⟩ = 1, then by (5.36), we would
have

∑
ℓ∈Gk Ῠℓ(y) ≥

∑
ℓ∈Gk Υℓ(x), which would imply that Ψ̆λ(y, u) = y+vℓ for some

ℓ ∈ Gk. This would contradict the assumption that Ψ̆λ(y, u) = y. So we must have
⟨Ai•, vj⟩ ≤ 0 and hence ⟨Ai•, y− (x+ vj)⟩ = ⟨Ai•, y−x⟩− ⟨Ai•, vj⟩ ≥ 0 for all i ∈ Ky.
Thus, we have y ∈ KA + x+ vj and then Ψλ(x, u) = x+ vj ≼A y = Ψ̆λ(y, u).

In order to prove Theorem 3.3, from here on we can follow a similar procedure to the
one used in the proof of Theorem 3.1 after Lemma 5.1 was proved there. For the case
where (5.1) holds, we define two discrete-time processes, Y = (Yk)k≥0 and Y̆ = (Y̆k)k≥0, by
defining Y0 := x◦, Y̆0 := x̆◦, and for k ≥ 0,

Yk+1 := Ψλ(Yk, Uk+1), Y̆k+1 := Ψ̆λ(Y̆k, Uk+1), (5.48)

and define X and X̆ using these and an independent Poisson process N as in (5.13). For
the case where (5.1) does not hold, we can use a truncation procedure similar to that for
Theorem 3.1. In both cases, we use Lemma 5.2 instead of Lemma 5.1.
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6 Conclusion

In this work, we first reviewed the concept of Stochastic Chemical Reaction Networks
(SCRNs), a class of continuous-time Markov chain models frequently used to describe the
stochastic behavior of chemical reaction systems. We also gave the definitions of preorder
and increasing set considered in this paper. In Section 3.2, we presented the main theoreti-
cal results of this paper. We first derived, by exploiting uniformization and then coupling of
stochastic processes (see Grassmann [14] and Keilson [21]), three theorems which give prac-
tical sufficient conditions for stochastic dominance of one continuous-time Markov chain
over another. More precisely, these theorems provide conditions under which, when one
or more parameters is changed monotonically, the system is almost surely “higher” with
respect to a certain preorder. While the first theorem (Theorem 3.1) can be used for any
SCRN, it has extensive conditions to check. The second set of theorems (Theorems 3.2, 3.3)
can be used for more specific SCRN classes, but they have assumptions that only need to
be checked at the boundary of certain translated convex cones. All these theorems can be
applied to SCRNs with either finite or countably many states. In Section 3.3, we exploited
these tools to develop two theorems to specifically study the monotonicity properties of
stationary distributions and mean first passage times depending on system parameters.
Subsequently, in Section 4, we presented some illustrative examples to highlight the ad-

vantages of using our theoretical tools in order to study the stochastic behavior of SCRNs.
Specifically, we focused on two common models for enzymatic kinetics (see Michaelis &
Menten [23], Kang et al. [20], Del Vecchio & Murray [10] and Anderson et al. [2]), on a
model inspired by Braess’s paradox (see Calvert et al. [9]) and on a recently developed
model describing the main interactions among histone modifications alone, and together
with an expressed protein (see Bruno et al. [8]). In these illustrative examples we see that
our sufficient conditions can be easy to check and our results can be also used to study
networks with a countably infinite number of states. Furthermore, the conclusions obtained
by using our theorems are true for trajectories of the Markov chains, yielding results for
both transient and steady state behavior.
Overall, in this paper we derived and presented theorems that can be used for the theo-

retical study of monotonicity of SCRNs associated to a variety of chemical reaction systems.
Future work will include the adaptation of our theoretical tools to other forms of monotonic-
ity for SCRNs (see Definition 5.1.1 in Muller & Stoyan [24] as an example), the investigation
of possible correlations between the network graph properties and the monotonicity proper-
ties of the SCRN (extension of the work of Angeli et al. [5] to SCRNs), and the application
of our results to deterministic chemical reaction network through appropriate limits.

Supplementary information (SI) file: file containing detailed mathematical derivations
for some of our examples, a generalization of Theorem 3.3, and an algorithm for coupled
stochastic simulation.
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S.1 Criteria for Positive Recurrence and Exponential Ergodicity with
Application to Examples 4.2 and 4.5

S.1.1 Foster-Lyapunov Conditions for Positive Recurrence and Exponential
Ergodicity

Here we recall fairly general conditions for positive recurrence and exponential ergodicity of
a continuous-time Markov chain. Such conditions are well known and are usually referred to
as Foster-Lyapunov-type conditions. We also apply these to the Markov chains in Examples
4.2 and 4.5, in subsections S.1.2 and S.1.3.

Theorem S.1. Let X be an irreducible continuous-time Markov chain with state space X
and infinitesimal generator Q. Suppose V : X → R+ is norm-like, that is {x ∈ X : V (x) ≤
a} is compact 6 for each a ∈ R+. Further assume that for some c > 0, d > 0 and a compact
set C,

QV (x) ≤ −c+ d1C(x), for all x ∈ X . (S.1)

Then, X is non-explosive and positive recurrent, and has a unique stationary distribution
π. If instead of (S.1), we have that for some c′ > 0 and d′ > 0,

QV (x) ≤ −c′V (x) + d′, for all x ∈ X , (S.2)

then (S.1) automatically holds and the consequences stated above hold, and in addition, the
stationary distribution satisfies

π(V ) =
∑
x∈X

πxV (x) <∞,

and there is 0 < B <∞ and 0 < β < 1 such that for all t ≥ 0 and x ∈ X ,∑
y∈X
|Pxy(t)− πy| ≤ ∥Px•(t)− π∥V+1 ≤ B(V (x) + 1)βt, (S.3)

6Since X is a Markov chain, X is finite or countable, and we endow it with the usual discrete topology
consisting of all subsets of X .
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where Pxy(t) = P[X(t) = y|X(0) = x] and

∥Px•(t)− π∥V+1 = sup
|g|≤V+1

∣∣∣∣∣∣
∑
y∈X

(Pxy(t)− πy)g(y)

∣∣∣∣∣∣ .
Remark S.1. When the second inequality in (S.3) holds, we say that the Markov chain is
exponentially ergodic in the (V + 1)-norm.

Proof. We will verify the sufficient conditions for each of non-explosion, positive recurrence
and exponential ergodicity given in Meyn & Tweedie [1]. Note that X is a Borel right-
process under the definition in Sharpe [2]. In addition, since the state space is discrete,
each compact set is finite and therefore petite.
For m ∈ Z+, if Qm is the infinitesimal generator for the Markov chain X killed upon exit

from Om = {x ∈ X : V (x) ≤ m} 7, then QmV (x) ≤ QV (x) for x ∈ Om. It then follows
from (S.1) that conditions (CD0) and (CD2) (with f = 1) in [1] hold with Qm in place of
Am there. By Theorem 2.1 and Theorem 4.2 in [1], the Markov chain is non-explosive and
positive recurrent, and it has a unique stationary distribution π.
On the other hand, if (S.2) holds, then (S.1) holds, using the norm like property of V .

Furthermore, (S.2) implies that conditions (CD0), (CD2) (with f = V + 1) and (CD3)
in [1] hold with Qm in place of Am there. By Theorem 2.1, Theorem 4.2 and Theorem 6.1
in [1], the Markov chain is non-explosive and positive recurrent, with a unique stationary
distribution π such that π(V ) < ∞, and it is exponentially ergodic in the (V + 1)-norm,
that is the second inequality in (S.3) holds for all t ≥ 0 and x ∈ X . For fixed t ≥ 0 and
x ∈ X , setting g(y) = sgn(Pxy(t)− πy), for y ∈ X , we have that |g| ≤ 1 ≤ V + 1, and

∑
y∈X
|Pxy(t)− πy| =

∣∣∣∣∣∣
∑
y∈X

(Pxy(t)− πy)g(y)

∣∣∣∣∣∣ ≤ ∥Px•(t)− π∥V+1,

yielding the first inequality in (S.3).

S.1.2 Application to Example 4.2

For Example 4.2, we first show that the Markov chain is irreducible. For this, consider
x◦ = (0, 0,Etot, 0) and any fixed state x = (x1, x2, x3,Etot−x3) : 0 ≤ x3 ≤ Etot. Starting at
x◦, by having reaction 5○ fire x1 +Etot − x3 + x2 times in succession, then having reaction
1○, immediately followed by reaction 3○, fire x2 times in succession and then reaction 1○
fire Etot − x3 times, without any other reactions firing, we see that the Markov chain can
transition with positive probability from x◦ to x. Since each reaction is reversible, it also
follows that the Markov chain can transition from x to x◦ with positive probability. Thus,
the Markov chain is irreducible.
Next we will introduce a norm-like function V and show that (S.1) holds. For each x ∈ X ,

let
V (x) = x21 + ((2Etot − 1)b+ 1)x2 + bx24,

7Upon exit from Om, the killed process goes to a cemetery state ∆m in X\Om where V (∆m) = min{V (x) :
x ∈ X \Om}.
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where

b =
1 + (κ5 + κ2Etot + κ3Etot) +

(2κ5+κ6+2κ2Etot)2

8κ6

κ2Etot(2Etot − 1)
. (S.4)

Notice that b > 0 since Etot ≥ 1. Then, for each a ∈ R+, {x ∈ X : V (x) ≤ a} consists of
finitely many states, and for any x ∈ X ,

QV (x) =

6∑
j=1

Υj(x) · (V (x+ vj)− V (x))

= κ1x1x3 · (((x1 − 1)2 + b(x4 + 1)2)− (x2
1 + bx2

4))

+κ2x4 · (((x1 + 1)2 + b(x4 − 1)2)− (x2
1 + bx2

4))

+κ3x4 · ((((2Etot − 1)b+ 1)(x2 + 1) + b(x4 − 1)2)− (((2Etot − 1)b+ 1)x2 + bx2
4))

+κ4x2x3 · ((((2Etot − 1)b+ 1)(x2 − 1) + b(x4 + 1)2)− (((2Etot − 1)b+ 1)x2 + bx2
4))

+κ5 · ((x1 + 1)2 − x2
1) + κ6x1 · ((x1 − 1)2 − x2

1)

= κ1x1x3 · (−2x1 + 1 + b(2x4 + 1)) + κ2x4 · (2x1 + 1 + b(−2x4 + 1))

+κ3x4 · (((2Etot − 1)b+ 1) + b(−2x4 + 1))

+κ4x2x3 · (−((2Etot − 1)b+ 1) + b(2x4 + 1))

+κ5 · (2x1 + 1) + κ6x1 · (−2x1 + 1)

= −(2κ1x3 + 2κ6) · x2
1 + (2κ5 + κ6 + κ1(1 + b)x3 + 2bκ1x3x4 + 2κ2x4) · x1

+κ4(−2bEtotx3 + 2bx3x4 + (2b− 1)x3) · x2

+κ5 + (κ2(1 + b) + κ3(2bEtot + 1))x4 − 2b(κ2 + κ3)x
2
4

= −(2κ1x3 + 2κ6) · x2
1 + (2κ5 + κ6 + κ1(1 + b)x3 + 2bκ1x3x4 + 2κ2x4) · x1

+κ4(−2bx2
3 + (2b− 1)x3) · x2 + κ5 + (κ2(1 + b) + κ3(2bEtot + 1))x4 − 2b(κ2 + κ3)x

2
4.

The last equality uses the fact that x3 = Etot − x4. For the following, we note that
−2bx23 + (2b− 1)x3 = (−2bx3 + (2b− 1))x3 ≤ −1 when x3 ≥ 1.
We now consider two cases for QV (x): when x3 = 0 and x3 > 0. For the first case, when

x3 = 0, we have x4 = Etot and

QV (x) = −2κ6 · x2
1 + (2κ5 + κ6 + 2κ2Etot) · x1 + κ5 + (κ2(1 + b) + κ3)Etot − 2bκ2E

2
tot.

As a quadratic function, the last expression is bounded above by

bκ2Etot(1− 2Etot) + (κ5 + κ2Etot + κ3Etot) +
(2κ5 + κ6 + 2κ2Etot)

2

8κ6
= −1,

since b is chosen as in (S.4). For the second case when x3 ∈ {1, . . . ,Etot}, we have

QV (x) ≤ −2κ6 · x21 + (2κ5 + κ6 + κ1(1 + b)x3 + 2bκ1x3x4 + 2κ2x4) · x1
−κ4 · x2 + κ5 + (κ2(1 + b) + κ3(2bEtot + 1))x4 − 2b(κ2 + κ3)x

2
4

≤ −2κ6 · x21 + κ6 · x21 +
(
2κ5 + κ6 + κ1(1 + b)x3 + 2bκ1x3x4 + 2κ2x4

2
√
κ6

)2

−κ4 · x2 + κ5 + (κ2(1 + b) + κ3(2bEtot + 1))x4 − 2b(κ2 + κ3)x
2
4

≤ −κ6 · x21 − κ4 · x2 +
(2κ5 + κ6 + κ1(1 + b)Etot + 2bκ1E

2
tot + 2κ2Etot)

2

4κ6
+κ5 + (κ2(1 + b) + κ3(2bEtot + 1))Etot,

where we have used the fact that 2ab ≤ a2 + b2 for the second inequality and the last
expression will be less than or equal to −1 whenever x1 or x2 is sufficiently large.
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Let C = {x ∈ X : QV (x) > −1}. Then, by the above, C consists of finitely many
points, which implies that C is a compact set. Then, (S.1) holds with c = 1 and d =
1+maxx∈C QV (x)∨ 0. It follows by Theorem S.1 that the Markov chain in Example 4.2 is
non-explosive and positive recurrent, and has a unique stationary distribution π.

S.1.3 Application to Example 4.5

For Example 4.5, we first check that the Markov chain is irreducible. For this, consider
x◦ = (0,Dtot, 0) and any fixed state x = (x1, x2, x3) : 0 ≤ x1 + x2 ≤ Dtot. Starting at
x◦, by having reaction 5○ fire x3 times, then reaction 3○ fire Dtot − x2 times, and finally,
reaction 2○ fire x1 times, without any other reactions firing, we see that the Markov chain
can transition from x◦ to x with positive probability. For the reverse transition, by having
reaction 6○ fire x3 times, then reaction 4○ fire x1 times, and finally, reaction 1○ fire Dtot−x2
times, we see that the Markov chain can transition from x to x◦ with positive probability.
Thus, the Markov chain is irreducible.
Next we will introduce a norm-like function V and show that (S.2) holds. For each x ∈ X ,

let
V (x) = x3.

Then {x ∈ X : V (x) ≤ a} = {x ∈ Z3
+ : x1 + x2 ≤ Dtot, x3 ≤ a} consists of finitely many

states for each a ∈ R+, and for any x ∈ X ,

QV (x) =

6∑
j=1

Υj(x) · (V (x+ vj)− V (x)) =

6∑
j=1

Υj(x) · V (vj)

= Υ1(x) · 0 + Υ2(x) · 0 + Υ3(x) · 0 + Υ4(x) · 0 + κ5ax2 · 1 + κ6ax3 · (−1)
≤ −κ6ax3 + κ5aDtot = −c′V (x) + d′,

where c′ = κ6a and d′ = κ5a. Therefore, we conclude by Theorem S.1 that the Markov chain
in Example 4.5 is non-explosive and positive recurrent with a unique stationary distribution
π such that π(V ) <∞, and it is exponentially ergodic in the (V + 1)-norm.

S.2 Derivation of Markov chain transition directions, vj

S.2.1 Example 4.2

The set of reactions associated to the chemical reaction system in Fig. 3(a) is given by
R = {(v−1 , v

+
1 ), (v

−
2 , v

+
2 ), (v

−
3 , v

+
3 ), (v

−
4 , v

+
4 ), (v−5 , v

+
5 ), (v

−
6 , v

+
6 )}, where (v−1 , v

+
1 ), (v−2 , v

+
2 ),

(v−3 , v
+
3 ) are defined as in Example 4.1, and v−4 = (0, 1, 1, 0)T , v+4 = (0, 0, 0, 1)T , v−5 = v+6 =

(0, 0, 0, 0)T , v+5 = v−6 = (1, 0, 0, 0)T . Then, the potential transitions of the Markov chain are
in six possible directions, vj = v+j − v−j for j = 1, ..., 6, where v1 = −v2 = (−1, 0,−1, 1)T ,
v3 = −v4 = (0, 1, 1,−1)T , and v5 = −v6 = (1, 0, 0, 0)T .

S.2.2 Example 4.3

The set of five reactions associated to the chemical reaction system in Fig. 4(a) is given
by R = {(v−1 , v

+
1 ), (v

−
2 , v

+
2 ), (v

−
3 , v

+
3 ), (v

−
4 , v

+
4 ), (v

−
5 , v

+
5 )}, where v−1 = v−3 = (1, 0, 0, 0)T ,

v+1 = v−2 = v−5 = (0, 1, 0, 0)T , v+3 = v−4 = v+5 = (0, 0, 1, 0)T , v+2 = v+4 = (0, 0, 0, 1)T . Then,
the potential transitions of the Markov chain are in five possible directions, vj = v+j −v

−
j , j =

4



1, ..., 5, where v1 = (−1, 1, 0, 0)T , v2 = (0,−1, 0, 1)T , v3 = (−1, 0, 1, 0)T , v4 = (0, 0,−1, 1)T
and v5 = (0,−1, 1, 0)T .

S.3 A generalization of Theorem 3.3

Here, we provide a more general version of Theorem 3.3. The simpler form given as Theorem
3.3 in the main text was used there because it is more straightforward to state and the
conditions are easier to verify. However, the more general version of the theorem provided
in this section can be useful in some cases, such as Example 4.3 (see Section S.3.2).
The generalization relies on the idea that grouping of vectors can be more general than

what is described in (3.12), and so we introduce the following assumption.

Assumption S.1. Consider a collection of distinct vectors v1, . . . , vn in Zd \ {0} and a
matrix A ∈ Zm×d with non-zero rows. Suppose that there exists a partition 8 {G1, . . . , Gs}
of {1, . . . , n} and an associated bijection σ : {1, . . . , n} −→ {1, . . . , n} such that for p0 := 0
and 1 ≤ k ≤ s, with pk :=

∑k
ℓ=1 |Gℓ|, we have σ(q) ∈ Gk for pk−1 + 1 ≤ q ≤ pk, and

whenever pk−1 + 2 ≤ q ≤ pk, we also have for each 1 ≤ i ≤ m that either ⟨Ai•, vσ(q)⟩ is
equal to ⟨Ai•, vσ(q−1)⟩ or it is 0.

Theorem S.2. Consider a non-empty set X ⊆ Zd
+, suppose that Assumption S.1 holds

and consider two collections of non-negative functions on X , Υ = (Υ1, . . . ,Υn) and Ῠ =
(Ῠ1, . . . , Ῠn), such that (3.3) holds and the associated continuous-time Markov chains do
not explode in finite time. Further suppose that both of the following conditions hold:

(i) For each 1 ≤ j ≤ n, the vector Avj has entries in {−1, 0, 1} only.

(ii) For each x ∈ X , 1 ≤ i ≤ m and y ∈ ∂i(KA + x) ∩X we have that for each 1 ≤ k ≤ s,∑
j∈Gk,−

i

Ῠj(y) ≤
∑

j∈Gk,−
i

Υj(x), where Gk,−
i = {j ∈ Gk | ⟨Ai•, vj⟩ = −1},

and ∑
j∈Gk,+

i

Ῠj(y) ≥
∑

j∈Gk,+
i

Υj(x), where Gk,+
i = {j ∈ Gk | ⟨Ai•, vj⟩ = 1}.

Then, for each pair x◦, x̆◦ ∈ X such that x◦ ≼A x̆◦, there exists a probability space (Ω,F ,P)
with two continuous-time Markov chains X = {X(t), t ≥ 0} and X̆ = {X̆(t), t ≥ 0} defined
there, each having state space X ⊆ Zd

+, with infinitesimal generators Q and Q̆, associated

with Υ and Ῠ respectively, with initial conditions X(0) = x◦ and X̆(0) = x̆◦ and such that:

P
[
X(t) ≼A X̆(t) for every t ≥ 0

]
= 1. (S.5)

Remark S.2. Under Assumption S.1, for a given 1 ≤ k ≤ s and 1 ≤ i ≤ m, at most one
of Gk,−

i and Gk,+
i is non-empty. If Gk,−

i ̸= ∅, then Gk,−
i = {σ(q) | pk−1 + 1 ≤ q ≤ q∗} where

q∗ = max{q |pk−1+1 ≤ q ≤ pk and ⟨Ai•, vσ(q)⟩ = −1}. On the other hand, if Gk,+
i ̸= ∅, then

Gk,+
i = {σ(q)|pk−1+1 ≤ q ≤ q∗} where q∗ = max{q |pk−1+1 ≤ q ≤ pk and ⟨Ai•, vσ(q)⟩ = 1}.

Furthermore, in either case, for q∗ < q ≤ pk, we have ⟨Ai•, vσ(q)⟩ = 0.

8In particular, {G1, . . . , Gs} is a finite collection of non-empty disjoint sets of distinct numbers, the union
of which is {1, . . . , n}.
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The proof for Theorem S.2 can be found in Section S.3.1. With Theorem S.2 in place,
we can extend Theorems 3.4 and 3.5 by adding an additional alternative condition (iv):
Assumption S.1 holds, and conditions (i) and (ii) in Theorem S.2 are satisfied. If this is
satisfied instead of one of (i) – (iii) in Theorems 3.4 and 3.5, then the conclusions of these
theorems about (mean) first passage times and stationary distributions will still hold.

S.3.1 Proof of Theorem S.2

We initially assume that supx∈X Υj(x) < ∞ and supx∈X Ῠj(x) < ∞ for every 1 ≤ j ≤ n,
and let λ > 0 such that (5.2) holds. We shall relax these assumptions later. Further suppose
that Assumption S.1 and condition (i) of Theorem S.2 both hold. For x ∈ X , define Ik(x),
Ikq (x), Ψλ, Ĭ

k(x), Ĭkq (x) and Ψ̆λ in the same manner as in the proof of Theorem 3.3 (see

(5.32) – (5.34)), with {Gk | 1 ≤ k ≤ s}, {pk | 0 ≤ k ≤ s} and σ as in Assumption S.1. Our
proof of Theorem S.2 has some elements that are the same as those for the proof of Theorem
3.3. However, some additional elements are needed. We give the details for completeness.
As for Theorem 3.3, Ψλ(·, ·) and Ψ̆λ(·, ·) are well-defined as X -valued functions.

Lemma S.1. Suppose that x, y ∈ X are such that x ≼A y and the following hold: whenever
y ∈ ∂i(KA + x) ∩ X for some 1 ≤ i ≤ m, we have that for each 1 ≤ k ≤ s,∑

j∈Gk,−
i

Ῠj(y) ≤
∑

j∈Gk,−
i

Υj(x), where Gk,−
i = {j ∈ Gk | ⟨Ai•, vj⟩ = −1}, (S.6)

and ∑
j∈Gk,+

i

Ῠj(y) ≥
∑

j∈Gk,+
i

Υj(x), where Gk,+
i = {j ∈ Gk | ⟨Ai•, vj⟩ = 1}. (S.7)

Then, for each u ∈ [0, 1]:
Ψλ(x, u) ≼A Ψ̆λ(y, u). (S.8)

Proof. First, we note that Ψλ, Ψ̆λ have the following properties: for every u ∈ [0, 1], 1 ≤
k ≤ s, j ∈ Gk,

if Ψλ(x, u) = x+ vj , then Ψ̆λ(y, u) ∈ {y + vℓ : ℓ ∈ Gk} ∪ {y}, (S.9)

since Ikσ−1(j)(x), Ĭ
k
σ−1(ℓ)(y) ⊆ [

pk−1

n , pkn ) for ℓ ∈ Gk. Similarly,

if Ψ̆λ(y, u) = y + vj , then Ψλ(x, u) ∈ {x+ vℓ : ℓ ∈ Gk} ∪ {x}. (S.10)

Furthermore, for 1 ≤ k ≤ s, 1 ≤ i ≤ m, j ∈ Gk,+
i , if

∑
ℓ∈Gk,+

i
Ῠℓ(y) ≥

∑
ℓ∈Gk,+

i
Υℓ(x),

then

Ψλ(x, u) = x+ vj implies that Ψ̆λ(y, u) = y + vℓ for some ℓ ∈ Gk,+
i , (S.11)

since under the condition, we have ∪q
∗

q=pk−1+1I
k
q (x) ⊆ ∪

q∗

q=pk−1+1Ĭ
k
q (y) where q

∗ = max{q|pk−1+

1 ≤ q ≤ pk and ⟨Ai•, vσ(q)⟩ = 1} and, by Assumption S.1, Gk,+
i = {σ(q) |pk−1+1 ≤ q ≤ q∗}.

Similarly, for 1 ≤ k ≤ s, 1 ≤ i ≤ m, j ∈ Gk,−
i , if

∑
ℓ∈Gk,−

i
Ῠℓ(y) ≤

∑
ℓ∈Gk,−

i
Υℓ(x), then

Ψ̆λ(y, u) = y + vj implies that Ψλ(x, u) = x+ vℓ for some ℓ ∈ Gk,−
i . (S.12)
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We also have that, for 1 ≤ k ≤ s and j ∈ Gk, x ≼A y + vj if and only if

⟨Ai•, y − x⟩+ ⟨Ai•, vj⟩ ≥ 0, for every 1 ≤ i ≤ m. (S.13)

Similarly, x+ vj ≼A y if and only if

⟨Ai•, y − x⟩ − ⟨Ai•, vj⟩ ≥ 0, for every 1 ≤ i ≤ m. (S.14)

Furthermore, for 1 ≤ k ≤ s and j, ℓ ∈ Gk, x+ vℓ ≼A y + vj if and only if

⟨Ai•, y − x⟩+ ⟨Ai•, vj − vℓ⟩ ≥ 0, for every 1 ≤ i ≤ m. (S.15)

To prove (S.8), we first consider the situation where y ∈ int(KA + x) = {w ∈ Rd | Ax <
Aw}. Then, for each 1 ≤ i ≤ m, ⟨Ai•, y − x⟩ > 0 and since A ∈ Zm×d and y − x ∈ Zd, we
have ⟨Ai•, y − x⟩ ≥ 1. This implies that for each 1 ≤ k ≤ s and j ∈ Gk,

⟨Ai•, y − x⟩+ ⟨Ai•, vj⟩ ≥ 1 + ⟨Ai•, vj⟩ ≥ 0, for every 1 ≤ i ≤ m, (S.16)

since ⟨Ai•, vj⟩ ∈ {−1, 0, 1} by condition (i) of Theorem S.2. Similarly, for each 1 ≤ k ≤ s
and j ∈ Gk,

⟨Ai•, y − x⟩ − ⟨Ai•, vj⟩ ≥ 1− ⟨Ai•, vj⟩ ≥ 0, for every 1 ≤ i ≤ m. (S.17)

In addition, for 1 ≤ k ≤ s and j, ℓ ∈ Gk,

⟨Ai•, y − x⟩+ ⟨Ai•, vj − vℓ⟩ ≥ 1 + ⟨Ai•, vj − vℓ⟩ ≥ 0, for every 1 ≤ i ≤ m, (S.18)

since, by Assumption S.1, if ⟨Ai•, vj⟩ ≠ 0, then either ⟨Ai•, vℓ⟩ = ⟨Ai•, vj⟩ or ⟨Ai•, vℓ⟩ = 0.
It follows from (S.16) – (S.18) that if y ∈ int(KA + x) ∩ X , then for any 1 ≤ k ≤ s and
j, ℓ ∈ Gk:

x ≼A y + vj , x+ vj ≼A y and x+ vℓ ≼A y + vj . (S.19)

We also have, by assumption, that x ≼A y. It follows that if y ∈ int(KA + x) ∩ X , then
{x, x + vℓ | ℓ ∈ Gk} ≼A {y, y + vj | j ∈ Gk} for 1 ≤ k ≤ s and consequently (S.8) holds for
all u ∈ [0, 1].
Now, we turn to the other situation where y ∈ ∂i(KA+x)∩X for some 1 ≤ i ≤ m. Then

Ky := {i | ⟨Ai•, y⟩ = ⟨Ai•, x⟩, 1 ≤ i ≤ m} is non-empty. Let u ∈ [0, 1]. We consider two
cases.

Case 1: Ψ̆λ(y, u) = y + vj for some 1 ≤ j ≤ n.

Fix such an index j. Consider the unique 1 ≤ k ≤ s such that j ∈ Gk. Then, by (S.10),
either Ψλ(x, u) = x+ vℓ for some ℓ ∈ Gk, or Ψλ(x, u) = x.

a) Suppose Ψλ(x, u) = x+ vℓ for some ℓ ∈ Gk. Observe that for every i /∈ Ky, ⟨Ai•, y −
x⟩ > 0 and as for (S.18), ⟨Ai•, (y + vj) − (x + vℓ)⟩ ≥ 0, while for i ∈ Ky, ⟨Ai•, (y +
vj)− (x+ vℓ)⟩ = ⟨Ai•, vj⟩ − ⟨Ai•, vℓ⟩. For each i ∈ Ky,

i) if ⟨Ai•, vj⟩ = −1 and ⟨Ai•, vℓ⟩ = 0, then j ∈ Gk,−
i and ℓ /∈ Gk,−

i . By (S.6),

we would then have
∑

r∈Gk,−
i

Ῠr(y) ≤
∑

r∈Gk,−
i

Υr(x), which would imply by

(S.12) that Ψλ(x, u) = x + vr for some r ∈ Gk,−
i . Since we are assuming that

Ψλ(x, u) = x+vℓ and we know the vectors v1, . . . , vn are distinct, we obtain that

ℓ = r ∈ Gk,−
i . This contradicts ℓ /∈ Gk,−

i .
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ii) if ⟨Ai•, vj⟩ = 0 and ⟨Ai•, vℓ⟩ = 1, then j /∈ Gk,+
i and ℓ ∈ Gk,+

i . By (S.7), we

would then have
∑

r∈Gk,+
i

Ῠr(y) ≥
∑

r∈Gk,+
i

Υr(x), which would imply by (S.11)

that j ∈ Gk,+
i . This contradicts j /∈ Gk,+

i .

iii) in all the other cases, that is when

(⟨Ai•, vj⟩, ⟨Ai•, vℓ⟩) ∈ {(1, 0), (0,−1), (1, 1), (0, 0), (−1,−1)},

we have ⟨Ai•, (y + vj)− (x+ vℓ)⟩ ≥ 0.

Combining the above for case a), we see that ⟨Ai•, (y + vj) − (x + vℓ)⟩ ≥ 0 for each
1 ≤ i ≤ m, which implies that Ψλ(x, u) = x+ vℓ ≼A y + vj = Ψ̆λ(y, u).

b) Suppose Ψλ(x, u) = x. We claim that y + vj ∈ KA + x. To see this, observe that for
every i /∈ Ky, ⟨Ai•, y − x⟩ > 0 and as for (S.16), ⟨Ai•, (y + vj) − x⟩ ≥ 0, while for
i ∈ Ky, ⟨Ai•, (y+ vj)− x⟩ = ⟨Ai•, vj⟩ ∈ {−1, 0, 1}. For each i ∈ Ky, if ⟨Ai•, vj⟩ = −1,
which means j ∈ Gk,−

i , then by (S.6) we would have
∑

ℓ∈Gk,−
i

Ῠℓ(y) ≤
∑

ℓ∈Gk,−
i

Υℓ(x),

which would imply by (S.12) that Ψλ(x, u) = x + vℓ for some ℓ ∈ Gk,−
i , but this

contradicts the assumption that Ψλ(x, u) = x. So we must have ⟨Ai•, vj⟩ ≥ 0 and
hence ⟨Ai•, (y+ vj)− x⟩ ≥ 0 for all i ∈ Ky. Thus, y+ vj ∈ KA + x and so Ψλ(x, u) =
x ≼A y + vj = Ψ̆λ(y, u).

Case 2: Ψ̆λ(y, u) = y. Again, we consider two subcases.

a) If Ψλ(x, u) = x, then (S.8) holds, because x ≼A y.

b) If Ψλ(x, u) = x + vj for some 1 ≤ j ≤ n, we claim that y ∈ KA + x + vj for the
corresponding value of j. To see this, fix the value of j for which Ψλ(x, u) = x + vj ,
let 1 ≤ k ≤ s be such that j ∈ Gk, and observe that for every i /∈ Ky, ⟨Ai•, y−x⟩ > 0
and as for (S.17), ⟨Ai•, y − (x + vj)⟩ ≥ 0, while for i ∈ Ky, ⟨Ai•, y − (x + vj)⟩ =
−⟨Ai•, vj⟩ ∈ {−1, 0, 1}. For each i ∈ Ky, if ⟨Ai•, vj⟩ = 1, which means j ∈ Gk,+

i ,

then by (S.7), we would have
∑

ℓ∈Gk,+
i

Ῠℓ(y) ≥
∑

ℓ∈Gk,+
i

Υℓ(x), which would imply by

(S.11) that Ψ̆λ(y, u) = y + vℓ for some ℓ ∈ Gk,+
i , but this contradicts the assumption

that Ψ̆λ(y, u) = y. So we must have ⟨Ai•, vj⟩ ≤ 0 and hence ⟨Ai•, y− (x+ vj)⟩ ≥ 0 for
all i ∈ Ky. Thus, we have y ∈ KA+x+vj and then Ψλ(x, u) = x+vj ≼A y = Ψ̆λ(y, u).

In order to prove Theorem S.2, from here on we can follow a similar procedure to the
one used in the proof of Theorem 3.1 after Lemma 5.1 was proved there. For the case
where (5.1) holds, we define two discrete-time processes, Y = (Yk)k≥0 and Y̆ = (Y̆k)k≥0, by
defining Y0 := x◦, Y̆0 := x̆◦, and for k ≥ 0,

Yk+1 := Ψλ(Yk, Uk+1), Y̆k+1 := Ψ̆λ(Y̆k, Uk+1), (S.20)

and define X and X̆ using these and an independent Poisson process N as in (5.13). For
the case where (5.1) does not hold, we can use a truncation procedure similar to that for
Theorem 3.1. In both cases, we use Lemma S.1 instead of Lemma 5.1.

8



S.3.2 Two other A matrices for Example 4.3

Let

A =

−1 0 0 0
0 0 −1 0
0 −1 −1 0

 . (S.21)

For x ∈ X , consider infinitesimal transition rates Ῠ1(x), Ῠ2(x), Ῠ3(x), Ῠ4(x) and Ῠ5(x)
defined as for Υ1(x),Υ2(x),Υ3(x),Υ4(x) and Υ5(x) in (4.7), but with κ̆i in place of κi
where κ̆i = κi, for i = 1, 2, 3, 4, and κ̆5 ≤ κ5. Suppose that κ2 > κ4. Now, let us verify
that the assumptions of Theorem S.2 hold. Condition (i) holds since Av1 = (1, 0,−1)T ,
Av2 = (0, 0, 1)T , Av3 = (1,−1,−1)T , Av4 = (0, 1, 1)T and Av5 = (0,−1, 0)T . Assumption
S.1 holds with G1 = {3, 1}, G2 = {4, 2}, G3 = {5} and σ(1) = 3, σ(2) = 1, σ(3) = 4,
σ(4) = 2, σ(5) = 5. To verify that condition (ii) of Theorem S.2 holds, fix x ∈ X and
first consider y ∈ ∂1(KA + x) ∩ X , where ∂1(KA + x) ∩ X = {w ∈ X | x1 = w1, x3 ≥
w3, x2 + x3 ≥ w2 + w3, x4 ≤ w4}. Given that ⟨A1•, v1⟩ = ⟨A1•, v3⟩ = 1, we need to check
that Υ1(x)+Υ3(x) ≤ Ῠ1(y)+Ῠ3(y). Since y ∈ ∂1(KA+x)∩X , then Υ1(x) = κ1x1 = κ1y1 =
κ̆1y1 = Ῠ1(y) and Υ3(x) = κ3x1 = κ3y1 = κ̆3y1 = Ῠ3(y), and so the desired inequality holds
with equality. Secondly, consider y ∈ ∂2(KA + x) ∩ X = {w ∈ X | x1 ≥ w1, x3 = w3, x2 ≥
w2, x4 ≤ w4}. Given that ⟨A2•, v3⟩ = ⟨A2•, v5⟩ = −1 and ⟨A2•, v4⟩ = 1, we need to check
that Υ3(x) ≥ Ῠ3(y), Υ4(x) ≤ Ῠ4(y) and Υ5(x) ≥ Ῠ5(y). Since y ∈ ∂2(KA + x) ∩ X ,
then Υ3(x) = κ3x1 ≥ κ3y1 = κ̆3y1 = Ῠ3(y), Υ4(x) = κ4x3 = κ4y3 = κ̆4y3 = Ῠ4(y)
and Υ5(x) = κ5x2 ≥ κ5y2 ≥ κ̆5y2 = Ῠ5(y), and so the desired inequality holds. Lastly,
consider y ∈ ∂3(KA + x) ∩ X = {w ∈ X | x1 ≥ w1, x3 ≥ w3, x2 + x3 = w2 + w3, x4 ≤ w4}.
Given that ⟨A1•, v1⟩ = ⟨A1•, v3⟩ = −1 and ⟨A1•, v2⟩ = ⟨A1•, v4⟩ = 1, we need to check
that Υ1(x) + Υ3(x) ≥ Ῠ1(y) + Ῠ3(y) and Υ2(x) + Υ4(x) ≤ Ῠ2(y) + Ῠ4(y). For y ∈
∂3(KA + x)∩X , since κ2 > κ4 was assumed, we have that Υ2(x) +Υ4(x) = κ2x2 + κ4x3 =
(κ2 − κ4)x2 + κ4(x2 + x3) ≤ (κ2 − κ4)y2 + κ4(y2 + y3) = κ̆2y2 + κ̆4y3 = Ῠ2(y) + Ῠ4(y) and
Υ1(x) = κ1x1 ≥ κ1y1 = κ̆1y1 = Ῠ1(y), Υ3(x) = κ3x1 ≥ κ3y1 = κ̆3y1 = Ῠ3(y). Thus, the
conditions of Theorem S.2 are satisfied and so the conclusion of that theorem holds.
Let Γ = {(0, 0, 0,Stot)}. This is an increasing set in X with respect to the relation

≼A. Let T(0,0,0,Stot), respectively T̆(0,0,0,Stot) be the first time that the Markov chain X,

respectively X̆, reaches the set Γ. Then, by the generalization of Theorem 3.4, if X(0) =
X̆(0) = (Stot, 0, 0, 0), we have that T̆(0,0,0,Stot) ≼st T(0,0,0,Stot). It follows that increasing κ5
will increase the mean first passage time from (Stot, 0, 0, 0) to (0, 0, 0,Stot) when κ2 > κ4
(See Figure S.1). Indeed, when κ2 > κ4, it takes a longer time to get to (0, 0, 0,Stot) from
(Stot, 0, 0, 0) if reaction 5○ is added to the system without that reaction.
On the other hand, suppose

A =

−1 0 0 0
0 −1 0 0
0 −1 −1 0


and infinitesimal transition rates Ῠ1(x), Ῠ2(x), Ῠ3(x), Ῠ4(x) and Ῠ5(x) are defined as for
Υ1(x),Υ2(x), Υ3(x),Υ4(x) and Υ5(x) in (4.7), but with κ̆i in place of κi where κ̆i = κi, for
i = 1, 2, 3, 4, κ̆5 ≥ κ5, and κ2 < κ4. We can verify that the assumptions of Theorem S.2 hold,
as follows. Condition (i) holds since Av1 = (1,−1,−1)T , Av2 = (0, 1, 1)T , Av3 = (1, 0,−1)T ,
Av4 = (0, 0, 1)T and Av5 = (0, 1, 0)T . Assumption S.1 holds with G1 = {1, 3}, G2 = {2, 4},
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Figure S.1: A typical coupled realization of sample paths for Example 4.3. Here Stot = 20,
κ1 = κ̆1 = 30, κ2 = κ̆2 = 50, κ3 = κ̆3 = 10, κ4 = κ̆4 = 10, κ5 = 1000 and κ̆5 = 10. Both processes
X and X̆ start at (Stot, 0, 0, 0). As shown in Section S.3.2, for these parameters, we have, almost
surely, X(t) ≼A X̆(t) for every t ≥ 0 where the matrix A is given in (S.21). A coupled realization
using the algorithm described in Section S.4 is plotted to illustrate this result. In particular, we see
in this sample that X1(t) ≥ X̆1(t), X2(t)+X3(t) ≥ X̆2(t)+ X̆3(t) and X3(t) ≥ X̆3(t) for all times t.
Moreover, the first passage time to (0, 0, 0,Stot) for X (which is equivalent to the first time to get
to the state where X4 = Stot) is larger than for X̆. Since this first passage time result is true for all
coupled samples, we can conclude that the mean first passage time from (Stot, 0, 0, 0) to (0, 0, 0,Stot)
is larger for X than for X̆.

G3 = {5} and σ(1) = 1, σ(2) = 3, σ(3) = 2, σ(4) = 4, σ(5) = 5. To verify that condition
(ii) of Theorem S.2 holds, let x ∈ X , and first consider y ∈ ∂1(KA + x) ∩ X , where
∂1(KA + x) ∩ X = {w ∈ X | x1 = w1, x2 ≥ w2, x2 + x3 ≥ w2 + w3, x4 ≤ w4}. Given that
⟨A1•, v1⟩ = ⟨A1•, v3⟩ = 1, we need to check that Υ1(x) + Υ3(x) ≤ Ῠ1(y) + Ῠ3(y). Since
y ∈ ∂1(KA + x) ∩ X , then Υ1(x) = κ1x1 = κ1y1 = κ̆1y1 = Ῠ1(y) and Υ3(x) = κ3x1 =
κ3y1 = κ̆3y1 = Ῠ3(y), and so the desired inequality holds with equality. Secondly, consider
y ∈ ∂2(KA + x) ∩ X = {w ∈ X | x1 ≥ w1, x2 = w2, x2 + x3 ≥ w2 + w3, x4 ≤ w4}. Given
that ⟨A2•, v2⟩ = ⟨A2•, v5⟩ = 1 and ⟨A2•, v1⟩ = −1, we need to check that Υ1(x) ≥ Ῠ1(y),
Υ2(x) ≤ Ῠ2(y) and Υ5(x) ≤ Ῠ5(y). Since y ∈ ∂2(KA+x)∩X , then Υ1(x) = κ1x1 ≥ κ1y1 =
κ̆1y1 = Ῠ1(y), Υ2(x) = κ2x2 = κ2y2 = κ̆2y2 = Ῠ2(y) and Υ5(x) = κ5x2 = κ5y2 ≤ κ̆5y2 =
Ῠ5(y), and so the desired inequality holds. Lastly, consider y ∈ ∂3(KA + x) ∩ X = {w ∈
X | x1 ≥ w1, x2 ≥ w2, x2 + x3 = w2 + w3, x4 ≤ w4}. Given that ⟨A1•, v1⟩ = ⟨A1•, v3⟩ = −1
and ⟨A1•, v2⟩ = ⟨A1•, v4⟩ = 1, we need to check that Υ1(x) + Υ3(x) ≥ Ῠ1(y) + Ῠ3(y)
and Υ2(x) + Υ4(x) ≤ Ῠ2(y) + Ῠ4(y). For y ∈ ∂3(KA + x) ∩ X , since κ2 < κ4, we have
that Υ1(x) + Υ3(x) = (κ1 + κ3)x1 ≥ (κ1 + κ3)y1 = (κ̆1 + κ̆3)y1 = Ῠ1(y) + Ῠ3(y) and
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Υ2(x) + Υ4(x) = κ2x2 + κ4x3 = (κ4 − κ2)x3 + κ2(x2 + x3) ≤ (κ4 − κ2)y3 + κ2(y2 + y3) =
κ̆2y2 + κ̆4y3 = Ῠ2(y) + Ῠ4(y). Thus, the conditions of Theorem S.2 are satisfied. In
particular, we can conclude when κ2 < κ4, that it takes less time to get to (0, 0, 0,Stot)
from (Stot, 0, 0, 0) if reaction 5○ is added to the system without that reaction9.

S.4 An algorithm for coupled stochastic simulation

We now provide an algorithm for stochastic simulation of the coupled continuous-time
Markov chains X and X̆ under the conditions of Theorems 3.1, 3.2, 3.3 or S.2, when the
transitions rates are bounded on the state space, i.e., when (5.1) holds.

Algorithm: Stochastic simulation for coupled continuous-time Markov chains X
and X̆.

Data: Integer n ≥ 1, real T > 0, set X ⊆ Zd
+, vectors v1, . . . , vn in Zd \ {0}, x◦, x̆◦ in

X , functions Υ = (Υ1, . . . ,Υn) and Ῠ = (Ῠ1, . . . , Ῠn) and integer
a ∈ {1, 2, 3, 4} to indicate which theorem is invoked (3.1, 3.2, 3.3 or S.2).

Result: Sample of initial time and subsequent potential jump times T0, T1, . . . , TN

and associated states X(T0), X(T1), . . . , X(TN ) and X̆(T0), X̆(T1),
. . . , X̆(TN ) for the continuous-time Markov chains X and X̆ in the time
interval [0, T ].

λ← 1 + nmax
{
supx∈X

∑n
j=1Υj(x), supx∈X

∑n
j=1 Ῠj(x)

}
;

K ← 0;
T0 ← 0;
while TK ≤ T do

TK+1 ← TK+ Exponential(λ);
K ← K + 1;

end

Y0, Y̆0 ← x◦, x̆◦;

X(T0), X̆(T0)← x◦, x̆◦;
N ← K − 1;
if N ≥ 1 then

for k ← 0 to N − 1 do
U ← Uniform([0, 1]);

Yk+1, Y̆k+1 ← TransitionDTMC(Υ, λ, Yk, U, a),
TransitionDTMC(Ῠ, λ, Y̆k, U, a);

X(Tk+1), X̆(Tk+1)← Yk+1, Y̆k+1;

end

end

The random variables T1, . . . , TN are called potential jump times because it could be that
X(Tk) = X(Tk+1) or X̆(Tk) = X̆(Tk+1) for some 0 ≤ k ≤ N − 1. Letting TN+1 := T , the
trajectories of X are given by X(t) = X(Tk) for Tk ≤ t < Tk+1, 0 ≤ k ≤ N , and similarly
for the trajectories of X̆.

9The system without reaction 5○ can be obtained from the system with reaction 5○ by setting κ5 = 0.
While strictly speaking a zero rate constant is not within our definition of mass action kinetics, our theory
does cover propensity functions with such a zero rate constant.
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The function TransitionDTMC can be found below. This function is meant to replicate
Φλ(x, u) in (5.4) for the case of Theorems 3.1 and 3.2, and Ψλ(x, u) in (5.34) for the case
of Theorems 3.3 and S.2.

Function TransitionDTMC(Υ, λ, x, u, a)
Data: Integer n ≥ 1, set X ⊆ Zd

+, vectors v1, . . . , vn in Zd \ {0}.
Input: Function Υ = (Υ1, . . . ,Υn), λ > 0, x ∈ X , u ∈ [0, 1]. Integer

a ∈ {1, 2, 3, 4} to indicate which theorem is invoked (3.1, 3.2, 3.3 or S.2).
For the case of Theorem 3.3 or S.2, include partition {G1, . . . , Gs} and
bijection σ.

Output: State x+ v ∈ X .
v ← 0;
if a ∈ {1, 2} then // The case of Theorem 3.1 or 3.2.

for j ← 1 to n do

if j−1
n ≤ u < j−1

n +
Υj(x)

λ then
v ← vj ;

end

end

end
else // The case of Theorem 3.3 or S.2.

p0 ← 0;
for k ← 1 to s do

pk ← pk−1 + |Gk|;
for q ← pk−1 + 1 to pk do

if
pk−1

n +
∑q−1

ℓ=pk−1+1

Υσ(ℓ)(x)

λ ≤ u <
pk−1

n +
∑q

ℓ=pk−1+1

Υσ(ℓ)(x)

λ then

v ← vσ(q);

end

end

end

end
return x+v

Remark S.3. The above algorithm can be adapted to provide simultaneous stochastic
simulation for X and X̆ when transition rates are not bounded on the state space, by
applying the algorithm on a sequence of bounded sets, which expand to the whole state
space. This employs a sequence of successively defined stopping times τ0 = 0, τℓ = inf{t ≥
τℓ−1 | X(t) /∈ Cℓ or X̆(t) /∈ Cℓ}, ℓ = 1, 2, . . . , where the Cℓ are compact, Cℓ ⊆ Cℓ+1 for
ℓ = 1, 2, . . . and ∪∞ℓ=1Cℓ = X . The simulation of the pair (X, X̆)(t) for τℓ ≤ t < τℓ+1 uses
the above algorithm on Cℓ for ℓ = 1, 2, . . . .
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