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Abstract Modularity is a powerful property for analyzing the behavior of a sys-
tem on the basis of the behavior of its components. According to this
property, any two components maintain their behavior unchanged upon
interconnection. Is modularity a natural property of bio-molecular net-
works? In this review, we summarize recent theoretical and experimen-
tal results that demonstrate that the answer to this question is neg-
ative. Just as in many electrical, mechanical, and hydraulic systems,
impedance-like effects, called retroactivity, arise at the interconnection
of bio-molecular systems and alter the behavior of connected compo-
nents. Here, we illustrate the effects of retroactivity on the static char-
acteristics and on the dynamic input/output response of bio-molecular
systems by employing a mixture of control theoretic tools, mathematical
biology, and experimental techniques on reconstituted systems.

Keywords: Modularity, retroactivity, insulation, transcriptional networks, signaling
cascades.

Introduction
A common approach to either designing or analyzing a complex sys-

tem is to decompose it into smaller components, or modules, whose func-
tions are well isolated by those of the neighboring components. This
approach has been employed for long time in engineering disciplines,
such as electrical engineering and computer science and, more recently,
it has been proposed also for the analysis of bio-molecular systems [mod-
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ules; alon-book; kirschner-gerhart]. Specifically, scientists have been ad-
vocating for the recognition of functional modules, which include signal-
ing systems such as MAPK cascades and covalent modification cycles,
machinery for protein synthesis, and DNA replication [lauffenburger-
modules; asthagiri-lauffenburger2000]. However, whether modular or-
ganization is a general property of bio-molecular systems is still sub-
ject of debate. The need for understanding the extent of modularity in
bio-molecular systems has become particularly pressing when designing
synthetic circuits. In synthetic biology, in fact, a number of simple func-
tional modules, such as oscillators, toggles, and inverters, are available,
but connecting these “modules” together to engineer complex function-
alities is still out of reach [WeissEMBO2006; Elowitz; Ninfa; Collins].
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Figure 1.1. (Left) Diagram representing the activator-repressor clock of [Ninfa]. This
clock is composed of two proteins, A and B, in which A activates its own production
and the production of B through transcriptional activation, while B represses the
production of A through transcriptional repression. The downstream systems repre-
sent transcriptional components that take protein A as an input. (Right) In the case
in which A is taken as an input to downstream systems through the binding with
DNA promoter sites in total amount pTOT , the behavior of the clock changes and is
disrupted for high enough load.

The fundamental assumption made when analyzing or designing a sys-
tem modularly is that the behavior of each component does not change
upon interconnection. However, as it occurs in several engineering sys-
tems such as electrical, mechanical, and hydraulic systems, this assump-
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tion does not generally hold in biological systems. Upon interconnection,
the behavior of an “upstream” component (the one that sends the sig-
nal) is affected by the presence of the “downstream” component (the
one that receives the signal). Consider for example the oscillator of
[Ninfa] as a source generator to be employed to synchronize a number
of downstream transcriptional processes (Figure 1.1). The oscillator is
connected to these downstream processes by having one of the proteins
of the oscillator, say the activator A, serve as a transcription factor for
the downstream systems by binding to promoter sites in amounts pTOT .
These downstream processes in turn act as a load on the oscillator by us-
ing up its output protein and by thus affecting its dynamics (right-side
plot of Figure 1.1). We broadly call retroactivity the phenomenon by
which the behavior of an upstream component changes upon connection
to a downstream client.

These considerations strongly motivate the need for a novel theoret-
ical framework to formally define and quantify retroactivity effects. In
this chapter, we review a recently proposed framework for studying sys-
tems with retroactivity along with theoretical and experimental findings
on the effects of retroactivity on bio-molecular systems [ddv-MSB; ddv-
ACC2008; ddv-CDC2008; ddv-jayanthiCDC2009; ddv-PNAS-ss; ddv-DSCC2010].
We illustrate this framework through a simple transcriptional system ex-
ample and we then review theoretical and experimental results on the
effects of retroactivity on the steady state and dynamic response of a
signaling system.

This chapter is organized as follows. In Section 1, we discuss the con-
cept of retroactivity and its general modeling. In Section 2, we illustrate
the modeling and quantification of retroactivity on a transcriptional sys-
tem example. In Section 3, we describe in detail the static and dynamic
effects of retroactivity in signaling systems along with experimental val-
idation on a reconstituted system. Section 4 concludes the chapter with
a short discussion.

1. Modeling Retroactivity
The principle of studying complex systems through decomposition

and interconnection techniques is central in control theory. Approaches
based on this general principle range from passivity and more gener-
ally dissipativity-based analysis [Wil72; Wil721; vidyasagar; MoyHill78;
vds], to the derivation of stability properties of large interconnected
systems from the graph-theoretic properties of interconnections and sta-
bility of individual systems [michel; siljak], to the use of backstepping
feedback approaches [kkk; sepulchre] based on input to state stability
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[04cime]. The work we describe here complements, but differs from,
problems of optimally partitioning large networks into “modules” for
which retroactivity-like effects are minimized, which typically employ
graph theoretic and statistical approaches [papin-reed-palsson04; survey-
graph-networks; WeissEMBO2006; Gilles2004; functional-modules-genes;
kremling-saez-rodriguez07]. The contribution by Saez-Rodriguez et al.
in this book focuses on these problems. In contrast, and similar to
the work in [Sauro04], we are not concerned with network topology but
with the understanding of dynamical behavior. Our ultimate goal is
not top-down partitioning or to necessarily minimize retroactivity, but
to formally define and characterize these effects especially in view of
enabling modular assembly of synthetic bio-molecular networks.

The standard model, used in any control and systems theory mathe-
matical and engineering textbook since the 1950s, e.g. [mct], is based on
the view of devices described solely in terms of input channels, output
channels, and state (internal, non-shared) variables. A notable exception
to this standard model is found in the work of Willems [willems-book].
Willems has emphasized the fact that, for many physical situations, di-
rectionality of signals is an artificial, and technically wrong, assumption.
While agreeing with this general point of view, we argue that, in certain
circumstances such as those illustrated in this work, it is appropriate to
distinguish between input and output channels. Thus, instead of blur-
ring the distinction between inputs, states, and outputs, we keep these
three distinct entities but augment the model with two additional sig-
nals, namely the retroactivities to inputs and to outputs, respectively
(Figure 1.2).

S

x

u y

sr

Figure 1.2. A system model S with retroactivity. The red signals originate from
retroactivity upon interconnection.

Specifically, we add an additional input, called s to the system to
model any change in its dynamics that may occur upon interconnection
with a downstream system. Similarly, we add to a system a signal r as
another output to model the fact that when such a system is connected
downstream of another system, it sends upstream a signal that alters the
dynamics of the upstream system. More generally, we define a system
S to have internal state x, two types of inputs (I), and two types of
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Figure 1.3. A transcriptional component takes as input u protein concentration Z
and gives as output y protein concentration X.

outputs (O): an input “u” (I), an output “y” (O), a retroactivity to the
input “r” (O), and a retroactivity to the output “s” (I) (Figure 1.2). We
thus represent a system S by the equations

ẋ = f(x, u, s), y = Y (x, u), r = R(x, u), (1.1)

in which f, Y,R are arbitrary functions and the signals x, u, s, r, y may be
scalars or vectors. In such a formalism, we define the input/output model
of the isolated system as the one in equations (1.1) without r in which
we have also set s = 0. In practice, it is simpler to model the isolated
system first, and only later model the interconnection mechanism to
obtain model (1.1). Let Si be a system with inputs ui and si and with
outputs yi and ri. Let S1 and S2 be two systems with disjoint sets of
internal states. We define the interconnection of an upstream system S1

with a downstream system S2 by simply setting y1 = u2 and s1 = r2. For
interconnecting two systems, we require that the two systems do not have
internal states in common. For example, in the case of transcriptional
components, this would mean that the two transcriptional components
express different protein species; in the case of electrical circuits, this
would mean that the two circuits do not share common electrical parts
except for the ones that establish the interconnection mechanism.

2. Example: A Transcriptional System
Transcriptional networks are usually viewed as the input/output in-

terconnection of transcriptional components, which take transcription
factors as inputs and produce transcription factors as outputs [alon-
book]. We showed in [ddv-MSB] that the behavior of a transcriptional
component in isolation differs from that of the same component when
connected in the network. Specifically, consider a transcriptional com-
ponent whose output is connected to downstream processes (Figure 1.3).
The activity of the promoter controlling gene x depends on the amount
of Z bound to the promoter. For any species X, we denote by X (italics)
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its concentration. If Z = Z(t), such an activity changes with time. We
denote it by k(t). By neglecting the mRNA dynamics, which are not
relevant to the current discussion, we can write the dynamics of X as

dX

dt
= k(t) − δX, (1.2)

in which δ is the decay rate of the protein. Equation (1.2) models the iso-
lated system dynamics. Now, assume that X drives a downstream tran-
scriptional system by binding to a promoter p with concentration p (1.3).
The reversible binding reaction of X with p is given by X+p �kon

koff
C, in

which C is the complex protein-promoter and kon and koff are the bind-
ing and dissociation rates of the protein X to promoter site p. Since the
promoter is not subject to decay, its total concentration pTOT is con-
served so that we can write p+C = pTOT . Therefore, the new dynamics
of X are governed by the equations

dX

dt
= k(t) − δX + koffC − kon(pTOT − C)X

dC

dt
= −koffC + kon(pTOT − C)X, (1.3)

in which s = koffC − kon(pTOT − C)X is the retroactivity to the out-
put. Here, we can interpret s as being a “flow” between the upstream
and the downstream system. Equations (1.3) model the connected sys-
tem dynamics. When s = 0, the first of equations (1.3) reduces to the
dynamics of the isolated system given in equation (1.2).

The effect of the retroactivity s on the behavior of X can be very large
(Figure 1.4). This is undesirable in a number of situations in which we
would like an upstream system to “drive” a downstream one as is the
case, for example, when a biological oscillator has to time a number of
downstream processes. We next focus on quantifying the retroactivity
to the output s as function of measurable parameters (the quantification
of r is similar).

Quantification of the retroactivity to the output
We quantify the difference between the dynamics of X in the isolated

system (equation (1.2)) and the dynamics of X in the connected system
(equations (1.3)) by establishing conditions on the biological parameters
that make the two dynamics close to each other. This is achieved by
exploiting the difference of time scales between the protein production
and decay processes and the binding/unbinding process to promoter p
[alon-book]. By virtue of this separation of time scales, we can approxi-
mate system (1.3) by a one dimensional system describing the evolution
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Figure 1.4. The dramatic effect of an interconnection. Simulation results for the
system in equations (1.3). The green line represents X(t) originating by equation
(1.2), while the blue line represents X(t) obtained by equations (1.3). Both transient
and permanent behaviors are different. Here, k(t) = 0.01(1+sin(ωt)) with ω = 0.005
in the left side plots and ω = 0 in the right side plots, kon = 10, koff = 10, δ = 0.01,
pTOT = 100, X(0) = 5. The choice of protein decay rate (in min−1) corresponds to a
half life of about one hour. The frequency of oscillations is chosen to have a period of
about 12 times the protein half life in accordance to what is experimentally observed
in the synthetic clock of [Ninfa].

of X on the slow manifold [kokotovic]. This reduced system takes the
form dX̄

dt = k(t) − δX̄ + s̄, where X̄ is an approximation of X and s̄ is
an approximation of s, which can be written as s̄ = −R(X̄)(k(t) − δX̄)
with (see [ddv-MSB; ddv-ACC2008] for details)

R(X̄) =
1

1 + (1+X̄/kD)2

pTOT /kD

, (1.4)

in which kD = koff/kon is the dissociation constant. The expression
R(X̄) quantifies the retroactivity to the output after a fast transient
when X(t) ≈ X̄(t). Retroactivity is thus low if the affinity of the binding
sites p is small (kD large) or if the signal X(t) is large enough compared
to pTOT . Thus, the expression of R(X̄) provides an operative quantifi-
cation of retroactivity as a function of the concentration of the binding
sites pTOT , the dissociation constant kD, and the range of X̄(t), which
are all directly measurable.

Retroactivity and Noise
It is well known that biological processes are intrinsically stochastic

[Elowitz-noise; Thattai-PNAS; Paulsson-Nature2004]. Since retroactiv-
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ity alters the dynamics of a bio-molecular system, it may also alter its
noise properties. Here, we summarize some results that appeared in
[ddv-jayanthiCDC2009] about the interplay between retroactivity and
biological noise. One of the traditional metrics used to assess noise in
many electrical engineering applications is the signal-to-noise ratio. This
quantity is usually defined by taking the ratio between the power of the
signal and the power of the noise. Specifically, consider periodic input
signals of the form k(t) = k̄ + k̃(t), in which k̄ is a constant bias and
k̃(t) = A0sin(ωt) is a periodic signal with amplitude A0 < k̄ and fre-
quency ω. We assume that all the information transmitted is contained
in the signal k̃(t). To obtain a signal-to-noise figure of merit, the power
of a signal is taken to be the square of its amplitude. The power of the
noise is quantified by the steady-state variance calculated when the input
is a constant and equals the bias, that is, k(t) = k̄. Denoting A the am-
plitude of a signal and σ̄2 the steady-state variance, the signal-to-noise
ratio is given by

SNR :=
A2

σ̄2
. (1.5)

To calculate the value of σ̄2, we set k(t) = k̄ and calculate the first
and second order moments from the master equation by employing the
linear noise approximation [vankampen; gardiner]. For calculating the
amplitude A, we use the small signal approximation and calculate the
frequency response (see [ddv-jayanthiCDC2009] for details of the deriva-
tions). This leads to the signal-to-noise ratio for X given by

SNR(ω) =
Ω
kδ

1
1 + ω2

δ2 (1 + Rl)2
A2

0, (1.6)

in which Rl = kDpTOT

(k̄/δ+kD)2
and Ω is the volume. Expression (1.6) shows

that for a signal with non-zero frequency retroactivity leads to a lower
value of SNR. This is mainly due to the fact that while the amplitude
of response decreases in the presence of retroactivity, the steady state
variance does not depend on retroactivity. Notice that the higher the
frequency, the more sensitive SNR is to retroactivity.

3. Retroactivity Effects in Signaling Systems
Cellular signaling systems cover a central role in a cell ability to

respond to both internal and external input stimuli. These stimuli
(often time-varying) include the transient presence of nutrients, hor-
monal and morphogenic signals, and the periodic excitation of cellular
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clocks. Numerous signaling systems consist of cycles of protein cova-
lent modification, such as phosphorylation, and in several cases multi-
ple cycles of covalent modification are linked to form cascade systems
[MAPK1; MAPK2]. The importance of these signaling systems has
long been realized, and a wealth of theoretical work has established
the potential behaviors of such systems and the mechanisms by which
parameters and circuitry affect system behavior [Stadtman1977; Gold-
beter; Goldbeter-2; Cardenas89]. These milestone works described how
covalent modification cycles would behave in the absence of any load-
ing caused by interconnection with downstream systems, that is, how
the cycle would behave as an isolated signaling module. But, of course
signaling systems are usually connected to the downstream targets they
regulate. It is thus important to determine the effect of retroactivity
by these targets on the static and dynamic response of the upstream
system.

Here, we summarize the results of [ddv-PNAS-ss; ddv-DSCC2010],
which explicitly quantify the effect of retroactivity on the shape of the
input-output static response of a covalent modification cycle and on the
frequency response.

Model

Figure 1.5. Covalent modification cycle subject to loading due to downstream target
sites N and L for the active and inactive protein species, respectively.

Covalent modification cycles can be depicted according to the general
scheme of Figure 1.5, in which a signaling protein is converted from its
inactive form W to its active form W* by enzyme E1 and back to its
inactive form by enzyme E2. The converting enzymes activities can be
in turn controlled by an effector through allosteric modification [Fell].
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Here, we have denoted the effector by u and have left unspecified in the
diagram whether it is an activator or a repressor of enzyme activity. The
results obtained here are independent of the details of enzyme modifica-
tion and we will consider different cases to ease presentation. Usually,
the active protein W* transmits the signal to downstream systems (for
example, other signaling targets or DNA binding sites) by binding with
appropriate targets [alon-book; Kholo2006-review; KoloPNAS]. How-
ever, some signal transduction systems display downstream targets both
for the active and inactive protein [PII-2; PII-1; Ninfa2005]. Hence, we
analyze both cases and consider downstream targets L for the inactive
protein and downstream targets N for the active protein.

Let C1 denote the complex of E1 with W and C2 be the complex of
E2 with W*. The standard two-step reaction model for the enzymatic
reactions is given by

W + E1

a1−−⇀↽−−
d1

C1
k1−→ W ∗ + E1 and W ∗ + E2

a2−−⇀↽−−
d2

C2
k2−→ W + E2,

to which we add the binding reaction of W with its downstream targets
L in total amount LT and the binding of W* with downstream targets
N in total amounts NT :

W + L
kon−−−⇀↽−−−
koff

C and W ∗ + N
k̄on−−−⇀↽−−−
k̄off

C̄.

The kinetic equations governing the system are given by

dW

dt
= −a1WE1 + d1C1 + k2C2 − konNW + koffC

dC1

dt
= a1WE1 − (d1 + k1)C1

dW ∗

dt
= −a2W

∗E2 + d2C2 + k1C1 − k̄onNW ∗ + k̄off C̄

dC2

dt
= a2W

∗E2 − (d2 + k2)C2

dC

dt
= konLW − koffC

dC̄

dt
= k̄onNW ∗ − k̄off C̄. (1.7)

To this differential equations, we add the algebraic equations expressing
the conservation laws for the protein and the enzymes: WT = W +W ∗+
C1 + C2 + C + C̄, E∗

1T = E1 + C1, E∗
2T = E2 + C2, NT = N + C̄, LT =

L+C, in which we have denoted by E∗
1T and E∗

2T the total active enzyme
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amounts. If we assume that the allosteric effector u acts, for example, as
an absolute activator for E2 and a non-competitive inhibitor for E1, we
have that E∗

1T = E1T
1+u/k′

D
and E∗

2T = E2T u
u+k̄′

D
, in which k′

D and k̄′
D are the

dissociation constants for the binding of u with E1 and E2, respectively,
and E1T and E2T are the total amounts of enzymes [SysBio]. This
specific choice of allosteric modification does not alter the results that
follow and well represents the experimental system used to test these
predictions.

Steady State Effects
In order to quantify the effect of retroactivity on the static input/output

characteristics of the system, we solve system (1.7) for the steady state
and determine the values of W ∗ and W as functions of the input u,
and the amount of loads LT and NT . Letting kD := koff/kon and
k̄D := k̄off/k̄on and assuming that kD � W and that k̄D � W ∗, the
steady state value of C and C̄ satisfy

C = λW and C̄ = αW ∗, with λ =
LT

kD
and α =

NT

k̄D
.

Note that in the case in which α = 0, we have that C̄ = 0 and we obtain
as a special case of our derivations the situation in which the load is
applied only on W .

From the conservation law for W in which we have neglected the
complexes C1 and C2 (in analogy to what is performed in [Goldbeter]),
we obtain that

WT = W (1 + λ) + W ∗(1 + α). (1.8)
Further, from setting dC1

dt = 0 and dC2
dt = 0, we obtain

C1 =
E∗

1T w

K1 + w
and C2 =

E∗
2T w∗

K2 + w∗ ,

in which we have employed the normalized quantities

w∗ :=
W ∗

WT
, w :=

W

WT
, K1 :=

d1 + k1

a1WT
, K2 :=

d2 + k2

d2WT
.

From the equilibrium equation k1C1 = k2C2 and the conservation law
1 = w(1 + λ) + w∗(1 + α) with

S :=
E∗

2T k2

E∗
1T k1

and w̄∗ = w∗(1 + α)

we obtain that w̄∗ satisfies the equation

S =
(1 − w̄∗)(K2(1 + α) + w̄∗)
w̄∗(K1(1 + λ) + 1 − w̄∗)

, (1.9)
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in which, we have that S is monotonically increasing with the input
u. We have chosen to study the effects of retroactivity on the steady
state value of w̄∗ as opposed to consider w∗ because in the experimental
system we will illustrate, only the total modified protein W ∗ + C̄ can be
measured.

From expression (1.9), it is apparent that the net effect of a load
on the steady state response is to increase the “effective” normalized
Michaelis-Menten constants K1 and K2 by factors of (1+λ) and (1+α),
respectively. It is well known, in turn, that the values of these constants
establish the steepness of the steady state response of the cycle to the
input stimulus S and that their relative values establish the point of
half maximal induction [Goldbeter]. We next mathematically quantify
the steepness, through the response coefficient, and the point of half
maximal induction, called S50.

Effect of retroactivity on response coefficient and S50 The
steepness of the characteristics and the point of half maximal induc-
tion are physiologically relevant quantities in signaling systems as they
determine how linear versus ultrasensitive, i.e., switch-like, the response
to input stimuli is [Goldbeter; Goldbeter-2]. We thus mathematically
define the steepness and the point of half maximal induction and ana-
lytically determine how they are affected by retroactivity.

Since w̄∗ is a decreasing function of S, the response coefficient is de-
fined as the ratio between the value of S corresponding to 10% of the
maximal value of w̄∗, denoted S10, and the value of S corresponding to
90% of the maximal value of w̄∗, denoted S90, that is,

R :=
S10

S90
.

For a Hill equation with Hill coefficient nH , we have that

R = (81)1/nH ,

that is, R decreases as the Hill coefficient nH increases. Therefore, we
can also take R as a measure of the effective Hill coefficient of a steady
state response.

The maximal value of w̄∗ corresponds to when w = 0 and is obtained
from 1 = w(1 + λ) + w∗(1 + α) as w̄max = 1. As a consequence, we have
that

R =
S10

S90
=

81(K2(1 + α) + 0.1)(K1(1 + λ) + 0.1)
(K1(1 + λ) + 0.9)(K2(1 + α) + 0.9)

,

which is a monotonically increasing function of α and λ. As a conse-
quence, independently of where the load is applied, the steepness of the
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Figure 1.6. (Left) Effect of the load on the steady state response of w̄∗ to S when
the load is applied only to W , that is, α = 0. (Right) Effect of the load on the steady
state response of w̄∗ to S when the load is applied to both W and W*.

response decreases. For the case of no load, i.e., α = λ = 0, the expres-
sion of R reduces to the same expression obtained by [Goldbeter], while
when both α and λ tend to infinity we have that R = 81, corresponding
to Hill coefficient nH = 1. That is, the response becomes hyperbolic
(Michaelis-Menten type of response). In the case in which the load is
applied only on W , that is, α = 0, we obtain the same behavior for R.
However, while with load applied on both W and W ∗ we have that R
tends to 81 for large α and λ independently of the parameters K1 and
K2, when the load is applied to W only, we have that R = 81K2+0.1

K2+0.9
for λ → ∞, which depends on K2 and tends to 81 only when K2 is
sufficiently large.

The expression of the half maximal induction point S50 is given by

S50 =
(K2(1 + α) + 0.5)
(K1(1 + λ) + 0.5)

,

which is an increasing function of α and a decreasing function of λ. In
the case in which the load is applied only on W , that is, α = 0, we
obtain that S50 is a monotonically decreasing function of the load.

These results are summarized in Figure 1.6. With the load applied
to W only, the effect of the load is mostly to shift the point of half
maximal induction to the left. When the load is applied to both W
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and W* in comparable amounts, the effect of the load is mostly on
reducing the steepness of the response. Hence, retroactivity from large
enough loads transforms an ultrasensitive response into a more graded
Michaelis-Menten type response.

Finally, we directly study the behavior of the steady state value of w̄∗
when α and λ are varied. We thus solve equation (1.9) for w̄∗, obtaining
as the only root between 0 and 1 the expression

w̄∗ =
(1 − K̄2 − S(K̄1 + 1)) +

√
(1 − K̄2 − S(K̄1 + 1))2 + 4(1 − S)K̄2

2(1 − S)
,

(1.10)
in which we have denoted K̄2 := K2(1 + α) and K̄1 := K1(1 + λ). By
computing the derivative of this expression with respect to α and λ, we
have that when the load is applied to W only the steady state always
decreases with the load for all values of S. By contrast, when the load is
applied on both active and inactive species, the effect of the load depends
on the input stimulation. Specifically, the steady state increases for large
input stimulations, while it decreases for small input stimulations. This
is depicted in the left plot of Figure 1.6.

Dynamic Effects
To study the effects of retroactivity on the dynamics of the signaling

system of Figure 1.5, we consider a one-step model for the enzymatic
reactions as found, for example, in [Heinrich]. Also, we assume that u
is an absolute activator for E1, while it does not regulate the activity of
E2. This substantially simplifies the analysis without affecting the end
result. In this model, we neglect the complexes formed between W and
E1 and between W* and E2:

W + E1
k1−→ W ∗ + E1 and W ∗ + E2

k2−→ W + E2.

Therefore, the new ODE model describing the covalent modification cy-
cle is given by

dW ∗

dt
= k1

E1T u(t)
k′

D + u(t)
(WT − W ∗) − k2E2T W ∗, (1.11)

in which now u(t) is a time-varying input for our study. We will refer
to the ODE system model (1.11) as the isolated system. For shortening
notation, we denote V1(t) := k1

E1T u(t)
k′

D+u(t) and V2 := k2E2T .
When the covalent modification cycle transmits its signal through

W ∗ to the downstream system, we add to the isolated system model the
reversible binding reaction of W* with downstream target sites denoted
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p. These sites can either belong to a substrate that is modified by XB

through another covalent modification cycle as it occurs in the MAPK
cascades [MAPK2; MAPK1], or they can belong to promoter regions on
the DNA if W* is an active transcription factor [alon-book]. We model

this additional binding reaction as W∗ + p
kon−−−⇀↽−−−
koff

C, with p + C = pTOT ,

in which C denotes the complex of W* with p. The conservation law
for W thus modifies to W + W ∗ + C = WT . The new ODE model
describing the covalent modification system with its downstream system
is thus given by

dW ∗

dt
= k1

E1T u(t)
k′

D + u(t)
(WT − W ∗ − C ) − k2E2T W ∗

−konW ∗(pTOT − C) + koffC

dC

dt
= konW ∗(pTOT − C) − koffC, (1.12)

which we refer to as the connected system. Retroactivity enters the
dynamics of the covalent modification cycle in two places indicated by
the boxes. Specifically, the term in the small box causes an effect on the
steady state response of the system, which we have analyzed in detail in
the previous section, while the term in the large box does not have any
effect on the steady state and it affects the dynamics only.

In order to precisely quantify how the dynamic response of the system
is affected by retroactivity, we linearize the system about its steady state
and compute the transfer function for both the isolated and connected
systems. Linearization is a good approximation of the system dynam-
ics for sufficiently small amplitudes of the input stimulus. A study on
how large the amplitude of the input can be for maintaining a good
approximation can be found in [Uribe].

Isolated system. For the isolated system, let (ū, W̄ ∗) be the
equilibrium point and let ũ(t) = u(t)−ū and W̃ ∗(t) = W ∗(t)−W̄ ∗ denote
the variations about the equilibrium value. The linearized dynamics are
given by

˙̃W ∗ = βũ − αW̃ ∗, (1.13)

in which we have defined

β := k1(WT − W̄ ∗)
E1T k′

D

(k′
D + ū)2

, α :=
(

k1
E1T ū

k′
D + ū

+ k2E2T

)
. (1.14)

Direct integration of system (1.13) starting from zero initial condition
and with input ũ(t) = 1 leads to the time response to constant input
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stimuli as
W̃ ∗(t) =

β

α
(1 − e−αt). (1.15)

The response time, that is, the time the signal takes to rise from 10%
of its final value to 90% of its final value is equal to tresponse = 2/α.

The transfer function from ũ to W̃ ∗ is given by T (s) = β
s+α , in which

T (s) := W̃ ∗(s)/ũ(s), so that amplitude and phase lag are given by

A(ω) =
√

T (jω)T (−jω) =
β√

ω2 + α2

φ(ω) = arctan
(

Im(T (jω))
Re(T (jω))

)
= arctan(−ω/α). (1.16)

The frequency bandwidth, corresponding to the value of ω such that
A(ω) = 1√

2
A(0), is given by ωbandwidth = α.

Connected system. For the connected system, let the equilibrium
point be given by (ū, W̄ ∗

c , C̄) and the variations about this equilibrium
be denoted by ũ(t) = u(t)− ū, W̃ ∗(t) = W ∗− W̄ ∗

c , and C̃(t) = C(t)− C̄.
The linearized system is thus given by

˙̃W ∗ = β̄ũ − (α + γ)W̃ ∗ − (σ + η) C̃

˙̃C = γW̃ ∗ − ηC̃, (1.17)

in which we have denoted

β̄ := k1(WT − W̄ ∗
c − C̄)

E1T k′
D

(k′
D + ū)2

, σ := k1
E1T ū

k′
D + ū

,

γ := kon(pTOT − C̄), η := konW̄ ∗
c + koff .

The transfer function Tc(s) := W̃ ∗(s)/ũ(s) is given by

Tc(s) =
β̄(s + η)

s2 + s(η + α + γ) + ηα + σγ
.

Exploiting the fact that the binding and unbinding process of a protein to
binding sites is usually much faster than covalent modification reactions
[Fell], we set η = η̄/ε and γ = γ̄/ε, in which ε � 1 and γ̄ and η̄ are of
the same order as k1 and k2. By using the expressions of η̄ and γ̄ and
setting ε = 0, we obtain the reduced transfer function for the connected
system as

Tc(s) =
β̄

s(1 + μ) + α + σμ
, with μ =

pTOT kD

(W̄ ∗
c + kD)2

.



The Impact of Retroactivity on the Behavior of Bio-molecular Systems 17

10
−4

10
−3

10
−2

10
−1

10
0

−90

−70

−50

−30

−10
0

Frequency 

P
ha

se
 la

g 


10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de
 A

 

 

isolated
p

TOT
=10

p
TOT

=30

p
TOT

=50

p
TOT

=100

3000 4000 5000 6000

2

2.5

3

3.5

4

Time

W
*

 

 

p
TOT

=100

isolated

Figure 1.7. Effect of increasing the amount of pTOT on the frequency response of the
system. The parameters are k1 = k2 = 0.01, E1T = 0.075, WT = 600, E2T = 1.36,
k′

D = 100, kon = 50, and koff = 50. The small panel shows simulation results for the
input frequency as indicated by the arrow in the left plots for the value pTOT = 100.

Therefore, the response of W̃ ∗ to a constant input stimulus ũ(t) = 1 is
given by (computing the inverse Laplace transform of Tc(s)1

s )

W̃ ∗(t) =
β̄

α + σμ
(1 − e−(α+σμ)/(1+μ)t). (1.18)

The response time is thus given by tresponse,c = 2
α

(
1+μ

1+μ(σ/α)

)
, which

is larger than tresponse for the isolated system as σ < α. Also, it is
monotonically increasing with μ: for μ = 0 it is equal to the response
time of the isolated system while for μ → ∞ it tends to 2/σ. In turn, μ
monotonically increases with pTOT and (for kD sufficiently large) it also
increases with 1/kD (the affinity of W* to sites p). For values of kD close
to zero, the value of μ is not informative as the linear approximation does
not hold. Furthermore, since β̄ < β the amplitude of the response is also
reduced for the connected system. The difference β̄ − β is proportional
to C̄, so that the difference between the amplitude of the responses
increases as pTOT increases and/or kD decreases. The amplitude and
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phase lag corresponding to Tc(s) are given by

Ac(ω) =
√

Tc(jω)Tc(−jω) =
β̄√

ω2(1 + μ)2 + (α + σμ)2

φc(ω) = arctan
(

Im(Tc(jω))
Re(Tc(jω))

)
= arctan

(−ω(1 + μ)
α + σμ

)
, (1.19)

so that the bandwidth of the connected system is given by ωbandwidth,c =
α1+μ(σ/α)

1+μ . Therefore, ωbandwidth,c < ωbandwidth, that is, the bandwidth
of the connected system is strictly smaller than the bandwidth of the
isolated system and the connected system displays a phase lag with re-
spect to the isolated system. This is illustrated in Figure 1.7. We thus
conclude that the larger the value of μ the larger the effect of retroac-
tivity on the dynamical properties of the cycle, that is, the larger the
response time, the phase lag, and the smaller the frequency bandwidth.

The bandwidth ωbandwidth,c of the connected system can be increased
by increasing α. One way to increase α is to equally (so not to alter
the equilibrium of the system) increase the values of both E1T and E2T .
The result is that the behavior of the connected system becomes closer
to the one of the isolated system (Figure 1.8). In the limit in which
Ac(0) = A(0), the behavior of the connected system approaches the one
of the isolated system when both E1T and E2T are increased. That is,
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Figure 1.9. Experimental system employed in [ddv-PNAS-ss]. The part used in the
experiments is highlighted in Grey. [Permission Pending]

the system becomes insulated from retroactivity. This is in accordance
with the principle for insulation based on time-scale separation, accord-
ing to which faster system time-scales contribute to better retroactivity
attenuation [ddv-JayanthiTAC10]. Note that if β̄ is much smaller than
β, that is, Ac(0) � A(0), the dominant effect of retroactivity is on the
steady state. In fact, increasing the frequency of the input stimulation
will not result in a dramatic decrease of the connected system response
compared to the isolated system response as these two responses are
apart from each other already at zero frequency.

Experimental Results
The prediction that retroactivity makes an ultrasensitive response into

a graded one has been experimentally validated on a covalent modifica-
tion cycle extracted from the nitrogen assimilation control system of E.
coli and reconstituted in vitro [ddv-PNAS-ss]. Here, we briefly summa-
rize these experimental results.

The instance of the covalent modification cycle of Figure 1.5 employed
in the experiments is highlighted in Grey in Figure 1.9 [Ninfa2005; PII-
0; Fell]. This system was reconstituted in vitro to allow well controlled
experimental conditions. Referring to Figure 1.5, protein W is the PII
signal transduction protein, protein W* is the active (uridylylated) pro-
tein PII-UMP, active enzyme E1 is the UT activity of the UTase/UR
bifunctional enzyme, while the active E2 enzyme is the UR activity of
the UTase/UR enzyme. The allosteric effector u is glutamine, which
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Figure 1.10. Experimental results from [ddv-PNAS-ss]. (Left) Using the trimeric
PII protein. (Right) Using a monovalent version of the PII protein.

regulates both UT and UR activities by binding to a regulatory domain
of the UTase/UR. The protein PII has one downstream signaling target,
NRII.

The PII protein is a homotrimer, and can be uridylylated on each of
its subunits (Figure 1.10(A)). Hence, comparing Figures 1.5 and Figure
1.10(A), we have that the modified protein W* comprises all of the
modified forms of PII (P1, P2, and P3 of Figure 1.10(A)). Also, partially
modified forms of PII (P1 and P2, 1.10(A)) can bind to NRII. As a
consequence, we have that the downstream targets L and N are the same
and are given by the NRII protein. Thus, the use of the trimeric PII
protein results in a cycle with “double load” as depicted in Figure 1.5,
in which both the active and inactive protein species have downstream
targets. In order to study the effects of applying the load on one side
only of the cycle, which is a configuration often found in natural systems,
we employed a monovalent version of the PII protein (Figure 1.10 (C)),
which is obtained by proper mutation of two PII subunits.

Figure 1.10 illustrates how retroactivity makes an ultrasensitive in-
put/output static response into a more graded response independently
of where the load is applied. Also, it illustrates how the value of S50

decreases when the load is applied only on the inactive protein.
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4. Discussion and Conclusion
In this work, we have summarized some recent results that illus-

trate how retroactivity impacts the behavior of bio-molecular systems.
Retroactivity by downstream targets slows down the dynamic response
by decreasing the effective bandwidth and reduces the sensitivity of the
steady state input/output characteristics. These effects, which are more
dramatic as the amounts and affinity of downstream targets increase, in-
dicate that the behavior of a bio-molecular system cannot be understood
in isolation. This is especially the case in signaling systems, in which
covalent modification cycles have several downstream targets. What is
the role of retroactivity in these systems? Signaling systems have been
selected by nature for effective signal transduction. Hence, retroactivity
must have a clear evolutionary advantage, or there must be insulation
mechanisms to attenuate undesirable retroactivity effects. From a de-
sign point of view, the results summarized in this chapter indicate that
retroactivity must be taken into account when engineering bio-molecular
circuits and that suitable insulation mechanisms should be designed in
order to buffer connected components from each other [ddv-MSB; ddv-
CDC2008; ddv-JayanthiTAC10].
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