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Abstract We consider the problem of controlling a set of vehicles at an inter-
section, in the presence of uncontrolled vehicles and a bounded disturbance.
We begin by discretizing the system in space and time to construct a suitable
discrete event system (DES) abstraction, and formally define the problem to
be solved as that of constructing a supervisor over the discrete state space
that is safe (i.e., collision-free), non-deadlocking (i.e., the vehicles all cross the
intersection eventually), and maximally permissive with respect to the chosen
discretization. We show how to model the uncontrolled vehicles and the dis-
turbance through uncontrollable events of the DES abstraction. We define two
types of relations between systems and their abstraction: state reduction and
exact state reduction. We prove that, when the abstraction is a state reduc-
tion of a continuous system, then we can obtain a safe, non-deadlocking, and
maximally permissive memoryless supervisor. This is obtained by translating
safety and non-deadlocking specifications to the abstract domain, synthesizing
the supervisor in this domain, and finally translating the supervisor back to
the concrete domain. We show that, when the abstraction is an exact state
reduction, the resulting supervisor will be maximally permissive among the
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class of all supervisors, not merely memoryless ones. Finally, we provide a
customized algorithm and demonstrate its scalability through simulation.

Keywords Discrete Event Systems - Abstraction - Vehicle Control -
Supervisory Control

1 Introduction

We consider the problem of controlling a set of n vehicles in the vicinity of
an intersection. We assume that vehicles move along a set of m intersecting
two-way roads, m < n, and that the path that each vehicle will follow is known
a priori (for example, by means of reading the turn signal of the vehicle), and
we want to supervise the vehicles’ behaviour to avoid a side impact of any two
vehicles on intersecting paths, and a rear-end collision of any two vehicles on
a common or on merging paths. See Fig. 1 for an example.
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Fig. 1 An example of the vehicle control problem.

We assume that a certain subset of the vehicles are uncontrolled, and that
there is a disturbance on the vehicle dynamics with a known bound. The
problem to be solved consists of designing a supervisor that restricts the actions
of the controlled vehicles such that the system is safe (i.e., collision-free),
non-deadlocking (i.e., the vehicles must eventually cross the intersection), and
maximally permissive.

Three common approaches to this problem include: the computation of
maximally controlled invariant sets; mapping the problem to that of schedul-
ing; and abstraction/symbolic models. Among approaches falling in the first
category, we mention, e.g., [18, 27, 19]. By explicitly computing the capture
set, or set of states from which it is not possible to guarantee avoidance of the
unsafe states, these approaches naturally satisfy safety, non-deadlockingness
and maximal permissiveness, and can deal with sources of uncontrollability
and also with measurement uncertainty. However, such approaches typically
require conditions on the geometry of the unsafe set and on the structure of
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the dynamics, or else scale poorly to systems with more than a few dimensions.
See also [26] for an example involving a flight management system. Scheduling
approaches work by allocating time intervals during which the vehicles can be
inside the intersection. The scheduling problem is generally NP-hard but takes
polynomial time in the special case where all jobs require the same processing
time. Reducing the vehicle control problem to the polynomial-time scheduling
case amounts to either an assumption of certain symmetries in the vehicle con-
trol problem set-up, or a problem relaxation where such symmetries are not
satisfied. Approaches in this category include [10], its extension to the case
of dynamics with disturbances, [4], its extension to the case of uncontrolled
vehicles [1], and its extension to the case of networks of sufficiently spaced
intersections, [7]. See also [11], which uses precedence constraints to allow for
vehicles on common or non-intersecting trajectories to use the intersection si-
multaneously. Another approach is to pre-compute fail-safe maneuvers as in
[20], or evasion plans as in [3]. These last approaches deal with some types of
environmental uncertainty, but do not guarantee maximal permissiveness.

Our approach falls in the category of abstraction/symbolic models. Ab-
straction based methods work by mapping the continuous system model and
specifications to a finite model and solving for a supervisor on the finite model,
in such a way that the obtained supervisor can be used on the original (contin-
uous) system, while preserving safety and non-deadlocking properties. Work
in this domain includes [2, 15] in the context of verification / model checking,
as well as [8, 9, 12], which make use of differential flatness of dynamical sys-
tems to construct abstractions with provable errors bounds. Our work is most
closely related to that of [16, 22, 30, 5], which construct symbolic models that
satisfy simulation or alternating simulation relations with the original system.
In particular, this work also makes use of alternating simulation relations, and
variations thereof.

In this problem, the number of vehicles will typically be at least five (we
provide simulation results for up to six vehicles) and the bad set has a non-
convex shape, which makes exact computation of the capture set intractable.
On the other hand, the scheduling methods of [10], [4], and [1] do not explicitly
pre-compute sets of states from which there exist solutions to the correspond-
ing scheduling problems, but instead perform verification on-line. Because the
exact verification problem is NP-hard, only the polynomial-time problem re-
laxations are feasible in practice. While also suffering from problems related
to state space explosion, abstraction based methods nevertheless offer more
scalability than capture set computation and more flexibility than reductions
to scheduling problems.

We proceed to solve the problem by discretizing the system in space and
time, thus obtaining a finite solution space. Using this discretization as a basis,
we construct a discrete-event system (DES) abstraction and model the two
sources of uncontrollability (the uncontrolled vehicles and the disturbance)
through uncontrollable events. By translating the safety and non-deadlocking
specifications from the continuous to the discrete-event domain, we formulate
the problem to be solved in the context of supervisory control theory of DES
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(see [23], [28], [6]). Specifically, we obtain a maximally permissive safe and non-
deadlocking supervisor for the DES by solving the Basic Supervisor Control
Problem in the Non-Blocking case (BSCP-NB). The resulting supervisor is
then translated back to the original (continuous) problem domain, preserving
safety, non-deadlockingness, and maximal permissiveness with respect to the
discretization.

To prove that safety and non-deadlockingness are preserved when translat-
ing the obtained supervisor from the abstract back to the continuous problem
domain and to characterize the sense in which the resulting solution is maxi-
mally permissive, we define two types of relations between systems and their
abstractions: the state reduction and the exact state reduction. We prove that,
when the abstraction is a state reduction of the original system, the obtained
supervisor for the continuous domain problem will be safe, non-deadlocking,
and maximally permissive among the class of memoryless supervisors. When
the abstraction is an exact state reduction of the original system, the obtained
supervisor will be maximally permissive among the class of all supervisors,
not merely memoryless ones. In the context of the vehicles control problem,
we show that our DES abstraction is a state reduction of the continuous sys-
tem model. Additionally, we show that, if the bounds on the disturbance are
an integral multiple of one of the discretization parameters, then our DES
abstraction becomes an exact state reduction of the continuous system model.

Finally, we present a formulation of the control problem as a game against
nature and show how this results in a categorization of the discrete states as
winning for the controller, winning for nature, or losing for both. We then make
use of this through a technique based on iterative refinement, which consists of
computing the winning sets on an abstraction with a coarse discretization, and
refining the abstraction at states found to be losing for both the controller and
nature. By making use of iterative refinement and the problem’s structure, we
are able to obtain an algorithm that is faster than the standard DES super-
visory control algorithms. We show through simulation that the algorithm is
scalable in practice, with running times of under one minute for systems with
tens of millions of states in the DES abstraction.

Our contributions are as follows. First, the translation of the system model
and specifications to the domain of DES allows us to leverage methods from
supervisory control theory, methods which are well-suited to finding maxi-
mally permissive supervisors in the presence of uncontrolled elements of the
environment. Second, the notions of state reduction and exact state reduction
are general notions that conserve maximal permissiveness, rather than merely
safety and non-deadlockingness, when going from an abstraction back to the
original system. To our knowledge, the construction of maximally permissive
memoryless supervisors for DES specifications through abstractions has not
been considered in other works. Finally, the iterative refinement algorithm pre-
sented in this work diminished running time by a factor of over 1000 in some
cases and many of the techniques used in this algorithm could also general-
ize to other problems of interest. Preliminary versions of some of the results
presented here have appeared in [13], [14].
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The organization of this paper is as follows. In Sec. 2, we present the
system model, its time/space discretization, and the problem to be solved. In
Sec. 3, we describe the set of collision points to be avoided. In Sec. 4, we define
the two modeling formalisms which are used in this paper, namely transition
systems and discrete event systems, and present a fixed point algorithm for
computing a maximally permissive safe and non-deadlocking supervisor. In
Sec. 5, we present the state reduction, exact state reduction, and associated
theorems. In Sec. 6, we define the DES abstraction of the system defined in
Sec. 2, prove that this abstraction is a state reduction of the system defined
in Sec. 2, and additionally prove under what conditions the abstraction is an
exact state reduction. In Sec. 7, we present the problem formulation as a game
against nature and describe the iterative refinement procedure. In Sec. 8, we
present our algorithm for solving the vehicle control problem. In Sec. 9, we
present simulation results for an implementation of our algorithm. Finally, we
conclude in Sec. 10. We also include derivations of the equations used in our
algorithms, which are contained in the appendix.

2 Model and Problem Definition

Consider a set of n vehicles N' = {1,...,n} modeled as kinematic entities
(integrators) and described by

T=v+d (1)

where z € X C R" is the state, v € V C R" is the control input, and
d € D C R" is a disturbance input representing unmodeled dynamics (for
instance, the dynamic response of the vehicle to the engine torque). That
is, d models the discrepancy between the full system model and the simple
model & = v. Assume that X is compact (i.e., the vehicles are controlled in
some neighbourhood of the intersection) and that D = [dmin, dmaz]™, with
dmin < 0 < dpmas. We take the set V' to be the (discrete) set of vectors with
elements in the finite set {au, (a + 1)y, ...,bu}, with a,b € N and p € R,.
The values ap and bu are denoted by v, and vimq., respectively. To allow
for the possibility that a subset of the vehicles cannot be controlled, let v
be partitioned into two subvectors, v. € V. for the controlled vehicles, and
Vye € Vi for the uncontrolled vehicles, so that v = (ve, Vye) and V =V, X V.
Assume also that v,,in + dimin > 14, S0 that p constitutes a lower bound on the
velocity of the vehicles. Finally, assume that the input v is kept constant over
time intervals [k7, (k + 1)7), k € N and discretize the above system in time
with step 7, obtaining

Ti41 = Tk +up + Ok (2)
with o), = a(kr), wy = v(kr)7, & = [TV d(t)dt. Calling U = Vr and
A = D1, we have that ux € U and 6 € A. In the remainder of this paper, we
will also use the notation iy := dmin™ and dpmax = dmax7. As with the set V,
we use the notation u = (u,, uy.) to denote the controls of the controlled and
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uncontrolled vehicles and write U = U, x Uye. Next, we discretize the system
in space by defining a set of discrete states  and a mapping £ : X — @ from
continuous to discrete states as follows:

(c+1/2)Tu, for c € Z s.t.
li(x;) = et < x; < (c+ 1)1y,
Gi;ms if x; > oy

if ; < ayg

3)

where k is the index of the road on which vehicle i exits the intersection (i.e.,
after any turn) and oy marks the end of the intersection on road k (the shape
of the intersection will be described in more detail in Sec. 3). Note that, if
the vehicles are to be controlled beyond the end of the intersection, then a
value greater than oy could be used in Eq. (3). This could potentially result
in more than one marked state in the definition of G (see Sec. 6) and would
not invalidate any results presented in this paper. Define ¢(x) as the vector
(¢1(z1), ..., €n(z,)) and define the notation £=1(q) = {x € X : {(z) = ¢}. In
words, the space X is covered by a regular lattice with spacing 7u. Vehicles
before the end of the intersection are mapped to a point of this lattice whereas
vehicles after the end of the intersection are mapped to “special” states g; .
The state ¢, = (q1,m, - - -, gn,m) is the (unique) discrete state where all vehicles
have crossed the intersection. Assume that, for all ¢ € Q, there exists some
x € X such that ¢(x) = ¢. Finally, assume that there is some set B of bad states
(representing collision points) and that we would like to define a supervisor so
that z(t) ¢ BVt > 0. We will describe the bad set in the following section.
Specifically, we wish to solve the following problem:

Problem 1 Let X/¢ denote the quotient set of X with respect to the equiv-
alence relation Ry C X x X defined by (x1,22) € Ry < ¢(x1) = {(z2). Given
Q, define a supervisor ¢ : X/¢ — 2% that assigns to each z(k7) € X a set
of inputs v, € V, allowed for the interval [k, (k + 1)7) and constant over this
time interval, with the following properties:

— if v.(t) € o(x([t/7]T)) for t € [kr,(k + 1)7), then z(t) ¢ B in the same
time interval (safety)

— if o(z(kT)) £ 0, v.(t) € o(z(|t/7]|T)) for t € [kT,(k + 1)7), and £(z((k +
1)7)) # qm, then o(z((k + 1)7)) # 0 (non-deadlockingness)

— if & # o and & satisfies the two properties above, then &(x) C o(x) for all
z € X (maximal permissiveness). O

3 Bad Set Description

Let the set of roads in this system be denoted by R = {1, ..., m}. Associated to
each vehicle 7 is a pair of roads (r; 1,75 2), indicating that the vehicle starts on
road 7; 1 and turns onto road 7; o at the intersection. Each road r in this system
is parametrized by the length «,. of the road that is inside the intersection. We
assume that vehicles instantaneously switch from one road to another (i.e.,
when turning) at point 0. Thus, vehicle 7 is on road r;; when z; < 0, inside
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the intersection when z; € [~ |, a;, ,], and on road ;5 when z; > 0. We
define any two pairs of roads (r;1,7;2) and (7,1, 7;2) as conflicting in one of
two cases:

Case 1 If two vehicles share the same start or end road, they must maintain a min-
imal separation distance of v > 0 while on the same road. Mathematically,
rin=rj1 = (x,c; <0=|z; —x;| > ) and rj0 =152 = (z5,2;, > 0=
|z — 5] 2 7).

Case 2 If two vehicles are on trajectories that intersect inside the intersection re-
gion while turning, they are forbidden from being in the intersection region

simultaneously. Mathematically, (zs,2;) & (=, ,, Qr, ) X (=0, 1, Q).

It can be shown that, if r; 1 # ;1 and r; o 7 7} 2, then case 2 occurs when
an odd number of

Ti1 > T, Tji1 2> T2, rj2 < 11, and Tj2 < T2 (4)

are true (assuming vehicles driving on the right side of the road). We call the
set of all forbidden points the bad set, and denote it by B. Note that we do
not include collision points involving two uncontrolled vehicles in the bad set,
since these cannot be prevented through any control action. If neither case 1
nor case 2 occur for a pair of vehicles ¢ and j (ex: both vehicles turning right),
then no constraints are placed on their joint behavior. See Fig. 2 for a pictorial
example of cases 1 and 2.

Fig. 2 An example scenario involving three vehicles on five roads. Blue lines segments are
drawn for each vehicle indicating starting road and ending road. Case 1 occurs when two
line segments meet at an endpoint, and case 2 occurs when two line segments intersect.

4 Modelling Formalisms

This section defines the two types of system models that will be used in this
work: transition systems and discrete-event systems. Relations between sys-
tems and abstractions are typically described in terms of transition systems.
However, the specifications we consider and the solution computation are in the
domain of discrete-event systems. Thus, this section will give brief overviews
of both types of systems and finally unify the two of them.
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4.1 Transition Systems

Definition 1 (Transition System) A transition system S is defined as a
tuple S = (X,U, —,Y, H), where X is the set of states, U is a set of control
inputs, -C X x U x X is a transition relation, Y is an output set, and
H : X — Y is the output function. O

Henceforth, we will usually refer to transition systems simply as systems.
For a system S = (X,U, —,Y, H), we will use the notation Post, (z) := {2’ €
X : (z,u,2') €=} and U(z) := {u € U : Post,(z) # 0}. In the remainder of
this paper, it will be assumed that all systems satisfy the property H(z1) =
H(z2) = U(xy) = U(xa), for all 21,29 € X. In words, this means that any
two states with the same observation should not be distinguishable by their
available set of inputs.

Definition 2 (Run) A run p of length n for a system S = (X,U,—,Y, H)
is a sequence of past states and inputs (2%, 4%, ... 2"~ 1 u"~! 2"), such that

ut € U(x?) and 2°*! € Post,i(z%) for i =0,...,n — 1. O

The set of runs of length n is denoted by R,(S) and the set of runs
is R(S) = Ujeg Rn(S). We use R,(S|z) and R(S|z) to denote the set of
runs of length n starting from x and the set of all runs starting from state
x, respectively. For any D C X, also let R,(S|D) := UzepR,(S|z) and
R(S|D) := UgepR(S|z). Given run p = (2%, ... 2" 1 w1 2"), we de-

fine the notation tgt(p) := 2" and p(k) := (2,4, ..., 2"~ k=1 2%), called
a prefic of p. We will also abuse notation and write (z,u,2’) € p if p =
(20,00, ... 2"~ "=l 2™) and there exists some i = 0,...,n — 1 such that

2t =2, u' =u, and ! =o',

Definition 3 (History) A history 6 of length n for a system S = (X, U, —

,Y, H) is a sequence of past outputs and inputs (y°,u°,...,y" 1 w1 y"),
such that there exists a run p = (2%, u°,..., 2"~ "=t 2") € R,(S) that is
consistent with 6, in the sense that y* = H(z") for i =0,...,n. O

The set of histories of length n is denoted by ©,(S) and the set of his-
tories is O(S) = U2y On. We will also write 6(p) to mean the unique his-
tory produced by a run p € R. We use O,(S|z) = {0(p)|p € R,(S|x)} and
O(S|z) = {8(p)|p € R(S|z)} to denote the set of histories of length n start-
ing from z and the set of all histories starting from state x, respectively. For
any D C X, also let ©,(S|D) := U,ecp©Oy,(S|z) and O(S|D) := U,epO(S|z).
Given history 6 = (y°,u%,...,y" 1, 4"~ y™), we define the notation (k) :=
(y°,ul, ..., y* =t b1 y*) and tgt(6) := y™, as was the case with runs.

Definition 4 (Specification) A safety specification for a system S = (X, U, —
,Y, H) is a subset Safe C— of transitions that we would like the system S to
be restricted to. A marking specification for S is a set X,,, C X of “special” or
marked states. We say that S is deadlocking if there exists a run p such that
Ultgt(p)) = 0 and tgt(p) ¢ Xm. O
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Definition 5 (Supervisor) A supervisor ¢ for a system S = (X,U, —,Y, H)
is a function o : © — 2V which chooses which control inputs to enable/disable
after each history. A supervisor is called memoryless if it is of the form o : Y —
2V Arun p = (2%4%, ... 2" w1 2") € R, (9) is allowed by supervisor o
if u’ € a(0(p(4))), for i =0,...,n — 1. O

Definition 6 (Specification Satisfaction) A supervisor o for system S =
(X,U,—,Y, H) is safe with respect to Safe C— if every run

p=(2%u0, ... 2"t u"~t 2m) € R(S) allowed by o satisfies (2%, u?, x't1) €
Safe for i = 0,...,n — 1. Supervisor ¢ is non-deadlocking with respect to
Xm € X on domain D C X if every run p € R(S|D) allowed by o satisfies

a(0(p)) # 0OV tgt(p) € Xom. O

Definition 7 (Maximal Permissiveness) Given a system S = (X,U,—
, Y, H), a safety specification Safe C—, and a marking specification X,,, C X,
supervisor ¢ is maximally permissive on domain D with respect to these safety
and non-deadlocking conditions if there does not exist a supervisor ¢’ Dp o
which also satisfies these conditions, where o’ Dp o signifies that o/ (0) D o (9)
for all @ € O(S|D) and that there exists § € O(S|D) such that ¢'(0) D o(0).
Finally, o is safe and non-deadlocking on a maximal domain D if there does
not exist a supervisor ¢’ that is safe and non-deadlocking on a larger domain
D' > D. O

It should be noted that there exists a unique maximal domain on which
a supervisor can be safe and non-deadlocking, and a unique maximally per-
missive supervisor on this domain. Furthermore, it is not possible to construct
a supervisor that is safe, non-deadlocking, and strictly more permissive by
considering a smaller domain. Thus, from this point forward we will refer to
the conjunction of both the property of being maximally permissive and the
property of being safe and non-deadlocking on a maximal domain simply as
maximal permissiveness. These issues will become clearer in Sec. 4.4.

For any safe, non-deadlocking, and maximally permissive supervisor on
domain D, we may assume (without loss of generality) o(p) = 0 for all p = (x)
such that « ¢ D. Under this assumption, there exists a domain D under which
a supervisor o is non-deadlocking with respect to X,,, C X if and only if every
non-zero length run p € R(S) allowed by o satisfies o(0(p)) # 0V tgt(p) € X,
(if a zero length run p = (x) does not satisfy this condition, we may simply take
x ¢ D). Moreover, to verify that a memoryless supervisor is non-deadlocking
on some domain D, it is sufficient to consider runs of length exactly one. To
see this, consider any run p = (zg,...,Tp_1,Un_1,%s) € R,(S) that is allowed
by . Clearly, since p is allowed by o, it must be that o(8(p(k))) # 0, for any
k < n. Hence, only the last state reached along p may be deadlocked, and
this may be precluded if we know that the run (z,—1,un—1,2,) € R1(S) is
non-deadlocking. This fact will be used in the proof of Thm. 3.
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4.2 Discrete-Event Systems

Definition 8 (Discrete Event System) A (deterministic) discrete event
system is a tuple G = (X, E, 1, xo, X;,) where X is a set of states, F is a set
of events, ¥ : X x ' — X is a partial transition function, zg € X is the initial
state, and X, C X is a set of marked states representing the completion of
some behavior of interest. O

Given a set of events E, E* denotes the set of finite strings of events in E.
A set of strings K C E* is called a language. The prefiz-closure of a language
K C E*, denoted by K, is defined by K = {s € E* : 3t € E* Ast € K}. Given
a DES G = (X, E,¢,x0, X ), ¢ is extended from events to strings through
Y(x,se) = Y(¥(x,s),e). The language generated by G, denoted by L(G), is
defined as L(G) := {s € E* : ¢(x0,s)!}, where | means “is defined”. The
language marked by G, denoted by L,,(G) C L(G) is defined by L,,(G) :=
{s € L(G) : Y(xg,s) € Xmm}. DES G is non-blocking if L,,(G) = L(G), and
blocking otherwise.

A specification for a DES G is given by a second DES H defined over the
same event set and satisfying L(H) C L(G) and L,,(H) C L,,(G). Here,
L(H) constitutes the legal sublanguage of L(G), representing safe system
behavior. The language L,,(H) is usually assumed to satisfy the property
L(H) = L(H)NL,(G) (a technical condition called £, (G)-closure). In gen-
eral, the event set of G and H, denoted by F is partitioned into controllable
events F,. and uncontrollable events F,.. Controllable events are events which
can be disabled (i.e., prevented), whereas uncontrollable events cannot be dis-
abled. Control in the DES domain is concerned with obtaining a supervisor

S : L(G) — 2F that is safe (i.e., £L(S/G) C L(H) and L,,(S/G) C L,.(H)),
non-blocking (i.e., £,,(S/G) = L(S/G)), and maximally permissive, where
S/G is the system G controlled by S. Obtaining this supervisor consists of
solving the basic supervisory control problem in the non-blocking case, or
BSCP-NB, as described in [23], [6].

The solution to problem BSCP-NB is the language (£,,(H))™, where 1 C
denotes the supremal controllable sublanguage operation. This is the largest
sublanguage K C L,,(H) that is controllable, which means it satisfies the
property K E,.NL(G) C K. Thus, K is controllable if there exist no strings in
K that can be extended by an uncontrollable event to a string in £(G)\ K. The
standard algorithm which solves this problem is given in [29] and constructs
a supervisor S such that £,,(S/G) = (L,,,(H))'® and L(S/G) = (L,,(H))*C.
Notably, controllable sublanguages are closed under union, so that a unique
maximal solution indeed exists.

4.3 Translating Between Transition Systems and Discrete Event Systems

The previous two sections describe models for systems and specifications using
the two formalisms of transition systems and DES. In this section, we show how
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to translate a system model and specification from the domain of transition
systems to the domain of DES, and unify notation between these. In what
follows, the notation ! will be used to mean that a partial function is defined
at a particular value. Given a system S, = (X4, Us, —a,Ya, Ha), a safety
specification Safe, C—, and a marking specification X,,, , € X, construct
system automaton G, := (X,UZg, E.UEy¢, ¥a, , Ta,0, Xm,q), and specification
automaton Hy, := (X, U Z,, EcUEye, Yu, , Ta,0, Xm,q) satisfying the following
conditions:

E.=U, ()
Y, CYa, C(Xa X Ee X Z) U (Zy X Eye X (XoU Zy)) (6)
Vg, (Ta,ue)! & Iz, € Xy i (Ta, U, T,) E—a (7)
Vi, (Ta,ua)! & F2), € X4t (24, uq,7,) € Safe, (8)
3t € Ef, g, (Ta, ugt) = 2, & (T4, Ua, 7)) €4 9)
It e Bl Y, (Ta,ust) = 2, & (24, uq, ),) € Safeq, (10)

where Z, is a set of intermediate states. The above equations can be under-
stood to mean that we use uncontrollable events in H, and G, to model non-
determinism in the transition relation —,. In words, Eq. (5) signifies that the
controllable events of G, and H, are the control inputs of S,, whereas Eq. (6)
signifies that controllable (resp. uncontrollable) events are defined only from
states in X, (resp. Z,) and lead only to states in Z, (resp. X, U Z,). Egs. (7)
and (9) signify that, for every (x4, uq, ) E—q, event u, is defined from state
x, of G, and there exists some uncontrollable sequence of events following
ug that takes G, from 9¢, (24, u,) to z,. The same interpretation holds for
Egs. (8) and (10) with respect to H,.

We remark that we did not define what the initial state x4, of G, and H,
is. For now, we note that these will be dummy initial states without physical
significance, but with transitions to some subset X, ¢ of initial states. We will
return to this issue in Sec. 6.

To unify notation between systems as in Def. 1 and discrete event systems
as described above, we will use the notation U(z) := {u € E, : ¢(z,u)!} and
Post,(z) :== {2’ € X, : (3t € EX,) (2 = ¢(z,ut))} for z € X, and (in an
abuse of notation) will write (z,u,2’) € ¢ if z € X, and 2’ € Post,(z).
This notation allows us to work with DES of the above form in the context of
the state reductions and exact state reductions that will be presented in the
following sections.

4.4 Supervisor Computation

In this section, we present the algorithm for solving problem BSCP-NB, recast
as a state-based maximal fixed point computation, in a manner that is more
akin to existing methods for control problems in the context of transition
systems (see, e.g., [25]). Note that we use non-deadlocking specifications in
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this work, rather than the more general non-blocking specifications that are
normally used in DES supervisory control problems.

Consider a transition system S = (X, U, —) (we have suppressed the last
two arguments, as they are not relevant to the following discussion), a safety
specification Safe C—, and a marking specification X,,, C X, as described in
Sec. 4.1. We will define a function F : 2% — 2% whose greatest fixed point is
used to obtain a maximally permissive supervisor with respect to the safety
and non-deadlocking specifications.

Recall from Sec. 4.2 that the solution to the supervisory control problem
in DES is the supremal controllable sublanguage, and that a language K is
controllable if there exist no strings in K that can be extended by an un-
controllable event to a string in £(G) \ K. Recall also from Sec. 4.3 that we
use uncontrollable events to model non-determinism in the translation from
transition systems to DES. Thus, given a state x € X and a current set of
winning states Z in the iteration of (the yet to be defined function) F, let
Cont(x|Z) denote the set of control inputs that do not violate controllability.
Mathematically,

Cont(z|Z) = {u € UVz' € Post,(z), [(x,u,2") € Safe Nz’ € Z]}. (11)
We now define F : 2%X — 2% by
F(Z)={x € Z|lx € X, V Cont(z|Z) # 0}. (12)

Now let F%(Z) denote the k*" iteration of F applied to Z, definable through the
recursion FO(Z) = Z and F*(Z) = F(F¥=1(Z)). Because F is monotone, we
obtain by the Knaster-Tarski theorem that the greatest fixed point vZ.F(Z) =
limg_s 0 F*(X) is well defined. A maximally permissive supervisor o : X — 2V
for the safety and non-deadlocking specification exists, and is given by

o(z) = Cont(z|vZ.F(Z)). (13)

Remark 1 Typically, DES have a fixed initial state, and the supervisor com-
putation removes both states that are deadlocked, as well as states that are
not accessible (not reachable from the initial state). We note here that inac-
cessible states may be removed at the end of the fixed point algorithm, as an
inaccessible state is by definition unreachable from any accessible state. Thus,
the inaccessible states cannot affect either deadlocking properties or controlla-
bility properties of any accessible state. As a consequence, the supervisor that
is computed through Eq. (13) will be correct at all accessible states. O

5 State Reductions and Supervisory Control

In this section, we define two types of relations between systems: state re-
ductions and exact state reductions, and prove theorems relating safety, non-
deadlockness, and maximal permissiveness of supervisors for systems related
through state reductions and exact state reductions. The state reduction and
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exact state reduction relations are based on the notions of alternating simi-

larity relations, as defined in [25]. The theorems proven in this section will be

used later in this paper to establish the correctness of our solution to Prob. 1.
We begin with a motivating example.

Ezample 1 Consider the simple transition system 7' = (X, U, —,Y, H), with
X =1[0,1)
U = {low, high}

_ /
—>_{(1:,u,a:)€X><U><X V(u=high AN’ = (1+)/2)

Y ={y}
H(z)=y, VrelX.

(u=low Az’ = z/2) }

Let us suppose that there is no initial state information about the system.
Given a state estimate of [a, ), the state estimate following control input low
will be [a/2,b/2), whereas the state estimate following control input high will
be [(1 4 a)/2,(1 + b)/2). In either case, the estimate has been reduced from
an interval of size b — a to one of size (b — a)/2. Thus, every single past input
that is remembered by a controller yields exactly 1 bit of information about
the current state. Notably, there is no finite number of past control decisions
over a run beyond which no further information about the current state is
obtained. For such an example, maximally permissive control could require
not only memory, but infinite memory and hence an infinite state space. [

Because abstractions of systems typically have large state spaces, non-
memoryless supervisors will typically be computationally infeasible. As the
above example demonstrates, there exist very simple systems under which
even finite memory supervisors are insufficient to the problem of obtaining
maximally permissive supervisors. In this work, we therefore concentrate on
determining conditions under which maximally permissive memoryless super-
visors can be obtained, and also address the problem of finding conditions
on system dynamics under which there is no loss by restricting attention to
memoryless supervisors.

5.1 The State Reduction

Definition 9 (State Reduction) Given two systems S, and S, with Y, =
Y, = Y, we say that S, is a state reduction of S, with state relation R C
X, x X and output dependent control relation C' : Y — 2UVa*Us (hereafter
referred to only as control relation) if:

1. R7Y = {(zp,74) C Xp X X4 ¢ (T4, 1) € R} is a function.

2. For every y € Y, the relation C(y) C U, x U, is a bijection relation.

3. Hy(x,) = Hp(xp) if and only if (z4,25) € R.

4. Y(zq,Uq, X)) E—q, Hxp, up, x}) €= such that (zq, ) € R, (Ug,up) €
C(Hy(zq)), and (2}, 2}) € R.
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5. V(zp, up, x) €—p, I(Tq, Uq, X)) €4 such that (z4,2p) € R, (uq,up) €
C(Hy(zp)), and (2}, x}) € R.

O

Remark 2 The state reduction was first defined in [14], where we used slightly
different conditions. In this work, we have changed notation for the control re-
lation C to resolve ambiguity. Furthermore, condition 5) was previously stated
as: V(zq, %) € R, (uq,up) € C and z;, € Posty, (z3), Iz, € Post,, (z,) such
that (z,z;) € R. The two conditions can be shown to be equivalent under
conditions 1) and 2). O

In words, condition 1) signifies that every x;, € X} is in relation with exactly
one z, € X,, condition 5) signifies that, for every (xp, up, x}) €, there exists
(Ta, Uq, Tl,) E—4 which models (2, up, ) €—p, and condition 4) signifies that
every transition in —, models some transition in —. Significantly, conditions
4) and 5) can be achieved by construction for any system Sj, and relations
R and C satisfying conditions 1), 2), and 3). Furthermore, the system S, is
the quotient system of S, with respect to R and C in the case of alternating
simulation, and is therefore uniquely defined.

Definition 10 (Induced Specification) Given system S, with state re-
duction S,, along with safety and marking specifications Safe, C—} and
Xm,p € X on system Sy, define the induced specification on S, as follows:

(mavuaaxg) S Safea g—)a
(w1rt0,%) € 58 (0, € R
C
- { Nitar ) € C(Ha(wa)) A a0 € R | < 500 (14)
Xq € Xm,a CX,& {l’b € Xy s.t. (xa,mb) c R} - Xm,b (15)

O
The usefulness of Def. 9 is illustrated in the following theorem:

Theorem 1 Suppose that system S, is a state reduction of system Sy with
state relation R and control relation C and that we are given safety and mark-
ing specifications Safe, C—y and X p € Xy for system Sy. Let Safe, and
Xm,a be the corresponding induced specifications for system S, and suppose
that we additionally have the property (zq,xp) € R = (24 € Xma © T €
Xomp). Finally, let o, : Y — 2Ya be the mazimally permissive, safe, and
non-deadlocking supervisor, where Y is the (common) oulput space, and de-
fine the supervisor o, : Y — 2Y by wy, € oy(y) iff Jug € 0aly) such that
(ug,up) € C(y). Then oy is safe, non-deadlocking, and maximally permissive
among memoryless supervisors of the form oy : Y — 2Up.

Proof. We proceed in three claims. The first two claims show that o, is non-
deadlocking (resp., safe) if and only if o} is non-deadlocking (resp., safe). The
last claim uses monotonicity of the mapping from o, to o, to show that the
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first two claims imply maximal permissiveness of op.

Claim 1: o, is non-deadlocking iff o, is non-deadlocking.

As per the discussion following Def. 6, it suffices to consider runs of length
one when verifying non-deadlockingness. Thus, the property to be proven is
as follows

Vi, € Xo,Vug € 04(Hy(24)), V2, € Post,, (z4),
['r:z € Xima V Ua(Ha(xfz)) # @] }
VYV, € Xy, Vuy, € O'b(Hb(.’L‘b)),Vx;) € Post,, (zp),
[, € Xinp V o (Hy(z},)) # 0]

(16)

(=) Consider any x;, € X3, any up € op(Hp(2p)), any z;, € Post,, (x3), and let
y = Hy(zp) and y' = Hy(x}). By property (5) of Def. 9, there exist z, € X,,
uq € U,, and 2/, € Post,, (z,) such that (z,,2p) € R, (uq,up) € C(y),
and (z},z;) € R. By property (3) of Def. 9, Ho(z,) = Hp(zp) = y and
Hy(x)) = Hy(z}) = y'. Since (uq,up) € C(y) and wp € 0p(y), we have that
ug € 04(y), and hence that z), € X, o V 0,(y") # 0. By definition of X, , in
Eq. (15), we have that z), € X, o A (2}, 2,) € R = 2}, € Xy 5. By definition
of oy, we have that o,(y") # 0 = op(y') # 0. Thus, 2}, € X0 Voo (y') # 0
implies z;, € X, V 0p(y') # 0 and we are done.

(«<=) Suppose that there exist x, € Xg, uq € 04(Ha(x,)), and 2!, € Post,, (z,)
such that z/, ¢ X, » and o (Hy(2))) = 0. Let y = Hy(z,) and y' = Hg(x)).
By property (4) of Def. 9, there exist z, € X3, up € Uy, and z; € Post,, (z3)
such that (zq,xp) € R, (uq,up) € C(y), and (z},,z;) € R. Since (uq, up) € C(y)
and u, € 04(y), we have that u;, € o3(y). By property (3) of Def. 9, Hy(xp) =
Hy(z,) = y and Hy(x}) = He(x),) = y'. By definition of oy, 04(y') = 0 =
op(y’) = 0. By assumption, (x4,25) € R = (24 € Xma < @p € Ximp). Since
(«l,,2) € R and z), ¢ X, q, it follows that z} ¢ X,, 5, and we are done.
Claim 2: o, is safe iff oy, is safe.

Mathematically, this requires proving

{Vz, € Xo,Vuy € 04(Hy(24)), V2l € Post,, (z4), (T4, Ua, x}) € Safe,}
& {Vzp € Xop, Yup € op(Hy(2)), YV, € Posty, (1), (25, up, z) € Safep}.
(17)
(=) Consider any z, € X3, any up € op(Hy(zp)), any z;, € Post,, (zp), and
let y, ¥/, a, ta, and z/, be as in (=) of Claim 1. Then (x4, uq,z,) € Safe,
and by Eq. (14), (zp, up, x;) € Safep.
(<) Suppose that there exist z, € X, uq € 04(Ha(z,)), and z), € Post,, (z,)
such that (zq,uq,2,) ¢ Safe,. By Eq. (14), there exists (s, up, ;) €— such
that (xq, ) € R, (uq,us) € C(y), (z,,x}) € R, and (xp, up, z;) ¢ Safep. Since
(x4, ) € R, we have, by property (3) of Def. 9, that H,(z,) = Hp(zp) = v.
By definition of o}, and the fact that (uq,us) € C(y), we have that uy, € op(y)
and we are done.
Claim 3: 0 is maximally permissive.
Given any supervisor o} : Y — 2 let o/, : Y — 2Ue be defined by u, € o/, (y)
iff Ju, € o} (y) such that (u,,w) € C(y) and let the function oy, be the
mapping which takes a supervisor o} for system b to the supervisor o), for
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system a in this way. Clearly, o) C 0, < 0p—4(0}) C 0p—a(0p) = 04. Thus,

if there exists a safe and non-deadlocking supervisor o} ¢ o3, then it follows
that o, is not maximally permissive, a contradiction. O

The above theorem shows that it is possible to compute a supervisor for
a system with a large or infinite state space by abstracting that system to
one with a finite state space, computing a supervisor for the reduced system,
and translating back. Furthermore, this process conserves not only safety and
non-deadlockingness in the translation, but also maximal permissiveness.

Remark 8 The above theorem characterizes a controller o as safe and non-
deadlocking for system S = (X,U,—,Y, H), safety specification Safe, and
marking specification X,, if and only if Va2 € X, Vu € o(H(z)), Va' €
Post, (), we have that (z,u,2') € SafeA(c(H(z")) # 0Va' € X,,). Thisis a
sufficient condition for a system to be safe and non-deadlocking, but it is not
necessary if the supervisor can use initial state information, even if we restrict
attention to memoryless supervisors. For an example of such a situation, see
Example 2. O

Ezample 2 Figure 3 shows an example of a system (left) and its corresponding
state reduction (right). If we assume that there is only a marking specification
and no safety specification, then the maximally permissive supervisor oy for
the state reduction would enable {a,b} from state {1,2} and {a} from state
{3,4,5}. It can be seen that this would indeed be a maximally permissive mem-
oryless solution for the left system if there were no initial state information.
If, however, the initial state is known a priori to be one of {1,2}, then there
exists a strictly more permissive memoryless supervisor oy for the left system
which also enables b from states {3,4,5}. It is possible to be more permissive
from states {3,4,5} by making use of the fact that the initial states are {1, 2}
and event ¢ was disabled from states {1,2}, making state 5 unreachable. An-
other safe memoryless supervisor o3 enables {a} from states {1,2} and {a, b, ¢}
from states {3,4,5}. Thus, it is possible to enable more from states {3,4,5}
by enabling less from states {1,2}.

Consistent with the discussion of Remark 3, both of these supervisors vi-
olate the property of Egs. (16) and (17), namely that Vo € X, Yu € o(H(z)),
V' € Post,(z), we have that (z,u,z’) € Safe A (c(H(z')) # 0V € X,).
In particular, oo and o3 both allow b from state 5, despite the fact that this
allows (5,0,8), and state 8 is deadlocked. Furthermore, the union of o4 and o3
is deadlocking, since it allows the string bc, which leads to deadlocked state 8.
Thus, there does not exist a maximally permissive safe and non-deadlocking
supervisor which uses the initial state information in this case. The key point
is that the property of Eqs. (16) and (17) is based on the discussion following
Def. 6, which requires that the suffiz of a run (including, in particular, suffixes
of length 1) also be a run. Clearly, this is something which does not apply
when there is initial state information.

Note that the system on the left is accessible, deterministic, and has both
initial and marked states which respect the partition of states determined by
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Fig. 3 A system and its corresponding state reduction. States of the left system with the
same output are placed in a common box. We use the usual DES convention of denoting
marked states with a double circle and initial states with an incoming arrow that has no
source state.

the output map. This example is very closely related to the problem of obtain-
ing maximally permissive supervisors of the form S : Xg — 2 for a discrete
event system G, subject to specification automaton H, which would normally
require the supervisor to be defined over the state space of the product au-
tomaton G x H. O

5.2 The Exact State Reduction

Definition 11 (Exact State Reduction (2)) Given two systems S, and
Sy with Y, = Y, = Y, we say that S, is an exact state reduction (2) of S
with state relation R C X, x X, and control relation C : Y — 2Ua*Ub if §_ i
a state reduction of S, with state and control relations R and C and:

6. V(zq, Ua,x}) E—q, Yo, € Xy : (2),,2}) € R, I(xp, up, ) € such that
(24, 2p) € R and (ug,up) € C(H ( a))- O

The above condition is akin to a time-reversed alternating similarity con-
dition, in the sense that it requires that every transition of S, have a corre-
sponding transition in S, for every pair of related target states, rather than
for every pair of related source states. Lemma 1 demonstrates its usefulness.

Remark 4 The exact state reduction was first defined in [14], where we used
a normal (i.e., non time-reversed) alternating similarity condition. We have
added the “(2)” in this work to differentiate between these. O

Lemma 1 Suppose that system Sy has an exact state reduction (2) S,. Then,
for any history 0, for system S, and any x, € Xy such that H(xy) = tgt(0y),
there exists a run py such that 8, = 6(pp) and xp = tgt(ps).

Proof. The proof is by induction on the length of 8. The base case is trivially
true. Assume that the lemma holds up to histories of length n and consider a
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pair of histories 6, € ©,,(Sy) and 0 € ©,,+1(Sy) such that 6, is a prefix of 6;.
Also define y = tgt(0y), y' = tgt(6}), and let p) = (29,..., 20, up,z;") €
R,+1(Sy) be such that 6, = 6(p;). Note that, in particular, this implies
Hy(zp) = y and Hy(zpt) = ¢/ Since (27, uf,xp™') €5, we have from
property (5) that 3(a?,ul,2"™!) €—, such that (7,2}) € R, (u?,u}) €
C(Hy(zp)) = C(y) and (271, 27"") € R. From property (3), we have H,(z") =
Hy(zp) = y and H,(2"') = Hy(zp™) = y'. Now consider any zj € X,
such that H(z,) = tgt(0,) = y'. Using property (3) again, we have that
(znt1 2}) € R. From property (6) we therefore have that 3(xp, up, z}) €=y
such that (z,zp) € R and (ul,upy) € C(Hg(zl)) = C(y). From property
(3), we have that Hy(xp) = Hy(z?) = y and from property (2) we have
that uy = u;'. From the induction hypothesis, there exists a run p, such that
0y = 0(py) and tgt(py) = xp. Thus we can form the run p} := py.up.x} satisfying
0, = 0(p;) and tgt(p,) = x}, which completes the proof. O

In words, the above lemma implies that, when there exists an exact state
reduction (2) for system Sy, a history 6, gives no more information about the
current state of S, than does the last output tgt(6y).

Theorem 2 Suppose that system S, is an exact state reduction (2) of system
Sy and that all other conditions of Thm. 1 are satisfied, except for the require-
ment that (xq,2) € R = (x4 € Xm,a © T» € Xmp). Then the obtained
supervisor o, will be safe, non-deadlocking, and maximally permissive among
supervisors of the form oy, : ©(Sy) — 2.

Proof. Lemma 1 shows that nothing is gained through a supervisor of the form
oy : O(Sp) — 2 over a memoryless one. What remains to be proven is that
the result of Thm. 1 holds true for the case of an exact state reduction (2),
without the requirement that (z,,zy) € R = (24 € Xm,q < ©p € Xy p). This
requirement is used only in the proof of (<) in Claim 1. We therefore rewrite
this part of the proof, using the exact state reduction (2).

(<) Suppose that there exist z, € Xg, uq € 04(Hy(2,)), and x}, € Post,,, (z,)
such that =, ¢ X,, . and 0,(Hy(2),)) = 0. Let y = H,(z,) and y' = Hq(a)).
From Eq. (15) and z/, ¢ X,,,, there must exist some z; € X; such that
(xh,z;) € R and zj, ¢ X, . By property (6) of Def. 11, there exist z;, € X
and u, € Uy such that (z4,2p) € R, (uq,us) € C(y), and z; € Post,, (z3).
Since (uq,up) € Cly) and u, € 04(y), we have that u, € op(y). By property
(3) of Def. 9, Hy(xp) = Hy(z,) = y and Hy(z}) = Hy(x),) = 3. By definition
of oy, 04 (y') =0 = op(y') = 0, and we are done. O

Remark 5 Asin the case of (non-exact) state reductions, the obtained supervi-
sor will not generally be maximally permissive if the supervisor can use initial
state information. In particular, if the set of initial states Xo ; gives more infor-
mation than the initial output g, then there may exist more permissive super-
visors. Note however that, if H(xp1) = H(2p2) = [T61 € Xop < T2 € X0,
then Xg; gives no more information than the initial output yo, and hence
the resulting supervisor will still be maximally permissive. This is contrary to
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Fig. 4 A depiction of the state reduction (left) and exact state reduction (right) for a
simple system S, = ({1,...,8},{u}, —=s,{A, B}, Hy), where Hy(z) = A for z € {1,...,4}
and Hy(z) = B for z € {5,...,8}. In both the left and right cases, there is a transition
(z,u,2') €—p with = € H;l(A) and ¢’ € H;l(B), and hence a transition from A to
B in the corresponding state reduction. The system on the right contains some transition
(z,u,x’') E—p with z € H;l(A), for every x’ € H;l(B). For the system on the left, the
occurrence of a transition from A to B in the state reduction allows us to determine that
Sp is in state 7. For the system on the right, this transition only allows to determine that
the system is some state in the set Hb_l(B).
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Fig. 5 Systems S1 and S, demonstrating the difference between exact state reduction and
alternating bisimulation.

the case of non-exact state reductions, in which case the above condition is
still not sufficient to guarantee maximal permissiveness of the supervisor oo
obtained in Thm. 1, as is demonstrated in Ex. 2. O

Figure 4 depicts an example of a state reduction and an example of an
exact state reduction.

5.3 Comparison of System Relations

Consider the three systems Sy, Ss, and S, of Figs. 5 and 6. The difference
between S; and S5 is the label on the transition between states 1 and 4 and
on the transition between states 2 and 3. It can be verified that S, is an exact
state reduction (2) of S1, and that it alternatingly bisimulates Ss. Moreover, S,
is not an exact state reduction of Sy, and does not alternatingly bisimulate 5.
Consider the safety specification Safe; =—; \{(3,a,6)}. For system S, there
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Fig. 6 System S, which is both an exact state reduction (2) of system S of Fig. 5 and
alternatingly bisimulates system Sz of Fig. 5. This system is not an exact state reduction
(2) of S2, and does not alternatingly bisimulate system S;. Finally, S, is also bisimilar to
both S7 and Ss. It follows that the three relations do not coincide.

exists a unique maximally permissive memoryless supervisor ¢ which achieves
this specification, namely the supervisor which disables event a on output
H(3) = H(4). As per Thm. 2, this supervisor is also maximally permissive
among supervisors with memory. On the other hand, there does not exist
a maximally permissive memoryless supervisor for system Ss. If event a is
enabled upon output H(1) = H(2), then a must be disabled upon output
H(3) = H(4). On the other hand, if a is disabled upon output H(1) = H(2),
then state 3 becomes unreachable and a can be enabled upon output H(3) =
H(4). This occurs because the abstraction is not “aligned” (normally referred
to as proposition preserving) with the specification, in the sense that there
exist states x;1,7;2 and control input u; of each system S;, i = 1,2, such
that Hi(xi,l) = Hi(ZEZ‘,g), but {1‘7;71} X {Uz} X POStui ($Z‘,1) - Safe,- <& {ZZ?Z'Q} X
{u;} x Post,, (z;2) C Safe;.

This example demonstrates a key point in abstraction based synthesis. To
obtain maximally permissive supervisors with respect to the abstraction, it is
typically required that the abstraction be aligned not only with the dynamics
of the system to be abstracted, but also with the specification. In particular,
this means that a change of specification requires reconstructing the abstrac-
tion if one wishes to maintain maximal permissiveness. This is not the case
with exact state reductions, since exact state reductions produce maximally
permissive solutions without requiring that abstractions be aligned with speci-
fications. Note, however, that abstraction techniques that produce maximally
permissive supervisors when the abstractions are aligned with the specifica-
tions produce solutions that are maximally permissive with respect to the
original system, not merely with respect to the chosen discretization.

6 Discrete Abstraction

Returning to the vehicle control problem of Sec. 2, we construct a DES G that
models the behavior of the continuous time system, using the lattice Q as the
set of discrete states.

To construct a DES abstraction of the continuous-time system, we use a
three-layered transition function 1. The first layer consists of events in the
set U,, for the actions of the controlled vehicles. The second layer consists of
events in the set U,., for the actions of the uncontrolled vehicles. It remains to
model the disturbance d. We achieve this by discretizing the set A to obtain
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a set of “discretized disturbances” W. Specifically, let
W =A{ktp:k €ZN [dmin/(Ti)] <k < [6maz/(TH)]}" (18)

This set W makes up the third layer of G’s transition structure. For any ¢ € Q,
Ue € Ug, Uye € Uye, and w € W, we define

(g, Uettyew) = g + 1+ w, (19)

where u = (U, uye). In Sec. 6.1, we will show that ¥ (g, ucuyw) = ¢ if and
only if there exist z € X, 6 € A, and 2’ € X such that 2’ = x+u+0, ¢ = {(z),
and ¢/ = £(z') (see Prop. 1). To define the discrete system state in between the
occurrence of events in U, and U, and in between the occurrence of events in
Uye and W (all of which occur simultaneously in the continuous-time system),
we introduce two sets of “intermediate” states Qy1 and Qo (disjoint from
each other and from Q and with no physical meaning), and three intermediate
transition functions: vy : Q X U, = Qr1, Y2 : Q1 X Uye — Qp2, and 3 :
Qra x W — Q, defined only by 9(q, te, Uue, w) = ¥3(P2(¥1(q, te);s tuc), w).
See Fig. 7 for a depiction of the transition function . We take the set of
marked states to be the set @, = {¢, }. Finally, we define a set Qg of possible
initial states, which we model by introducing a dummy initial state go and
having transitions from gg to each state ¢ € Qo with event label e,. We denote
this set of events by Eqg := {e; : ¢ € Qo} and define ¢(qo, e4) := ¢. The final
DES is defined as:

G:: (Q7EQUUCUUUCUM/’¢aqO7Qm) (20)

where QQ = {qo}UQUQH UQ712. The sets of events U, is taken to be controllable,
whereas the sets of events U,. and W are taken to be uncontrollable. Note
that, in the context of supervisory control problems of DES, a supervisor
is obtained which does not choose a particular event from any given state,
but rather chooses which events to enable (allow) and which ones to disable
(prevent). An uncontrollable event is an event that cannot be disabled.

Remark 6 Although the initial state can not be chosen by the system, we take
the set of events Fg to also be controllable. In the following section, we will use
G in a supervisory control problem. If Eg were defined as uncontrollable, we
would obtain an empty solution to the supervisory control problem whenever
there was any initial state from which there was no solution, even if there
existed solutions from some of them. By defining the set Eg as controllable,
the computed supervisor will contain a transition from ¢g to ¢ for every ¢ € Qo
from which there exists a solution to the supervisory control problem. O

6.1 Relations Between the Time-discretized and Discrete Event Systems

Proposition 1 Define the observation maps H@(q) = q, Hx(z) := (),
the relation R = {(¢,x) € Q x X : L(z) = ¢}, and the control relation



22 E. Dallal et al.

Fig. 7 The transition function 1.

C(q) = {(te,ve) : veT = u, € Ue}, for all ¢ € Q. Then DES G of Sec. 6
is a state reduction of system (2).

Proof. Properties (1), (2), and (3) follow immediately from the definitions of
Hx, Hg, ¢, R, and C.

Property (4): Consider any ¢ € Q, Ue € Uey Uye € Uye, and w € W, with
q = (q, uc, Uye, w) = ¢+ u+ w (where u = (U, Uy.)). We construct x € X,
2/ € X and § € A such that f(z) = ¢, ¢(2') = ¢, and x +u+§ = 2
by considering each co-ordinate in turn. There are three cases, depending on
where w; lies with respect to the interval [dmin, dmax] (recall from Eq. (18) that
w; may be smaller than 0., or larger than .« when these values are not
integer multiples of 7, because of the floor and ceiling operations).

Case 1: dpin < w; < Omas. Take x; = g;, §; = w;, and =} = ¢.

Case 2: w; > Omaz. Take x; = ¢; + 47/2, §; = dmaz, and § = z; +u; + Ipmaz-
From the definition of ¢, we have that ¢;(x;) = ¢;. With these values, we
obtain q; - CE; = ((h +u; +wz) - (xl +u; + 5maz) = w; — 5maz - /~L7—/2 From
the definition of W, we know that 6,42 < Wi < dmae + 17, Or equivalently
that 0 < w; — dimaer < 7. From this and the previous statement, we obtain
—ut/2 < q, — z}, < p7/2, from which it follows that £(z}) = q}.

Case 3: w; < dpin. Take z = ¢} + u7/2, 0; = dpmin, and x; = x}, — u; — Spin.
The same reasoning as in the previous case shows that ¢(x) = ¢ and that
L")y =4

Property (5): Consider any = € X, u. € U,, uye € Uye, and 6 € A, with

' = x+u+d (where u = (uc, uy.)). Take ¢ = (), ¢ = £(2'), and w = ¢'—g—u.

It suffices to show that w € W. From ¢ = £(z) and ¢’ = {(z'), we have

—u7/2 <z —q < pur/2 and —p7/2 < ' — ¢ < pr/2 (component-wise).

Combining these inequalities with w = ¢’ —q¢—wu and § = 2’ — x — u, we obtain

w=4+ (z—q)— (2’ — ¢') and hence:

—Tu+06<w<§+ TU.
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It follows that w is a vector whose components are all integer multiples of 7
and in the interval (0,50 — 4T, Omae + 7). But from Eq. 18, this set of vectors
is precisely equal to W, proving that w € W. O

Proposition 2 Define Hx (-), HQ(-), R, and C as in Prop. 1. If 6, and
Omaz are both integer multiples of T, then DES G of Sec. 6 is an exact state
reduction (2) of system (2).

Proof. Property (6): Consider any q € Q, u, € Ue, tye € Uye, w € W, and
2’ such that ¢ = ¢ +u+ w = £(2'), where u = (¢, Uyc). We construct
z € X and § € A such that ¢ = #(x) and 2’ = z + u + 4. Simply take
0 = wand x = 2/ — u — §. As remarked in the proof of Prop. 1, w must
be a vector whose components are integer multiples of 741 and in the interval
(Omin — 75 Omaz + 7). If dppin and pqe are multiples of 7y, then it follows
that the components of w are in the (closed) interval [d,1in, Omaz]- Thus § € A.
Furthermore, 2’ — 2z = ¢ — ¢ = u+ w, so that v — ¢ = 2’ — ¢/, from which it
follows that ¢’ = ¢(z') = q = {(z). O

Given the above results, we can solve Prob. 1. Before presenting the relevant
theorems, we define the notations A, ,_ ./ (t) and A ., 4 (¢) as follows:

Jvye € Vie, 3d € DIOT]

Appew(t) = Q2" € X | w+or+ [Jd(s)ds=a" », (21)
A" =z + vt + fg d(s)ds

3z € 71 (q), Jvye € Viye, 3d € DO

Aguog ) =32" € X| a+or+ [] d(s)ds e 71 (q) . (22)

A" =z + vt + fg d(s)ds

where v = (¢, Vue) = (Ue/T,Vue). In words, Ay, . (t) is the set of possible
vehicle positions at time ¢ when they are at x at time 0, at =’ at time 7, and
control input v, is chosen. Similarly, A, ., ¢ (¢) is the set of possible vehicle
positions at time ¢ when they are at some x € £~!(q) at time 0, at some
2’ € £71(q¢') at time 7, and control input u, is chosen.

Theorem 3 Define the automaton H := (Q, EQUUUU,UW, Y4 e, Go, @m) T
G, where Ygqfe C Y is defined by:

(Q7u6a q/) € wsafe < ﬂt € [077—] : Aq,uc,q’ (t) nB 7é 0. (23)

Solve for the supremal controllable sublanguage (L.,(H))'C of L. (H) with
respect to L(G) and uncontrollable event set Ey. = U,. U W, obtaining a
mazimally permissive safe and non-deadlocking supervisor S : Q — 2V, Then
the supervisor o : X/t — 2Ve defined by v. € o(x) & u. = Tv. € S({(z))
solves Prob. 1.

Proof. Solving Prob. 1 requires finding the maximally permissive safe and non-
deadlocking supervisor o for System S, = (X, V., =, @, ¢) subject to safety
specification Safe, and marking X, 5, where:

(2,06,2") €E=pe (e € Vaue)(FS € A) iz +70+6 =2, v = (Ve, Vue), (24)
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(2,ves2') € Safe, & Bt € [0,7] : Ay, () VB #0), (25)

and X, = £71(qy). Thus, it suffices to apply Thm. 1, and we proceed to
verify its conditions. Proposition 1 shows that G is a state reduction of S,
with the state and control relations R = {(¢,z) € @ x X : ¢ = £(z)} and
C(q) = {(uc,ve) € Ue X Ve : ue = v} Comparing Egs. (21) and (22), we see
that the safety specification Safe, defined by equation (23) does indeed satisfy
the condition (q, u, ¢') € Safe, if and only if, for all (z, v, ') € such that
(¢,x) € R, (uc,v.) € C(q) and (¢',2') € R, we have that (z,v.,2') € Safey.
Finally, the set @,, of marked states for G and H obviously satisfies the
condition ¢ € @, if and only if x € X, for all z € X}, such that (¢,z) € R,
since Qm = {qm}s Xmp =L (qm), and (¢,7) € R < q = £(x). Thus, G is a
state reduction of Sy, and Safe, and X,, , = @, are induced specifications,
satisfying the conditions of Thm. 1. O

Theorem 4 If 6,5 and S, are both integer multiples of T, then the su-
pervisor o of Thm. 3 solves Prob. 1, and is maximally permissive among the
class of all supervisors, not merely memoryless ones.

Proof. Immediate from Prop. 2, Thm. 2, and the proof of Thm. 3. O

7 Iterative Refinement

In this section, we describe a procedure for iterative refinement of the dis-
crete state space of the abstraction. At a high level, the iterative refinement
procedure consists of constructing an abstraction with a coarse discretization,
categorizing each state of the abstraction as either winning, losing, or undeter-
mined, refining the abstraction with a finer discretization at the undetermined
states, and repeating. We present this method in the context of the vehicle
control problem, but the method can be extended to other problems with little
modification. The method is similar to those of [21, 24].

The categorization of states into winning, losing, and unknown requires
considering the control problem of Prob. 1 as a game against nature. The
control problem for nature is to cause the vehicles to enter the bad set B,
before they have all crossed the intersection. Thus, the set of “good” states
for nature are the bad states of the controller and vice-versa. Additionally,
the control properties of the various inputs are also reversed. That is, nature
chooses the inputs for the uncontrolled vehicles and the disturbance, but does
not choose the inputs of the controlled vehicles.

In what follows, let G¢ and HY respectively denote the DES abstraction
G of Sec. 6 and the DES abstraction H defined in the statement of Thm. 3,
parametrized by 7. Similarly, let ,, Q, Q, Eg,, ¥r, 4r0) Qrm, and Y7 safe
be 7 parametrized versions of the relevant functions, events, relations, states,
or sets. We define DES G and HY, which are the relevant automata of the
control problem for nature that consists of forcing vehicles into the bad set.
Because only the specification changes, and not the dynamics, G is defined
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almost identically to G¢. Given G¢ = (Q, Eq, UU.UU,. UW, %+, ¢r.0, Qr.m)
as in Eq. (20), define

G‘JFV = (Q‘ra EQ.,. U Uc U ch U VVv w‘rv 4r,0, Q{r\{m)v (26)

with QJTV m given by

N, ={geQ: 1" (q) C B}, (27)

Thus, a discrete state is marked for nature only if it is entirely contained
in the bad set. A discrete state that only partially intersects the bad set may
be split into some combination of states that are winning for nature and states
that are winning for the controller. Similarly,

qu—v = (QT) EIQ.r VU UUuc UW, w-;l—\,/safea 4,0, qu—v,m)a (28)

where N, . is defined by
e € Vye, 3d € DIO7) Yz € 171 (g
(q,ue,q) € 77/}71_\[78(1]06 = st. ' =x+vr+ fOT d(t)dt € éil(q/), ,
a(t) =z + vt + [ dt')dt' ¢ 0H(Qrm), VE € [0,7]
(29)
where v = (u./7,vyc). As noted above, U, is taken to be uncontrollable whereas
Uye and W are taken to be controllable in GY and HY. Note that, in Eq. (29),
the set of safe transitions are still parametrized by w., which is not controlled
by nature, and not on u,. and w. This is because the DES model allows for
nature to choose u,. and W in response to u.. Thus, a state is winning for the
controller if there exists a control input u. that is safe for all possible u,. and
w chosen by nature. On the other hand, a state is winning for nature if, for all
possible u. chosen by the controller, there exists a safe choice of u,. and w.
Given a particular time discretization 7, the set of winning states for the
controller are obtained through the fixed point of Egs. (12) and (11). The set
of winning states for nature can be characterized analogously. Given transition
system S = (X, U, —) and safety and marking specifications Safe” and XX,
define

Cont™(2)Z) = {u € U3z’ € Post,,(z), [(x,u,2') € SafeN Az’ € Z]}, (30)
and let FV : 2% — 2X be defined by
FN(Z)={x € Z|x € XY v Cont™ (2| Z) = U}. (31)

Consistent with the discussion above regarding the reversal of universal and
existential quantifiers, Eq. (30) is identical to Eq. (11), except that V becomes
3, and Eq. (31) is identical to Eq. (12), except that Cont(z|Z) # () becomes
ContN(z|Z) =U.

Thus, for a given time discretization 7, it is possible to categorize the
discrete states as winning (for the controller), losing (i.e., winning for nature),
and undetermined (i.e., losing for both). Refinement is performed by refining
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the discretization at the undetermined states. This is done by taking 7/ = 7/2,
which results in a lattice of discrete states Q' with space discretization of
put" = pr/2. It can be shown that G will be a state reduction of G/, (with
C being the identity map and R defined in the obvious way), or an exact state
reduction if dpyin and dyax are integer multiples of . The proof is very similar
to that of Props. 1 and 2, and is therefore omitted.

Importantly, the fact that 7 is diminished by half at each iteration means
that all control inputs of the refined supervisor o for the continuous time
system are still feasible for 7/ = 7/2. That is, a control input of v, that is held
for time 7 is identical to two consecutive control inputs v., each of which is
held for time 7/2. Thus, if ¢, (z) is winning for a time discretization of 7, then
{7 2(x) is winning for a time discretization of 7/2.

The process of refinement is continued up until some desired stopping con-
dition has been reached (e.g., a minimal value of 7), at which point the set of
allowed control inputs is determined by Eq. (13) and the set of states that are
winning for the controller. Any indeterminate states remaining at this point
must be treated as losing states by the controller.

Remark 7 For non-deadlocking specifications, it is possible in general to have
discrete states that are winning for both the controller and nature (e.g., in
the case of a livelock that does not violate either safety specification). In the
vehicle control problem under consideration, however, the fact that vehicles
have strictly positive velocity implies that the vehicles will eventually cross the
intersection if they do not collide first. Thus, either the controller or nature
will eventually lose. O

8 Algorithmic Implementation

In past work, [13], we provided an algorithm for computing the DES supervi-
sor S of Thm. 3 that is based on a depth-first search (DFS) and has a lower
asymptotic complexity than the standard algorithm. This customized algo-
rithm was based on the following three observations: the vehicle’s velocities
are bounded by u > 0; the specification automaton H is a sub-automaton of
G; and each pair of events u,.w € U, W is feasible after each event U, from
each state ¢ € Q. The first observation implies that the system is acyclic,
and hence livelock-free. This allows for solving problem BSCP-NB in time lin-
ear in the size of G x H, rather than quadratic (see, e.g. [17]). The second
observation implies that the product automaton H x G is isomorphic to H
which, combined with the first observation, allows for the problem to be solved
through a DFS on G. Finally, the third observation implies that there is no
need to determine the safety of each string u.u,.w € U.U, W from each state
q. Instead, a single test of safety for each u, € U, and state ¢ € Q suffices. The

algorithm’s running time was shown to be O (\Q|\Uc| [|Post., (q)| + nQ])

Remark 8 In fact, the DES supervisor .S of Thm. 3 could be computed in time
linear in the size of G x H, even if the system were not acyclic. This can be seen
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from Eqs. (11) and (12), which are very similar to the well known controllable
predecessor operator whose iteration reaches a fixed point in linear time for
safety properties. The formulation of the algorithm for computing S as a DFS
is, however, reliant on the system being acyclic. O

In this work, we adapt the algorithm of [13] to the problem of computing
the set of discrete states that are winning for the controller, using the iterative
refinement technique described in Sec. 7.

In what follows, let £, be the discretization function of Eq. (3), parametrized
by 7, and let QT be the resulting set of discrete states. As per the discussion
of Sec. 7, we can model the control problem to be solved as a game against
nature. To that end, let ¢ : Q; U (Qr x U.) U (Qr x U. x Q) — {—1,0,1}
denote the value (to the controller) of states, control inputs, or transitions.
More specifically, ¢-(q), ¢-(q,uc), and ¢-(q, ue, q") each take a value of -1, 1,
or 0 to denote a victory for nature, a victory for the controller, or a loss for
both. These are defined through the following equations:

13 if (Q7 Uc, q/) € wT,safe A ¢T(q/) =1

¢T(Q7 Uc, q/) = -1, if (q7 Uc, q,) € wi\,’safe A ¢T(q,) =-1 (32)
0, else
\4, Uc) = i T\4) Wc, ! 33
O (g, uc) q,ePrg)lsltnuc(q)qﬁ (¢: ue,q') (33)
1, ifge Qrm
9-(q) = { —1, if g€ QY (34)

maXy, ev, Or (Qa uc); else

Theorem 5 In Eqgs. (11)-(12), take X, U, —, Safe, and X, to be Q-, U.,
Ve, Vrosafe, and Qr . Similarly, in Egs. (30)-(31), take X, U, —, Safe, and
X to be QT, U, YN, wi\fsafe, and Qi\fm. Then there exists a unique solution
to Egs. (32)-(34), and this solution satisfies ¢-(q) = 1 < q € vZ.F(Z),
6:(q) = 1 < q € vZ.FN(2), ¢-(que.) =1 < u, € Cont(q|vZ.F(Z)), and

- (q,ue) = =1 < u. € Cont™N(qlvZ.FN(Z)), for all ¢ € Q. and u, € U,.

Proof. We proceed in two claims. The first claim shows that there is a solution
for ¢, satisfying the required constraints. The second claim shows that ¢, has
a unique solution.

Claim 1: Suppose that some sets M C Q, and N C Q, are fixed points of
Eq. (12) and Eq. (31), respectively. Then

1, ifgeM
¢-(q) =q —Lifge N (35)
0, else
1, if u. € Cont(q|M)
é-(q,uc) = { —1, if u. € Cont™ (q|N) (36)
0, else
]-7 if (Qaucvq/) € 'l/]'r,safe A q/ eM
¢T(Q7u07q,) = -1, if (CIvucvq/) € wi\,{sufe A C]/ €N (37)

0, else
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constitutes a solution to Eqgs. (32)-(34).
Clearly, Egs. (35) and (37) imply Eq. (32). Recall from Eq. (11) that

Cont(q|M) = {u. € U|Vq" € Posty,(q), [(¢, te, q') € Yrsafe Nq € M]}
= {u. € U|Vq € Post,,_(q), d-(q,uc,q") =1},

from which it follows that ¢-(q, u.) = 1if and only if ming cpost,_ (q) P+ (4, te, q')
1, as required by Eq. (33). It can similarly be shown from Eq. (30) defining
Cont™ (q|N) that ¢,(q,u.) = —1 if and only if Ming cpost,,, (q) Pr (¢ te, ¢') =
—1. Thus, Eq. (33) is satisfied. Now, since M is a fixed point of Eq. (12), we
have that

M = {q € Q-|q € Qr.m V Cont(q|M) # 0}
= {q S Q7|q € Qr,m V Ju. € U, : ¢T(qa