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Abstract— Motivated by driver-assist systems that warn the
driver before taking control action, we study the safety problem
for a class of bounded hybrid automata. We show that for this
class there exists a least restrictive safe feedback controller that
has a simple structure and can be efficiently computed online.
The theoretical results are then used to design driver-assist
systems for rear-end and merging collision scenarios.

I. INTRODUCTION

Driving a motor vehicle presents, with more than 1.5
million injuries in 2013, also after more than half a century
of research and policy making, an important health risk.
While a significant decrease in fatalities was achieved from
1975-2007 thanks to passive safety systems such as anti-
lock braking systems, seat belts, etc., the number of fatalities
remained stagnant over the last ten years, [11]. This, together
with advances in sensing and communication technology,
led to a shift from passive to active safety systems, such
as forward collision warning and lane keeping systems.
These features have large potential benefits, for instance the
national traffic safety board estimates that forward collision
warning systems could prevent more than 90% of all injuries
resulting from rear-end crashes [12]. The complexity of
active safety systems creates however the need for advanced
tools for formal verification of safety specifications of such
systems [7].

The theory of hybrid automata was developed in the
nineties as a modeling language for formal verification of
embedded systems, see for instance [1] for a review of
existing methods. Later it was shown that techniques from
optimal control and game theory allow to design controllers
for hybrid automata that satisfy given safety specifications,
see [9] and the references therein. Such controllers are
called provably safe. Ideally, provably safe controllers should
also be least restrictive, which means in the context of a
driver-assist system that the controller constrains the possible
actions of the human driver as little as possible. Due to the
computational complexity of the task, the design of provably
safe, least restrictive controllers remains a challenge and can
in general only be done approximately, using for instance
numerical approximations or model predictive control, see
for instance [2], [4], [10], [14]. In certain situations it may
also be justified to drop the requirement that the controller
should be least restrictive, for instance when a simple control
strategy is more desirable [8].
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It has however been shown that a number of ground
transportation systems have the so-called input-output order
preserving property, in which case exact solutions are possi-
ble, see [3], [5], [6], [15] and the references therein. The main
focus of this paper is the extension of these results to hybrid
automata that have both controlled and uncontrolled mode
transitions, continuous control and disturbance inputs and
possibly non-zero dwell time. For this purpose we introduce
bounded hybrid automata which, similar to order-preserving
continuous systems, admit enveloping output trajectories. We
show that for the class of bounded hybrid automata there
exists a provably safe and least restrictive feedback controller
that can efficiently be computed online. We also provide
sufficient conditions for boundedness of a hybrid automaton.
The results are illustrated with two application examples. The
first example is a forward collision avoidance system that is
allowed to override the driver to avoid a collision but only
after first warning the driver and allowing for a delay between
warning and override. The second example is concerned with
a similar collision avoidance system but for the case of a two
vehicle collision scenario at a traffic merging.

The application examples are described in detail in Sec-
tion II. The mathematical model is introduced in Section III
followed by the solution algorithm in Section IV. A class
of bounded hybrid automata is presented in Section V and
numerical results are provided in Sections VI.

II. MOTIVATING EXAMPLES
A. Forward collision avoidance with warning

Consider two consecutive vehicles as illustrated in Fig. 1.
The lead vehicle (LV) is human driven and the following
vehicle (FV) is equipped with a driver-assist system. Assume
that FV uses on-board sensors in order to measure its own
velocity, as well as relative position and speed of LV. This
system has therefore three observable states, z, the relative
position of LV with respect to FV, vy the velocity of FV
and LV’s velocity v;. Using standard longitudinal dynamics
for FV, where 1y denotes actuation input, and considering
the acceleration of LV d; as a bounded disturbance, i.e. d; €
[df,d!"] the dynamics of this system are given by
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where A represents air drag and a,.; incorporates deceleration
due to rolling resistance and slope of the road, see [13].
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Fig. 1. Following vehicle (FV) and lead vehicle (LV) in the corresponding
coordinate frame. The arrow points in the direction of the positive sign of
the relative distance.

A forward collision occurs in this context when
x, € | —00,bpc[ = Brc, )

where bpc > 0 represents the minimum allowed separation
between the vehicles.

Assume the driver-assist system operating on FV has the
capability of overriding the human driver’s input, denoted by
dy, with its own actuation input u . Then the actuation input
vy of FV is d¢ unless the driver is overridden by the driver-
assist system in which case it is uy. Moreover, we require
that the driver-assist system can override the driver only
after 1) issuing a warning; 2) allowing for a fixed reaction
time Trr; 3) driver disobeys the warning. Disobeying the
warning here means that the driver’s input d; is outside a
given range Dyy. More formally, the system has three modes
of operation, inactive, warned and override, see Fig. 2. The
system dynamics change in every mode in the sense that
the input ¢y comes either from the human driver, in which
case it is uncontrolled and can therefore be modeled as a
bounded disturbance or the input comes from the driver-assist
system in which case it represents a control. The switch from
inactive to warned is controlled by the driver-assist system
while warned to override depends on the driver’s input and is
therefore uncontrolled. Finally, to ensure that the driver has
time Tr7 to react to the warning, the system has to remain
for at least Tr7 in the warned mode, i.e. the warned mode
has a minimum dwell time w,, of Try. Assuring that x, will
never enter Br¢ is therefore a safety problem for a hybrid
automaton with controlled and uncontrolled mode transitions
and non zero minimum dwell time. In this paper we present
an approach that allows to find a control strategy for such
a hybrid automaton that guarantees safety and overrides the
driver as late as possible.

Driver
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Fig. 2. Finite state machine corresponding to the modes of operation of
the forward collision avoidance driver-assist system with events that trigger
the mode transitions. The mode WARNED has non-zero minimum dwell
time wm, .

B. Two vehicle conflict resolution with warning

Consider a two vehicle conflict scenario, see Fig. 3,
where the incubant vehicle (IV) follows the main road and

the entering vehicle (EV) merges into that road. Modeling
the dynamics of both vehicles using standard longitudinal
dynamics, see above, we have a system with four states,
the position along the path of both IV and EV denoted
by z; and x. and the corresponding velocities given by v;
and v.. Moreover, each of the vehicles has an independent
actuation input denoted by ¢; and ¢, respectively. Defining
fMCR3 — R? by

fMC(x,v, L) = (v,0 — Av? — am)T, 3)

where A and a,.s are defined as above, the complete system
dynamics are given by
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A collision occurs when both vehicles are in the merging

zone at the same time which can be formalized as

(z,20) € b5, b2 x |bE, b4 =t Bure,
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where the intervals |b¢, %[, ]b%, b%[ represent the location of

the merging zone along IV’s and EV’s path respectively.
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Fig. 3. Incubant vehicle IV and entering vehicle EV in the corresponding

coordinate frame. The conflict area is given by the set ]b¢, b%[ x ]b¢, b¥[.

Here we are assuming that there exists an intelligent road-
side infrastructure which communicates with both vehicles
and has the possibility to override each vehicle individually.
However, as in the previous section II-A we require that
the system can override a driver only after 1) issuing a
warning; 2) allowing for a fixed reaction time Tr7; 3) driver
disobeys the warning. Both vehicles can therefore be seen
as independent hybrid automata with modes of operation as
those depicted in Fig. 2.

The main difference to the previous case is that both
vehicles have to pass a conflict zone and therefore there are
two orders of passage, IV before EV and the other way
around. Since it is desirable that the driver-assist system
announces its plan to the drivers, we require in addition to
1)-3) that if the systems warns or overrides at least one driver
then it has to be able to guarantee a fixed order of passage.
This last requirement corresponds to assuring the avoidance
of at least one of the sets

w1t
B]\;C = ]bi,OO[ X ] - oovbg[v
Bjjc =] — 00,0} x b, o0l.
That is, the driver-assist system should choose the less
restrictive order of passage and then guarantee this order
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independent of what the human drivers do. This problem can
be formulated as a safety problem for a parallel composition
of hybrid automata. Formal definitions and a computationally
efficient solution are provided in the following sections.

I1I. MATHEMATICAL MODEL AND PROBLEM
STATEMENT

We start this section with preliminary notions, then provide
the system model and end with problem statement and
illustration of the definitions using the motivating examples.

A. Preliminaries

Throughout this paper n,m,r,s € N stand for natural
numbers. For a map f: X — Y we abbreviate f(X) =
{f(x) |z € X}. Similarly, if F': X ~ Y is a set-valued
map we write F(X) := (J,.x F(x). The sets of piecewise
continuous and continuous signals with images in Y are
denoted by S(Y) and C(Y) respectively. For any set S,
int S, S, 8S and S¢ denote its interior, closure, boundary
and complement respectively.

Definition 1: A tuple (S, <) is a partially ordered set if
for all s1,s9,53 € S we have i) s; < s1; ii) s1 = s and
Sso = s1 implies that 57 = so; iil) 7 =X s9 and sy =< s3
implies that s; < s3.

Definition 2: Let (S, <) be a partially ordered subset of
a Euclidean and A C S be a closed, convex, pointed cone.
The partial order < is induced by A if for all s1,s2 € S,

51 %S9 <= s9— 51 € A
If a partial order is induced by a cone A we use the
abbreviations

[s,0] =s+ A, [—oo,8]:=s—A,
[[81, 82]] = (81 + A) N (82 - A) .

Example 1: The component-wise partial order on R" is
induced by the cone R’} . Moreover, for any partially ordered
set (9, <), (8(9),X') is a partially ordered set where for all
x1,X2 € §(9),

X1 j/ Xo < Xl(t) = Xz(t) Vt € R+.

Notice also that if < is an induced partial order then the
same is true for <’.

In the rest of the paper, unless indicated otherwise, all
partial orders are denoted by <.

Definition 3: A hybrid time trajectory T = {Ij};\fzo is a
finite or infinite sequence of intervals in R, such that

i) Ij = [rj,7j] for j < N and if N < oo, In = [7n,Ty]

or Iy =[x, TN
i) forall j <N, 7; <7} = Tjt1.

The set of all hybrid time trajectories is denoted by 7 and
(1) stands for the index of the last interval in the sequence
7 € T and equals oo if the sequence is infinite. As we work
with autonomous dynamics, without loss of generality we
make the convention that 7o = 0 for all 7 € T.

Definition 4: Let the set S be given. A hybrid trajectory
in S is a tuple (7,2z) where 7 = {Ij}évzo € 7T and z =
{z;}1L, is such that z; € S(S) for all j. The set of all
hybrid trajectories in S is HT(.9).

For (r,2) € HT(S). z(t) = U {2;(t) | t € I;}.
Definition 5: Let the set S be given. The hybrid trajectory
(r,2) € HT(S) is continuous if for every t € Ry,
i) z(t) is a singleton;
ii) for z € z(t) and all € > 0 there exists § > 0 such that for
allt’ €]t —0,t+ 6[NR4 and 2’ € z(t'), ||z — 2| < e
Remark 1: With every continuous hybrid trajectory
(r,2) € HT(S) one can associate z € C(S) such that
{z(t)} = =z(t) for all t € Ry.

B. Hybrid system model

As mathematical model we use a hybrid automaton with
dwell time defined as follows.

Definition 6: A controlled hybrid automaton with dwell
time is a collection H = (Q, X,Y,E,U,D, R, f,Inv,G, h)
where () is a finite set of discrete modes, X C R" is the
continuous state space, Y C R" is the output space, £ C
Q@ x @ represents the set of discrete control inputs, U C R™
is the set of continuous control inputs, D C R® is the set
of disturbance inputs, R: Q x & — @ is the mode reset
map, f: Q x X xU x D — X are the continuous system
dynamics, Inv: @ ~» R4 x D is a set-valued map with open
images that represent the invariance set, G: ) ~» £ is set-
valued and represents a guard condition and h: X = Y is
the output map.

Throughout this paper H denotes a hybrid automaton and
Q,X,Y,E U, D, R, f, Inv, G, h are its components.

Definition 7: An execution of the hybrid automaton H
starting at (w, ¢, z) € Ry x Q x X is a hybrid trajectory x =
(r,w,q,x,y,e,u,d) € HT(Ry xQx X XY xE XU x D)
such that

i) (w(0),q(0),x(0)) = (w, g, z);

ii) For all j such that 7; < 7/, q; and e; are constant and

wi(t)\ _ 1 |
<Xj(t)> B (f(qj(t)axj(t),llj(t),dj(t))) vt € Ija
(w;(t),d;(t)) € Inv(q,(t)) V€ [r, 7)];

iii) For all j > 0, qj'(Tj) = R(q]‘_l(Tj_l),ej(Tj)),
e;(1) € Glalr) 1)) (wy,x,)(rj) = (0.%;-1(7)_,));
iv) For all j, y;(t) = h(x;(t)) for all ¢t € I;.

The hybrid state space is X = Ry x Q x X and we
denote its elements by £ := (w,q, ) € X. Each component
of an execution Y is a hybrid trajectory and we write (7, w)
for the dwell time, (7,q) and (7,x) denote the discrete and
continuous state trajectory respectively. The output trajectory
is (7,y) and discrete, continuous and disturbance inputs are
denoted by (7, e), (1,u) and (7, d). The set of executions of
the hybrid system H is denoted by 5% and S (§) C S is
the set of executions starting at £ € X. Moreover, if Y € S
then its components are also denoted with a bar, i.e. Y =

x*, X', etc.

Definition 8: Let the controlled hybrid automata H7 =
(Q7,X7,Y7,&,U7, DI, RI, f3,Inv?,G7, h7), j € {1,2},
be given. Their parallel composition H = H' | H?
is given by H = (Q,X,Y,E,U,D,R, f,Inv,G,h) where



S=8'x5%for Se€{Q,X,Y,E,U D} and g = (g%, ¢*)T
for g € {R, f,Inv,G, h}.

C. Controllers

In this paper we assume that the controller observes the
hybrid state of H and can use this information in its control
strategy.

Definition 9: A feedback controller for the hybrid system
H is a set-valued map 7: X ~~ £ x U. The corresponding
set of closed loop causal executions is

%r = {(Taw7anaYae7u7d) S % | v.] € {07 "3<T>}7
(e51(8), w1 (1)) € (v, (0),q;(8),%, (1)) if t € I,
and (eo,uj(t)) e m(w;(t),q;(t),x;(t)) Vt € I; \fj } ,

where I; = {7/} if (q;(7}),qj+1(7j+1)) € € and [; = 0)
otherwise. Moreover, e’ € £ is a void input that has no
influence on the system dynamics. The set of all feedback
controllers of H is &.

Remark 2: The focus of this paper are safety problems,
see Section III-E. In this context the restriction to feedback
controllers rather than controllers that depend on the entire
state history is not restrictive as was shown in [9, Prop. 2].

It is useful to define for any # C J# and any (7,d) €
HT (D) the set

%a = {(T’W7q’x’y,e7u7d) 6 % ‘ vj € {07"'7<T>}7
dj(t) = aj(t) Vt € IJ}

D. Properties of hybrid automata

In this section we introduce bounded hybrid automata.
Definition 10: Let the hybrid automaton H and 7 € #
be given. Then 7 has continuous executions if

(i) for all x € J#;, (7,y) is continuous;

(i) for all (w,q,z) € X, x € Hr(w,q,x), all t € Ry
and € > 0 there exists § > 0 such that for all
(w, ) satisfying ||(w,x) — (©,Z)|| < § there exists
X € 5 (©,q, ) such that ||y (t) —y(t)|| <e.

Intuitively continuous executions have outputs that depend

continuously on initial conditions and time. Notice that by

Remark 1 we can consider such outputs as elements of C(Y").

Definition 11: Let H be given. Then H is uniformly

tightly bounded with respect to control if (Y, =) has an

induced partial order and there exist 7‘, 7% € .F with
continuous executions such that for all £ € X, (r,d) €

HT(D) and all x € #9(¢), X" € H5(E), X* € H5(8),

yi(t) 2 y(t) 2 y"(1)

Definition 12: Let the hybrid automaton H be uniformly
tightly bounded with respect to control and 7, 7% € .# be
as in Definition 11. Then H is bounded if for all £ € X
there exist y¢*,y¢* € C(Y) such that

() V x* € H.(¢) and all x* € H#5u(E), y* < yfu and

vt =y

vVt e R,.

(i) VT € Ry, € > 0 there exist (r,d), (7,d) € HT(D)
such that for all ¥ € #9(£) and all x € HL(6),

[ye“(t) =y @) + [[ye(t) —~y(®)|| < e vtelo,T].

In Section V we discuss conditions guaranteeing that

hybrid automata are bounded and show that the application
examples of Section II satisfy these conditions.

E. Problem formulation

The problem we are considering has two main compo-
nents, the hybrid automaton H and a so-called bad set B.
The bad set B contains all “unsafe” system configurations
and has to be avoided. We consider the following cases:

i) H is a bounded hybrid automaton and the bad set is
given by B = int [b, oo], for b € Y

ii) H = H' || H? is the parallel composition of bounded
hybrid automata H' and H?2. The bad set is B =
int [b!, 0o x int [—o0, b?], for o/ € Y.

We say that 7 € % is safe for £ € X if

YR)NB=0  Vx e A(C). (5)

The safe set W(B) is the set of initial conditions for which
there exists a safe feedback controller, that is,

W(B) .= {£{ € X | Im € .Z such that (5) holds} .

Definition 13: Let m1 € % be safe for all £ € W(B).
Then 7 is a least restrictive safety supervisor if there exists
no 7’ € % \ {n} that is safe for all £ € W(B) and satisfies

m(§) C 7' (8)

Problem 1: Find a least restrictive safety supervisor m €
F.

Least restrictiveness of safety supervisors corresponds to
the requirement that these controllers should not impose
restrictive conditions on the hybrid dynamics as long as the
system state is in the interior of the safe set.

VE € int W(B).

FE. Illustration on application examples

Consider the forward collision avoidance warning system
described in Section II-A. The set of modes Qpc of the
corresponding hybrid system H o contains the three modes
of operation depicted in Figure 2. The continuous state of
the system is 27C = (@r,vg,v;) and the system output is
z,, thus the output map hFc(xF C) = z,. We assume that
the override control input uy is bounded and set Upc =
[u?,u}]. The disturbance input has two bounded compo-
nents (dy,d;) hence we define Dpc = [df,dY] x [df, d}'].
Controlled discrete transitions can happen in mode ¢f'“, see
Figure 2, which implies that Epc == {(¢f'“,¢4'C), " }. The
guard condition ensures that controlled mode transitions do
in fact only occur in mode ¢f', i.e.

79 q59)} ifje{1,2}
G FC — {(ql D) )} g ) )
ro(e;™) { 0 otherwise.



In the warned mode discrete transitions happen when the
driver’s input ds is outside the open set Dy C [d%, dY] after
a dwell time w > w,, = Trr. This is modeled as follows:

Invpe(q) = [0,wm[ X Drc U [wm, 00 X Dy X [dl[,dﬂ,

if ¢ = ¢£'° and Inv(q) := R, x Dpc otherwise. Since the
mode graph depicted in Fig. 2 is a path, the mode reset map
can be defined as R(¢[“,&) = {qg;j11} if j € {1,2} and
R(¢¥¢,€) = {¢¥“}. The continuous dynamics are given in
(1) where the input ¢y depends on the mode. We have

fFC(qucaxFC; ur, dfadl)

e dpdy) i e {1,2},
JEC (@ C ugp, dy) if j =3.

Recall that the bad set for this problem has already been
defined in (2). Thus the order on Yp¢ is induced by R_.
Solving Problem 1 corresponds in this case to designing a
feedback controller that maintains a large enough relative
distance z, for all possible inputs of both drivers.

Consider next the two vehicle conflict situation described
in Section II-B. By using the vehicle dynamics f*€, the
finite state machine depicted in Fig. 2 and DY, D% to
replace Dy in the above definition of the invariance set,
we can define the hybrid automata H® and H". Here H*
represents a driver-assist system that provides a braking
warning and H" one that provides an acceleration warning.
To design a controller for the two vehicle conflict scenario
we consider the hybrid automaton HM¢ = H; || H, where
H,; and H, are hybrid automata corresponding to IV and
EV respectively. We then have to solve the following two
problems:

1) H;, = H, H, = H" and the bad set is Bﬁ}c;

2) H; = H%, H, = H* and the bad set is BY.

Since it is clear that B4, and BYf. defined by (4) corre-
spond to the cases when the orders of Y; and Y, are induced
either by Ry or R_, the two problems fit the framework
introduced in Section III-E.

IV. PROBLEM SOLUTION

We first describe the feedback controllers that solve Prob-
lem 1. Then we show how these controllers can be imple-
mented efficiently. Sketches of the proofs of all theoretical
results are provided in the Appendix.

A. Control strategy

For any hybrid system H, bad set B C Y and feedback
controller 7 € % the corresponding capture set C(B) is
defined by

Cr(B) :=={¢ € X | Ix € #7(¢) s.t. y(Ry) N B # 0}

The set C(B) represents the set of states for which 7 €
Z is not safe. It is convenient to define for every ¢ € @ the
mode dependent capture set

Cr(g; B) = {(w,z) € Ry x X | (w,¢,7) € Cr(B)}.

In addition, the discrete inputs that are admissible and safe
are given by the set

n(w,q,z;B) =
(Gl U{eH\ (g} x{d € Q| (w.¢,x) € Cr(B)}).

In the case of a bounded hybrid system we have the
following result.

Theorem 1: Let H be uniformly tightly bounded with
respect to control. Moreover B = int [b, oo] for some b € YV’
and 7¢ € .Z be as in Definition 11. Then 7 € .% given by

F(w.q.7) (W, q,x) if (w,z) € Cre(q; B),
T(w,q,x) = .
¢ Ene(w,q,x;B) x U otherwise,

c

is a least restrictive safety supervisor and W(B) = C,..(B)".

The case when H is the parallel composition of bounded
hybrid automata is similar.

Theorem 2: Let H = H' || H? where for all j € {1,2},
H is uniformly tightly bounded with respect to control.
Furthermore let B = int [b',00] x int [—oc,b?] where
b €Y7 for j € {1,2}. Finally let 7" = (x{,7%)" € .7
where 7% and 7% denote the feedback controllers of each

J . J
system H7 from Definition 11. Then 7 € .% defined by

ﬁ'(w I) ,7 WT(quvx) if (wax) € Cﬂ'T(q;B)a
)= Ext(w,q,m;B) x U otherwise,

is a least restrictive safety supervisor and W(B) = C.+(B)".

B. Characterization of the safe set

The implementation of the least restrictive safety supervi-
sors obtained in Theorems 1 and 2 requires the computation
of the corresponding capture, respectively safe sets. This can
be done efficiently thanks to the following results.

Theorem 3: Let H be a bounded hybrid automaton and B
be as in Theorem 1. Then

W(B) = {¢ € X | y¢"(Ry) N B =0},

where yg“ is as in Definition 12.
Theorem 4: Let H = H' || H? where for j € {1,2}, H’
is bounded. Moreover let B be as in Theorem 2. Then

W(B) = {€ = (&,&) € X | (ve!, vé))(Ry) N B =0},
where y?j‘ and ygf are as in Definition 12, j € {1,2}.

C. Solution algorithm

The least restrictive safety supervisors from Theorem 1
and 2 are set-valued maps which means that they provide
a set of safe inputs rather than a specific input. These
safety supervisors should therefore be understood as actual
supervisors of the system. Consider the logic diagram of
Fig. 4. Here (uP,dP) corresponds to the plant input which
might be driver and disturbance inputs in a driver-assist
system. Then the safety supervisor checks if the plant input
keeps the state in the safe set WW(B) and overrides the plant
input if and only if this is not the case.



Supervisor:
Is plant input
safe?

Yes
(&) = (2, uP)

System Dynamics | ¢

Fig. 4. Logic diagram of a system with safety supervisor.

Since the actual implementation of the safety supervisor
will check the safety of the plant input in discrete time, we
use a fixed time step At > 0 and perform a forward Euler
approximation in order to compute the state that would result
by applying the plant input (u?,dP). To check whether this
state is in WW(B) we use either Theorem 3 or Theorem 4.
Pseudo code for the case of a bounded hybrid automaton is
provided in Algorithm 1.

Algorithm 1: Supervisor for bounded hybrid automaton

Input: Current state & and plant input (u”, dP)
Output: Discrete and continuous inputs (e, u)
Compute "¢ € AL (£);
gpred — (Wpred(At), qpred(At)’ Xpred(At));
if &7t e {¢e X |y (Ry)NB =0} then
(e,u) ¢ (e, u”);
else
(e,u) « 7(£);
end if
return (e, u);

V. A CLASS OF BOUNDED HYBRID AUTOMATA

The main assumption in Section IV is that the hybrid
automaton H is bounded. In this section we describe a class
of hybrid automata with this property.

A. Discrete dynamics

It is natural to consider the set of modes @ of the hybrid
automaton H together with the possible mode transitions as
a directed graph. To be precise, one can consider the directed
graph (@, A), where () represents the set of vertices and the
set of arcs A is given by

A={(q,¢)€QxQ|¢d €R(q,E)Nqg#q'}.

Definition 14: For a mode g € @ the set of its successors
is S(q) = {¢d €Q|3(q,¢) € A}. A leaf is a mode ¢
such that .(q) = 0. A controlled mode is a mode ¢ such
that (¢,¢’) € & for all ¢ € #(q). The set of controlled
modes is denoted by Q¢, @ is the set of leafs and Qp =
Q\ (Qe UQL).

Definition 15: A simple path {qo,...,qn} C Q is a
sequence of modes such that for all j € {0,...,N — 1},
(gj,qj+1) € A and g # g, for all j # k.

We will impose the following assumption on (Q,.A).

Assumption 1: 1) € C A; ii) (Q,.A) forms a simple path;
iii) for all ¢ € Qg, Inv(q) = Ry x D and G(q) = {q} x
Z(q); iv) for ¢ € Qr, Inv(q) = Ry x D and G(q) = 0; v)
forall g € Qp, ¢ ¢ R(q,&) and G(q) = €£.

Condition i) ensures that each discrete control input corre-
sponds to a specific mode transition. Requirement ii) reflects
the hierarchy between different operating modes. Moreover,
together with iv) and v) it guarantees that there are finitely
many mode transitions since every mode can be visited at
most once. Conditions iii)-v) restrict the discrete dynamics
according to the three classes of modes Q¢, @, and Qp.

The notation ¢ < ¢’ means that either ¢ = ¢’ or there
exists a simple path from ¢ to ¢'.

B. Continuous dynamics

The following are standard assumptions on the dynamics.

Assumption 2: i) For all (q,u,d) € Q x U x D the
mapping ¢ — f(q,x,u,d) is Lipschitz on X and for all
(¢,x) € @ x X the mapping (u,d) — f(q,z,u,d) is
continuous; ii) the map h: X — Y is continuous.

In order to obtain a sufficient condition for boundedness
of a hybrid automaton we use the notion of order preserving
system.

For each ¢ € @, the continuous system X(q) =
(X,Y,U,D, f(q,-,-,),h) characterizes the continuous dy-
namics within the mode. Thanks to Assumption 2, for all
x € X,ue S SU) and d € S(D) there exist corresponding
trajectories x7*%d € C(X), y?=wd ¢ C(Y) satisfying
x¢*wd(0) = z and

x®T WA () = f(q,x0®%4A(), u(t),d(t)) VteRy,
y oo ma () = h(x0TmA (1)) Vit € Ry

Definition 16: Let ¢ € @, X, Y, U and D be partially
ordered sets. Then X(q) is order preserving with respect to
control and disturbance if for all d € S(D) and u € S(U),

() 21 222, u; Uy = x&Z1,u1,d =< Xq’rmwz,d;
() 1 <29, dy < dy = x&%1,u,d1 = Xq,xz,u,dz;

C. Bounded hybrid automata

Next we provide sufficient conditions for a hybrid automa-
ton to be bounded.

Theorem 5: Let H be a hybrid automaton satisfying As-
sumption 1-2 and such that X, Y, U and D are sets with
induced partial orders. Then H is bounded if in addition the
following conditions are satisfied:

(i) there exist uf,u* € R™ such that U = [uf, u"];
(ii) there exist d*,d* € R® such that D = [d*, d“];

(iii) for all ¢ € (@p there exist 77 € Ry,
dot,df,dev,dy € D osuch that dot < df,

dg = dy and Inv(q) = ([O,Tq[ X int [[d;"*z,d;’*"]]) U
([T, 00[ x int [df, d¥])s

(iv) for all ¢ € @, the continuous system Y (q) is order
preserving with respect to control and disturbance;



(v) forall z € X, ue S(U),d € S(D) and all ¢,q € Q
such that § < ¢,

£ ~ 14 ~ w w
d d d z,ut,d
yQ;IﬂJ« s j yq,x,u s , yQJ;u s j yq,w u ,

0

§,2,u,d Jx,u,de Jx,u,de g,,u,d"
4 @ 2 y? @, y? o 2y? 7,

y

where d) = d2* = d' and d¥ = do* = d" if ¢ €
Qe UQL.

The proof of Theorem 5 is based on the explicit forms of
extremal feedbacks and disturbances provided in the follow-
ing Corollaries. Full details will be published elsewhere.

Corollary 1: Let H be as in Theorem 5. Then 7¢ € .%
defined by

P rara) {{(q,ﬂq))} < {u'} ifg € Qe

{(e% uf)} otherwise,

is as in Definition 11. The feedback controller 7% € % can
be defined analogously.

Corollary 2: Let H be as in Theorem 5 and 7¢, 7% € .
as in Corollary 1. Then for all £ = (w,q,2z) € X we set
qd € Qp U@ to be such that ¢ < g and ¢ < ¢ for all
qd €{ie@Qplgq=3jtand o =wifg=gand © =0
otherwise. Defining the signal d* € S(D) by

de(t) d" ift <T7-a,
o dy otherwise,

yht = y‘m’“e’du is as in Definition 12. One can define
d§ € 8(D) and yg* analogously.

It is not difficult to check that the hybrid systems Hpc, H*
and H*" introduced in Section III-F satisfy the conditions of
Theorem 5 if the sets Dy, DY, and D, are open intervals.
It is then straightforward to obtain least restrictive safety
supervisors for both the forward collision and the two vehicle
conflict scenarios by using Theorems 1-4 and Corollary 1-2.

VI. SIMULATION RESULTS

In this section we present simulation results obtained by
using Algorithm 1 for the application examples of Section II.
All algorithms were implemented in MATLAB and run on
a 2.6 GHz dual core computer.

A. Forward collision avoidance with warnings: Capture sets

Consider the scenario described in Section II-A. In order
to compute the capture set of this problem we can use
Theorem 3 and Corollary 2. The capture set C(Bpc) =
W(Brc)© of this problem is a subset of R3. For better
visualization we plot two dimensional slices of this capture
set that correspond to the fixed LV speed 120km/h. Moreover
we use v, = v; — vy to denote the relative velocity of LV
with respect to FV. Fig. 5 shows the mode dependent capture
sets. By Corollary 1 it is clear that the mode dependent
capture set for ¢f'® and ¢f'“ are equal when w = 0. The
mode dependent capture set corresponding to ¢’ on the
other hand is considerably smaller as in this case FV can be
controlled by the supervisor. Recall that in all three modes,
the acceleration of LV is a bounded disturbance.
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Fig. 5. Slices of the mode dependent capture set C'(¢; Bpc) where v; =
33%771/5, w = 0s and wy, = Trr = 1s.

The minimum dwell time w,,, has an important impact on
the size of the mode dependent capture set in modes ¢f ¢
and ¢£'“, as is shown in Fig. 6. As expected, the larger w,,
the bigger the capture set. Notice that the dwell time w has a
similar effect when the system is in mode ¢£ “. In this case,
the bigger w, the smaller the mode dependent capture set.

I ¢ (a5 Bre)
C"%(q5“; Bro)

C'(q5 ; Bre)

e

Relative velocity v, (m/s)
A N O N A O ®

0bpc 20 40 60 80 100
Relative position z,. (m)

Fig. 6. The figure shows superposed mode dependent capture sets for
the mode ¢&'C and wn, € {1s,1.5s,2s}. We have C'(¢4'C; Bpc) C
C'5(¢f'C;Brc) € C?(¢5'¢; Brc) where CTRT (g5 Bre) stands
for the mode dependent capture set of a system with wy, = Tr.

B. Two vehicle conflict scenario

For the two vehicle conflict scenario described in sec-
tion II-B we simulated the position of IV and EV under
the control of the safety supervisor given in Theorem 2,
see Fig. 7. As mentioned in Section II-B, the case when
IV passes the merging zone first corresponds to the bad set
BYf.. The set B{%, corresponds to the case when EV is
first to pass. In the simulation depicted in Fig. 7 only the
case when IV passes first is safe. Finally recall that when
warned, drivers obey the warning when their actuation input
belongs to the set D€V or Dy, depending on whether they
got an acceleration or a braking warning. In the simulation
example of Fig. 7, EV disobeys the warning and is therefore
eventually overridden by the driver-assist system.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we considered the safety problem for
bounded hybrid automata and designed a corresponding
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(d)

The plots show a sequence of positions for a simulation with two vehicles approaching a merging zone Bjsc. In (a), the hybrid state is in

Incubant vehicle position z; (m)

Incubant vehicle position ; (m)

(©)

W(Bf\%c)c but in W(B%c) In (b) the state hits the boundary of the safe set W(BYf) and the safety supervisor warns both drivers. IV complies with
the warning while EV disobeys and is eventually overridden by the system, (c).

safe and least restrictive feedback controller. In addition we
showed that for a special class of bounded hybrid automata
this feedback controller has a simple form and is efficiently
computable online. Finally we showed that driver-assist
systems that warn drivers before they override them can be
modeled within this class of hybrid systems.

The applicability of our approach is mainly restricted by
the fact that we consider bad sets that are cones. Moreover,
it is in general difficult to check whether a given hybrid
automaton is bounded and to find the appropriate enveloping
trajectories. It would therefore be interesting to investigate
possible relaxations of the conditions of Theorem 5. From a
practitioners point of view it would be interesting to inves-
tigate approaches to decide whether the driver is complying
with the warning other than the hard threshold used here.

APPENDIX

In the following we provide a series of lemmas that
together achieve the proof of Theorem 1 and 2. Full proofs
of these lemmas will be published elsewhere.

Lemma 1: Let H be a hybrid automaton and B C Y be
open. Furthermore let 7 € . have continuous executions.
Then 7 € .% given by

m(w,q,x) if (w,z) € Cx(q; B),
Ex(w,q,x;B) x U otherwise,

is safe for all (w,q,z) € C(B)“.

Lemma 2: Let H, B and w¢ be as in Theorem 1. Then
W(B) = C.(B)".

Lemma 3: Let H= H' | H?, B, n" = (n{,
Theorem 2. Then W(B) = C+(B)“.

Theorems 1-4 follow then readily from Lemmas 1-3.

T(w,q,x) =

u .
%) be as in
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