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Abstract— We consider the problem of collision avoidance
at road intersections in vehicular networks in the presence
of uncontrolled vehicles, a disturbance, and measurement
uncertainty. Our goal is to construct a supervisor of the
continuous time system that is safe (i.e., avoids collisions), non-
blocking (i.e., all vehicles eventually cross the intersection), and
maximally permissive with respect to the discretization, despite
the presence of a disturbance and of measurement uncertainty.
We proceed in four steps: defining a discrete event system (DES)
abstraction of the continuous time system, using uncontrollable
events to model the uncontrolled vehicles and the disturbance;
translating safety and non-blocking requirements to the DES
level; solving at the DES level; and translating the resulting
supervisor back from the DES level to the continuous level.
We give sufficient conditions for this procedure to maintain
the safety, non-blocking and maximal permissive properties as
the supervisor is translated back from the DES level to the
continuous level. Prior work on this problem based on similar
abstractions assumes perfect measurement of position. Our
method for handling measurement uncertainty is to introduce
measurement events into the DES abstraction and then to
compute the observer of the DES abstraction and the supremal
controllable solution of the DES supervisory control problem.

[. INTRODUCTION

The widespread diffusion of sensors and embedded com-
putational and communication resources in production ve-
hicles provides an opportunity to reduce road accidents,
through the design of driver assist systems that can inter-
vene to avert collisions, by means of warning signals or
by temporarily taking control of the vehicle. In a control
theoretic perspective, collision avoidance algorithms must
satisfy two main constraints: first, given that lives are at
stake, the control laws must be provably correct systems
(safety property); second, the control systems must act only
when strictly necessary (maximal permissiveness property).
The challenge is magnified by the complexity of the envi-
ronment in which the controllers have to act, which typically
comprises uncontrolled agents (such as bikers or legacy
vehicles), complex road topologies (multi-lane intersections
or multiple nearby intersections and mergings), measurement
and actuators noise, and uncertainties in the model equations.

A variety of approaches for collision avoidance of ve-
hicles in a complex environment have been proposed in
the literature. Common approaches include the computation
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of a maximal controlled invariant set [8], [14], [3], in a
framework akin to verification of hybrid systems [13]. Recent
improvements in such approaches have provided efficient
algorithms that easily handle hundreds of vehicles, but cannot
yet deal with uncontrolled agents or complex, realistic road
topologies [3]. More flexible results are provided in [9],
[1], which propose an algorithmic approach to collision
avoidance, essentially structured as a decision tree. These
approaches are flexible, but due to their complexity their
performance is hard to assess. A set of algorithms that lie
in between these two extremes is obtained using discrete
abstractions, that is, discrete and finite representations of
the system’s dynamics, as was done in [4], [5], [7], [6].
By lifting the control problem to the discrete event level,
most of the complexity stemming from the composite control
specifications can be tackled in a relatively simple way at the
discrete level, while at the same time the restrictiveness of
the resulting controller can be measured in terms of the size
of the allowed execution space, compared with the set of all
possible executions.

In this paper, we extend the abstraction techniques that
were used in [7] to handle the presence of measurement
uncertainties. Typically, state uncertainties are handled by
means of a state estimator, that is, a map that associates
to a set of present and past measurements a possible set
of current state values. Here, we leverage the discrete ab-
straction approach by solving the estimation problem at the
discrete level. This simplifies the design and implementation
of the estimator, since its domain is the finite dimensional
set of the discrete abstraction. Moreover, we prove that the
obtained estimator is the abstraction of an optimal continuous
estimator (i.e., one providing the smallest state estimate
compatible with the available information). Thus, we prove
that abstraction and estimation form a commuting diagram.
The resulting algorithm can handle multiple vehicles, input
and measurement uncertainties, and uncontrolled agents.

The main contributions of this paper are as follows.
We present a new abstraction method for the continuous
dynamics of the vehicles under measurement uncertainty that
results in a discrete event automaton with three disjoint sets
of events: (i) controllable and observable control actions;
(i) observable but uncontrollable measurements; and (iii)
uncontrollable and unobservable events for the uncontrolled
vehicles and the disturbance inputs. In order to establish that
the observer (aka, state estimator) of this discrete automaton
is the “right” abstraction of an optimal continuous estimator
based on the continuous dynamics and the measurement
equation, we introduce the notions of state reduction and



exact state reduction, which are akin to the notions of simula-
tion/alternating simulation and alternating bisimulation in the
hybrid systems literature, but adapted to the specific context
under consideration in this paper. These new notions are
then leveraged for proving that the solution at the abstracted
DES level, when implemented at the continuous level, does
meet the three requirements of safety, non-blockingness, and
maximal permissiveness. Under our set-up, the DES problem
can be solved on the observer of the discrete automaton, by
computing the supremal controllable sublanguage.

The remainder of this paper is organized as follows. In
Section II we describe a model of the system we analyze
(Section II-A) and summarize our solution method from
[7] in the case of perfect measurement (Section II-B). In
Section III we define the notion of a state reduction and
prove that when one system is a state reduction of the other,
we can solve for a maximally permissive, safe, and non-
blocking supervisor for the reduced system and use it to
obtain a supervisor for the other system that is also safe,
non-blocking, and maximally permissive. In Section III-B,
we show that the DES abstraction we define in Section II-B is
a state reduction of the system described in Section II-A. We
formally describe the problem we wish to solve in subsection
IV-A, define a new abstraction in Section IV-B, and show that
this abstraction is a state reduction of a continuous estimator
system in Section IV-C, thus allowing us to apply the same
solution method for the case of imperfect measurement, but
using this new abstraction instead. Finally, we conclude in
Section V. Due to space constraints, intermediate results
and proofs have been omitted. They are available from the
authors.

II. MODEL & SUMMARY OF PERFECT
INFORMATION CASE

A. Model
Consider a set N/ = {1,...,n} of vehicles, where
n = |N/|. The vehicles are modeled as kinematic entities

(integrators) and their collective dynamics are described by:
T=v+d (D

where x € X C R"™ is the state, v € V C R"™ is the control
input, and d € D C R"™ is a disturbance input representing
unmodeled dynamics (for instance, the dynamic response of
the vehicle to the engine torque). Assume that X is compact.
We discretize the set of allowed inputs, assuming that v €
V' is a vector with elements in the finite set {ua, p(a +
1),...,ub}, with a,b € Nand g € Ry, and that d € D =
[dmin, dmaz]™, with the vector [0,...,0] € [dmin, dmaz]™
We refer to ap and by as vy, and vp,q,, respectively. We
allow the possibility that a subset of the vehicles cannot be
controlled. To represent this, we partition the vector v into
two subvectors, v, € V. and v, € V., where v, represents
the control inputs of the controlled vehicles, whereas v,
represents the control inputs of the uncontrollable vehicles,
such that v = (v, vye) and V =V, x V,,.. Assume also that
Umin + dmin = 1, SO that y constitutes a lower bound on the
velocity of the vehicles. Finally, assume that the input v is

kept constant over time intervals [kT, (k4 1)7], and discretize
the above system in time, with step 7, obtaining

Th+1 = Tk + up + 0k 2

with x, = z(k7), up = v(kr)7T, ) = k(erl)T d(t)dt.
Calling U = V7 and A = D7, we have that uw € U and
6 € A. As for the set U, we write U = U, x U,., where U,
is the set of available actions for the controllable vehicles
and U, is the set of actions of the uncontrollable vehicles.
We use the notation u = (u,, u,.) to denote the actions of
the controllable and uncontrollable vehicles for any u € U.

We assume that the state xj is measured imperfectly. The
measured state at time k7 is

Xk ‘= Tk + €, 3)

with [le]loo < emaz-

Define a set 11, for each road, and say that vehicle i € I
if vehicle ¢ drives along road k. Describe the length of the
portion of each road that belongs to the intersection as an
interval [, O;] C R, and define a safety distance v € R,
common to all vehicles. We say that two vehicles 7 € 11, j €
II, with k # [ undergo a collision whenever x; € [, O]
and z; € [ay, B;] simultaneously. Similarly, we say that two
vehicles 7, j € II;, undergo a collision whenever |z; — x| <
v, 23 < B and x; < Bi. The subset of X of all collision
points is called the bad set B. A trajectory x(t) of (1) is
e-safe provided

inf[la(®) = bl 2 <

Define a set of discrete states Q and a mapping ¢ : X — Q

from continuous to discrete states as follows:

ctp, for c € N s.t.

<
l(z) =4 eru—ruf2 <wi <crptrp2 TSPk
di,m T; > Bk
“4)

where k is the index of vehicle i’s road (i € II). Define £(x)
as the vector (¢1(x1),...,¢0(xy,)) and let £(I) = Ugzerl(z),
for any I C X. In words, the space X is covered by a regular
lattice with spacing 7u and vehicles before the end of the
intersection are mapped to a discrete state corresponding to
such a lattice point. Vehicles after the end of the intersection
are mapped to “special” states g¢;.,. The single discrete
state ¢, = (@1.m,---,qn,m) corresponds to the (unique)
discrete state where all vehicles have crossed the intersection.
Assume that, for all ¢ € @, there exists some z € X such
that ¢(x) = q.

B. Summary of Perfect Information Case

Let X /¢ denote the quotient set of X by the equivalence
classes induced by /. In the case of perfect measurement,
our aim is to design a supervisor o : X/¢ — 2V for (1)
that enforces O-safety, where V., = U./7. More precisely,
the following problem needs to be solved.

Problem 2.1: Given X /¢, define a supervisor that asso-
ciates to each z(k7) € X a set of inputs v, € V. allowed
for the interval [k7,(k + 1)7] and constant over this time
interval, with the following properties:



o ifv.(t) € o(x(|t/7|7)) for t € [kT, (k+1)7], then z(t)
is O-safe in the same time interval (0-safety)

o ifo(x(kr)) #0,v.(t) € o(x(|t/T]|7)) fort € [kr, (k+
1)7], and £(z((k+1)T)) # qm, then o(z((k+1)7)) # 0
(non-blockingness)

o if 6 # o and & satisfies the two properties above,
then &(x(k7)) C o(x(k7)) for all k& > 0 (maximal
permissiveness).

In [7], we solve this problem in five steps: defining a
suitable DES abstraction of the continuous time system;
modeling the disturbance and the uncontrolled vehicles as
uncontrollable events; translating the specifications of Prob-
lem 2.1 from the continuous to the DES level; solving for
the maximally permissive, safe, and non-blocking supervisor
at the DES level; and translating the solution back to the
continuous domain. Following is a brief summary of the DES
abstraction and of some of the significant results in [7]. This
abstraction is repeated here as it will form the basis for the
new results in this paper for the imperfect measurement case.

The DES abstraction G consists of an automaton defined
over the state ), with three categories of events: the set
of controllable events U,, corresponding to the actions of
the controlled vehicles; the set of uncontrollable events U,,.,
corresponding to the actions of the uncontrolled vehicles;
and the set of uncontrollable events W, used to represent
the “actions” of the disturbance. Physically, W represents
a discretization of the set of disturbances A, defined by:
W =Akrp:k € ZN [6min/(TR)] < k < [Smaa/(TH)[}".
Thus, for every € X, u € U, 6 € A and g = {(x), there
exists a w € W such that ¢ +u+w = £(z+u+J). Discrete
event system G’s transition function is defined simply as
¥(g,u,w) = ¢+ u+w. With three different types of events,
each of which must occur exactly once during each interval
of time [k7,(k + 1)7], we define a three-layer transition
structure, with events alternating between those of U, U,.,
and W. To define the discrete system state in between the
occurrence of events in U, and U,. and in between the
occurrence of events in U,. and W (all of which occur
simultaneously in the continuous-time system), we introduce
two sets of “intermediate” states ()71 and Q)2 (disjoint from
each other and from Q and with no physical meaning), and
three intermediate transition functions: ¢ : Q@ x U, — Q1,
’L[)Q : Qll X ch — Q[Q, and wg : Q]Q x W — Q, defined
only by ¥(q, e, Uye, w) = 132 (¥1(q, te), Uye), w). We
take the set of marked states to be the set Q. = {gm}-
Finally, we define a set )y of possible initial states, which
we model by introducing a dummy initial state ¢° and having
transitions from ¢° to each state ¢ € Oy with event label eq.
We denote this set of events by Eq = {e; : ¢ € Qo}. The
final DES is defined as:

G = (Q7 Uc X ch xWu EQM/%qonm) (5)

where Q = {¢"} U QU Q1 UQo. It is shown in [7] that G
simulates system (2) and that system (2) alternatingly simu-
lates GG. (See [12] for formal definitions of these notions.) We
next proceed to translate the system requirements of Problem
2.1 to the DES domain. To translate the safety requirement,

we define a transition from state ¢ to ¢’ = ¥(q, u, w) as safe
if and only if there do not exist z(k7) € X and d(¢) such
that £(z (k7)) = g, £(x(kr)+u+ [T d(t)) = ¢’ and 2(t)
crosses the bad set at some time in the interval [k, (k4 1)7].
See [7] for equations dependent on ¢, u, w, u, 7, and B for
verifying when this condition is satisfied. The specification
for G requires that all such transitions be avoided. To
translate the non-blocking requirement, the specification for
G requires that all executions must eventually reach a marked
state, which means that all the vehicles must eventually cross
the intersection, from the way that (),,, was defined.

The solution at the DES level requires the computation of
the supremal controllable sublanguage of the specification
with respect to £(G), a procedure which results in a super-
visor S : Q — 2U¢ that is safe, non-blocking, and maximally
permissive with respect to the specification, thus satisfying
all the requirements. Translating back from the DES to the
continuous level is achieved by taking the supervisor o as:

o((kr)) = {uc/7 : ue € S(U(z(k7)))} - (6)

In [7], we prove that the supervisor o obtained by this
procedure satisfies the requirements of Problem 2.1 and give
algorithms for efficiently computing the DES supervisor S.
In this work, we show how to modify the automaton G
and the DES specification to solve the problem of collision
avoidance in the presence of measurement uncertainty.

ITII. STATE REDUCTIONS AND EXACT STATE
REDUCTIONS

In this paper, we do not use the simulation & alternating
simulation relations of our previous work [7]. Instead,
we define the notions of state reduction and exact state
reduction. A state reduction can be thought of as similar to a
simulation / alternating simulation relation and an exact state
reduction can be thought of as similar to an alternating bisim-
ulation relation. As we will see, the use of state reductions as
opposed to simulation/alternating simulation relations allows
us to obtain maximally permissive supervisors rather than
merely safe and non-blocking solutions. We prove here that
G is a state reduction of (2). This theorem is necessary as
we will make use of it in proving the correctness of our
approach in the case of imperfect measurement.

A. State Reductions and Supervisory Control

We begin by describing the state reduction relation below.
In what follows, the notation Post, () is the set of states
reachable from state x given control decision u and is
obtained by considering all possible uncontrollable events
that may follow. For example, for DES G in equation (5), we
would write Post,, (¢) = Uy, .cUye,wew (g, e, Uye, W).

Definition 3.1 (State Reduction): Let a system S be de-
fined as a tuple S = (X,U, —,Y, H), where X is the set of
states, U is a set of control inputs, -C X x U x X is a
transition relation, Y is an output set, and H : X — Y is the
output function. Given two systems S, and S, with Y, =Y},
we say that S, is a state reduction of .S, with state relation
R C X, x X} and control relation C' C U, (x,) x Up(ay) if:



1) R~!is a function.
2) C is a bijection.

3) Hu(x,) = Hp(xyp) if and only if (24, 2p) € R.
4) Y(xq,uq,z,) €—q, I(zp,up,x;) €—p such that
(Za, ) € R, (ug,up) € C, and (x,, ;) € R.

5) V(xa,%p) € R, (uq,up) € C and z}, € Posty, (1),

Jz!, € Post,, (z,) such that (z/,,2}) € R.

In words, condition 1) signifies that every x; € X is in
relation with exactly one x, € X,, condition 5) signifies
that, for every (zq,25) € R, (ug,up) € C and z; €
Post,, (zp), there exists (x4, uq,x),) €—, which models
(@p, up, x}) €—p, and condition 4) signifies that every
transition in —, models some transition in —. Significantly,
conditions 4) and 5) can be achieved by construction for any
system S, and relations R and C' satisfying conditions 1),
2), and 3).

In the remainder of this paper we will often refer to
the computation of a maximally permissive, safe, and non-
blocking supervisor of a system at the DES level. Obtaining
this supervisor consists of solving the basic supervisory
control problem in the non-blocking case, or BSCP-NB,
as described in [11], [2]. Specifically, problem BSCP-NB
computes the supremal controllable sublanguage of a speci-
fication L,,(H) with respect to £(G), where G is a system
automaton and H is a specification automaton. In general,
the event set of G and H, denoted by F is is partitioned into
controllable events F. and uncontrollable events F,.. The
solution to problem BSCP-NB is the language (£,,(H))®,
where 1T C denotes the supremal controllable sublanguage
operation. The standard algorithm which solves this problem
is given in [15] and constructs a supervisor S such that
Lin(S/G) = (Lm(H)' and L(S/G) = (Ln(H))TC,
where S/G is the system G controlled by S and L denotes
the prefix closure of language L, which is all the strings in
L and all their prefixes.

In the theorem that follows (Thm. 3.1), we compute the
maximally permissive, safe, and non-blocking supervisor of
a system with transitions —,C X, x U, x X, with respect
to a safety specification Safe, C—, and set of marked
states X, o C X,. Consistent with the above description of
BSCP-NB, we need two automata, denoted by G, and H,, to
capture the system behavior —, and the legal behavior given
by Safe, and X,, ,. Assume that we have an automaton
G, with states X, and transition function 9¢, satisfying
the following two conditions (where ! means is defined):

Ve, (Ta,ue)! & 32! € Xyt (w0, U0, 7)) €= (1)

e Bl Vg, (Ta, ust) = 7)) & (Ta,Ua, ) E—48)

In words, (zg,uq,)) €—, means that controllable event
u, is defined from state x, in G, and there exists some
uncontrollable sequence of events following u, that takes
G, from ¢g, (x4, uq) to x),. Given G,, Safe, and X, 4,
we construct subautomaton H, & G, such that X,,, , € X,
is the set of marked states and with transition function ¥g,
satisfying conditions (7) and (8), but with Safe, instead of
—4. We solve BSCP-NB for H, and G,. Because H, C G,
S is of the form S : X, — 2Ue.

The usefulness of Def. 3.1 is illustrated in the following
theorem:

Theorem 3.1: Suppose that system S, is a state reduction
of S, with state relation R and control relation C' and that
we are given a safety specification Safe, C—; and a set
of marked states X,,, C X, for system S,. Suppose that
the set of marked states satisfies the condition: Hp(xp 1) =
Hb(l‘b,g) = (1‘(,71 € Xmp & wp2 € Xm,b)- Define
the safety specification Safe, C—, for system S, by
(€, Uq, ) € Safe, if and only if, for all (xp, up, }) €
such that (z4,2p) € R, (ug,up) € C(zq,xp) and (2, x}) €
R, we have that (xp,up,z;) € Safe,. Define the set of
marked states X,, , € X, by z, € X,,, if and only if
3z, € X, p such that (z,,2,) € R. Suppose that we have
a maximally permissive, safe, and non-blocking supervisor
o, : Y — 2Va, where Y is the (common) output space.
Define the supervisor o3, : Y — 2V by w, € oy(y) iff
Ju, € 04(y) such that (u,,up) € C. Then oy is safe, non-
blocking, and maximally permissive among supervisors of
the form oy, : Y — 2Ue,

The above theorem shows that it is possible to compute
a supervisor for a system with a large or infinite state
space by abstracting that system to one with a finite state
space, computing a supervisor for the reduced system, and
translating back. Furthermore, this process conserves not
only safety and non-blockingness in the translation, but also
maximal permissiveness.

Next, we define an exact state reduction, which is akin to
an alternating bisimilarity relation.

Definition 3.2 (Exact State Reduction): Given two sys-
tems S, and S, with Y, = Y}, we say that S, is an exact state
reduction of S;, with state relation R C X, x X} and control
relation C' C U,(x,) X Up(xp) if S, is a state reduction of
Sy, and:

6) for every (z,,xp) € R, for every (uq,up) € C and for
every =/, € Post,, (z,), 3z} € Post,, (z}) satisfying
(), }) € R.

B. Properties of our Abstraction

In this paper, we have the same set of control decisions in
both the continuous and discrete domains. Thus, the relation
C will always be taken to be C' = U,,_cp, (Uc, uc). We prove
that system G is a state reduction of (2) here and show that,
additionally, it is an exact state reduction when d,,;, and
Omae are multiples of p.

Theorem 3.2: Define the observation maps Hx(z) :=
¢(x), Hg(q) := g, and the relation R := {(z,q) € X x @ :
¢(x) = ¢}. Then system G is a state reduction of (2).

Theorem 3.3: Define Hx, Hg, and R as in Thm. 3.2. If
Omin and 0,4, are multiples of u, then G is an exact state
reduction of (2).

IV. CASE OF IMPERFECT MEASUREMENT

In this section, we show how to extend the results of [7]
to obtain a maximally permissive, safe, and non-blocking
supervisor in the presence of measurement error. We begin by
describing a system defined over continuous state estimates



that implements a prediction-correction scheme and proceed
to formally describe the properties of the supervisor we wish
to obtain, analogously to Prob. 2.1. We then describe how
to modify the discrete abstraction G of equation (5) to deal
with system measurements, which we do by first introducing
a finite set of observable “measurement” events to our
abstraction, and second by treating all the uncontrollable
events as unobservable, resulting in a modified DES G'.
Next, we construct Obs(G"), the observer of G’ with respect
to its unobservable events (see e.g., [2]), and show that it
is a state reduction of the system defined over continuous
state estimates. Finally, we define a safety and non-blocking
specification for Obs(G’) and invoke Thm. 3.1 to show that
we can obtain the desired supervisor in the case of imperfect
measurement by computing the maximally permissive, safe,
and non-blocking supervisor of Obs(G’) with respect the
specification and translating this supervisor from the DES
level to the continuous level.

A. Problem Description

Given a maximal error in measurement of e,,,,,, define the
function L : X — 2% by L(x) = [X — 1€maz, X + 1€maz)s
where 1 denotes the vector (1,...,1)T and, for any two
vectors a,b € R™, [a,b) denotes the box {x € R™ : a; <
x; < bi,i =1,...,n}. We say that continuous state x is
consistent with measurement x if € L(x). Now consider
a set-membership estimation scheme for system (2) with
observations (3). Let [ lp C X and I;; C X be, respectively,
the predicted state estimate, and the state estimate after
correction. For a given controllable input u. € U, the
evolution of the two sets is described by:

I = (71Qo)={r e X:lx)eQo}
Ip = I°(Iy,xx) = I} 0 L(xk)
L = PG ue) = Useaupeev,werg [ +u+ 0]

©))

Let 2% /¢ denote the quotient set of 2% by the equivalence
classes induced by ¢. In the case of imperfect measurement,
our aim is now to design a supervisor o : 2% /¢ — 2V for
(9) that enforces 0O-safety. More precisely, we aim to solve
the following problem.

Problem 4.1: Given 2% /¢, define a supervisor that asso-
ciates to each I, € 2% a set of inputs v, € V, allowed for the
interval [k7, (k + 1)7] and constant over this time interval,
with the following properties:

o ifve(t) € o(If, ), ) for t € [k, (k+1)7], then x(t) is
0-safe in the same time interval (0-safety)

o if o(If) # 0, v.(t) € o(Ify),),) for t € [kr,(k +
1)7—]7 and E(I]g+1) 7é {q"L}, then U(Il§+1) 7é (Z) (non-
blockingness)

e if & # o and & satisfies the two properties above, then

&(I5) C o(If) for all k > 0 (maximal permissiveness).

B. The Observer

We assume that the continuous system begins operation
with a single measurement )y of the current state. Fur-
thermore, we take the events of U,. (the actions of the
uncontrolled vehicles) and W (the effect of the disturbance)

to be unobservable. Thus, at any given time, we can define
a notion of information state (see e.g., [10]), representing
the set of states that the system could be in, given all past
information (the sequence of chosen control decisions and
position measurements). Now, we would like to introduce
an observer of the state into our discrete event model, that
uses past knowledge of the state and current measurement
to estimate the current information state. We obtain the
estimator by first defining a new event, denoted by A, that
represents the measurement. We begin by partitioning the set
of possible measurements X into a set of equivalence classes
A. Then, for any state ¢ € Q and for any measurement
X € X, we define a transition ¢°(¢g, \) if and only if some
2 such that ¢(x) = ¢ is consistent with the measurement Y,
where \ = [x], the equivalence class containing x. We thus
obtain a new transition structure, by composing ¥(q, u, w)
with the new transition 1)°(g, ). We then take the observer
of the DES with transitions (-, u, w) o ©°(¢, A) and show
that, with this four-layer transition structure, the observer
correctly realizes a prediction-correction estimator.

Consider some information state ¢ C (). Based on the
transition function 1, the set ¥ (¢, u, w) := Uqaw(q,u,w)
is the set of all states that are reachable given initial state
q € t. In other words, this is the best prediction given our
knowledge of the initial conditions and of the dynamics.
We can correct the prediction once a measurement is taken,
by defining a transition that sends (¢, u,w) to a subset of
itself, consisting of all the states that are consistent with the
measurement. For any discrete state ¢, define =% (q) := {z €
X : £(z) = ¢} and for any discrete information state ¢ C @,
define £71(1) := Uge, L7 (q). We define ¢(q, x) by:

Hg) N L(x) # 0

else (10)

undefined,

V(g x) = { &

We extend this definition to any discrete information state
L C @ by defining ¢°(1,x) = {g € ¢ : £7(q) N L(x) #
()}. Because the set of possible measurements is X, which
is infinite, we define a finite set of equivalence classes A.
Specifically, we write y1 = x2 if ¥°(Q,x1) = ¥°(Q, x2)-
Denote by [x] the equivalence class of x and let A be the set
of such equivalence classes. Then, for any A € A, define the
correction (1, \) as (¢, x), for any x such that A = [x].
This is well defined since ¥°(¢, x) = ¥¢(Q, x)Nt, and hence
YR, x1) = ¥(Q, x2) = (1 x1) = V(¢ x2).

We now write, with slight abuse of notation,
(g, A, u,w) = Y(,u,w) o (g, A), which results in
a four-layer transition structure. Note that, in order to
enforce the property that the language of this new system
should be a subset of (AU.U,.W)*, we must introduce
another layer of intermediate states, Q’ , between Q and
Qr1. This layer, which is reached upon the occurrence of
a measurement )\, is a copy of Q Thus, when we write
¥°(q,\) = ¢, we take the input state to be in Q and the
output state to be in (). Now, define the set of events A to
be observable but uncontrollable, the set U, to be observable
and controllable and the two sets of events U,. and W
to be unobservable and uncontrollable. Let the resulting



system be called G’. Finally, we compute the observer
Obs(G"), which will have transition function ¢ = ¢ U ¢P,
where ¢¢ : 2€ x A — 29" and ¢P : 29 x U, — 29.
That is, the states of Obs(G’) are information states and its
events are either control decisions or measurement events.
We will define the marked states of Obs(G’) later on. By
construction, all controllable events of G’ are observable.

C. Solution Method

In this subsection, we demonstrate that, when G is an
exact state reduction of system (2), Obs(G’) will be an exact
state reduction of the continuous estimator system of (9). We
proceed to give equations for the safety and non-blocking
specifications of system (9). Finally, we invoke Thm. 3.1 to
show that we can solve Prob. 4.1 by appropriately defining
safety and non-blocking specifications on Obs(G’), com-
puting the maximally permissive, safe, and non-blocking
supervisor S of Obs(G") with respect to these specifications,
and translating this supervisor to the continuous domain to
obtain the desired supervisor o that solves Prob. 4.1.

Theorem 4.1: Define the observation maps Hox () =
((I) and H,5(t) = ¢ and the relation R = {(:,I) €
2¢ x 2% 1 1 = Hyox(I)}. If G is an exact state reduction
of (2), then Obs(G’) is also an exact state reduction of (9).

Remark 4.1: If G is an (inexact) state reduction of (2)
then Obs(G’) will not in general be a state reduction of
(9). The reason for this is that (¢,]) € R does not imply
(¢¥P(t,ue), IP(I,u.)) € R when G is not an exact state
reduction of (2).

Next, we wish to apply Thms. 3.1 and 4.1 to solve Prob.
4.1. To do this, we must define the transition function —(9)>
safety specification Safe(g), and set of marked states I,,, ()
for system (9). Let —(3) and Safe(y) denote the transition
function and safety specification of system (2). Then:

(I, ue,I') €—9)C 2X x U, x 2X if
Iy e X I(IP(L,ue),x) =1

(I,uc,I') € Safewy C—9) if Ve e I,2" € II(12)
(2, uc, ") €=(9) = (T, uc, ") € Safe)

Loy = {1 2% : 4(I) = {gm}} (13)

Theorem 4.2: Let Hyx, H,s, and R be defined as in
Thm. 4.1 and suppose that G is an exact state reduction
of system (2). Define the safety specification for Obs(G”)
as Safeops C 29 x Us x 29 by (1,u.,t') € Safeops if
and only if for all (I,u.,I") € such that (+,I) € R
and (//,I') € R, we have that (I,u.1I') € Safey).
Let the set of marked states of Obs(G’) be the singleton
tm,0bs ‘= {{qm }}. Let the maximally permissive, safe, and
nonblocking supervisor of Obs(G") with respect to Sa feops
be S. Define the supervisor o : 2% /¢ — 2V by o(I) =
{tue/7 :u. € S(U(I))}. Then o solves Prob. 4.1.

Y

V. CONCLUSION

We considered the problem of collision avoidance in
vehicular networks in the presence of uncontrolled vehicles, a
disturbance, and imperfect measurements. Specifically, given
a system of vehicles crossing an intersection, we sought to

obtain a maximally permissive supervisor that ensured that
all vehicles cross the intersection safely, despite imprecisely
measuring vehicle positions. We defined the concept of a
state reduction and proved that, when one system is a state
reduction of the other, we may obtain a supervisor that is
safe, non-blocking, and maximally permissive for the system
with the larger state space by translating the safety and
non-blocking specifications to the reduced system, using
standard supervisory control techniques of DES to solve for
the maximally permissive, safe, and non-blocking supervisor
for the reduced system, and then translating the resulting
supervisor back to the original system. We constructed a new
discrete event system abstraction by introducing a finite set of
observable but uncontrollable “measurement events”’, showed
that this abstraction was a state reduction of a system defined
over state estimates, and used this abstraction to obtain the
desired supervisor for the continuous domain system.
Future work will proceed in three directions: generalizing
the definition of state reduction to deal specifically with
partially observable automata in order to extend the main
result of Thm. 4.2 to the case where G is an inexact state
reduction of system (2); finding computationally efficient
algorithms for our solution method, as was done in [7]; and
extending our results to the case of a second order system.

REFERENCES

[1] T.-C. Au, C.-L. Fok, S. Vishwanath, C. Julien, and P. Stone, “Eva-
sion planning for autonomous vehicles at intersections,” in /EEE/RSJ
International conference on Intelligent Robots and Systems, 2012.

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems.  Springer-Verlag, 2008.

[3] A. Colombo and D. Del Vecchio, “Efficient algorithms for collision
avoidance at intersections,” in Hybrid Systems: Computation and Con-
trol, 2012.

, “Enforcing safety of cyber-physical systems using flatness and

abstraction,” in Proceedings of the Work-in-Progress session of ICCPS

2011, 2011.

, “Supervisory control of differentially flat systems based on
abstraction,” in 50th IEEE Conference on Decision and Control, 2011.

[6] A. Colombo and A. Girard, “An approximate abstraction approach
to safety control of differentially flat systems,” in European Control
Conference, 2013.

[7] E. Dallal, A. Colombo., D. Del Vecchio, and S. Lafortune, “Supervisory
control for collision avoidance in vehicular networks using discrete
event abstractions,” in American Control Conference, 2013.

[8] M. Hafner and D. Del Vecchio, “Computation of safety control for
uncertain piecewise continuous systems on a partial order,” in 48th
IEEE Conference on Decision and Control, pp. 1671-1677, 2013.

[9] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide safety
in intelligent intersections,” IEEE Trans. Veh. Technol., vol. 60, pp. 804—
818, 2011.

[10] S. M. LaValle, Planning algorithms.
2006.

[11] P.J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control and Optimization, vol. 25,
no. 1, pp. 206-230, Jan. 1987.

[12] P. Tabuada, Verification and control of hybrid systems.
Verlag, 2009.

[13] C.J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, “Computational
techniques for the verification of hybrid systems,” Proc. IEEE, vol. 91,
pp. 986-1001, 2003.

[14] R. Verma and D. Del Vecchio, “Semiautonomous multivehicle safety:
A hybrid control approach,” IEEE Robotics & Automation Magazine,
vol. 18, pp. 44-54, 2011.

[15] W. M. Wonham and P. J. Ramadge, “On the supremal controllable
sublanguage of a given language,” SIAM J. Control and Optimization,
vol. 25, no. 3, pp. 637-659, May 1987.

(4]

(]

Cambridge university press,

Springer-



