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Abstract We consider the problem of controlling a set of vehicles at an inter-
section, in the presence of uncontrolled vehicles and a bounded disturbance.
We begin by discretizing the system in space and time to construct a suitable
discrete event system (DES) abstraction, and formally define the problem to
be solved as that of constructing a supervisor over the discrete state space
that is safe (i.e., collision-free), non-deadlocking (i.e., the vehicles all cross the
intersection eventually), and maximally permissive with respect to the chosen
discretization. We show how to model the uncontrolled vehicles and the dis-
turbance through uncontrollable events of the DES abstraction. We define two
types of relations between systems and their abstraction: state reduction and
exact state reduction. We prove that, when the abstraction is a state reduc-
tion of a continuous system, then we can obtain a safe, non-deadlocking, and
maximally permissive memoryless supervisor. This is obtained by translating
safety and non-deadlocking specifications to the abstract domain, synthesizing
the supervisor in this domain, and finally translating the supervisor back to
the concrete domain. We show that, when the abstraction is an exact state
reduction, the resulting supervisor will be maximally permissive among the
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class of all supervisors, not merely memoryless ones. Finally, we provide a
customized algorithm and demonstrate its scalability through simulation.

Keywords Discrete Event Systems · Abstraction · Vehicle Control ·
Supervisory Control

1 Introduction

We consider the problem of controlling a set of n vehicles in the vicinity of
an intersection. We assume that vehicles move along a set of m intersecting
two-way roads, m ≤ n, and that the path that each vehicle will follow is known
a priori (for example, by means of reading the turn signal of the vehicle), and
we want to supervise the vehicles’ behaviour to avoid a side impact of any two
vehicles on intersecting paths, and a rear-end collision of any two vehicles on
a common or on merging paths. See Fig. 1 for an example.

Fig. 1 An example of the vehicle control problem.

We assume that a certain subset of the vehicles are uncontrolled, and that
there is a disturbance on the vehicle dynamics with a known bound. The
problem to be solved consists of designing a supervisor that restricts the actions
of the controlled vehicles such that the system is safe (i.e., collision-free),
non-deadlocking (i.e., the vehicles must eventually cross the intersection), and
maximally permissive.

Three common approaches to this problem include: the computation of
maximally controlled invariant sets; mapping the problem to that of schedul-
ing; and abstraction/symbolic models. Among approaches falling in the first
category, we mention, e.g., [18, 27, 19]. By explicitly computing the capture
set, or set of states from which it is not possible to guarantee avoidance of the
unsafe states, these approaches naturally satisfy safety, non-deadlockingness
and maximal permissiveness, and can deal with sources of uncontrollability
and also with measurement uncertainty. However, such approaches typically
require conditions on the geometry of the unsafe set and on the structure of
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the dynamics, or else scale poorly to systems with more than a few dimensions.
See also [26] for an example involving a flight management system. Scheduling
approaches work by allocating time intervals during which the vehicles can be
inside the intersection. The scheduling problem is generally NP-hard but takes
polynomial time in the special case where all jobs require the same processing
time. Reducing the vehicle control problem to the polynomial-time scheduling
case amounts to either an assumption of certain symmetries in the vehicle con-
trol problem set-up, or a problem relaxation where such symmetries are not
satisfied. Approaches in this category include [10], its extension to the case
of dynamics with disturbances, [4], its extension to the case of uncontrolled
vehicles [1], and its extension to the case of networks of sufficiently spaced
intersections, [7]. See also [11], which uses precedence constraints to allow for
vehicles on common or non-intersecting trajectories to use the intersection si-
multaneously. Another approach is to pre-compute fail-safe maneuvers as in
[20], or evasion plans as in [3]. These last approaches deal with some types of
environmental uncertainty, but do not guarantee maximal permissiveness.

Our approach falls in the category of abstraction/symbolic models. Ab-
straction based methods work by mapping the continuous system model and
specifications to a finite model and solving for a supervisor on the finite model,
in such a way that the obtained supervisor can be used on the original (contin-
uous) system, while preserving safety and non-deadlocking properties. Work
in this domain includes [2, 15] in the context of verification / model checking,
as well as [8, 9, 12], which make use of differential flatness of dynamical sys-
tems to construct abstractions with provable errors bounds. Our work is most
closely related to that of [16, 22, 30, 5], which construct symbolic models that
satisfy simulation or alternating simulation relations with the original system.
In particular, this work also makes use of alternating simulation relations, and
variations thereof.

In this problem, the number of vehicles will typically be at least five (we
provide simulation results for up to six vehicles) and the bad set has a non-
convex shape, which makes exact computation of the capture set intractable.
On the other hand, the scheduling methods of [10], [4], and [1] do not explicitly
pre-compute sets of states from which there exist solutions to the correspond-
ing scheduling problems, but instead perform verification on-line. Because the
exact verification problem is NP-hard, only the polynomial-time problem re-
laxations are feasible in practice. While also suffering from problems related
to state space explosion, abstraction based methods nevertheless offer more
scalability than capture set computation and more flexibility than reductions
to scheduling problems.

We proceed to solve the problem by discretizing the system in space and
time, thus obtaining a finite solution space. Using this discretization as a basis,
we construct a discrete-event system (DES) abstraction and model the two
sources of uncontrollability (the uncontrolled vehicles and the disturbance)
through uncontrollable events. By translating the safety and non-deadlocking
specifications from the continuous to the discrete-event domain, we formulate
the problem to be solved in the context of supervisory control theory of DES
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(see [23], [28], [6]). Specifically, we obtain a maximally permissive safe and non-
deadlocking supervisor for the DES by solving the Basic Supervisor Control
Problem in the Non-Blocking case (BSCP-NB). The resulting supervisor is
then translated back to the original (continuous) problem domain, preserving
safety, non-deadlockingness, and maximal permissiveness with respect to the
discretization.

To prove that safety and non-deadlockingness are preserved when translat-
ing the obtained supervisor from the abstract back to the continuous problem
domain and to characterize the sense in which the resulting solution is maxi-
mally permissive, we define two types of relations between systems and their
abstractions: the state reduction and the exact state reduction. We prove that,
when the abstraction is a state reduction of the original system, the obtained
supervisor for the continuous domain problem will be safe, non-deadlocking,
and maximally permissive among the class of memoryless supervisors. When
the abstraction is an exact state reduction of the original system, the obtained
supervisor will be maximally permissive among the class of all supervisors,
not merely memoryless ones. In the context of the vehicles control problem,
we show that our DES abstraction is a state reduction of the continuous sys-
tem model. Additionally, we show that, if the bounds on the disturbance are
an integral multiple of one of the discretization parameters, then our DES
abstraction becomes an exact state reduction of the continuous system model.

Finally, we present a formulation of the control problem as a game against
nature and show how this results in a categorization of the discrete states as
winning for the controller, winning for nature, or losing for both. We then make
use of this through a technique based on iterative refinement, which consists of
computing the winning sets on an abstraction with a coarse discretization, and
refining the abstraction at states found to be losing for both the controller and
nature. By making use of iterative refinement and the problem’s structure, we
are able to obtain an algorithm that is faster than the standard DES super-
visory control algorithms. We show through simulation that the algorithm is
scalable in practice, with running times of under one minute for systems with
tens of millions of states in the DES abstraction.

Our contributions are as follows. First, the translation of the system model
and specifications to the domain of DES allows us to leverage methods from
supervisory control theory, methods which are well-suited to finding maxi-
mally permissive supervisors in the presence of uncontrolled elements of the
environment. Second, the notions of state reduction and exact state reduction
are general notions that conserve maximal permissiveness, rather than merely
safety and non-deadlockingness, when going from an abstraction back to the
original system. To our knowledge, the construction of maximally permissive
memoryless supervisors for DES specifications through abstractions has not
been considered in other works. Finally, the iterative refinement algorithm pre-
sented in this work diminished running time by a factor of over 1000 in some
cases and many of the techniques used in this algorithm could also general-
ize to other problems of interest. Preliminary versions of some of the results
presented here have appeared in [13], [14].
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The organization of this paper is as follows. In Sec. 2, we present the
system model, its time/space discretization, and the problem to be solved. In
Sec. 3, we describe the set of collision points to be avoided. In Sec. 4, we define
the two modeling formalisms which are used in this paper, namely transition
systems and discrete event systems, and present a fixed point algorithm for
computing a maximally permissive safe and non-deadlocking supervisor. In
Sec. 5, we present the state reduction, exact state reduction, and associated
theorems. In Sec. 6, we define the DES abstraction of the system defined in
Sec. 2, prove that this abstraction is a state reduction of the system defined
in Sec. 2, and additionally prove under what conditions the abstraction is an
exact state reduction. In Sec. 7, we present the problem formulation as a game
against nature and describe the iterative refinement procedure. In Sec. 8, we
present our algorithm for solving the vehicle control problem. In Sec. 9, we
present simulation results for an implementation of our algorithm. Finally, we
conclude in Sec. 10. We also include derivations of the equations used in our
algorithms, which are contained in the appendix.

2 Model and Problem Definition

Consider a set of n vehicles N = {1, . . . , n} modeled as kinematic entities
(integrators) and described by

ẋ = v + d (1)

where x ∈ X ⊂ Rn is the state, v ∈ V ⊂ Rn is the control input, and
d ∈ D ⊂ Rn is a disturbance input representing unmodeled dynamics (for
instance, the dynamic response of the vehicle to the engine torque). That
is, d models the discrepancy between the full system model and the simple
model ẋ = v. Assume that X is compact (i.e., the vehicles are controlled in
some neighbourhood of the intersection) and that D = [dmin, dmax]n, with
dmin ≤ 0 ≤ dmax. We take the set V to be the (discrete) set of vectors with
elements in the finite set {aµ, (a + 1)µ, . . . , bµ}, with a, b ∈ N and µ ∈ R+.
The values aµ and bµ are denoted by vmin and vmax, respectively. To allow
for the possibility that a subset of the vehicles cannot be controlled, let v
be partitioned into two subvectors, vc ∈ Vc for the controlled vehicles, and
vuc ∈ Vuc for the uncontrolled vehicles, so that v = (vc, vuc) and V = Vc×Vuc.
Assume also that vmin+dmin ≥ µ, so that µ constitutes a lower bound on the
velocity of the vehicles. Finally, assume that the input v is kept constant over
time intervals [kτ, (k + 1)τ), k ∈ N and discretize the above system in time
with step τ , obtaining

xk+1 = xk + uk + δk (2)

with xk = x(kτ), uk = v(kτ)τ , δk =
∫ (k+1)τ

kτ
d(t)dt. Calling U = V τ and

∆ = Dτ , we have that uk ∈ U and δk ∈ ∆. In the remainder of this paper, we
will also use the notation δmin := dminτ and δmax = dmaxτ . As with the set V ,
we use the notation u = (uc, uuc) to denote the controls of the controlled and
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uncontrolled vehicles and write U = Uc × Uuc. Next, we discretize the system
in space by defining a set of discrete states Q̃ and a mapping ` : X → Q̃ from
continuous to discrete states as follows:

`i(xi) :=

 (c+ 1/2)τµ, for c ∈ Z s.t.
cτµ < xi ≤ (c+ 1)τµ,

if xi ≤ αk
qi,m, if xi > αk

(3)

where k is the index of the road on which vehicle i exits the intersection (i.e.,
after any turn) and αk marks the end of the intersection on road k (the shape
of the intersection will be described in more detail in Sec. 3). Note that, if
the vehicles are to be controlled beyond the end of the intersection, then a
value greater than αk could be used in Eq. (3). This could potentially result
in more than one marked state in the definition of G (see Sec. 6) and would
not invalidate any results presented in this paper. Define `(x) as the vector
(`1(x1), . . . , `n(xn)) and define the notation `−1(q) = {x ∈ X : `(x) = q}. In
words, the space X is covered by a regular lattice with spacing τµ. Vehicles
before the end of the intersection are mapped to a point of this lattice whereas
vehicles after the end of the intersection are mapped to “special” states qi,m.
The state qm = (q1,m, . . . , qn,m) is the (unique) discrete state where all vehicles

have crossed the intersection. Assume that, for all q ∈ Q̃, there exists some
x ∈ X such that `(x) = q. Finally, assume that there is some set B of bad states
(representing collision points) and that we would like to define a supervisor so
that x(t) /∈ B ∀ t ≥ 0. We will describe the bad set in the following section.
Specifically, we wish to solve the following problem:

Problem 1 Let X/` denote the quotient set of X with respect to the equiv-
alence relation R` ⊆ X ×X defined by (x1, x2) ∈ R` ⇔ `(x1) = `(x2). Given
Q̃, define a supervisor σ : X/` → 2Vc that assigns to each x(kτ) ∈ X a set
of inputs vc ∈ Vc allowed for the interval [kτ, (k + 1)τ) and constant over this
time interval, with the following properties:

– if vc(t) ∈ σ(x(bt/τcτ)) for t ∈ [kτ, (k + 1)τ), then x(t) /∈ B in the same
time interval (safety)

– if σ(x(kτ)) 6= ∅, vc(t) ∈ σ(x(bt/τcτ)) for t ∈ [kτ, (k + 1)τ), and `(x((k +
1)τ)) 6= qm, then σ(x((k + 1)τ)) 6= ∅ (non-deadlockingness)

– if σ̃ 6= σ and σ̃ satisfies the two properties above, then σ̃(x) ⊆ σ(x) for all
x ∈ X (maximal permissiveness).

3 Bad Set Description

Let the set of roads in this system be denoted byR = {1, . . . ,m}. Associated to
each vehicle i is a pair of roads (ri,1, ri,2), indicating that the vehicle starts on
road ri,1 and turns onto road ri,2 at the intersection. Each road r in this system
is parametrized by the length αr of the road that is inside the intersection. We
assume that vehicles instantaneously switch from one road to another (i.e.,
when turning) at point 0. Thus, vehicle i is on road ri,1 when xi < 0, inside
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the intersection when xi ∈ [−αri,1 , αri,2 ], and on road ri,2 when xi > 0. We
define any two pairs of roads (ri,1, ri,2) and (rj,1, rj,2) as conflicting in one of
two cases:

Case 1 If two vehicles share the same start or end road, they must maintain a min-
imal separation distance of γ > 0 while on the same road. Mathematically,
ri,1 = rj,1 ⇒ (xi, xj ≤ 0 ⇒ |xi − xj | ≥ γ) and ri,2 = rj,2 ⇒ (xi, xj ≥ 0 ⇒
|xi − xj | ≥ γ).

Case 2 If two vehicles are on trajectories that intersect inside the intersection re-
gion while turning, they are forbidden from being in the intersection region
simultaneously. Mathematically, (xi, xj) /∈ (−αri,1 , αri,2)× (−αrj,1 , αrj,2).

It can be shown that, if ri,1 6= rj,1 and ri,2 6= rj,2, then case 2 occurs when
an odd number of

rj,1 ≥ ri,1, rj,1 ≥ ri,2, rj,2 ≤ ri,1, and rj,2 ≤ ri,2 (4)

are true (assuming vehicles driving on the right side of the road). We call the
set of all forbidden points the bad set, and denote it by B. Note that we do
not include collision points involving two uncontrolled vehicles in the bad set,
since these cannot be prevented through any control action. If neither case 1
nor case 2 occur for a pair of vehicles i and j (ex: both vehicles turning right),
then no constraints are placed on their joint behavior. See Fig. 2 for a pictorial
example of cases 1 and 2.

Fig. 2 An example scenario involving three vehicles on five roads. Blue lines segments are
drawn for each vehicle indicating starting road and ending road. Case 1 occurs when two
line segments meet at an endpoint, and case 2 occurs when two line segments intersect.

4 Modelling Formalisms

This section defines the two types of system models that will be used in this
work: transition systems and discrete-event systems. Relations between sys-
tems and abstractions are typically described in terms of transition systems.
However, the specifications we consider and the solution computation are in the
domain of discrete-event systems. Thus, this section will give brief overviews
of both types of systems and finally unify the two of them.
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4.1 Transition Systems

Definition 1 (Transition System) A transition system S is defined as a
tuple S = (X,U,→, Y,H), where X is the set of states, U is a set of control
inputs, →⊆ X × U × X is a transition relation, Y is an output set, and
H : X → Y is the output function.

Henceforth, we will usually refer to transition systems simply as systems.
For a system S = (X,U,→, Y,H), we will use the notation Postu(x) := {x′ ∈
X : (x, u, x′) ∈→} and U(x) := {u ∈ U : Postu(x) 6= ∅}. In the remainder of
this paper, it will be assumed that all systems satisfy the property H(x1) =
H(x2) ⇒ U(x1) = U(x2), for all x1, x2 ∈ X. In words, this means that any
two states with the same observation should not be distinguishable by their
available set of inputs.

Definition 2 (Run) A run ρ of length n for a system S = (X,U,→, Y,H)
is a sequence of past states and inputs (x0, u0, . . . , xn−1, un−1, xn), such that
ui ∈ U(xi) and xi+1 ∈ Postui(x

i) for i = 0, . . . , n− 1.

The set of runs of length n is denoted by Rn(S) and the set of runs
is R(S) =

⋃∞
i=0Rn(S). We use Rn(S|x) and R(S|x) to denote the set of

runs of length n starting from x and the set of all runs starting from state
x, respectively. For any D ⊆ X, also let Rn(S|D) := ∪x∈DRn(S|x) and
R(S|D) := ∪x∈DR(S|x). Given run ρ = (x0, u0, . . . , xn−1, un−1, xn), we de-
fine the notation tgt(ρ) := xn and ρ(k) := (x0, u0, . . . , xk−1, uk−1, xk), called
a prefix of ρ. We will also abuse notation and write (x, u, x′) ∈ ρ if ρ =
(x0, u0, . . . , xn−1, un−1, xn) and there exists some i = 0, . . . , n − 1 such that
xi = x, ui = u, and xi+1 = x′.

Definition 3 (History) A history θ of length n for a system S = (X,U,→
, Y,H) is a sequence of past outputs and inputs (y0, u0, . . . , yn−1, un−1, yn),
such that there exists a run ρ = (x0, u0, . . . , xn−1, un−1, xn) ∈ Rn(S) that is
consistent with θ, in the sense that yi = H(xi) for i = 0, . . . , n.

The set of histories of length n is denoted by Θn(S) and the set of his-
tories is Θ(S) =

⋃∞
i=0Θn. We will also write θ(ρ) to mean the unique his-

tory produced by a run ρ ∈ R. We use Θn(S|x) = {θ(ρ)|ρ ∈ Rn(S|x)} and
Θ(S|x) = {θ(ρ)|ρ ∈ R(S|x)} to denote the set of histories of length n start-
ing from x and the set of all histories starting from state x, respectively. For
any D ⊆ X, also let Θn(S|D) := ∪x∈DΘn(S|x) and Θ(S|D) := ∪x∈DΘ(S|x).
Given history θ = (y0, u0, . . . , yn−1, un−1, yn), we define the notation θ(k) :=
(y0, u0, . . . , yk−1, uk−1, yk) and tgt(θ) := yn, as was the case with runs.

Definition 4 (Specification) A safety specification for a system S = (X,U,→
, Y,H) is a subset Safe ⊆→ of transitions that we would like the system S to
be restricted to. A marking specification for S is a set Xm ⊆ X of “special” or
marked states. We say that S is deadlocking if there exists a run ρ such that
U(tgt(ρ)) = ∅ and tgt(ρ) /∈ Xm.
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Definition 5 (Supervisor) A supervisor σ for a system S = (X,U,→, Y,H)
is a function σ : Θ → 2U which chooses which control inputs to enable/disable
after each history. A supervisor is called memoryless if it is of the form σ : Y →
2U . A run ρ = (x0, u0, . . . , xn−1, un−1, xn) ∈ Rn(S) is allowed by supervisor σ
if ui ∈ σ(θ(ρ(i))), for i = 0, . . . , n− 1.

Definition 6 (Specification Satisfaction) A supervisor σ for system S =
(X,U,→, Y,H) is safe with respect to Safe ⊆→ if every run
ρ = (x0, u0, . . . , xn−1, un−1, xn) ∈ R(S) allowed by σ satisfies (xi, ui, xi+1) ∈
Safe for i = 0, . . . , n − 1. Supervisor σ is non-deadlocking with respect to
Xm ⊆ X on domain D ⊆ X if every run ρ ∈ R(S|D) allowed by σ satisfies
σ(θ(ρ)) 6= ∅ ∨ tgt(ρ) ∈ Xm.

Definition 7 (Maximal Permissiveness) Given a system S = (X,U,→
, Y,H), a safety specification Safe ⊆→, and a marking specification Xm ⊆ X,
supervisor σ is maximally permissive on domain D with respect to these safety
and non-deadlocking conditions if there does not exist a supervisor σ′ ⊃D σ
which also satisfies these conditions, where σ′ ⊃D σ signifies that σ′(θ) ⊇ σ(θ)
for all θ ∈ Θ(S|D) and that there exists θ ∈ Θ(S|D) such that σ′(θ) ⊃ σ(θ).
Finally, σ is safe and non-deadlocking on a maximal domain D if there does
not exist a supervisor σ′ that is safe and non-deadlocking on a larger domain
D′ ⊃ D.

It should be noted that there exists a unique maximal domain on which
a supervisor can be safe and non-deadlocking, and a unique maximally per-
missive supervisor on this domain. Furthermore, it is not possible to construct
a supervisor that is safe, non-deadlocking, and strictly more permissive by
considering a smaller domain. Thus, from this point forward we will refer to
the conjunction of both the property of being maximally permissive and the
property of being safe and non-deadlocking on a maximal domain simply as
maximal permissiveness. These issues will become clearer in Sec. 4.4.

For any safe, non-deadlocking, and maximally permissive supervisor on
domain D, we may assume (without loss of generality) σ(ρ) = ∅ for all ρ = (x)
such that x /∈ D. Under this assumption, there exists a domain D under which
a supervisor σ is non-deadlocking with respect to Xm ⊆ X if and only if every
non-zero length run ρ ∈ R(S) allowed by σ satisfies σ(θ(ρ)) 6= ∅∨ tgt(ρ) ∈ Xm

(if a zero length run ρ = (x) does not satisfy this condition, we may simply take
x /∈ D). Moreover, to verify that a memoryless supervisor is non-deadlocking
on some domain D, it is sufficient to consider runs of length exactly one. To
see this, consider any run ρ = (x0, . . . , xn−1, un−1, xn) ∈ Rn(S) that is allowed
by σ. Clearly, since ρ is allowed by σ, it must be that σ(θ(ρ(k))) 6= ∅, for any
k < n. Hence, only the last state reached along ρ may be deadlocked, and
this may be precluded if we know that the run (xn−1, un−1, xn) ∈ R1(S) is
non-deadlocking. This fact will be used in the proof of Thm. 3.
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4.2 Discrete-Event Systems

Definition 8 (Discrete Event System) A (deterministic) discrete event
system is a tuple G = (X,E, ψ, x0, Xm) where X is a set of states, E is a set
of events, ψ : X ×E → X is a partial transition function, x0 ∈ X is the initial
state, and Xm ⊆ X is a set of marked states representing the completion of
some behavior of interest.

Given a set of events E, E∗ denotes the set of finite strings of events in E.
A set of strings K ⊆ E∗ is called a language. The prefix-closure of a language
K ⊆ E∗, denoted by K, is defined by K = {s ∈ E∗ : ∃t ∈ E∗∧st ∈ K}. Given
a DES G = (X,E, ψ, x0, Xm), ψ is extended from events to strings through
ψ(x, se) = ψ(ψ(x, s), e). The language generated by G, denoted by L(G), is
defined as L(G) := {s ∈ E∗ : ψ(x0, s)!}, where ! means “is defined”. The
language marked by G, denoted by Lm(G) ⊆ L(G) is defined by Lm(G) :=
{s ∈ L(G) : ψ(x0, s) ∈ Xm}. DES G is non-blocking if Lm(G) = L(G), and
blocking otherwise.

A specification for a DES G is given by a second DES H defined over the
same event set and satisfying L(H) ⊆ L(G) and Lm(H) ⊆ Lm(G). Here,
L(H) constitutes the legal sublanguage of L(G), representing safe system
behavior. The language Lm(H) is usually assumed to satisfy the property
Lm(H) = L(H)∩Lm(G) (a technical condition called Lm(G)-closure). In gen-
eral, the event set of G and H, denoted by E is partitioned into controllable
events Ec and uncontrollable events Euc. Controllable events are events which
can be disabled (i.e., prevented), whereas uncontrollable events cannot be dis-
abled. Control in the DES domain is concerned with obtaining a supervisor
S : L(G) → 2E that is safe (i.e., L(S/G) ⊆ L(H) and Lm(S/G) ⊆ Lm(H)),
non-blocking (i.e., Lm(S/G) = L(S/G)), and maximally permissive, where
S/G is the system G controlled by S. Obtaining this supervisor consists of
solving the basic supervisory control problem in the non-blocking case, or
BSCP-NB, as described in [23], [6].

The solution to problem BSCP-NB is the language (Lm(H))↑C , where ↑ C
denotes the supremal controllable sublanguage operation. This is the largest
sublanguage K ⊆ Lm(H) that is controllable, which means it satisfies the
property KEuc∩L(G) ⊆ K. Thus, K is controllable if there exist no strings in
K that can be extended by an uncontrollable event to a string in L(G)\K. The
standard algorithm which solves this problem is given in [29] and constructs

a supervisor S such that Lm(S/G) = (Lm(H))↑C and L(S/G) = (Lm(H))↑C .
Notably, controllable sublanguages are closed under union, so that a unique
maximal solution indeed exists.

4.3 Translating Between Transition Systems and Discrete Event Systems

The previous two sections describe models for systems and specifications using
the two formalisms of transition systems and DES. In this section, we show how
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to translate a system model and specification from the domain of transition
systems to the domain of DES, and unify notation between these. In what
follows, the notation ! will be used to mean that a partial function is defined
at a particular value. Given a system Sa = (Xa, Ua,→a, Ya, Ha), a safety
specification Safea ⊆→a and a marking specification Xm,a ⊆ Xa, construct
system automaton Ga := (Xa∪Za, Ec∪Euc, ψGa , xa,0, Xm,a), and specification
automaton Ha := (Xa ∪Za, Ec ∪Euc, ψHa , xa,0, Xm,a) satisfying the following
conditions:

Ec = Ua (5)

ψHa ⊆ ψGa ⊆ (Xa × Ec × Za) ∪ (Za × Euc × (Xa ∪ Za)) (6)

ψGa(xa, ua)!⇔ ∃x′a ∈ Xa : (xa, ua, x
′
a) ∈→a (7)

ψHa(xa, ua)!⇔ ∃x′a ∈ Xa : (xa, ua, x
′
a) ∈ Safea (8)

∃t ∈ E∗uc : ψGa(xa, uat) = x′a ⇔ (xa, ua, x
′
a) ∈→a (9)

∃t ∈ E∗uc : ψHa(xa, uat) = x′a ⇔ (xa, ua, x
′
a) ∈ Safea, (10)

where Za is a set of intermediate states. The above equations can be under-
stood to mean that we use uncontrollable events in Ha and Ga to model non-
determinism in the transition relation →a. In words, Eq. (5) signifies that the
controllable events of Ga and Ha are the control inputs of Sa, whereas Eq. (6)
signifies that controllable (resp. uncontrollable) events are defined only from
states in Xa (resp. Za) and lead only to states in Za (resp. Xa ∪Za). Eqs. (7)
and (9) signify that, for every (xa, ua, x

′
a) ∈→a, event ua is defined from state

xa of Ga and there exists some uncontrollable sequence of events following
ua that takes Ga from ψGa(xa, ua) to x′a. The same interpretation holds for
Eqs. (8) and (10) with respect to Ha.

We remark that we did not define what the initial state xa,0 of Ga and Ha

is. For now, we note that these will be dummy initial states without physical
significance, but with transitions to some subset Xa,0 of initial states. We will
return to this issue in Sec. 6.

To unify notation between systems as in Def. 1 and discrete event systems
as described above, we will use the notation U(x) := {u ∈ Ec : ψ(x, u)!} and
Postu(x) := {x′ ∈ Xa : (∃t ∈ E∗uc)(x

′ = ψ(x, ut))} for x ∈ Xa and (in an
abuse of notation) will write (x, u, x′) ∈ ψ if x ∈ Xa and x′ ∈ Postu(x).
This notation allows us to work with DES of the above form in the context of
the state reductions and exact state reductions that will be presented in the
following sections.

4.4 Supervisor Computation

In this section, we present the algorithm for solving problem BSCP-NB, recast
as a state-based maximal fixed point computation, in a manner that is more
akin to existing methods for control problems in the context of transition
systems (see, e.g., [25]). Note that we use non-deadlocking specifications in
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this work, rather than the more general non-blocking specifications that are
normally used in DES supervisory control problems.

Consider a transition system S = (X,U,→) (we have suppressed the last
two arguments, as they are not relevant to the following discussion), a safety
specification Safe ⊆→, and a marking specification Xm ⊆ X, as described in
Sec. 4.1. We will define a function F : 2X → 2X whose greatest fixed point is
used to obtain a maximally permissive supervisor with respect to the safety
and non-deadlocking specifications.

Recall from Sec. 4.2 that the solution to the supervisory control problem
in DES is the supremal controllable sublanguage, and that a language K is
controllable if there exist no strings in K that can be extended by an un-
controllable event to a string in L(G) \K. Recall also from Sec. 4.3 that we
use uncontrollable events to model non-determinism in the translation from
transition systems to DES. Thus, given a state x ∈ X and a current set of
winning states Z in the iteration of (the yet to be defined function) F , let
Cont(x|Z) denote the set of control inputs that do not violate controllability.
Mathematically,

Cont(x|Z) = {u ∈ U |∀x′ ∈ Postu(x), [(x, u, x′) ∈ Safe ∧ x′ ∈ Z]}. (11)

We now define F : 2X → 2X by

F (Z) = {x ∈ Z|x ∈ Xm ∨ Cont(x|Z) 6= ∅}. (12)

Now let F k(Z) denote the kth iteration of F applied to Z, definable through the
recursion F 0(Z) = Z and F k(Z) = F (F k−1(Z)). Because F is monotone, we
obtain by the Knaster-Tarski theorem that the greatest fixed point νZ.F (Z) =
limk→∞ F k(X) is well defined. A maximally permissive supervisor σ : X → 2U

for the safety and non-deadlocking specification exists, and is given by

σ(x) = Cont(x|νZ.F (Z)). (13)

Remark 1 Typically, DES have a fixed initial state, and the supervisor com-
putation removes both states that are deadlocked, as well as states that are
not accessible (not reachable from the initial state). We note here that inac-
cessible states may be removed at the end of the fixed point algorithm, as an
inaccessible state is by definition unreachable from any accessible state. Thus,
the inaccessible states cannot affect either deadlocking properties or controlla-
bility properties of any accessible state. As a consequence, the supervisor that
is computed through Eq. (13) will be correct at all accessible states.

5 State Reductions and Supervisory Control

In this section, we define two types of relations between systems: state re-
ductions and exact state reductions, and prove theorems relating safety, non-
deadlockness, and maximal permissiveness of supervisors for systems related
through state reductions and exact state reductions. The state reduction and
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exact state reduction relations are based on the notions of alternating simi-
larity relations, as defined in [25]. The theorems proven in this section will be
used later in this paper to establish the correctness of our solution to Prob. 1.

We begin with a motivating example.

Example 1 Consider the simple transition system T = (X,U,→, Y,H), with

X = [0, 1)

U = {low, high}

→ =

{
(x, u, x′) ∈ X × U ×X

∣∣∣∣ (u = low ∧ x′ = x/2)
∨(u = high ∧ x′ = (1 + x)/2)

}
Y = {y}

H(x) = y, ∀x ∈ X.

Let us suppose that there is no initial state information about the system.
Given a state estimate of [a, b), the state estimate following control input low
will be [a/2, b/2), whereas the state estimate following control input high will
be [(1 + a)/2, (1 + b)/2). In either case, the estimate has been reduced from
an interval of size b− a to one of size (b− a)/2. Thus, every single past input
that is remembered by a controller yields exactly 1 bit of information about
the current state. Notably, there is no finite number of past control decisions
over a run beyond which no further information about the current state is
obtained. For such an example, maximally permissive control could require
not only memory, but infinite memory and hence an infinite state space.

Because abstractions of systems typically have large state spaces, non-
memoryless supervisors will typically be computationally infeasible. As the
above example demonstrates, there exist very simple systems under which
even finite memory supervisors are insufficient to the problem of obtaining
maximally permissive supervisors. In this work, we therefore concentrate on
determining conditions under which maximally permissive memoryless super-
visors can be obtained, and also address the problem of finding conditions
on system dynamics under which there is no loss by restricting attention to
memoryless supervisors.

5.1 The State Reduction

Definition 9 (State Reduction) Given two systems Sa and Sb with Ya =
Yb = Y , we say that Sa is a state reduction of Sb with state relation R ⊆
Xa × Xb and output dependent control relation C : Y → 2Ua×Ub (hereafter
referred to only as control relation) if:

1. R−1 = {(xb, xa) ⊆ Xb ×Xa : (xa, xb) ∈ R} is a function.
2. For every y ∈ Y , the relation C(y) ⊆ Ua × Ub is a bijection relation.
3. Ha(xa) = Hb(xb) if and only if (xa, xb) ∈ R.
4. ∀(xa, ua, x′a) ∈→a, ∃(xb, ub, x′b) ∈→b such that (xa, xb) ∈ R, (ua, ub) ∈
C(Ha(xa)), and (x′a, x

′
b) ∈ R.
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5. ∀(xb, ub, x′b) ∈→b, ∃(xa, ua, x′a) ∈→a such that (xa, xb) ∈ R, (ua, ub) ∈
C(Hb(xb)), and (x′a, x

′
b) ∈ R.

Remark 2 The state reduction was first defined in [14], where we used slightly
different conditions. In this work, we have changed notation for the control re-
lation C to resolve ambiguity. Furthermore, condition 5) was previously stated
as: ∀(xa, xb) ∈ R, (ua, ub) ∈ C and x′b ∈ Postub(xb), ∃x′a ∈ Postua(xa) such
that (x′a, x

′
b) ∈ R. The two conditions can be shown to be equivalent under

conditions 1) and 2).

In words, condition 1) signifies that every xb ∈ Xb is in relation with exactly
one xa ∈ Xa, condition 5) signifies that, for every (xb, ub, x

′
b) ∈→b, there exists

(xa, ua, x
′
a) ∈→a which models (xb, ub, x

′
b) ∈→b, and condition 4) signifies that

every transition in→a models some transition in→b. Significantly, conditions
4) and 5) can be achieved by construction for any system Sb, and relations
R and C satisfying conditions 1), 2), and 3). Furthermore, the system Sa is
the quotient system of Sb with respect to R and C in the case of alternating
simulation, and is therefore uniquely defined.

Definition 10 (Induced Specification) Given system Sb with state re-
duction Sa, along with safety and marking specifications Safeb ⊆→b and
Xm,b ⊆ Xb on system Sb, define the induced specification on Sa as follows:

(xa, ua, x
′
a) ∈ Safea ⊆→a

⇔
{

(xb, ub, x
′
b) ∈→b s.t. (xa, xb) ∈ R

∧(ua, ub) ∈ C(Ha(xa)) ∧ (x′a, x
′
b) ∈ R

}
⊆ Safeb (14)

xa ∈ Xm,a ⊆ Xa ⇔ {xb ∈ Xb s.t. (xa, xb) ∈ R} ⊆ Xm,b (15)

The usefulness of Def. 9 is illustrated in the following theorem:

Theorem 1 Suppose that system Sa is a state reduction of system Sb with
state relation R and control relation C and that we are given safety and mark-
ing specifications Safeb ⊆→b and Xm,b ⊆ Xb for system Sb. Let Safea and
Xm,a be the corresponding induced specifications for system Sa and suppose
that we additionally have the property (xa, xb) ∈ R ⇒ (xa ∈ Xm,a ⇔ xb ∈
Xm,b). Finally, let σa : Y → 2Ua be the maximally permissive, safe, and
non-deadlocking supervisor, where Y is the (common) output space, and de-
fine the supervisor σb : Y → 2Ub by ub ∈ σb(y) iff ∃ua ∈ σa(y) such that
(ua, ub) ∈ C(y). Then σb is safe, non-deadlocking, and maximally permissive
among memoryless supervisors of the form σb : Y → 2Ub .

Proof. We proceed in three claims. The first two claims show that σa is non-
deadlocking (resp., safe) if and only if σb is non-deadlocking (resp., safe). The
last claim uses monotonicity of the mapping from σa to σb to show that the
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first two claims imply maximal permissiveness of σb.
Claim 1: σa is non-deadlocking iff σb is non-deadlocking.
As per the discussion following Def. 6, it suffices to consider runs of length
one when verifying non-deadlockingness. Thus, the property to be proven is
as follows {

∀xa ∈ Xa,∀ua ∈ σa(Ha(xa)),∀x′a ∈ Postua(xa),
[x′a ∈ Xm,a ∨ σa(Ha(x′a)) 6= ∅]

}
⇔
{
∀xb ∈ Xb,∀ub ∈ σb(Hb(xb)),∀x′b ∈ Postub(xb),

[x′b ∈ Xm,b ∨ σb(Hb(x
′
b)) 6= ∅]

}
.

(16)

(⇒) Consider any xb ∈ Xb, any ub ∈ σb(Hb(xb)), any x′b ∈ Postub(xb), and let
y = Hb(xb) and y′ = Hb(x

′
b). By property (5) of Def. 9, there exist xa ∈ Xa,

ua ∈ Ua, and x′a ∈ Postua(xa) such that (xa, xb) ∈ R, (ua, ub) ∈ C(y),
and (x′a, x

′
b) ∈ R. By property (3) of Def. 9, Ha(xa) = Hb(xb) = y and

Ha(x′a) = Hb(x
′
b) = y′. Since (ua, ub) ∈ C(y) and ub ∈ σb(y), we have that

ua ∈ σa(y), and hence that x′a ∈ Xm,a ∨ σa(y′) 6= ∅. By definition of Xm,a in
Eq. (15), we have that x′a ∈ Xm,a ∧ (x′a, x

′
b) ∈ R ⇒ x′b ∈ Xm,b. By definition

of σb, we have that σa(y′) 6= ∅ ⇒ σb(y
′) 6= ∅. Thus, x′a ∈ Xm,a ∨ σa(y′) 6= ∅

implies x′b ∈ Xm,b ∨ σb(y′) 6= ∅ and we are done.
(⇐) Suppose that there exist xa ∈ Xa, ua ∈ σa(Ha(xa)), and x′a ∈ Postua(xa)
such that x′a /∈ Xm,a and σa(Ha(x′a)) = ∅. Let y = Ha(xa) and y′ = Ha(x′a).
By property (4) of Def. 9, there exist xb ∈ Xb, ub ∈ Ub, and x′b ∈ Postub(xb)
such that (xa, xb) ∈ R, (ua, ub) ∈ C(y), and (x′a, x

′
b) ∈ R. Since (ua, ub) ∈ C(y)

and ua ∈ σa(y), we have that ub ∈ σb(y). By property (3) of Def. 9, Hb(xb) =
Ha(xa) = y and Hb(x

′
b) = Ha(x′a) = y′. By definition of σb, σa(y′) = ∅ ⇒

σb(y
′) = ∅. By assumption, (xa, xb) ∈ R ⇒ (xa ∈ Xm,a ⇔ xb ∈ Xm,b). Since

(x′a, x
′
b) ∈ R and x′a /∈ Xm,a, it follows that x′b /∈ Xm,b, and we are done.

Claim 2: σa is safe iff σb is safe.
Mathematically, this requires proving

{∀xa ∈ Xa,∀ua ∈ σa(Ha(xa)),∀x′a ∈ Postua(xa), (xa, ua, x
′
a) ∈ Safea}

⇔ {∀xb ∈ Xb,∀ub ∈ σb(Hb(xb)),∀x′b ∈ Postub(xb), (xb, ub, x
′
b) ∈ Safeb} .

(17)
(⇒) Consider any xb ∈ Xb, any ub ∈ σb(Hb(xb)), any x′b ∈ Postub(xb), and
let y, y′, xa, ua, and x′a be as in (⇒) of Claim 1. Then (xa, ua, x

′
a) ∈ Safea

and by Eq. (14), (xb, ub, x
′
b) ∈ Safeb.

(⇐) Suppose that there exist xa ∈ Xa, ua ∈ σa(Ha(xa)), and x′a ∈ Postua(xa)
such that (xa, ua, x

′
a) /∈ Safea. By Eq. (14), there exists (xb, ub, x

′
b) ∈→b such

that (xa, xb) ∈ R, (ua, ub) ∈ C(y), (x′a, x
′
b) ∈ R, and (xb, ub, x

′
b) /∈ Safeb. Since

(xa, xb) ∈ R, we have, by property (3) of Def. 9, that Ha(xa) = Hb(xb) = y.
By definition of σb and the fact that (ua, ub) ∈ C(y), we have that ub ∈ σb(y)
and we are done.
Claim 3: σb is maximally permissive.
Given any supervisor σ′b : Y → 2Ub , let σ′a : Y → 2Ua be defined by ua ∈ σ′a(y)
iff ∃ub ∈ σ′b(y) such that (ua, ub) ∈ C(y) and let the function σb→a be the
mapping which takes a supervisor σ′b for system b to the supervisor σ′a for
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system a in this way. Clearly, σ′b ⊆ σb ⇔ σb→a(σ′b) ⊆ σb→a(σb) = σa. Thus,
if there exists a safe and non-deadlocking supervisor σ′b * σb then it follows
that σa is not maximally permissive, a contradiction.

The above theorem shows that it is possible to compute a supervisor for
a system with a large or infinite state space by abstracting that system to
one with a finite state space, computing a supervisor for the reduced system,
and translating back. Furthermore, this process conserves not only safety and
non-deadlockingness in the translation, but also maximal permissiveness.

Remark 3 The above theorem characterizes a controller σ as safe and non-
deadlocking for system S = (X,U,→, Y,H), safety specification Safe, and
marking specification Xm if and only if ∀x ∈ X, ∀u ∈ σ(H(x)), ∀x′ ∈
Postu(x), we have that (x, u, x′) ∈ Safe∧(σ(H(x′)) 6= ∅∨x′ ∈ Xm). This is a
sufficient condition for a system to be safe and non-deadlocking, but it is not
necessary if the supervisor can use initial state information, even if we restrict
attention to memoryless supervisors. For an example of such a situation, see
Example 2.

Example 2 Figure 3 shows an example of a system (left) and its corresponding
state reduction (right). If we assume that there is only a marking specification
and no safety specification, then the maximally permissive supervisor σ1 for
the state reduction would enable {a, b} from state {1, 2} and {a} from state
{3, 4, 5}. It can be seen that this would indeed be a maximally permissive mem-
oryless solution for the left system if there were no initial state information.
If, however, the initial state is known a priori to be one of {1, 2}, then there
exists a strictly more permissive memoryless supervisor σ2 for the left system
which also enables b from states {3, 4, 5}. It is possible to be more permissive
from states {3, 4, 5} by making use of the fact that the initial states are {1, 2}
and event c was disabled from states {1, 2}, making state 5 unreachable. An-
other safe memoryless supervisor σ3 enables {a} from states {1, 2} and {a, b, c}
from states {3, 4, 5}. Thus, it is possible to enable more from states {3, 4, 5}
by enabling less from states {1, 2}.

Consistent with the discussion of Remark 3, both of these supervisors vi-
olate the property of Eqs. (16) and (17), namely that ∀x ∈ X, ∀u ∈ σ(H(x)),
∀x′ ∈ Postu(x), we have that (x, u, x′) ∈ Safe ∧ (σ(H(x′)) 6= ∅ ∨ x′ ∈ Xm).
In particular, σ2 and σ3 both allow b from state 5, despite the fact that this
allows (5, b, 8), and state 8 is deadlocked. Furthermore, the union of σ2 and σ3
is deadlocking, since it allows the string bc, which leads to deadlocked state 8.
Thus, there does not exist a maximally permissive safe and non-deadlocking
supervisor which uses the initial state information in this case. The key point
is that the property of Eqs. (16) and (17) is based on the discussion following
Def. 6, which requires that the suffix of a run (including, in particular, suffixes
of length 1) also be a run. Clearly, this is something which does not apply
when there is initial state information.

Note that the system on the left is accessible, deterministic, and has both
initial and marked states which respect the partition of states determined by
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Fig. 3 A system and its corresponding state reduction. States of the left system with the
same output are placed in a common box. We use the usual DES convention of denoting
marked states with a double circle and initial states with an incoming arrow that has no
source state.

the output map. This example is very closely related to the problem of obtain-
ing maximally permissive supervisors of the form S : XG → 2E for a discrete
event system G, subject to specification automaton H, which would normally
require the supervisor to be defined over the state space of the product au-
tomaton G×H.

5.2 The Exact State Reduction

Definition 11 (Exact State Reduction (2)) Given two systems Sa and
Sb with Ya = Yb = Y , we say that Sa is an exact state reduction (2) of Sb
with state relation R ⊆ Xa ×Xb and control relation C : Y → 2Ua×Ub if Sa is
a state reduction of Sb with state and control relations R and C and:

6. ∀(xa, ua, x′a) ∈→a, ∀x′b ∈ Xb : (x′a, x
′
b) ∈ R, ∃(xb, ub, x′b) ∈→b such that

(xa, xb) ∈ R and (ua, ub) ∈ C(Ha(xa)).

The above condition is akin to a time-reversed alternating similarity con-
dition, in the sense that it requires that every transition of Sa have a corre-
sponding transition in Sb, for every pair of related target states, rather than
for every pair of related source states. Lemma 1 demonstrates its usefulness.

Remark 4 The exact state reduction was first defined in [14], where we used
a normal (i.e., non time-reversed) alternating similarity condition. We have
added the “(2)” in this work to differentiate between these.

Lemma 1 Suppose that system Sb has an exact state reduction (2) Sa. Then,
for any history θb for system Sb and any xb ∈ Xb such that H(xb) = tgt(θb),
there exists a run ρb such that θb = θ(ρb) and xb = tgt(ρb).

Proof. The proof is by induction on the length of θb. The base case is trivially
true. Assume that the lemma holds up to histories of length n and consider a
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pair of histories θb ∈ Θn(Sb) and θ′b ∈ Θn+1(Sb) such that θb is a prefix of θ′b.
Also define y = tgt(θb), y

′ = tgt(θ′b), and let ρ′b = (x0b , . . . , x
n
b , u

n
b , x

n+1
b ) ∈

Rn+1(Sb) be such that θ′b = θ(ρ′b). Note that, in particular, this implies
Hb(x

n
b ) = y and Hb(x

n+1
b ) = y′. Since (xnb , u

n
b , x

n+1
b ) ∈→b, we have from

property (5) that ∃(xna , una , xn+1
a ) ∈→a such that (xna , x

n
b ) ∈ R, (una , u

n
b ) ∈

C(Hb(x
n
b )) = C(y) and (xn+1

a , xn+1
b ) ∈ R. From property (3), we haveHa(xna) =

Hb(x
n
b ) = y and Ha(xn+1

a ) = Hb(x
n+1
b ) = y′. Now consider any x′b ∈ Xb

such that H(x′b) = tgt(θ′b) = y′. Using property (3) again, we have that
(xn+1
a , x′b) ∈ R. From property (6) we therefore have that ∃(xb, ub, x′b) ∈→b

such that (xna , xb) ∈ R and (una , ub) ∈ C(Ha(xna)) = C(y). From property
(3), we have that Hb(xb) = Ha(xna) = y and from property (2) we have
that ub = unb . From the induction hypothesis, there exists a run ρb such that
θb = θ(ρb) and tgt(ρb) = xb. Thus we can form the run ρ′′b := ρb.ub.x

′
b satisfying

θ′b = θ(ρ′′b ) and tgt(ρ′′b ) = x′b, which completes the proof.

In words, the above lemma implies that, when there exists an exact state
reduction (2) for system Sb, a history θb gives no more information about the
current state of Sb than does the last output tgt(θb).

Theorem 2 Suppose that system Sa is an exact state reduction (2) of system
Sb and that all other conditions of Thm. 1 are satisfied, except for the require-
ment that (xa, xb) ∈ R ⇒ (xa ∈ Xm,a ⇔ xb ∈ Xm,b). Then the obtained
supervisor σb will be safe, non-deadlocking, and maximally permissive among
supervisors of the form σb : Θ(Sb)→ 2Ub .

Proof. Lemma 1 shows that nothing is gained through a supervisor of the form
σb : Θ(Sb) → 2Ub over a memoryless one. What remains to be proven is that
the result of Thm. 1 holds true for the case of an exact state reduction (2),
without the requirement that (xa, xb) ∈ R⇒ (xa ∈ Xm,a ⇔ xb ∈ Xm,b). This
requirement is used only in the proof of (⇐) in Claim 1. We therefore rewrite
this part of the proof, using the exact state reduction (2).
(⇐) Suppose that there exist xa ∈ Xa, ua ∈ σa(Ha(xa)), and x′a ∈ Postua(xa)
such that x′a /∈ Xm,a and σa(Ha(x′a)) = ∅. Let y = Ha(xa) and y′ = Ha(x′a).
From Eq. (15) and x′a /∈ Xm,a, there must exist some x′b ∈ Xb such that
(x′a, x

′
b) ∈ R and x′b /∈ Xm,b. By property (6) of Def. 11, there exist xb ∈ Xb

and ub ∈ Ub such that (xa, xb) ∈ R, (ua, ub) ∈ C(y), and x′b ∈ Postub(xb).
Since (ua, ub) ∈ C(y) and ua ∈ σa(y), we have that ub ∈ σb(y). By property
(3) of Def. 9, Hb(xb) = Ha(xa) = y and Hb(x

′
b) = Ha(x′a) = y′. By definition

of σb, σa(y′) = ∅ ⇒ σb(y
′) = ∅, and we are done.

Remark 5 As in the case of (non-exact) state reductions, the obtained supervi-
sor will not generally be maximally permissive if the supervisor can use initial
state information. In particular, if the set of initial states X0,b gives more infor-
mation than the initial output y0, then there may exist more permissive super-
visors. Note however that, if H(xb,1) = H(xb,2)⇒ [xb,1 ∈ X0,b ⇔ xb,2 ∈ X0,b],
then X0,b gives no more information than the initial output y0, and hence
the resulting supervisor will still be maximally permissive. This is contrary to
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(a) A State Reduction (b) An Exact State Reduction

Fig. 4 A depiction of the state reduction (left) and exact state reduction (right) for a
simple system Sb = ({1, . . . , 8}, {u},→b, {A,B}, Hb), where Hb(x) = A for x ∈ {1, . . . , 4}
and Hb(x) = B for x ∈ {5, . . . , 8}. In both the left and right cases, there is a transition
(x, u, x′) ∈→b with x ∈ H−1

b (A) and x′ ∈ H−1
b (B), and hence a transition from A to

B in the corresponding state reduction. The system on the right contains some transition
(x, u, x′) ∈→b with x ∈ H−1

b (A), for every x′ ∈ H−1
b (B). For the system on the left, the

occurrence of a transition from A to B in the state reduction allows us to determine that
Sb is in state 7. For the system on the right, this transition only allows to determine that
the system is some state in the set H−1

b (B).

(a) System S1 (b) System S2

Fig. 5 Systems S1 and S1, demonstrating the difference between exact state reduction and
alternating bisimulation.

the case of non-exact state reductions, in which case the above condition is
still not sufficient to guarantee maximal permissiveness of the supervisor σ2
obtained in Thm. 1, as is demonstrated in Ex. 2.

Figure 4 depicts an example of a state reduction and an example of an
exact state reduction.

5.3 Comparison of System Relations

Consider the three systems S1, S2, and Sa of Figs. 5 and 6. The difference
between S1 and S2 is the label on the transition between states 1 and 4 and
on the transition between states 2 and 3. It can be verified that Sa is an exact
state reduction (2) of S1, and that it alternatingly bisimulates S2. Moreover, Sa
is not an exact state reduction of S2, and does not alternatingly bisimulate S1.
Consider the safety specification Safei =→i \{(3, a, 6)}. For system S1, there
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Fig. 6 System Sa, which is both an exact state reduction (2) of system S1 of Fig. 5 and
alternatingly bisimulates system S2 of Fig. 5. This system is not an exact state reduction
(2) of S2, and does not alternatingly bisimulate system S1. Finally, Sa is also bisimilar to
both S1 and S2. It follows that the three relations do not coincide.

exists a unique maximally permissive memoryless supervisor σ which achieves
this specification, namely the supervisor which disables event a on output
H(3) = H(4). As per Thm. 2, this supervisor is also maximally permissive
among supervisors with memory. On the other hand, there does not exist
a maximally permissive memoryless supervisor for system S2. If event a is
enabled upon output H(1) = H(2), then a must be disabled upon output
H(3) = H(4). On the other hand, if a is disabled upon output H(1) = H(2),
then state 3 becomes unreachable and a can be enabled upon output H(3) =
H(4). This occurs because the abstraction is not “aligned” (normally referred
to as proposition preserving) with the specification, in the sense that there
exist states xi,1, xi,2 and control input ui of each system Si, i = 1, 2, such
that Hi(xi,1) = Hi(xi,2), but {xi,1}×{ui}×Postui(xi,1) ⊆ Safei < {xi,2}×
{ui} ×Postui(xi,2) ⊆ Safei.

This example demonstrates a key point in abstraction based synthesis. To
obtain maximally permissive supervisors with respect to the abstraction, it is
typically required that the abstraction be aligned not only with the dynamics
of the system to be abstracted, but also with the specification. In particular,
this means that a change of specification requires reconstructing the abstrac-
tion if one wishes to maintain maximal permissiveness. This is not the case
with exact state reductions, since exact state reductions produce maximally
permissive solutions without requiring that abstractions be aligned with speci-
fications. Note, however, that abstraction techniques that produce maximally
permissive supervisors when the abstractions are aligned with the specifica-
tions produce solutions that are maximally permissive with respect to the
original system, not merely with respect to the chosen discretization.

6 Discrete Abstraction

Returning to the vehicle control problem of Sec. 2, we construct a DES G that
models the behavior of the continuous time system, using the lattice Q̃ as the
set of discrete states.

To construct a DES abstraction of the continuous-time system, we use a
three-layered transition function ψ. The first layer consists of events in the
set Uc, for the actions of the controlled vehicles. The second layer consists of
events in the set Uuc, for the actions of the uncontrolled vehicles. It remains to
model the disturbance d. We achieve this by discretizing the set ∆ to obtain
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a set of “discretized disturbances” W . Specifically, let

W = {kτµ : k ∈ Z ∧ bδmin/(τµ)c ≤ k ≤ dδmax/(τµ)e}n. (18)

This set W makes up the third layer of G’s transition structure. For any q ∈ Q̃,
uc ∈ Uc, uuc ∈ Uuc, and w ∈W , we define

ψ(q, ucuucw) := q + u+ w, (19)

where u = (uc, uuc). In Sec. 6.1, we will show that ψ(q, ucuucw) = q′ if and
only if there exist x ∈ X, δ ∈ ∆, and x′ ∈ X such that x′ = x+u+δ, q = `(x),
and q′ = `(x′) (see Prop. 1). To define the discrete system state in between the
occurrence of events in Uc and Uuc and in between the occurrence of events in
Uuc and W (all of which occur simultaneously in the continuous-time system),
we introduce two sets of “intermediate” states QI1 and QI2 (disjoint from
each other and from Q̃ and with no physical meaning), and three intermediate
transition functions: ψ1 : Q̃ × Uc → QI1, ψ2 : QI1 × Uuc → QI2, and ψ3 :
QI2 × W → Q̃, defined only by ψ(q, uc, uuc, w) = ψ3(ψ2(ψ1(q, uc), uuc), w).
See Fig. 7 for a depiction of the transition function ψ. We take the set of
marked states to be the set Qm = {qm}. Finally, we define a set Q0 of possible
initial states, which we model by introducing a dummy initial state q0 and
having transitions from q0 to each state q ∈ Q0 with event label eq. We denote
this set of events by EQ := {eq : q ∈ Q0} and define ψ(q0, eq) := q. The final
DES is defined as:

G := (Q,EQ ∪ Uc ∪ Uuc ∪W,ψ, q0, Qm) (20)

whereQ = {q0}∪Q̃∪QI1∪QI2. The sets of events Uc is taken to be controllable,
whereas the sets of events Uuc and W are taken to be uncontrollable. Note
that, in the context of supervisory control problems of DES, a supervisor
is obtained which does not choose a particular event from any given state,
but rather chooses which events to enable (allow) and which ones to disable
(prevent). An uncontrollable event is an event that cannot be disabled.

Remark 6 Although the initial state can not be chosen by the system, we take
the set of events EQ to also be controllable. In the following section, we will use
G in a supervisory control problem. If EQ were defined as uncontrollable, we
would obtain an empty solution to the supervisory control problem whenever
there was any initial state from which there was no solution, even if there
existed solutions from some of them. By defining the set EQ as controllable,
the computed supervisor will contain a transition from q0 to q for every q ∈ Q0

from which there exists a solution to the supervisory control problem.

6.1 Relations Between the Time-discretized and Discrete Event Systems

Proposition 1 Define the observation maps HQ̃(q) := q, HX(x) := `(x),

the relation R := {(q, x) ∈ Q̃ × X : `(x) = q}, and the control relation
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Fig. 7 The transition function ψ.

C(q) := {(uc, vc) : vcτ = uc ∈ Uc}, for all q ∈ Q̃. Then DES G of Sec. 6
is a state reduction of system (2).

Proof. Properties (1), (2), and (3) follow immediately from the definitions of
HX , HQ, `, R, and C.

Property (4): Consider any q ∈ Q̃, uc ∈ Uc, uuc ∈ Uuc, and w ∈ W , with
q′ = ψ(q, uc, uuc, w) = q + u + w (where u = (uc, uuc)). We construct x ∈ X,
x′ ∈ X and δ ∈ ∆ such that `(x) = q, `(x′) = q′, and x + u + δ = x′

by considering each co-ordinate in turn. There are three cases, depending on
where wi lies with respect to the interval [δmin, δmax] (recall from Eq. (18) that
wi may be smaller than δmin or larger than δmax when these values are not
integer multiples of µτ , because of the floor and ceiling operations).

Case 1: δmin ≤ wi ≤ δmax. Take xi = qi, δi = wi, and x′i = q′i.
Case 2: wi > δmax. Take xi = qi +µτ/2, δi = δmax, and x′i = xi +ui + δmax.

From the definition of `, we have that `i(xi) = qi. With these values, we
obtain q′i−x′i = (qi+ui+wi)− (xi+ui+ δmax) = wi− δmax−µτ/2. From
the definition of W , we know that δmax < wi < δmax +µτ , or equivalently
that 0 < wi− δmax < µτ . From this and the previous statement, we obtain
−µτ/2 < q′i − x′i < µτ/2, from which it follows that `(x′i) = q′i.

Case 3: wi < δmin. Take x′i = q′i + µτ/2, δi = δmin, and xi = x′i − ui − δmin.
The same reasoning as in the previous case shows that `(x) = q and that
`(x′) = q′.

Property (5): Consider any x ∈ X, uc ∈ Uc, uuc ∈ Uuc, and δ ∈ ∆, with
x′ = x+u+δ (where u = (uc, uuc)). Take q = `(x), q′ = `(x′), and w = q′−q−u.
It suffices to show that w ∈ W . From q = `(x) and q′ = `(x′), we have
−µτ/2 < x − q ≤ µτ/2 and −µτ/2 < x′ − q′ ≤ µτ/2 (component-wise).
Combining these inequalities with w = q′−q−u and δ = x′−x−u, we obtain
w = δ + (x− q)− (x′ − q′) and hence:

−τµ+ δ < w < δ + τµ.
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It follows that w is a vector whose components are all integer multiples of τµ
and in the interval (δmin−µτ, δmax+µτ). But from Eq. 18, this set of vectors
is precisely equal to W , proving that w ∈W .

Proposition 2 Define HX(·), HQ̃(·), R, and C as in Prop. 1. If δmin and
δmax are both integer multiples of τµ, then DES G of Sec. 6 is an exact state
reduction (2) of system (2).

Proof. Property (6): Consider any q ∈ Q̃, uc ∈ Uc, uuc ∈ Uuc, w ∈ W , and
x′ such that q′ = q + u + w = `(x′), where u = (uc, uuc). We construct
x ∈ X and δ ∈ ∆ such that q = `(x) and x′ = x + u + δ. Simply take
δ = w and x = x′ − u − δ. As remarked in the proof of Prop. 1, w must
be a vector whose components are integer multiples of τµ and in the interval
(δmin − µτ, δmax + µτ). If δmin and δmax are multiples of τµ, then it follows
that the components of w are in the (closed) interval [δmin, δmax]. Thus δ ∈ ∆.
Furthermore, x′ − x = q′ − q = u + w, so that x − q = x′ − q′, from which it
follows that q′ = `(x′)⇒ q = `(x).

Given the above results, we can solve Prob. 1. Before presenting the relevant
theorems, we define the notations Ax,vc,x′(t) and Aq,uc,q′(t) as follows:

Ax,vc,x′(t) =

x′′ ∈ X
∣∣∣∣∣∣
∃vuc ∈ Vuc,∃d ∈ D[0,τ ] :
x+ vτ +

∫ τ
0
d(s)ds = x′

∧x′′ = x+ vt+
∫ t
0
d(s)ds

 , (21)

Aq,uc,q′(t) =

x′′ ∈ X
∣∣∣∣∣∣
∃x ∈ `−1(q),∃vuc ∈ Vuc,∃d ∈ D[0,τ ] :
x+ vτ +

∫ τ
0
d(s)ds ∈ `−1(q′)

∧x′′ = x+ vt+
∫ t
0
d(s)ds

 , (22)

where v = (vc, vuc) = (uc/τ, vuc). In words, Ax,vc,x′(t) is the set of possible
vehicle positions at time t when they are at x at time 0, at x′ at time τ , and
control input vc is chosen. Similarly, Aq,uc,q′(t) is the set of possible vehicle
positions at time t when they are at some x ∈ `−1(q) at time 0, at some
x′ ∈ `−1(q′) at time τ , and control input uc is chosen.

Theorem 3 Define the automaton H := (Q,EQ∪Uc∪Uuc∪W,ψsafe, q0, Qm) v
G, where ψsafe ⊆ ψ is defined by:

(q, uc, q
′) ∈ ψsafe ⇔ @t ∈ [0, τ ] : Aq,uc,q′(t) ∩B 6= ∅. (23)

Solve for the supremal controllable sublanguage (Lm(H))↑C of Lm(H) with
respect to L(G) and uncontrollable event set Euc = Uuc ∪ W , obtaining a
maximally permissive safe and non-deadlocking supervisor S : Q̃→ 2Uc . Then
the supervisor σ : X/` → 2Vc defined by vc ∈ σ(x) ⇔ uc = τvc ∈ S(`(x))
solves Prob. 1.

Proof. Solving Prob. 1 requires finding the maximally permissive safe and non-
deadlocking supervisor σ for System Sb = (X,Vc,→b, Q̃, `) subject to safety
specification Safeb and marking Xm,b, where:

(x, vc, x
′) ∈→b⇔ (∃vuc ∈ Vuc)(∃δ ∈ ∆) : x+τv+δ = x′, v = (vc, vuc), (24)
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(x, vc, x
′) ∈ Safeb ⇔ @t ∈ [0, τ ] : Ax,vc,x′(t) ∩B 6= ∅, (25)

and Xm,b = `−1(qm). Thus, it suffices to apply Thm. 1, and we proceed to
verify its conditions. Proposition 1 shows that G is a state reduction of Sb,
with the state and control relations R = {(q, x) ∈ Q̃ × X : q = `(x)} and
C(q) = {(uc, vc) ∈ Uc × Vc : uc = vcτ}. Comparing Eqs. (21) and (22), we see
that the safety specification Safea defined by equation (23) does indeed satisfy
the condition (q, uc, q

′) ∈ Safea if and only if, for all (x, vc, x
′) ∈→b such that

(q, x) ∈ R, (uc, vc) ∈ C(q) and (q′, x′) ∈ R, we have that (x, vc, x
′) ∈ Safeb.

Finally, the set Qm of marked states for G and H obviously satisfies the
condition q ∈ Qm if and only if x ∈ Xm,b for all x ∈ Xb such that (q, x) ∈ R,
since Qm = {qm}, Xm,b = `−1(qm), and (q, x) ∈ R ⇔ q = `(x). Thus, G is a
state reduction of Sb, and Safea and Xm,a = Qm are induced specifications,
satisfying the conditions of Thm. 1.

Theorem 4 If δmin and δmax are both integer multiples of τµ, then the su-
pervisor σ of Thm. 3 solves Prob. 1, and is maximally permissive among the
class of all supervisors, not merely memoryless ones.

Proof. Immediate from Prop. 2, Thm. 2, and the proof of Thm. 3.

7 Iterative Refinement

In this section, we describe a procedure for iterative refinement of the dis-
crete state space of the abstraction. At a high level, the iterative refinement
procedure consists of constructing an abstraction with a coarse discretization,
categorizing each state of the abstraction as either winning, losing, or undeter-
mined, refining the abstraction with a finer discretization at the undetermined
states, and repeating. We present this method in the context of the vehicle
control problem, but the method can be extended to other problems with little
modification. The method is similar to those of [21, 24].

The categorization of states into winning, losing, and unknown requires
considering the control problem of Prob. 1 as a game against nature. The
control problem for nature is to cause the vehicles to enter the bad set B,
before they have all crossed the intersection. Thus, the set of “good” states
for nature are the bad states of the controller and vice-versa. Additionally,
the control properties of the various inputs are also reversed. That is, nature
chooses the inputs for the uncontrolled vehicles and the disturbance, but does
not choose the inputs of the controlled vehicles.

In what follows, let GCτ and HC
τ respectively denote the DES abstraction

G of Sec. 6 and the DES abstraction H defined in the statement of Thm. 3,
parametrized by τ . Similarly, let `τ , Q̃τ , Qτ , EQτ , ψτ , qτ,0, Qτ,m, and ψτ,safe
be τ parametrized versions of the relevant functions, events, relations, states,
or sets. We define DES GNτ and HN

τ , which are the relevant automata of the
control problem for nature that consists of forcing vehicles into the bad set.
Because only the specification changes, and not the dynamics, GNτ is defined
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almost identically to GCτ . Given GCτ = (Qτ , EQτ ∪Uc∪Uuc∪W,ψτ , qτ,0, Qτ,m)
as in Eq. (20), define

GNτ = (Qτ , EQτ ∪ Uc ∪ Uuc ∪W,ψτ , qτ,0, QNτ,m), (26)

with QNτ,m given by

QNτ,m = {q ∈ Q̃ : `−1(q) ⊆ B}. (27)

Thus, a discrete state is marked for nature only if it is entirely contained
in the bad set. A discrete state that only partially intersects the bad set may
be split into some combination of states that are winning for nature and states
that are winning for the controller. Similarly,

HN
τ = (Qτ , EQτ ∪ Uc ∪ Uuc ∪W,ψNτ,safe, qτ,0, QNτ,m), (28)

where ψNτ,safe is defined by

(q, uc, q
′) ∈ ψNτ,safe ⇔

 ∃vuc ∈ Vuc,∃d ∈ D[0,τ ],∀x ∈ `−1(q)
s.t. x′ = x+ vτ +

∫ τ
0
d(t)dt ∈ `−1(q′),

x(t) = x+ vt+
∫ t
0
d(t′)dt′ /∈ `−1(Qτ,m), ∀t ∈ [0, τ ]

 ,

(29)
where v = (uc/τ, vuc). As noted above, Uc is taken to be uncontrollable whereas
Uuc and W are taken to be controllable in GNτ and HN

τ . Note that, in Eq. (29),
the set of safe transitions are still parametrized by uc, which is not controlled
by nature, and not on uuc and w. This is because the DES model allows for
nature to choose uuc and W in response to uc. Thus, a state is winning for the
controller if there exists a control input uc that is safe for all possible uuc and
w chosen by nature. On the other hand, a state is winning for nature if, for all
possible uc chosen by the controller, there exists a safe choice of uuc and w.

Given a particular time discretization τ , the set of winning states for the
controller are obtained through the fixed point of Eqs. (12) and (11). The set
of winning states for nature can be characterized analogously. Given transition
system S = (X,U,→) and safety and marking specifications SafeN and XN

m ,
define

ContN (x|Z) = {u ∈ U |∃x′ ∈ Postu(x), [(x, u, x′) ∈ SafeN ∧ x′ ∈ Z]}, (30)

and let FN : 2X → 2X be defined by

FN (Z) = {x ∈ Z|x ∈ XN
m ∨ ContN (x|Z) = U}. (31)

Consistent with the discussion above regarding the reversal of universal and
existential quantifiers, Eq. (30) is identical to Eq. (11), except that ∀ becomes
∃, and Eq. (31) is identical to Eq. (12), except that Cont(x|Z) 6= ∅ becomes
ContN (x|Z) = U .

Thus, for a given time discretization τ , it is possible to categorize the
discrete states as winning (for the controller), losing (i.e., winning for nature),
and undetermined (i.e., losing for both). Refinement is performed by refining
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the discretization at the undetermined states. This is done by taking τ ′ = τ/2,
which results in a lattice of discrete states Q̃′ with space discretization of
µτ ′ = µτ/2. It can be shown that Gτ will be a state reduction of Gτ/2 (with
C being the identity map and R defined in the obvious way), or an exact state
reduction if dmin and dmax are integer multiples of µ. The proof is very similar
to that of Props. 1 and 2, and is therefore omitted.

Importantly, the fact that τ is diminished by half at each iteration means
that all control inputs of the refined supervisor σ for the continuous time
system are still feasible for τ ′ = τ/2. That is, a control input of vc that is held
for time τ is identical to two consecutive control inputs vc, each of which is
held for time τ/2. Thus, if `τ (x) is winning for a time discretization of τ , then
`τ/2(x) is winning for a time discretization of τ/2.

The process of refinement is continued up until some desired stopping con-
dition has been reached (e.g., a minimal value of τ), at which point the set of
allowed control inputs is determined by Eq. (13) and the set of states that are
winning for the controller. Any indeterminate states remaining at this point
must be treated as losing states by the controller.

Remark 7 For non-deadlocking specifications, it is possible in general to have
discrete states that are winning for both the controller and nature (e.g., in
the case of a livelock that does not violate either safety specification). In the
vehicle control problem under consideration, however, the fact that vehicles
have strictly positive velocity implies that the vehicles will eventually cross the
intersection if they do not collide first. Thus, either the controller or nature
will eventually lose.

8 Algorithmic Implementation

In past work, [13], we provided an algorithm for computing the DES supervi-
sor S of Thm. 3 that is based on a depth-first search (DFS) and has a lower
asymptotic complexity than the standard algorithm. This customized algo-
rithm was based on the following three observations: the vehicle’s velocities
are bounded by µ > 0; the specification automaton H is a sub-automaton of
G; and each pair of events uucw ∈ UucW is feasible after each event Uc from
each state q ∈ Q̃. The first observation implies that the system is acyclic,
and hence livelock-free. This allows for solving problem BSCP-NB in time lin-
ear in the size of G × H, rather than quadratic (see, e.g. [17]). The second
observation implies that the product automaton H × G is isomorphic to H
which, combined with the first observation, allows for the problem to be solved
through a DFS on G. Finally, the third observation implies that there is no
need to determine the safety of each string ucuucw ∈ UcUucW from each state
q. Instead, a single test of safety for each uc ∈ Uc and state q ∈ Q̃ suffices. The

algorithm’s running time was shown to be O
(
|Q̃||Uc|

[
|Postuc(q)|+ n2

])
.

Remark 8 In fact, the DES supervisor S of Thm. 3 could be computed in time
linear in the size of G×H, even if the system were not acyclic. This can be seen
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from Eqs. (11) and (12), which are very similar to the well known controllable
predecessor operator whose iteration reaches a fixed point in linear time for
safety properties. The formulation of the algorithm for computing S as a DFS
is, however, reliant on the system being acyclic.

In this work, we adapt the algorithm of [13] to the problem of computing
the set of discrete states that are winning for the controller, using the iterative
refinement technique described in Sec. 7.

In what follows, let `τ be the discretization function of Eq. (3), parametrized
by τ , and let Q̃τ be the resulting set of discrete states. As per the discussion
of Sec. 7, we can model the control problem to be solved as a game against
nature. To that end, let φτ : Q̃τ ∪ (Q̃τ × Uc) ∪ (Q̃τ × Uc × Q̃τ ) → {−1, 0, 1}
denote the value (to the controller) of states, control inputs, or transitions.
More specifically, φτ (q), φτ (q, uc), and φτ (q, uc, q

′) each take a value of -1, 1,
or 0 to denote a victory for nature, a victory for the controller, or a loss for
both. These are defined through the following equations:

φτ (q, uc, q
′) =


1, if (q, uc, q

′) ∈ ψτ,safe ∧ φτ (q′) = 1
−1, if (q, uc, q

′) ∈ ψNτ,safe ∧ φτ (q′) = −1

0, else
(32)

φτ (q, uc) = min
q′∈Postuc (q)

φτ (q, uc, q
′) (33)

φτ (q) =


1, if q ∈ Qτ,m
−1, if q ∈ QNτ,m
maxuc∈Uc φτ (q, uc), else

(34)

Theorem 5 In Eqs. (11)-(12), take X, U , →, Safe, and Xm to be Q̃τ , Uc,
ψτ , ψτ,safe, and Qτ,m. Similarly, in Eqs. (30)-(31), take X, U , →, Safe, and

Xm to be Q̃τ , Uc, ψ
N
τ , ψNτ,safe, and QNτ,m. Then there exists a unique solution

to Eqs. (32)-(34), and this solution satisfies φτ (q) = 1 ⇔ q ∈ νZ.F (Z),
φτ (q) = −1 ⇔ q ∈ νZ.FN (Z), φτ (q, uc) = 1 ⇔ uc ∈ Cont(q|νZ.F (Z)), and
φτ (q, uc) = −1⇔ uc ∈ ContN (q|νZ.FN (Z)), for all q ∈ Q̃τ and uc ∈ Uc.
Proof. We proceed in two claims. The first claim shows that there is a solution
for φτ satisfying the required constraints. The second claim shows that φτ has
a unique solution.
Claim 1: Suppose that some sets M ⊆ Q̃τ and N ⊆ Q̃τ are fixed points of
Eq. (12) and Eq. (31), respectively. Then

φτ (q) =

1, if q ∈M
−1, if q ∈ N
0, else

(35)

φτ (q, uc) =

1, if uc ∈ Cont(q|M)
−1, if uc ∈ ContN (q|N)
0, else

(36)

φτ (q, uc, q
′) =


1, if (q, uc, q

′) ∈ ψτ,safe ∧ q′ ∈M
−1, if (q, uc, q

′) ∈ ψNτ,safe ∧ q′ ∈ N
0, else

(37)
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constitutes a solution to Eqs. (32)-(34).
Clearly, Eqs. (35) and (37) imply Eq. (32). Recall from Eq. (11) that

Cont(q|M) = {uc ∈ Uc|∀q′ ∈ Postuc(q), [(q, uc, q
′) ∈ ψτ,safe ∧ q′ ∈M ]}

= {uc ∈ Uc|∀q′ ∈ Postuc(q), φτ (q, uc, q
′) = 1},

from which it follows that φτ (q, uc) = 1 if and only if minq′∈Postuc (q)
φτ (q, uc, q

′) =
1, as required by Eq. (33). It can similarly be shown from Eq. (30) defining
ContN (q|N) that φτ (q, uc) = −1 if and only if minq′∈Postuc (q)

φτ (q, uc, q
′) =

−1. Thus, Eq. (33) is satisfied. Now, since M is a fixed point of Eq. (12), we
have that

M = {q ∈ Q̃τ |q ∈ Q̃τ,m ∨ Cont(q|M) 6= ∅}
= {q ∈ Q̃τ |q ∈ Q̃τ,m ∨ ∃uc ∈ Uc : φτ (q, uc) = 1}

It follows that φτ (q) = 1 if and only if either q ∈ Q̃τ,m or maxuc∈Uc φτ (q, uc) =
1 holds. It can similarly be shown from the fact that N is a fixed point of
Eq. (31) that φτ (q) = −1 if and only if either q ∈ Q̃Nτ,m or maxuc∈Uc φτ (q, uc) =
−1.
Claim 2: There is a unique solution to Eqs. (32)-(34).
The set Q̃τ is finite, since it is the discretization of a compact space. Further-
more, the requirement that vehicles have a positive velocity implies that there
can be no cycles of states, and the vehicles must eventually cross the intersec-
tion (if there is no collision first). Thus, there are no cyclical dependencies in
Eqs. (32)-(34), and one may solve them by backwards induction starting from
Q̃τ,m ∪ Q̃Nτ,m.

Algorithm 2 below is based on Eqs. (32)-(34), but with the following opti-
mizations. For each one, we provide a description and applicable line numbers
for Alg. 2. Note that some lines have multiple optimizations used simultane-
ously.

1. The algorithm uses parameters τmax and τmin, where it is assumed that
τmax = 2rτmin, for some non-negative integer r. When working at any
discretization level τ > τmin, the algorithm correctly classifies states as
winning for the controller, winning for nature, or losing for both. When
τ = τmin, the algorithm does not differentiate between states which are
winning for nature and states which are losing for both nature and the
controller, terminating at state q ∈ Q̃τmin

as soon as it is determined that
φτmin

(q) ≤ 0. Lines 7, 15-18, 32.
2. The algorithm uses a version of α−β pruning, a technique for accelerating

computation of winning strategies in min-max games by not exploring game
subtrees that can be determined to not have any bearing on the value of a
state. Thus, once it has been determined that φτ (q, uc) ≤ φτ (q), then the
algorithm ceases to examine any other successors q′ ∈ Postuc(q), as these
can only result in a smaller value of φτ (q, uc). Line 32.
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3. Other than verifying if states are contained in the winning sets for the
controller and nature, we also verify if states have a non-empty intersection
with these sets. This allows for the determination that a state is losing for
the controller and/or losing for nature, restricting the possible values for
φτ (q). When used with α − β pruning, this can potentially diminish the
number of control inputs uc or successor states q′ that must be examined.
Lines 11-22.

4. From Eqs. (32) and (33), we have that φτ (q, uc) = 1 requires that (q, uc, q
′) ∈

ψτ,safe, for each q′ ∈ Postuc(q). Rather than checking if (q, uc, q
′) ∈

ψτ,safe, for each q′ ∈ Postuc(q), we aggregate all these tests into a sin-
gle test on q and uc. By Eq. (23), (q, uc, q

′) ∈ ψτ,safe if and only if @t ∈
[0, τ ] : Aq,uc,q′(t)∩B 6= ∅. Thus we define Aq,uc(t) = ∪q′∈Postuc (q)

Aq,uc,q′(t)
and instead verify if @t ∈ [0, τ ] : Aq,uc(t) ∩ B 6= ∅. Parametrized by τ , the
set Aτ,q,uc(t) is given by

Aτ,q,uc(t) = (q − 1µτ/2 + vuct, q + 1µτ/2 + vuct], (38)

where 1 denotes the n = |N | dimensional vector (1, . . . , 1),

vuc,i =

{
uc,i/τ + dmin, vehicle i is controlled
vmin + dmin, vehicle i is uncontrolled

(39)

vuc,i =

{
uc,i/τ + dmax, vehicle i is controlled
vmax + dmax, vehicle i is uncontrolled

(40)

and, for any a, b ∈ Rn, (a, b] := {c ∈ Rn|ai < ci ≤ bi, i = 1, . . . , n}.
Equations for verifying the condition @t ∈ [0, τ ] : Aτ,q,uc(t) ∩ B 6= ∅ are
given in the Appendix. The general idea is to check intersection with the
bad set for each pair of vehicles, so that the test takes O(n2) time. Lines
28-30.

5. Recall that φτ (q′) = −1 if it is possible for nature to force the vehicles to
enter the bad set (for any strategy of the controller), and that (q, uc, q

′) ∈
ψNτ,safe if there is at least one vehicle that does not cross the intersection for
this transition. Because vehicles always move at strictly positive velocity,
it is not possible for all the vehicles to cross the intersection and then
enter the bad set. Thus φτ (q′) = −1 ⇒ (q, uc, q

′) ∈ ψNτ,safe in Eq. (32). It
follows that it is possible to conclude that φτ (q, uc, q

′) = −1 if φτ (q′) = −1,
without additionally verifying if (q, uc, q

′) ∈ ψNτ,safe. Line 35.

Our algorithm uses a number of subroutines, which we explain below.

– ContVic(q, τ) returns true if `−1τ (q) consists entirely of states where all
vehicles have crossed the intersection (i.e., it checks if q ∈ Qτ,m).

– NatVic(q, τ) returns true if `−1τ (q) ⊆ B (i.e., it checks if q ∈ QNτ,m).
– ContLoss(q, τ) returns true if `−1τ (q) ∩B 6= ∅.
– NatLoss(q, τ) returns true if `−1τ (q) contains any states where all vehicles

have crossed the intersection.
– EnqueueRefined(q, τ, queue) is called when φτ (q) = 0 and τ > τmin, in

which case the set of refined states {q′ ∈ Q̃τ/2|`−1τ/2(q′) ⊆ `−1τ (q)} are added
to queue.
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Algorithm 1 Initialization
1: procedure DoInit(τmin, τmax)
2: queue← Q̃τmax × {τmax}
3: while queue 6= ∅ do
4: (q, τ)← Dequeue(queue)
5: DoDFS(q, τ, τmin, queue)
6: end while
7: end procedure

Algorithm 2 DFS Computation
1: procedure DoDFS(q, τ , τmin, queue)
2: if !φτ (q) then
3: return φτ (q)
4: else if ContVic(q, τ) then
5: φτ (q)← 1
6: return 1
7: else if τ > τmin ∧NatVic(q, τ) then
8: φτ (q)← −1
9: return -1

10: end if
11: phimin(q)← −1
12: phimax(q)← 1
13: if ContLoss(q, τ) then
14: phimax(q)← 0
15: if τ = τmin then
16: φτ (q)← 0
17: return 0
18: end if
19: end if
20: if NatLoss(q, τ) then
21: phimin(q)← 0
22: end if
23: for all uc ∈ Uc do
24: if phimin(q) = phimax(q) then
25: break
26: end if
27: phimax(q, uc)← 1
28: if ∃t ∈ [0, τ ] : Aτ,q,uc (t) ∩B 6= ∅ then
29: phimax(q, uc)← 0
30: end if
31: for all q′ ∈ Postuc (q) do
32: if phimax(q, uc) ≤ phimin(q) ∨ (τ = τmin ∧ phimax(q, uc) ≤ 0) then
33: break
34: end if
35: phimax(q, uc)← min{phimax(q, uc),DoDFS(q′, τ, τmin, queue)}
36: end for
37: phimin(q)← max{phimin(q), phimax(q, uc)}
38: end for
39: φτ (q)← phimin(q)
40: if φτ (q) = 0 ∧ τ = τmin then
41: EnqueueRefined(q, τ, queue)
42: end if
43: return φτ (q)
44: end procedure
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Proposition 3 Let τmax = 2rτmin and let n = |N |, the number of vehicles.
Then the running time of Algorithms 1 and 2 is in

O
(

1−2−(r+1)n

1−2−n |Q̃τmin
||Uc|

[
|Postuc(q)|+ n2

])
.

Proof. At a particular level of discretization τ , Alg. 2 is executed at most
|Q̃τ | times, once for each examined q ∈ Q̃τ . All subroutines of lines 2-22
run in time at most O(n2). The outer for loop (lines 23-38) is executed |Uc|
times and consists of verifying the condition [Aq,uc(t) ∩B 6= ∅] and executing
the inner for loop. Verifying the condition @t ∈ [0, τ ] : Aq,uc(t) ∩ B 6= ∅
(line 28) takes O(n2) time (see Appendix). The inner for loop (lines 31-36)
is executed |Postuc(q)| times, each of which takes O(1) time beyond that of
the recursive call. The total running time at discretization level τ is therefore
O(|Q̃τ ||Uc|

[
|Postuc(q)|+ n2

]
). Taking τ ′ = τ/2 means refining each state into

two, along each of n dimensions. Thus, |Q̃τ | = 2−n|Q̃τ/2|. The total running
time is therefore in

O

(
r∑
i=0

2−ni|Q̃τmin
||Uc|

[
|Postuc(q)|+ n2

])

= O

(
1− 2−(r+1)n

1− 2−n
|Q̃τmin

||Uc|
[
|Postuc(q)|+ n2

])
.

Remark 9 Because the particular state q ∈ Q̃ and control action uc ∈ Uc do
not restrict the set of possible actions of the uncontrolled vehicles Uuc or the
set of possible disturbance events W , the value |Postuc(q)| is independent of
the particular q ∈ Q̃ and uc ∈ Uc. This value is, however, dependent on the
number of vectors of actions of the uncontrolled vehicles (which determines
|Uuc|), as well as on the bounds of the disturbance (which determines |W |).

We note that the expression 1−2−(r+1)n

1−2−n will typically be quite small, mean-
ing that even if iterative refinement yields no benefit (i.e., if φτ (q) = 0 for
all q ∈ Q̃τ , for all τ > τmin), there will be little overhead. In the worst case,

r →∞ and n = 2, yielding limr→∞
1−2−(r+1)n

1−2−n = 4
3 .

9 Simulation Results

In this section, we present results from simulations run in C++. Simulations
sought to compare running time for an algorithm using iterative refinement
compared to one which does not; and for an algorithm which uses an opti-
mization based on capture set computation (described in the appendix), to
one which does not. Thus four simulation were run for each problem instance,
consisting of the four possible combinations. Briefly, the capture set optimiza-
tion consists of computing the capture set (the complement of the maximal
controlled invariant set) for each pair of vehicles that cannot simultaneously
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be inside the intersection. This can be done easily for such pairs of vehicles,
since the bad set is bounded and convex in this case (N.B., for more than
two vehicles, the bad set is a union of inverse projections of sets, which is
neither bounded nor convex). The changes to Alg. 2 from using the capture
set optimization consist of replacing the two subroutines NatVic and Cont-
Loss. Recall that NatVic (resp., ContLoss) tests whether a discrete state is
contained in (resp., intersects) the bad set. In the capture set version, NatVic
(resp., ContLoss) tests whether a discrete state is contained in (resp., inter-
sects) the capture set. We focus on this optimization in particular since it is
the only one which can affect the level of discretization at which some part of
the state space is classified as winning for nature. That is, it is possible that
φτ (q) will be evaluated to be -1 when the capture set optimization is used,
but evaluated to be 0 without the capture set optimization (perhaps only to
have all φτ/2(q′) evaluated to be -1 for the refined states). Thus, one would
expect that the use of the capture set optimization might increase the benefit
of using iterative refinement. The five optimizations of the previous section,
on the other hand, may affect running time, but will have no effect on the
value of φτ (q) that is computed for any τ and any q ∈ Q̃τ .

9.1 Simulation Descriptions

In each case, we used µ = 1 and τmin = 1 for the space and time discretization.
For simulations which used iterative refinement, τmax was chosen automatically
at run time, and was determined so that the entire state space was covered
with a single discrete state. We consider three different scenarios: the first
has no disturbance and no uncontrolled vehicles; the second has uncontrolled
vehicles but no disturbance; the third has no uncontrolled vehicles but has a
disturbance. We do not present a scenario which includes both uncontrolled
vehicles and a disturbance, since these often result in empty solutions. For each
scenario, we used four different problem instances, where we varied the number
of vehicles among 2, 3, 4, and 6. For the six vehicle cases, the intersection
consisted of six roads arranged in a regular hexagonal pattern. Vehicles cross
from one road to the road opposite their starting road. Specifically, if the set
of vehicles is N = {1, . . . , 6}, then vehicle i ∈ N starts on road ri,1 = i and
ends on road ri,2 = 1+[(i+2) mod 6]. Thus, the three pairs of vehicles (1, 4),
(2, 5), and (3, 6) can occupy the intersection simultaneously, but vehicles from
different pairs cannot (see Fig. 8). Problem instances with 2, 3, and 4 vehicles
used the same intersection, but restricted to the sets of vehicles {1, 2}, {1, 2, 3},
and {1, 2, 4, 5}, respectively. In problem instances with uncontrollable vehicles,
the uncontrollable vehicles were chosen to be vehicles 1 and 4. In problem
instances with a disturbance, we used dmin = −1 and dmax = 1. Different
problem instances used different road lengths and values of αr (recall that αr
is the length of road r that is inside the intersection), but these were constant
for all roads in a particular problem instance. As an example, a road length of
l = 20 with α = 2 would mean that a vehicle starting at the beginning of the
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Table 1 List of Problem Instances

Instance Road Length α Total States Total Transitions Safe States
ŪD̄2 6870 1374 6.80× 107 2.72× 108 5.29× 107

ŪD̄3 357 51 6.84× 107 5.47× 108 4.69× 107

ŪD̄4 82.5 7.5 6.86× 107 1.10× 109 5.55× 107

ŪD̄6 19 1 8.58× 107 5.49× 109 6.31× 107

UD̄2 6870 1374 6.80× 107 2.72× 108 3.02× 107

UD̄3 357 51 6.84× 107 5.47× 108 1.60× 107

UD̄4 82.5 7.5 6.86× 107 1.10× 109 1.59× 107

UD̄6 19 1 8.58× 107 5.49× 109 9.56× 106

ŪD2 2500 500 9.01× 106 1.30× 109 5.34× 106

ŪD3 178.5 25.5 8.62× 106 1.49× 1010 3.31× 106

ŪD4 49.5 4.5 9.15× 106 1.90× 1011 5.36× 106

ŪD6 9.5 0.5 1.77× 106 5.29× 1012 1.83× 105

Problem instances are denoted as {U, Ū}{D, D̄}{2, 3, 4, 6} where: U or Ū denotes the pres-
ence or absence of uncontrollable vehicles; D or D̄ denotes the presence or absence of a
disturbance; and {2, 3, 4, 6} denotes the number of vehicles. Parameters were chosen so as to
make the number of states approximately the same for simulations with 2, 3, or 4 vehicles,
for each of the three scenarios considered. Simulations with 6 vehicles had more states in
the scenarios without a disturbance, and far fewer states in the scenario with a disturbance.
All instances with two vehicles had values for l (road length) and α chosen so that vehicles
would be inside the intersection for 1/3 of their path (i.e., 2α/(l + α) = 1/3). For 3, 4, and
6 vehicles the corresponding ratios were chosen to be 1/4, 1/6, and 1/10, respectively.

road would travel a distance of l − α = 18 to reach the intersection, a further
distance of α = 2 to reach the center of the intersection, and a final distance
of α = 2 to exit the intersection.

Fig. 8 The intersection and vehicle paths used in each of the simulations of this section.
Blue lines are drawn for each vehicle indicating starting road and ending road.

For each problem instance, we provide the following data: road length, α,
total number of discrete states, total number of transitions, and number of
winning states for the controller. The last three values are determined at the
τ = 1 level of discretization. See Table 1.
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9.2 Results & Analysis

For each simulation, we provide the running time in seconds, the total number
of discrete states examined and the number of these found to be winning for
the controller. For simulations not using iterative refinement, these last two
values will be as in Table 1. For simulations using iterative refinement, these
values are summed over all levels of discretization. Thus, for the total number
of discrete states, we include all states, including those which were classified
as losing for both the controller and nature and were later refined. See Table
2.

The results of Table 2 show that iterative refinement usually improves
running time. Furthermore, the improvement in running time was large for
simulations with two vehicles (ranging from a factor of 79 to a factor of 1150
without the capture set optimization, and from a factor of 160 to a factor
of 1932 with the capture set optimization), and diminishing as the number of
vehicles increased. The reason for this is not a lack of scalability of the method,
but a consequence of the fact that road lengths were shorter in simulations
with more vehicles. Intuitively, a finer discretization is needed when closer to
the boundary between winning states for the controller and winning states
for nature. Thus, iterative refinement works best when there is a significant
portion of the state set that is “far” from the bad set. Problem instances with
more vehicles used shorter road lengths, and hence states were generally closer
to the boundary between winning sets in these instances. Indeed, simulations
(not shown here) conducted with few vehicles and small road lengths showed
improvement by a much smaller factor than for the same number of vehicles
and long road lengths.

There are two problem instances (out of 12) where iterative refinement did
not improve running time. In both cases, these instances are with six vehicles
and with a source of non-determinism. Predictably, the number of states ex-
amined through iterative refinement in these two problem instances was high
relative to the number of states examined without iterative refinement. The
relevant proportions were 94.8% for instance UD̄6 and 101% for instance ŪD6.
In no other instance was this proportion greater than 57.1%.

As per the discussion at the beginning of this section, the use of the capture
set optimization did indeed increase the benefit of using iterative refinement.
In all but two problem instances, the ratio of running time without iterative
refinement to running time with iterative refinement was higher with the cap-
ture set optimization than without. The exceptions were instance ŪD3, where
the relevant ratios were 2.90 and 4.01, and instance ŪD6, where the relevant
ratios were 0.790 and 0.825.

10 Conclusion

We considered the problem of supervising a set of vehicles approaching an
intersection so as to avoid collisions, in the presence of environmental un-
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Table 2 List of Simulations

Simulation Running Time Examined States Winning States
ŪD̄2C̄R̄ 82.6 6.80× 107 5.29× 107

ŪD̄2C̄R 0.0962 1.27× 105 1.37× 104

ŪD̄2CR̄ 73.8 6.80× 107 5.29× 107

ŪD̄2CR 0.0382 8.57× 104 1.37× 104

ŪD̄3C̄R̄ 90.1 6.84× 107 4.69× 107

ŪD̄3C̄R 3.65 2.94× 106 3.00× 105

ŪD̄3CR̄ 68.9 6.84× 107 4.69× 107

ŪD̄3CR 1.01 2.01× 106 3.00× 105

ŪD̄4C̄R̄ 69.7 6.86× 107 5.55× 107

ŪD̄4C̄R 14.8 7.56× 106 9.64× 105

ŪD̄4CR̄ 52.3 6.86× 107 5.55× 107

ŪD̄4CR 2.84 6.41× 106 9.64× 105

ŪD̄6C̄R̄ 153 8.58× 107 6.31× 107

ŪD̄6C̄R 128 3.30× 107 9.65× 106

ŪD̄6CR̄ 81.5 8.58× 107 6.31× 107

ŪD̄6CR 41.8 3.30× 107 9.65× 106

UD̄2C̄R̄ 122 6.80× 107 3.02× 107

UD̄2C̄R 0.106 2.03× 107 1.40× 104

UD̄2CR̄ 57.0 6.80× 107 3.02× 107

UD̄2CR 0.0488 1.08× 105 1.40× 104

UD̄3C̄R̄ 109 6.84× 107 1.60× 107

UD̄3C̄R 2.83 3.69× 107 2.82× 105

UD̄3CR̄ 42.8 6.84× 107 1.60× 107

UD̄3CR 0.993 3.95× 106 2.82× 105

UD̄4C̄R̄ 98.0 6.86× 107 1.59× 107

UD̄4C̄R 13.0 3.92× 107 1.95× 106

UD̄4CR̄ 45.4 6.86× 107 1.59× 107

UD̄4CR 4.18 9.20× 106 1.95× 106

UD̄6C̄R̄ 257 8.58× 107 9.56× 106

UD̄6C̄R 271 8.13× 107 3.43× 106

UD̄6CR̄ 59.1 8.58× 107 9.56× 106

UD̄6CR 39.5 8.13× 107 3.43× 106

ŪD2C̄R̄ 21.6 9.01× 106 5.34× 106

ŪD2C̄R 0.272 9.95× 104 8.23× 103

ŪD2CR̄ 10.5 9.01× 106 5.34× 106

ŪD2CR 0.0657 4.50× 104 8.23× 103

ŪD3C̄R̄ 61.4 8.62× 106 3.31× 106

ŪD3C̄R 15.3 1.67× 106 2.08× 105

ŪD3CR̄ 17.9 8.62× 106 3.31× 106

ŪD3CR 6.17 1.20× 106 2.08× 105

ŪD4C̄R̄ 154 9.15× 106 5.36× 106

ŪD4C̄R 138 4.30× 106 8.19× 105

ŪD4CR̄ 73.5 9.15× 106 5.36× 106

ŪD4CR 38.9 3.10× 106 8.19× 105

ŪD6C̄R̄ 288 1.77× 106 1.83× 105

ŪD6C̄R 349 1.79× 106 1.55× 105

ŪD6CR̄ 128 1.77× 106 1.83× 105

ŪD6CR 162 1.79× 106 1.55× 105

Simulations are denoted as {U, Ū}{D, D̄}{2, 3, 4, 6}{C, C̄}{R, R̄} where: C or C̄ denotes the
use or non-use of the capture set optimization and R or R̄ denotes the use or non-use of
iterative refinement. The first three elements of this notation were defined in the description
of Table 1.
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certainty in the form of uncontrolled vehicles and a disturbance. We solved
this problem by constructing a DES abstraction and leveraging supervisory
control methods of DES, a natural formulation for problems involving uncon-
trolled elements in which it is desired to obtain maximally permissive safe
and non-deadlocking supervisors. We described the state reduction and exact
state reduction relations between systems and abstractions, and used these to
show that translating the supervisor for the abstraction back to the original
problem domain preserves not only safety and non-deadlockingness, but also
maximal permissiveness. Finally, we presented an algorithm for solving this
supervisory control problem, based on a technique called iterative refinement,
and demonstrated its scalability through simulation. This works extends the
range of applications of DES. Moreover, to the best of our knowledge, it is
the first DES application where the discrete event model is obtained by build-
ing a state reduction abstraction of the underlying continuous system model.
Future work includes the extension of this work to the case of measurement
uncertainty, second order dynamics, and stochastic problem formulations.
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Appendix : Equations for Checking Safety

This appendix provides the equations that were used in the simulations of Sec.
9 for verifying the safety of DES transitions (Part 1), and the equations for
the pair-wise capture sets for vehicles that cannot simultaneously be inside
the intersection (Part 2).
Part 1: Verifying if Aq,uc(t) ∩B = ∅ for all t ∈ [0, τ ].
In part 1 of this appendix, we prove the equations used for verifying the
safety of transitions. As stated in Sec. 8, there are equations for each pair of
vehicles i, j ∈ N , and verifying the safety of a DES transition for some initial
state q ∈ Q̃ and uc ∈ Uc is done by verifying the corresponding equations
for each pair of vehicles. We consider three cases (see Sec. 3): xi, xj ≤ 0,
|xi − xj | < γ (case 1a), xi, xj ≥ 0, |xi − xj | < γ (case 1b), and [−αri,1 <
xi < αri,2 ] ∧ [−αrj,1 < xj < αrj,2 ] (case 2). The equations for these cases are
provided in Props. (5)-(7), respectively. Note that there is no “case 1c” when
xi ≤ 0 and xj ≥ 0, since the vehicles would then be on different roads.
We begin by defining the set Aq,uc([0, τ ]) :=

⋃
t∈[0,τ ]Aq,uc(t). Because the bad

set is defined as a union of sets of linear inequalities, with one set for each
pair of vehicles, we verify Aq,uc([0, τ ]) ∩ B = ∅ by considering each pair of



Supervisory Control for Collision Avoidance 39

vehicles in turn. For any vehicle i ∈ N and any set P ⊆ X, let πi(P ) denote
the projection of P onto the xi axis. Similarly, for any pair of vehicles i, j ∈ N
and a set P ⊆ X, let πi,j(P ) denote the projection of P onto the xi−xj plane.
Also recall the notation vuc,i and vuc,i defined in Eqs. (39) and (40).

Proposition 4 (xi, xj) ∈ πi,j(Aq,uc([0, τ ])) iff all of the following inequalities
hold:

xi > qi − µτ/2 (41)

xj > qj − µτ/2 (42)

xi ≤ qi + µτ/2 + vuc,iτ (43)

xj ≤ qj + µτ/2 + vuc,jτ (44)

vuc,i(xj − qj + µτ/2)− vuc,j(xi − qi − µτ/2) > 0 (45)

vuc,j(xi − qi + µτ/2)− vuc,i(xj − qj − µτ/2) > 0 (46)

Proof. From Eqs. (39), (40) and the assumption that vmin+dmin ≥ µ > 0, we
have that πi(Aq,uc(t)) = (qi − µτ/2 + vuc,it, qi + µτ/2 + vuc,it] is an interval
whose lower and upper bounds are increasing in time, for every i ∈ N . It
follows that, for any xi, the set {t ∈ R : xi ∈ πi(Aq,uc(t)} will have the form
[ti,min, ti,max), where ti,min := inf{t ∈ R : xi ∈ πi(Aq,uc(t))} and ti,max :=
sup{t ∈ R : xi ∈ πi(Aq,uc(t))} are given by:

ti,min =
xi − qi − µτ/2

vuc,i
(47)

ti,max =
xi − qi + µτ/2

vuc,i
(48)

Now define tj,min and tj,max analogously to ti,min and ti,max. Then:

∃t ∈ [0, τ ] s.t. [xi ∈ πi(Aq,uc(t))] ∧ [xj ∈ πj(Aq,uc(t))]
⇔ [0, τ ] ∩ [ti,min, ti,max) ∩ [tj,min, tj,max) 6= ∅

⇔ [ti,max > 0] ∧ [tj,max > 0] ∧ [ti,min ≤ τ ] ∧ [tj,min ≤ τ ]
∧[tj,max > ti,min] ∧ [ti,max > tj,min]

and these last six inequalities give Eqs. (41)-(46), in order.

As stated above, we can check if Aq,uc([0, τ ]) ∩B = ∅ by considering each
pair of vehicles in turn. There are three types of constraints to consider:

Case 1a: xi, xj ≤ 0, |xi − xj | < γ.

Lemma 2 Consider any xi, xi, xj , xj ∈ R. Then:

(∃xi ∈ (xi, xi])(∃xj ∈ (xj , xj ])(xi ≤ 0 ∧ xj ≤ 0 ∧ |xi − xj | < γ)
⇔ [xi < xi ∧ xi < 0 ∧ xj < xj ∧ xj < 0 ∧ xi − xj < γ ∧ xj − xi < γ]

(49)
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Proof. (⇒):

xi ∈ (xi, xi]⇒ xi < xi ≤ xi ⇒ xi < xi

xi < xi ∧ xi ≤ 0⇒ xi < 0

xj ∈ (xj , xj ]⇒ xj < xj ≤ xj ⇒ xj < xj

xj < xj ∧ xj ≤ 0⇒ xj < 0

xi − xj < γ ∧ xi < xi ∧ xj ≤ xj ⇒ xi − xj < γ

xj − xi < γ ∧ xj < xj ∧ xi ≤ xi ⇒ xj − xi < γ

(⇐) It cannot be that both xi − xj ≥ γ and xj − xi ≥ γ, as this would imply
0 ≥ 2γ > 0. Thus, at least one of xi−xj < γ, or xj−xi < γ holds. If they both
hold, we may take xi = xi+ ε and xj = xj + ε for some sufficiently small ε > 0
and we are done. Suppose without loss of generality then that xi−xj < γ but
xj − xi ≥ γ. Let xi = xj − γ. Thus, xj − xi = γ, xi − xj = −γ < γ and xi < 0
(since xj < 0). We may therefore take xi = xi + 2ε and xj = xj + ε for some
sufficiently small ε > 0 and we are done.

Proposition 5 The set {(xi, xj) ∈ πi,j(Aq,uc([0, τ ])) : xi, xj ≤ 0∧ |xi − xj | <
γ} is non-empty iff all of the following inequalities hold:

qi < µτ/2 (50)

qj < µτ/2 (51)

vuc,j(qi + µτ/2 + γ)−max{vuc,i, vuc,j}(qj − µτ/2) > 0 (52)

vuc,i(qj + µτ/2 + γ)−max{vuc,j , vuc,i}(qi − µτ/2) > 0 (53)

[qi + µτ/2 + γ + τ max{vuc,i, vuc,j}]− [qj − µτ/2 + τvuc,j ] > 0 (54)

[qj + µτ/2 + γ + τ max{vuc,j , vuc,i}]− [qi − µτ/2 + τvuc,i] > 0 (55)

Proof. Let πi(Aq,uc(t)) = (xi(t), xi(t)] and πj(Aq,uc(t)) = (xj(t), xj(t)]. By
Lemma 2, it is necessary and sufficient to find some t ∈ [0, τ ] such that xi(t) <
0, xj(t) < 0, xi(t)−xj(t) < γ, and xj(t)−xi(t) < γ. Now define ti,max, tj,max,
ti−j , and tj−i by xi(ti,max) = 0, xj(tj,max) = 0, xi(ti−j) − xj(ti−j) = γ, and
xj(tj−i)− xi(tj−i) = γ. These are given by:

ti,max = −qi − µτ/2
vuc,i

(56)

tj,max = −qj − µτ/2
vuc,j

(57)

ti−j =
(qi − µτ/2)− (qj + µτ/2 + γ)

vuc,j − vuc,i
(58)

tj−i =
(qj − µτ/2)− (qi + µτ/2 + γ)

vuc,i − vuc,j
(59)
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Obviously, ti−j is only well defined when vuc,j 6= vuc,i and tj−i is only well
defined when vuc,i 6= vuc,j . Because xi(t) and xj(t) are increasing in time, we
have that:

xi(t) < 0⇔ t < ti,max (60)

xj(t) < 0⇔ t < tj,max (61)

On the other hand, xi(t)−xj(t) is increasing in time if vuc,j < vuc,i, decreasing
in time if vuc,j > vuc,i, and constant if vuc,j = vuc,i. It therefore follows that:

xi(t)− xj(t) < γ ⇔


t < ti−j , vuc,j < vuc,i
t > ti−j , vuc,j > vuc,i
(qj + µτ/2 + γ) > (qi − µτ/2), vuc,j = vuc,i

(62)

Similarly,

xj(t)− xi(t) < γ ⇔


t < tj−i, vuc,i < vuc,j
t > tj−i, vuc,i > vuc,j
(qi + µτ/2 + γ) > (qj − µτ/2), vuc,i = vuc,j

(63)

This would give nine cases to consider, but three are impossible, since vuc,j <
vuc,i ⇒ vuc,j ≤ vuc,j < vuc,i ≤ vuc,i ⇒ vuc,j < vuc,i and similarly, vuc,i <
vuc,j ⇒ vuc,i < vuc,j . We will consider each of the six remaining cases in turn,
but first prove the following claims:

tj−i < tj,max ∧ ti,max > 0⇒ tj−i < ti,max (64)

ti−j < ti,max ∧ tj,max > 0⇒ ti−j < tj,max (65)

ti−j > 0 ∧ vuc,j < vuc,i ⇒ tj−i < ti−j (66)

tj−i > 0 ∧ vuc,i < vuc,j ⇒ ti−j < tj−i (67)

Clearly, Eq. (64) holds if tj−i ≤ 0. If tj−i > 0, then xi(tj−i) < xi(tj−i) =
xj(tj−i) − γ < xj(tj−i). From Eq. (61), we have that tj−i < tj,max ⇔
xj(tj−i) < 0. Hence, xi(tj−i) < xj(tj−i) < 0 and therefore tj−i < ti,max
follows from Eq. (60), proving Eq. (64). Eq. (65) is proven similarly. To prove
Eq. (66), suppose to the contrary that tj−i ≥ ti−j > 0. As before, tj−i > 0⇒
xi(tj−i) < xj(tj−i). From vuc,j < vuc,i, tj−i ≥ ti−j , and Eq. (62), we have
that xi(tj−i) ≥ xj(tj−i) + γ > xj(tj−i). Thus we have xj(tj−i) > xi(tj−i) >
xj(tj−i), which is a contradiction since it cannot be that xj(tj−i) > xj(tj−i)
for tj−i > 0, proving Eq. (66). Eq. (67) is proven similarly. We now proceed
with the six cases. In what follows, note that Eqs. (52) and (54) both reduce
to (qi + µτ/2 + γ) > (qj − µτ/2) when vuc,i ≤ vuc,j and that Eqs. (53) and
(55) similarly both reduce to (qj +µτ/2 +γ) > (qi−µτ/2) when vuc,j ≤ vuc,i.

Case (i): vuc,j = vuc,i and vuc,i = vuc,j .
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∃t ∈ [0, τ ] s.t. [xi(t) < 0] ∧ [xj(t) < 0]
∧[xi(t)− xj(t) < γ] ∧ [xj(t)− xi(t) < γ]

⇔
[0, τ ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) 6= ∅
∧[(qj + µτ/2 + γ) > (qi − µτ/2)]
∧[(qi + µτ/2 + γ) > (qj − µτ/2)]

(Eqs. (60)-(63))

⇔
[0 < ti,max] ∧ [0 < tj,max]
∧[(qj + µτ/2 + γ) > (qi − µτ/2)]
∧[(qi + µτ/2 + γ) > (qj − µτ/2)]

⇔ [(50)] ∧ [(51)] ∧ [(53) ∧ (55)] ∧ [(52) ∧ (54)]

Case (ii): vuc,j > vuc,i and vuc,i = vuc,j .

∃t ∈ [0, τ ] s.t. [xi(t) < 0] ∧ [xj(t) < 0]
∧[xi(t)− xj(t) < γ] ∧ [xj(t)− xi(t) < γ]

⇔ [0, τ ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) ∩ (ti−j ,∞) 6= ∅
∧[(qi + µτ/2 + γ) > (qj − µτ/2)]

(Eqs. (60)-(63))

⇔ [0 < ti,max] ∧ [0 < tj,max] ∧ [ti−j < τ ] ∧ [ti−j < ti,max] ∧ [ti−j < tj,max]
∧[(qi + µτ/2 + γ) > (qj − µτ/2)]

⇔ [0 < ti,max] ∧ [0 < tj,max] ∧ [ti−j < τ ] ∧ [ti−j < ti,max]
∧[(qi + µτ/2 + γ) > (qj − µτ/2)]

(Eq. (65))

⇔ [(50)] ∧ [(51)] ∧ [(55)] ∧ [(53)] ∧ [(52) ∧ (54)]

Case (iii): vuc,j = vuc,i and vuc,i > vuc,j .
This is case is symmetrical to Case (ii).

Case (iv): vuc,j < vuc,i and vuc,i > vuc,j .

∃t ∈ [0, τ ] s.t. [xi(t) < 0] ∧ [xj(t) < 0]
∧[xi(t)− xj(t) < γ] ∧ [xj(t)− xi(t) < γ]

⇔ [0, τ ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) ∩ (−∞, ti−j) ∩ (tj−i,∞) 6= ∅ (Eqs. (60)-(63))

⇔ [0 < ti,max] ∧ [0 < tj,max] ∧ [0 < ti−j ] ∧ [tj−i < τ ]
∧[tj−i < ti,max] ∧ [tj−i < tj,max] ∧ [tj−i < ti−j ]

⇔ [0 < ti,max] ∧ [0 < tj,max] ∧ [0 < ti−j ] ∧ [tj−i < τ ] ∧ [tj−i < tj,max] (Eqs. (64), (66))
⇔ [(50)] ∧ [(51)] ∧ [(53) ∧ (55)] ∧ [(54)] ∧ [(52)]

Case (v): vuc,j > vuc,i and vuc,i < vuc,j .
This is case is symmetrical to Case (iv).
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Case (vi): vuc,j > vuc,i and vuc,i > vuc,j .

∃t ∈ [0, τ ] s.t. [xi(t) < 0] ∧ [xj(t) < 0]
∧[xi(t)− xj(t) < γ] ∧ [xj(t)− xi(t) < γ]

⇔ [0, τ ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) ∩ (ti−j ,∞) ∩ (tj−i,∞) 6= ∅ (Eqs. (60)-(63))

⇔
[0 < ti,max] ∧ [0 < tj,max]
∧[tj−i < τ ] ∧ [tj−i < ti,max] ∧ [tj−i < tj,max]
∧[ti−j < τ ] ∧ [ti−j < ti,max] ∧ [ti−j < tj,max]

⇔
[0 < ti,max] ∧ [0 < tj,max]
∧[tj−i < τ ] ∧ [tj−i < tj,max]
∧[ti−j < τ ] ∧ [ti−j < ti,max]

(Eqs. (64), (65))

⇔ [(50)] ∧ [(51)] ∧ [(54)] ∧ [(52)] ∧ [(55)] ∧ [(53)]

Case 1b: xi, xj ≥ 0, |xi − xj | < γ.

Proposition 6 The set {(xi, xj) ∈ πi,j(Aq,uc([0, τ ])) : xi, xj ≥ 0∧ |xi − xj | <
γ} is non-empty iff all of the following inequalities hold:

qi ≥ −µτ/2− vuc,iτ (68)

qj ≥ −µτ/2− vuc,jτ (69)

max{vuc,i, vuc,j}(qi + µτ/2 + τvuc,i)
−vuc,i(qj − µτ/2− γ + τvuc,j) > 0

(70)

max{vuc,j , vuc,i}(qj + µτ/2 + τvuc,j)
−vuc,j(qi − µτ/2− γ + τvuc,i) > 0

(71)

(qi + µτ/2 + τ max{vuc,j , vuc,i})
−(qj − µτ/2− γ + τvuc,j) > 0

(72)

(qj + µτ/2 + τ max{vuc,i, vuc,j})
−(qi − µτ/2− γ + τvuc,i) > 0

(73)

Proof. The proof is similar to that of Prop. 5, and is omitted.

Case 2: [−αri,1 < xi < αri,2 ] ∧ [−αrj,1 < xj < αrj,2 ].

Proposition 7 The set {(xi, xj) ∈ πi,j(Aq,uc([0, τ ])) : [−αri,1 < xi < αri,2 ] ∧
[−αrj,1 < xj < αrj,2 ]} is non-empty iff all of the following inequalities hold:

qi < αri,2 + µτ/2 (74)

qj < αrj,2 + µτ/2 (75)

qi > −αri,1 − µτ/2− vuc,iτ (76)

qj > −αrj,1 − µτ/2− vuc,jτ (77)

vuc,j(qi + µτ/2 + αri,1)− vuc,i(qj − µτ/2− αrj,2) > 0 (78)

vuc,i(qj + µτ/2 + αrj,1)− vuc,j(qi − µτ/2− αri,2) > 0 (79)
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Proof. We proceed similarly to the proof of Prop. 4. From Eqs. (39), (40)
and the assumption that vmin + dmin ≥ µ > 0, we have that πi(Aq,uc(t)) =
(qi − µτ/2 + vuc,it, qi + µτ/2 + vuc,it] is an interval whose lower and upper
bounds are increasing in time, for every i ∈ N . It follows that the set {t ∈
R : (−αri,1 , αri,2)∩ πi(Aq,uc(t)) 6= ∅} will have the form (t2i,min, t

2
i,max), where

t2i,min := inf{t ∈ R : (−αri,1 , αri,2) ∩ πi(Aq,uc(t)) 6= ∅} and t2i,max := sup{t ∈
R : (−αri,1 , αri,2) ∩ πi(Aq,uc(t)) 6= ∅} are given by:

t2i,min =
−qi − αri,1 − µτ/2

vuc,i
(80)

t2i,max =
−qi + αri,2 + µτ/2

vuc,i
(81)

Now define t2j,min and t2j,max analogously to t2i,min and t2i,max. Then:

∃t ∈ [0, τ ] s.t. [(−αri,1 , αri,2) ∩ πi(Aq,uc(t))] ∧ [(−αrj,1 , αrj,2) ∩ πj(Aq,uc(t))]
⇔ [0, τ ] ∩ (t2i,min, t

2
i,max) ∩ (t2j,min, t

2
j,max) 6= ∅

⇔ [t2i,max > 0] ∧ [t2j,max > 0] ∧ [t2i,min < τ ] ∧ [t2j,min < τ ]
∧t2j,max > t2i,min ∧ t2i,max > t2j,min

and these last six inequalities give Eqs. (74)-(79), in order.

Part 2: The Capture Set Optimization

Here we describe the capture set optimization which replaces subroutines
NatVic and ContLoss in Alg. 2. The optimization is based on the observa-
tion that the bad set is convex (rectangular) for a pair of vehicles which can-
not simultaneously be inside the intersection (Case 2 of Part 1). Thus it is
straight-forward to compute the capture set of states from which no super-
visor can ensure avoidance of the bad set for such a pair of vehicles. Before
stating the theorem, we define the minimal and maximal velocities which can
be forced by the supervisor, given that it does not control the uncontrolled
vehicles or the disturbance:

vci =

{
vmin + dmax, vehicle i is controlled
vmax + dmax, vehicle i is uncontrolled

(82)

vci =

{
vmax + dmin, vehicle i is controlled
vmin + dmin, vehicle i is uncontrolled

(83)

Proposition 8 Given two vehicles i and j on different roads, there does not
exist any safe and non-deadlocking supervisor σ : Q̃→ 2Uc with σ(q) 6= ∅, for
any q ∈ Q̃ such that ∃x ∈ `−1(q) satisfying all of the following equations:

xi < αri,2 (84)

xj < αrj,2 (85)

vci (xj + αrj,1)− vcj(xi − αri,2) > 0 (86)

vcj(xi + αri,1)− vci (xj − αrj,2) > 0 (87)
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Proof. First, it follows from the definitions of vci and vci that, for any x satisfy-
ing Eqs. (84)-(87) and uc ∈ Uc, there exists some uuc ∈ Uuc and d : [0, τ ]→ D
such that x(t) = x + u(t/τ) + d(t) either remains inside the set given by
Eqs. (84)-(87) for t ∈ [0, τ ], or enters the bad set for some t ∈ [0, τ ] (see Fig. 9).
Second, it follows from vmin + dmin > 0 that no control strategy can prevent
the vehicles from eventually entering the set xi > −αri,1 ∧ xj > −αrj,1 . Thus

either the system eventually reaches some state q′ ∈ Q̃ such that σ(q′) = ∅, or
σ allows the system to enter the bad set.

To obtain the set of states q for which `−1(q) is contained in the set of
Eqs. (84)-(87), we can take this set and “deflate it” by µτ/2, to capture the
effect of the discretization. This yields the equations used in the capture set
version of the NatVic subroutine in Alg. 2. Similarly, we can obtain the set
of states q for which there exists some x ∈ `−1(q) satisfying Eqs. (84)-(87) by
taking this set and “inflating it” by µτ/2. This yields the equations used in
the capture set version of the ContLoss subroutine in Alg. 2.

In the former case (NatVic), the equations become

qi < αri,2 − µτ/2 (88)

qj < αrj,2 − µτ/2 (89)

vci (qj + αrj,1 − µτ/2)− vcj(qi − αri,2 + µτ/2) > 0 (90)

vcj(qi + αri,1 − µτ/2)− vci (qj − αrj,2 + µτ/2) > 0 (91)

The latter case (ContLoss) results in one of two possibilities, depending
on whether the set of Eqs. (84)-(87) is open or closed. The set will be open if
vcj
vci
≤ vcj

vci
and closed if

vcj
vci
>

vcj
vci

. If the set is open, the equations become:

qi < αri,2 + µτ/2 (92)

qj < αrj,2 + µτ/2 (93)

vci (qj + αrj,1 + µτ/2)− vcj(qi − αri,2 − µτ/2) > 0 (94)

vcj(qi + αri,1 + µτ/2)− vci (qj − αrj,2 − µτ/2) > 0 (95)

If the set is closed, then two more equations must be added in general (see
Fig. 9)

qi >
vciv

c
jαri,1 + vciv

c
iαrj,2 + vciv

c
iαrj,1 + vciv

c
jαri,2

vciv
c
j − vcivcj

− µτ/2 (96)

qj >
vciv

c
jαrj,1 + vcjv

c
jαri,2 + vcjv

c
jαri,1 + vciv

c
jαrj,2

vciv
c
j − vcivcj

− µτ/2 (97)

If dmin and dmax are integer multiples of µ, then it can be shown these
last two equations become unnecessary. We first prove a lemma.
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Lemma 3 If dmin and dmax are integer multiples of µ,
vcj
vci
>

vcj
vci

, and q ∈ Q̃
satisfies Eqs. (94) and (95) then, for any uc ∈ Uc, there exists q′ ∈ Postuc(q)
that also satisfies Eqs. (94) and (95).

Proof. First note from Eqs. (82) and (83) that, if either vehicle is uncontrolled,

then
vcj
vci
≤ 1 and

vcj
vci
≥ 1, violating

vcj
vci
>

vcj
vci

. It follows that both vehicles are

controlled, and that vci = vcj > vci = vcj . We prove the following claim:
Claim: For any uc ∈ Uc, there exists some di ∈ [dmin, dmax] such that uc,i/τ +
di ∈ [vci , v

c
i ] and uc,i/τ + di is an integer multiple of µ.

It suffices to prove that, for any uc ∈ Uc, [vci −uc,i/τ, vci −uc,i/τ ]∩ [dmin, dmax]
contains some integral multiple of µ, since we may then take such a value
as di. Clearly, uc,i/τ ∈ [vmin, vmax], from which it follows that vci − uc,i/τ =
vmin+dmax−uc,i/τ ≤ dmax and that vci−uc,i/τ = vmax+dmin−uc,i/τ ≥ dmin.
Thus, [vci−uc,i/τ, vci−uc,i/τ ]∩[dmin, dmax] is non-empty. Since it is non-empty,
there must be at least one of dmin and vci−uc,i/τ in the intersection of the two
sets. Since both dmin and vci − uc,i/τ are multiples of µ, the claim is proven.
Constructing di and dj as in the claim, we obtain

vcj
vci
≥ uc,j/τ + dj
uc,i/τ + di

≥
vcj
vci
.

It follows that we can take w ∈W such that wi = diτ and wj = djτ , obtaining
q′ with q′i = qi+uc,i+wi, q

′
j = qj +uc,j +wj such that q′ ∈ Postuc(q) satisfies

Eqs. (94) and (95).

Corollary 1 If dmin and dmax are integer multiples of µ then, given two
vehicles i and j on different roads, there does not exist any safe and non-
deadlocking supervisor σ : Q̃ → 2Uc with σ(q) 6= ∅, for any q ∈ Q̃ satisfying
Eqs. (92)-(95) only (i.e., without satisfying Eqs. (96) and (97)), even when
vcj
vci
>

vcj
vci

.

Proof. We have already shown that the result holds if
vcj
vci
≤ vcj

vci
, or

vcj
vci

>
vcj
vci

and q satisfies Eqs. (92)-(97). It remains to be shown that the result also holds

if dmin and dmax are integer multiples of µ,
vcj
vci
>

vcj
vci

, and q satisfies Eqs. (92)-

(95), but not Eqs. (96) and (97). Consider any uc ∈ Uc. By Lemma 3, there
exists q′ ∈ Postuc(q) that also satisfies Eqs. (94) and (95). There are now
three cases to consider:
Case 1: q′ satisfies Eqs. (92)-(97).
We have shown in this case there exists no safe and non-deadlocking supervisor
from q′.
Case 2: q′ satisfies Eqs. (92)-(95), but not both of Eqs. (96) and (97).
Because dmin + vmin > 0, Lemma 3 can be applied repeatedly, until a q′ is
obtained which satisfies Eqs. (96) and (97).
Case 3: q′ does not satisfy both of Eqs. (92) and (93).
In this case, the line segment from q to q′ either crosses the bad set, or comes
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(86)

(84)

(85)

(87)

(94)

(92)

(93)

(95)

(a) Open Case

(86)

(84)

(85)

(87)

(97)

(94)

(92)

(93)

(95)

(96)

(b) Closed Case

Fig. 9 The capture sets of Eqs. (84)-(97) in the open (left) and closed (right) cases. The
blue square denotes the bad set. The set of Eqs. (84)-(87) is depicted with solid lines, and its
inflation by µτ/2 is depicted in dashed lines. Right: If dmin and dmax are integer multiples
of µ, then Eqs. (96) and (97) are unnecessary, which is shown by the dotted lines.

within a distance of µτ/2 of it (see Fig. 9). In the latter case, we can find
some pair x ∈ `−1(q) and x′ ∈ `−1(q′) such that the line segment from x to x′

crosses the bad set.

Figure 9 depicts the set described by Eqs. (84)-(87) of Prop. 8, the inflated
set of Eqs. (92)-(97), and the special case of Cor. 1. The simulations of Sec.
9 satisfied the property that dmin and dmax were integer multiples of µ, and
hence the code used Eqs. (92)-(95) only.


