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ABSTRACT
In prior work, we have shown that just as in many engineer-

ing systems, impedance-like effects appear at the interconnection
of biomolecular systems. These effects are called retroactivity, to
extend the notion of impedance to biological systems. Signaling
components, such as covalent modification cycles, play a central
role in the transmission of signals within a cell and from outside
the cell. They are typically found in highly interconnected archi-
tectures in which a component has several downstream clients.
In this paper, we investigate how retroactivity due to downstream
clients affects the input/output steady state characteristics of a
covalent modification cycle.

1 Introduction
Signal transduction systems cover a central role in a cell

ability to respond to external or internal input stimuli and their
malfunction can often result in pathological conditions includ-
ing cancer [1–3]. Numerous cellular signal transduction systems
consist of cycles of reversible protein modification, wherein a
protein is reversibly converted between two forms [4]. In sev-
eral cases, multiple cycles of covalent modification are linked to
form cascade systems [5, 6]. The importance of these signaling
systems has long been realized, and a wealth of theoretical work
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has established the potential behaviors of such systems and the
mechanisms by which parameters and circuitry affect system re-
sponse [7–11]. These milestone works described how covalent
modification cycles would behave in the absence of any load-
ing caused by interconnection with downstream systems, that is,
how the cycle would behave as an isolated signaling module.
But, of course signaling systems are usually connected to the
downstream targets they regulate. Therefore, it is important to
determine whether and how the response of an upstream system
is influenced by the presence of its downstream targets. Ideally,
since the information propagates from upstream to downstream,
the presence of a downstream client receiving the signal should
not affect the system that sends the signal.

However, this is only an idealization. Just as in many engi-
neering systems, such as electrical, mechanical, and hydraulic
systems, impedance-like effects appear at interconnections in
biomolecular systems and in particular in signaling networks
[12–20]. These effects have been called retroactivity to extend
the notion of impedance to non-electrical systems and in partic-
ular to biomolecular systems [12, 13, 16]. Specifically, it was
theoretically shown that the presence of downstream signaling
targets can have a dramatic impact both on the dynamics and the
steady state of signaling components [12, 18].

In tasks such as sensing and in the regulation of metabolism,
in which signaling systems play a cardinal role, it is important



Figure 1. Covalent modification cycle. The output of the cycle W* is

taken as an input by a downstream system through a binding reaction with

target sites L to form a complex C. Even though the information travels

from upstream to downstream, the presence of a physical interconnection

causes retroactivity on the upstream system.

that the “turning on” of one signaling pathway and the “turn-
ing off” of another one is sensitive to relatively small changes
in the input stimulation. Factors that impact this sensitivity and
therefore the shape if the input/output characteristics of covalent
modification cycles have been extensively studied by a number of
theoretical and experimental works [7–10, 21, 22]. In this paper,
we explicitly quantify the effect of retroactivity on the shape of
the input-output static response of a covalent modification cycle.

This paper is organized as follows. In Section 2, we describe
the system under study and its model. In Section 3, we charac-
terize the effects of retroactivity on the shape of the input/output
characteristics of the system. In Section 4, we conclude with a
discussion of the results.

2 Model

A covalent modification cycle can be depicted according to
the general diagram of Figure 1, in which a protein is reversibly
converted between two different forms by converting enzymes.
Specifically, a protein W (called the substrate) is converted to
a form denoted W* by enzyme E1 and converted back to form
W by enzyme E2. In the case of phosphorylation, for example,
in which W* represents the phosphorylated version of protein
W, enzyme E1 is called a kinase while enzyme E2 is called a
phosphatase. We model this system through two coupled two-
step enzymatic reactions [1,9,10], in which we denote by C 1 the
complex of E1 with W and by C2 the complex of E2 with W*.

The reaction equations are thus given by

W+ E1
a1−⇀↽−
d1

C1
k1−→ W∗ + E1

W∗ + E2
a2−⇀↽−
d2

C2
k2−→ W+ E2, (1)

in which k1 and k2 are called the catalytic rates, ai are the associ-
ation rates, and di are the dissociation rates. Protein W when in
form W* can transmit the signal to downstream systems (for ex-
ample, other signaling targets or DNA binding sites) by binding
with targets denoted L [5, 6, 23–25]. This physical “connection”
can be modeled by the additional binding reaction of W* with
downstream sites L:

W∗ + L
kon−−⇀↽−−
ko f f

C, (2)

in which the value of the dissociation constant kD := ko f f /kon de-
termines how high is the “flux” between the upstream system and
the downstream load. Low values of kD correspond to high val-
ues of flux as the binding reaction with the load is highly shifted
toward forming the complex C.

A common assumption when modeling signaling systems is
that both the total protein and the total enzymes amounts are not
subject to change in the time scales typical of covalent modifica-
tion [4]. Therefore, we have the following conservation laws, in
which for a species X we denote in italics X its concentration:

E1 +C1 = E1T , E2 +C2 = E2T , W +W∗ +C1 +C2 +C = WT ,

W ∗ +L = LT . (3)

The converter enzyme E1 can be viewed as an input to the sys-
tem while the protein in form W* can be viewed as an output. In
this modeling study, we seek to quantify the effect of the down-
stream targets L on the input/output steady state characteristics
of the covalent modification cycle. That is, we are interested
in characterizing the effects of retroactivity due to downstream
loading on the static response of the system.

In signaling systems, it is usually the active form of the pro-
tein to carry information to downstream systems and to thus bind
to downstream targets. In this case, referring to the diagram of
Figure 1, W* would be the active protein and W would be the in-
active one. In other cases, however, the inactive protein can carry
information and bind to downstream signaling targets [26–28].
In this case, protein W* would be the inactive protein. In either
case, the protein that can be usually experimentally detected and
measured (directly or indirectly) is the active protein. Therefore,
it is relevant in the configuration of Figure 1 to characterize the
effects of retroactivity not only on W ∗ but also on W . The kinetic
equations corresponding to the reaction equations (1,2) are given
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Figure 2. (Left) Steady state response of w∗ as a function of the input stimulus S for different values of the load amount β. (Right) Same plots but with

the value of w∗ normalized by the maximum value achieved for S = ∞. Here, we have set c = 100 and K1 = K2 = 0.01.

by

dW
dt

= −a1WE1 +d1C1 + k2C2

dC
dt

= a1WE1 − (d1 + k1)C1

dW ∗

dt
= −a2W

∗E2 +d2C2 + k1C1 − konW
∗L+ ko f fC

dC2

dt
= a2W

∗E2 − (d2 + k2)C2

dC
dt

= konW
∗L− ko f fC. (4)

In the next section, we solve the above system for the steady
state to characterize the effect of the load L on the system static
response to E1T .

3 Effect of Retroactivity on the Cycle Characteristics
In order to quantify the effect of retroactivity on the static

input/output characteristics of the system, we solve system (4)
for the steady state and determine the values of W ∗ and W as
functions of the input E1T , the amount of downstream load LT ,
and the dissociation constant kD of the binding of W* to L.

By equating the last equation of system (4) to zero with L =
LT −C, we obtain that C = W∗LT

W ∗+KD
. Assuming that the enzymes

are in amounts much smaller than the amounts of substrate, that
is, E1T ,E2T �WT (a common assumption when studying cova-
lent modification cycles [9]), we have that WT =W ∗ +W +C, so
that

W = WT −W∗ − W ∗LT

W ∗ + kD
. (5)

By summing up the first and second equations of system (4) and
equating the result to zero, we obtain the equilibrium condition
k1C1 = k2C2. This can be solved for w∗ := W ∗/WT using the

conservation equations (5) to obtain the implicit equation that w ∗
satisfies as

S(w∗) =
w∗[(w∗)2 −w∗(β̄ +K1)− c(K1 + 1)]

(w∗)3 − (w∗)2(β̄−K2)− (w∗)[K2(β̄)+ c]− cK2
, (6)

in which we have denoted S := E1T k1
E2T k2

the input stimulus, β̄ :=
1−β− c with β := LT

WT
the normalized amount of load and c :=

kD
WT

the normalized dissociation constant, and K1 := d1+k1
a1WT

, K2 :=
d2+k2
a2WT

the Michaelis-Menten constants divided by the total pro-
tein concentration WT .

In Figure 2, we plot relation (6) for different values of the
load. The presence of the load decreases for every input stimulus
the value of w∗ as W* is “drained” by the binding to downstream
targets. More interestingly, the shape of the input/output charac-
teristics change: the response becomes less steep and the point of
half maximal induction decreases. The steepness of the charac-
teristics and the point of half maximal induction are physiolog-
ically relevant quantities in signaling systems as they determine
how linear versus ultrasensitive, i.e., switch-like, the response to
input stimuli is [9,10]. We thus mathematically define the steep-
ness and the point of half maximal induction and analytically
determine how they are affected by the addition of the load.

A standard way in signaling and transcriptional systems to
characterize the shape of a static input/output characteristic is to
compare the characteristic under study to one of the Hill function
form

w∗ = w∗
MAX

Sn

Kn +Sn (7)

and determine estimates of the values of K and of n [9, 23]. Pa-
rameter n is the Hill coefficient and determines how sensitive the
response is. High values of n correspond to almost switch-like
response, referred to as ultrasensitive response, while low values
of n (close to 1) correspond to almost linear response, referred to



Figure 3. Response coefficient R (Left) and S50 (right) as a function of the normalized load amount β and the normalized dissociation constant c. Here,

we set K1 = K2 = 0.01 and c ∈ [1,15].

as hyperbolic response. The value of K corresponds to the value
of S for which half maximal response is obtained. Consider the
function under study S(w∗) given in equation (6) and let w∗

MAX be
the maximal value of w∗ corresponding to S = +∞. For α ∈ [0,1]
we denote S100α := S(α w∗

MAX ). Thus, the value of S for which
half maximal response is obtained (corresponding to the value of
K in the Hill function of equation (7)) is given by the value of
S50. In order to estimate the value of the Hill coefficient, it is
common to use the response coefficient defined as

R :=
S90

S10
, (8)

which for a Hill function satisfies the relationship R = (81)1/n, so
that R tends to 81 when n tends to 1 (hyperbolic response) and R
monotonically decreases when n increases. We next analytically
determine how the value of R and of S50 are affected by the value
of the normalized load β.

3.1 Effect of retroactivity on the response of w∗
As a first step, we compute the maximal value w∗

MAX as a
function of the load β. This can be obtained from equation (5)
when we set W = 0:

w∗
MAX =

1
2

(
(1−β− c)+

√
(1−β− c)2 + 4c

)
.

The response coefficient R can be calculated by evaluating S(w ∗)
from equation (6) for w∗ = 0.1w∗

MAX and w∗ = 0.9w∗
MAX . This

gives a function of the load-related parameters β and c for ev-
ery value of the constants K1 and K2. This function is depicted
in Figure 3 (left). From this, we deduce immediately that the
response coefficient is a monotonically increasing function of
the load amount β and a monotonically decreasing function of
the dissociation constant c. Therefore, as the amount β and/or

affinity 1/c of downstream binding sites increases, the response
coefficient increases and as a consequence the Hill coefficient n
decreases. The function S50 is depicted in the same figure (right).
As the amount of load β increases and/or c decreases, the value of
S50 decreases. As a consequence, increasing the amount and/or
affinity of downstream binding sites decreases the value of S 50.
These results are consistent with what observed in Figure 2.

We next seek to obtain analytical expression for R and S 50

as function of c and β. To this end, we approximate the value
of w∗

MAX in the limits of large values of load (β � 1) and of low
values of load (β � 1):

w∗
MAX =

{
(1−β) if β � 1 and c � 1

c
β+c if β � 1.

(9)

The values of S10 and S90 can be computed by evaluating the
right-hand side of equation (6) with w∗ = 0.1w∗

MAX and w∗ =
0.9w∗

MAX . We perform this for the two different cases of equation
(9).

Case 1: β � 1. Small loads. Let α = 0.1,0.9 and denote
v := (1−β), then for c � 1 we have that

S100α =
(

α
1−α

)(
v(1−α)+K1

vα+K2

)
, (10)

so that the response coefficient becomes

R = 81
(0.1+K1/v)(0.1+K2/v)
(0.9+K2/v)(0.9+K1/v)

.

From this expression, we notice the following facts:

(i) If v = 1 (β = 0, i.e., no load), the expression of R is the
same as the one of a covalent modification cycle with no
load obtained in standard references such as [9];



(ii) If v < 1 (β > 0, i.e., we add load), the expression of R is the
same as the one for a covalent modification cycle obtained
by [9] in which the values of K1 and K2 have been both in-
creased by a factor of 1/v. Therefore, when v decreases (β
increases) the value of the response coefficient R increases
and as a consequence the Hill coefficient n decreases.

The value of S50 is given by

S50 =
(

0.5v+K1

0.5v+K2

)
,

in which, computing the derivative with respect to v, we obtain
that dS50

dv = 0.5(K2−K1)
(0.5v+K2)2 , so that if K2 > K1 the value of S50 de-

creases with β, while if K2 < K1 the value of S50 increases with
β. In the case in which K1 = K2, the value of S50 does not change
with the β.

Case 2: β � 1. Large loads. Let α = 0.1,0.9, assume that
(αc)/(β + c) � 1 and that (1+K1) � (β + c), then the value of
S can be well approximated by

S100α =
c(α(1−α)+ αK1)

(β + c)K2(1−α)+ α(K2 + c)−α2c
, (11)

which is clearly a decreasing function of β. Therefore, The value
of S50 monotonically decreases with β. The value of the response
coefficient is given by

R =
(

0.09+ 0.9K1

0.09+ 0.1K1

)(
0.9(β + c)K2 + 0.1(K2 + c)−0.01c
0.1(β + c)K2 + 0.9(K2 + c)−0.81c

)
,

which is represented in Figure 4 in comparison with the actual
value of R. These plots show that the approximation is good
for sufficiently high values of c and that the approximation im-
proves as c becomes larger (as expected from the conditions un-
der which Case 2 holds). From this expression, the following
facts emerge:

(i) The response coefficient R is a monotonically increasing
function of β as the derivative of R with respect to β is al-
ways positive. Therefore, R increases with the load β and as
a consequence the Hill coefficient n decreases with the load.

(ii) For large loads (i.e., β → ∞), the value of R tends to a value
that increases with K1. When K1 is small, the maximal value
of R with increasing amounts of load is 9, which corresponds
to a Hill coefficient equal to 2. When K1 increases to values
greater than 1, the value of R tends to 81, which corresponds
to a Hill coefficient equal to 1. Therefore, unless K1 is large
enough, even large amounts of load will not bring the Hill
coefficient down to 1.

Summarizing the conclusions of Case 1 (small loads) and Case
2 (large loads), we have that the Hill coefficient n decreases with
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Figure 4. Response coefficient (in black) and its approximation (in red)

for the case of large loads (here K1 = K2 = 0.01).

increasing amount of loads, that for small loads, the response
coefficient tends to the standard one obtained by standard refer-
ences [9], and that for large loads the Hill coefficient tends to a
value (strictly greater than 1), which tends to 1 only for increas-
ing values of K1.

3.2 Effect of retroactivity on the response of w
In this case, we replace w∗ in the expression of S(w∗) by

the function of w obtained by solving the conservation equation
w = 1−w∗− w∗β

w∗+c for w∗:

w∗ =

{
(1−β−w) if β � 1 and c � 1
c(1−w)

β+c if β � 1.
(12)

The maximal value of w is equal to 1 and it is obtained when
w∗ = 0. The resulting input/output characteristic is depicted in
Figure 5 for different values of the load. As the load increases,
the steepness of response and the value of S50 decrease.

In order to analytically quantify how the sensitivity and the
value of S50 are affected by the load, we follow a similar proce-
dure as followed in the previous section. Since w is a decreasing
function of S, the response coefficient for the response of w to S
is now defined as

R :=
S10

S90
,

in which S10 and S90 are calculated from equation (10), in which
we have substituted expressions (12) in place of w∗ for w = 0.1
and w = 0.9, respectively. As performed before, we consider two
limit cases, depending on whether the load is small or large.

Case 1: β � 1. Small loads. Let α = 0.1,0.9 and v = 1−β,
then assuming c � 1 we obtain the new expression for the S 100α
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Figure 5. Steady state value of w as a function of the input stimulation

S for different values of the load β (here K1 = K2 = 0.01, c = 100).

for the response of w to S as:

S100α =
(

α+K1

α

)(
(v−α)

(v+K2 −α)

)
,

which is valid only when v−α > 0. This is an increasing func-
tion of v. As a consequence, the value of S50 decreases when the
load β is increased. The response coefficient is given by

R =
(

9(0.1+K1)
(0.9+K1)

)(
(v−0.1)(v+K2−0.9)
(v+K2 −0.1)(v−0.9)

)
,

which is valid only for v − 0.9 > 0, that is, for β < 0.1. By
computing the derivative of this expression with respect to v, we
obtain that such a derivative is always negative when (1− 2β +
K2) > 0. Since v = 1−β, this implies that increasing the amounts
of load increases the response coefficient and as a consequence
decreases the Hill coefficient n. From the expression of the re-
sponse coefficient R, one can verify that when the load tends to
zero, that is v → 1, the response coefficient expression becomes
equal to that obtained by [9] in the absence of any load.

Case 2: β � 1. Large loads. In this case, we substitute for
w∗ in expression (10) the value w∗ = c(1−w)

β−1 and then we sub-
stitute α in place of w. This gives the same expression of S100α
obtained in equation (11), in which α needs to be replaced by
1−α, that is,

S100α =
c(α(1−α)+ (1−α)K1)

(β + c)K2α+(1−α)(K2 + c)− (1−α)2c
.

From this expression, we conclude that the value of S 50 monoton-
ically decreases with the load β. The expression of the response
coefficient becomes the same as the one for the S to w∗ response,

that is,

R =
(

0.09+ 0.9K1

0.09+ 0.1K1

)(
0.9(β + c)K2 + 0.1(K2 + c)−0.01c
0.1(β + c)K2 + 0.9(K2 + c)−0.81c

)
.

Since this is a monotonically decreasing function of the load β,
the Hill coefficient n decreases with increasing amounts of load.
When the load grows to very large values (β → ∞), the response
coefficient tends to 81 only for values of K1 sufficiently larger
than 1, while for smaller values of K1, the Hill coefficient tends
to values between 1 and 2. As a consequence, unless K1 is suffi-
ciently large, the value of the Hill coefficient will not be reduced
to 1 by large amounts of load.

Summarizing the results of Case 1 and Case 2 for the steady
state response of w to S, we obtain that the value of S50 decreases
as the load increases and that the Hill coefficient n decreases as
the load β increases. Furthermore, when β → 0 (Case 1), the
expression of the response coefficient tends to the expression
obtained by [9] for a covalent modification cycle with no load.
When β →∞ (Case 2), we obtain that R tends to 81, which corre-
sponds to Michaelis-Menten kinetics with Hill coefficient n = 1,
only for sufficiently large values of K1, while for smaller values
of K1 the Hill coefficient will be reduced to values between 1 and
2 for large amounts of load.

4 Discussion
In this modeling study, we have characterized the effect of

downstream loading on the input/output static characteristic of
a covalent modification cycle. Retroactivity due to loading de-
creases the sensitivity of response to input stimuli by decreasing
the apparent Hill coefficient. Specifically, as the amount β of
load relative to the total amount of signaling protein increases
and/or the normalized value of the dissociation constant c de-
creases, the apparent Hill coefficient decreases. It decreases up
to a limit that approaches n = 1 for sufficiently high values of the
normalized Michaelis-Menten constant K1 of the forward reac-
tion. Therefore, for a fixed value of c, the effect of retroactivity
is less dramatic when the total amount WT of the upstream sig-
naling protein is large compared to the total amount of load L T .

In natural systems, covalent modification cycles are often
found in cascade architectures, in which a cycle has several
downstream targets [5, 6, 24]. Nevertheless, these cycles are
capable of highly ultrasensitive responses to their input stim-
uli [21, 22]. This fact suggests that in natural systems the total
amounts of a signaling protein may be finely tuned based on the
amounts and affinity of downstream targets so that the desired re-
sponse sensitivity is maintained. That is, signaling systems may
have naturally evolved mechanisms for insulation from retroac-
tivity. Alternatively, retroactivity may be used in signaling net-
works, in addition to well known mechanisms, as an effective
means for tuning the shape of the static response to input stimuli.



5 Conclusions
Retroactivity is an impedance-like effect that appears at the

inerconnection of any biomolecular system with its downstream
clients. Covalent modification cycles are fundamental building
blocks of signaling networks, in which they appear connected to
a potentially large number of downstream targets. These cycles
may thus be subject to potentially large retroactivity effects. In
this modeling study, we characterized these effects on the static
input/output characteristics of a covalent modification cycle and
showed that retroactivity makes an ultrasensitive response into
a graded response. This study was performed with the aim of
guiding experimental work on a signaling system extracted from
the nitrogen regulation system of E. coli [4, 28, 29] and reconsti-
tuted in vitro to quantify retroactivity. This experimental work is
currently under completion.
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