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1 Introduction

Synthetic biology is an emergent research field whose aim is to engineer novel
genetic circuits in living cells. It has potential applications ranging from increas-
ing biofuel production [25], to sensing environmental hazards [2], and to detecting
and/or killing cancer cells [8, 9]. Enabled by advancements in genetic engineer-
ing, ever since early 2000s, researchers have been able to construct simple genetic
circuits, often with no more than two or three genes, that can achieve certain func-
tionalities. These functional circuits include, for instance, genetic toggle switches
[16], genetic oscillators [14] and transcriptional negative feedback loops [31]. They
were built with the purpose to deepen our understanding of natural systems and
to demonstrate current engineering capabilities. Stimulated by the need for cells
with sophisticated sensing, computing and actuation capabilities, in recent years,
there has been a transition in the field towards engineering large scale and complex
genetic systems [4, 26]. However, such efforts are often impeded by context de-
pendence, the fact that functional genetic modules behave differently when they are
connected in a circuit as opposed to when they are in isolation. In particular, many
synthetic circuits fail due to unintended interactions among genes and with the cel-
lular “chassis”[6]. Context dependence often leads to lengthy and ad-hoc design
processes with unpredictable outcomes, largely hindering our capability to scale up
genetic circuits for real-world applications. Therefore, much of the current research
in the field is devoted to the mitigation of context dependence in genetic circuits,
with the aim to robustify and modularize them [10]. These research questions can
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be formulated as classical systems and control theory problems such as disturbance
attenuation, output regulation and reference tracking [11]. However, their solutions
are often challenged by physical constraints in living cells (see [11] for a com-
prehensive review on the application of control theory to synthetic biology). One
successful engineering example is the mitigation of “retroactivity”’, where the unin-
tended loading from a downstream genetic module to its upstream module can be
mitigated through engineered biomolecular insulation devices [13, 23, 24].

In this paper, we review our latest research outcomes on the modeling, analy-
sis and mitigation of another form of context dependence that has received much
attention recently: the competition among synthetic genes for a limited amount of
cellular resources provided by the host cell [5, 7, 17, 28, 30].

Gene expression in vivo relies on the key processes of transcription and trans-
lation. Transcription is initiated by RNA polymerases (RNAPs) binding with the
promoter sites of DNAs to produce messenger RNAs (mRNAs), which are then
translated by ribosomes to produce target proteins. Genetic circuits are gene regu-
latory networks (GRNs) that are constructed by allowing transcription of one gene
to be regulated by proteins expressed by other genes. These proteins are called tran-
scription factors (TFs), which can either activate or repress transcription by binding
with promoter sites on DNAs (see Figure 1A). Therefore, naturally, the functionality
of any GRN requires the availability of RNAPs and ribosomes [12].

Recent experimental results have suggested that the limited amount of ribosomes
is the main bottleneck for gene expression in E. coli bacteria in exponential growth
phase [17, 19]. Competition for ribosomes can create hidden interactions among
genes: activating production of protein A reduces the amount of resources available
to produce protein B. In particular, it has been demonstrated experimentally that due
to resource competition, expression of an unregulated gene can be reduced by more
than 60% when expression of another gene is activated [5, 17]. Similar phenomena
have been observed in cell-free systems [32] and in computational models [22, 30].
However, resource limitation is often neglected in standard gene expression models
[1, 12], and rarely considered in circuit design, leading to unexpected design out-
comes. Therefore, it is desirable to develop a systematic framework to model and
mitigate the effects of resource competition in genetic circuits.

In this paper, we provide a review of our recent progress toward these goals
[27, 28, 29]. In [27, 28], we developed and experimentally validated a general gene
expression model accounting for resource competition. These results are briefly re-
viewed in Section 2 and Section 3. In Section 4, we review our recent theoreti-
cal work on mitigating the effects of resource competition by introducing a system
concept and formulating the problem as a disturbance decoupling problem for net-
works [29]. The problem can be solved by implementing decentralized feedback
controllers described in Section 5. Section 6 discusses the stability of the decentral-
ized control scheme. Simulation examples are provided in Section 7.



The “Power Network™ of Genetic Circuits 3

2 Modeling resource competition in gene networks

A GRN is an interconnection of gene expression cassettes, which we call nodes.
Each node i takes /; TFs as inputs to regulate the production of a TF x; as output
(Figure 1A). We denote the set of TF inputs to node i by I; (see Figure 1B), and use
w; = [uy,--,uy;]" to represent their concentrations. A series of chemical reactions
take place in a node. The input TFs to node i can bind with the DNA promoter site
in node i to either activate or repress its ability to recruit RNAPSs to produce mRNA
m;; free ribosomes then bind with mRNAs to initiate translation and produce output
TF x;. Assuming that binding reactions are much faster than transcription and trans-
lation [1, 12], the state of each node can be described by the concentrations of its
mRNA transcript m; and TF output x; (italics). In a standard gene expression model
[1, 12], the free amount of ribosomes available for translation is often assumed to
be constant, yielding the following node dynamics:

m; = TiFi(w;) — &m;, X = Rim; — ¥ix;, (D)

where 7; is the maximum transcription rate constant, R; is the translation rate con-
stant proportional to the free concentration of ribosomes, and &; and ¥; are the mRNA
and protein decay rate constants, respectively. The function F;(u;) describes tran-
scriptional regulation of the input TFs on node i, and can be written as a standard
Hill function [1, 12]. Based on reaction rate equations, when node i takes a single
TF input whose concentration is u;, the Hill function F;(;) takes the following form
[12]:

Flu) — 4 THu/E)m if u; is an activator )
l(ul) 1 . . . ( )
Wk if u; is an activator,

where k; is the dissociation constant of TF u; binding with the promoter site of node
i. The stronger the binding affinity, the smaller the dissociation constant. Parameter
n; is the binding Hill coefficient, and f8; € [0, 1) characterizes basal expression (i.e.
expression when u; = 0). In a GRN, nodes are connected through regulatory inter-
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Fig. 1 (A): Schematic of gene expression process in a node i. (B): In a GRN, all nodes are com-
peting for a limited amount of resources in the host cell.
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actions, where the output of node i (x;) can be a TF input to either activate or repress
gene expression in other nodes. In a GRN composed of n nodes, let x = [xy, -+, x,]7
represent the concentrations of all TFs in the network, we have u; = Q;x, where Q;
is a binary selection matrix, whose (j,k)-th element is 1 if x; is the j-th input to
node i, and 0 otherwise. When ribosomes are limited, the constant free ribosomes
assumption used to derive (1) fails. Since the host cell produces a limited amount
of ribosomes [3, 35], resource availability depends on the extent to which different
nodes in the network demand them (see Figure 1B). We use z7, z and z; to denote
the concentrations of total ribosomes, free ribosomes, and that of ribosomes bound
to mRNA transcripts in node i, respectively. In particular, the ribosomes bound to
node i depend on the free ribosome concentration (z), the concentration of mRNA
transcripts in the node (;), and the binding affinity between them, which is charac-
terized by the binding dissociation constant k;. Smaller k; indicates stronger capa-
bility of each mRNA molecule to bind free ribosomes. Specifically, from reaction
rate equations, we can obtain z; = zm; / ;. Therefore, the concentration of ribosomes
follows the conservation law [3]

ar=z+) =z (1+ ) mi/x), )
i=1 i=1

indicating that the total ribosome concentration is the summation of its free concen-
tration (z) and its concentration bound in the nodes (z;). From equation (3), the free
concentration of ribosomes z can be found as

T

ESYATS @

Z

and by replacing the constant free ribosome concentration in (1) with the state-
dependent amount derived in (4), the node dynamics in (1) can be modified as

mi/Ki

mi iFi(w;) — &im;, & 11+mi/Ki+Zj7éimj/Kj

= YixXi. ®)

In the next section, we study the practical implications of model (5). In particular,
we demonstrate that the model implies that, in addition to regulatory interactions,
hidden interactions arise due to ribosome competition in GRNs.

3 Hidden interactions and effective interaction graphs

Synthetic biologists often analyze and design genetic circuits based on interaction
graphs, which use directed edges to represent regulatory interactions among nodes.
In a standard interaction graph, we draw x; — x; if TF Xx; activates production of x;,
and we draw x; -1x; if TF x; represses production of x;. In this section, we expand
the concept of interaction graph to incorporate hidden interactions due to resource
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competition. We call the resultant graph the effective interaction graph. We then
provide simple rules to draw the effective interaction graphs, and illustrate their
applications to predict the behavior of three simple GRNS.

Since an interaction graph represents the interactions among TFs in a GRN and
since mRNA dynamics are often much faster than those of the TFs [1, 12], we set
the mRNA dynamics in (5) to quasi-steady state [1, 12] to obtain:

_ TiF(w;)
1 +JiF;(0;) + Ygzi JiFi (g

Xi

) —Yixi, (6)

G;(x):node i effective production rate

where parameter T; := R;T;/8;k; represents the maximum protein production rate
and parameter J; := T;/ §;k; represents the resource sequestration capability in node
i, which we call its resource demand coefficient.

The effective production rate of node i, G;(x), encapsulates the joint effects of
regulatory interactions and hidden interactions due to resource competition. While
regulatory interaction on node i is characterized by F;(u;), resource competition ef-
fects on the node is described by a common denominator R(x) := 1+ Y | JiF;(u;),
which is not present in the standard model (1). In particular, the regulatory in-
teraction from xj to x; is determined by sign(dF;/dx;). If sign(dF;/dx;) > 0,
then the regulatory interaction is an activation (xj — x;); if sign(dF;/dx;) < 0,
then the regulatory interaction is a repression (xj -1x;). We define hidden inter-
action due to resource competition from x; to any node x; to be determined by
sign(dR/dx;). Specifically, since R(x) appears in the denominator of G;(x), it is a
hidden activation (x; — x;) if sign(dR/dx;) < 0, and a hidden repression (xj 4 x;) if
sign(dR/dx;) > 0.

The effective interaction from node j to node i is determined based on sign(dG;/dx;),
representing how x; affects the production rate of x;. In particular, we draw x; — Xx;
(effective activation) if sign(dG;/dx;) > 0, and we draw x; - x; (effective repres-
sion) if sign(dG;/dx;) < 0. We draw x; —o x; if sign(dG;/dx;) is undetermined,
that is, it depends on parameters and/or the steady state the network is operating at.

Based on (6), we derive a set of graphical rules to determine the effective inter-
action originating from x; to x;, based on regulatory interactions originating from
xj. These graphical rules are summarized in Figure 2, and stated as follows.

1. If x; has only one target x;, then the nature of effective interaction from x; to x;
(i.e. activation vs. repression) is identical to the regulatory interaction. However,
the strength of such interaction is weakened compared to that predicted by a
standard model (see Figure 2A).

2. If x; has multiple targets, then the effective interaction from x; to its targets are
undetermined (see Figure 2B).

3. If x; is not a target of x;, and X is an activator (repressor), then x; is effectively
repressing (activating) x; (see Figure 2C).

As application examples of the graphical rules, we determine the effective inter-
action graphs of three simple GRNs shown in Figure 3. Figure 3A shows a simple



6 Yili Qian and Domitilla Del Vecchio
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Fig. 2 Three graphical rules to draw effective interaction graph of any GRN with resource lim-
itations. Black solid edges represent regulatory interactions, red dashed edges represent hidden
interactions due to resource competition. If a black and a red edge have the same head and tail, we
indicate their combined effects with a gray edge.

single-input motif [1], where a single TF input u represses two downstream targets
x1 and x,. If we assume there is no resource competition, the steady state output
of both x; and x, should decrease with u. However, in resource-limited cells, ac-
cording to rule 2, the effective interactions from u to its targets are undetermined.
A simulation example is presented in Figure 3A, where we show that steady state
x1 indeed increases with u for low concentrations of u. Physically, such unexpected
behavior is due to the fact that as u increases to repress X, ribosomes bound to node
2 are released to effectively facilitate production of X1, increasing its concentration.

In Figure 3B-C, we compare two additional examples of a two-stage activation
cascade and a two-stage repression cascade. While the two networks have inter-
changeable functions of signal transduction and amplification [1], the former is more
susceptible to resource competition. While the steady state input/output (i/0) re-
sponse of an activation cascade can be entirely re-shaped by the hidden interactions
(Figure 3B), that of a repression cascade increases monotonically in the presence of
resource competition (Figure 3C). This result implies that certain network topolo-
gies may be more robust than others to resource competition. The robustness of a
repression cascade to resource competition is due to the fact that both regulatory
interactions (u -1 x| 4x,) and the hidden interaction (u — X) increases output x, as
input u increases.

In [27, 28], we demonstrate that in an activation cascade, the strength of the
hidden interaction u 4 x, can be tuned by changing the resource demand coefficient
of node 1 (J7), resulting in monotonically decreasing, increasing or biphasic steady
state i/o responses. Specifically, reducing J; restores the monotonically increasing
steady state i/o response. These model predictions are experimentally validated in
[28].
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However, due to the global and nonlinear features of resource competition, for
more complicated networks, optimizing design parameters becomes impractical.
Furthermore, the effects of resource competition must be re-examined when ad-
ditional nodes are added to the network, complicating the design process. There-
fore, it is desirable to design a feedback controller that can automatically mitigate
the effects of hidden interactions so that networks can be designed solely based on
regulatory interactions, and additional nodes can be included in a “plug-and-play”
fashion. In the next section, we formulate this problem as a network disturbance
decoupling problem.
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Fig. 3 Effects of resource competition on the steady state i/o responses of three example networks.
(A): In a single-input motif, effective interactions from u to its targets become undetermined due
to resource competition. Specifically, steady state i/o response from u to x; is biphasic. (B): Steady
state i/o response of a genetic activation cascade may become biphasic due to hidden interactions
arising from resource competition. Experimental results can be found in [28]. (C):Steady state i/0
response of a repression cascade is guaranteed to be monotonically increasing since both regulatory
interactions (black solid edges u - x; - x;) and the hidden interaction due to resource competition
(red dashed edge u — x;) increases output x, as input u increases. In all subfigures, steady state
i/o responses with resource competition are simulated according to model (5), and steady state i/o
responses without resource competition are simulated according to model (5) assuming disturbance
inputs w; =} ;;m;/Kk; = 0 for all i. Simulation parameters are listed in Table 1.

4 Mitigation of hidden interactions through network disturbance
decoupling

The main difference between model (5) and the standard model in (1) is that in the
standard model, gene expression in node i only depends on its own TF input u;,
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Fig. 4 (A): Each node i in a GRN with resource competition can be treated as a two-input-to-
output system. Black edges represent reference input/outputs due to transcriptional regulations, and
red dashed edges represent disturbances due to ribosome competition. (B): In a network setting,
disturbance input to node i (w;) is produced by resource demand by the rest of the network; resource
demand of node i (d;) becomes disturbance inputs to the rest of the network.

while in (5), it depends on the mRNA concentrations of other nodes (m;, j # i).
With reference to Figure 4A, according to model (5), each node in the network can
be regarded as a two-input-two-output system. It takes a reference input v; := F;(u;)
and a disturbance input

wi = ij/l(j, @)
J#

which characterizes how resource demands by the rest of the network affect dynam-
ics of node i. Node i produces a reference output y; := x; and a disturbance output

di ==m;/x;, 3

which quantifies resource demand by node i. Based on our definition of disturbance
input (7) and disturbance output (8), resource competition creates another layer of
interconnections among nodes in addition to regulatory interactions (see Figure 4B).
Specifically, the disturbance input of each node is the summation of disturbance
outputs of the other nodes in the network:

w; = Z d/ (9)
J#i

We would like that the steady state reference output of each node (y;) to be only de-
pendent on its own reference input (v;) and essentially independent of disturbances
among them (w;). This concept, which we call static network disturbance decou-
pling, is demonstrated in Figure 5 and described as follows.

We consider a GRN where the steady state i/o responses of each node are
parametrized by a small parameter €, and can be written as:

vi = hi(vi,w;, €), di = gi(vi,wi, €). (10)

Functions #;(-) and g;(-) are twice continuously differentiable in € for (v;,w;,€) €
Vi x W, x (—€*,€*) with V; x W; CR?, and 0 < €* < 1. We further assume that
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Fig. 5 In anetwork with disturbance decoupling property, steady state output of each node depends
only on its reference input (black solid edges), and the steady state behavior of the network is
essentially the same as that of a network without any disturbance (red dashed edges). Network
disturbance decoupling can be achieved, for example, by implementing decentralized feedback
controllers in the nodes (blue solid edges).

each node is a positive i/o system such that for all v;,d; > 0, we have y;,w; > 0.
We use the following notations: V := V| X --- xV,, W:=W; X --- X W, v:i=
[V]a"' ,Vn]T,WZZ [W17"' 7Wn]T’y:: [yla"' 7yn]T andd := [d17"' 7dn}T

Definition 1. (Network disturbance decoupling.) A network is said to have local
g-static network disturbance decoupling property in V x W if there exists an £*
sufficiently small and an open set YW C W such that forall i =1,--- ,n,

yi = hi(vi,wi(v,€),€) = hi(vi,0,0) + O(€). an

In principle, network disturbance decoupling requires each node to possess some
disturbance attenuation property. In addition, since disturbance input to each node
w; = w;(v,€) depends on resource demand by the rest of the network, we need to
ensure that w; is not amplified while we increase disturbance attenuation capability
in each node. In what follows, we give algebraic conditions on the node and the net-
work such that static network disturbance decoupling can be achieved. We first state
the definition of e-static disturbance attenuation, which is the property required for
the reference output of each node in isolation to be essentially independent of its
disturbance input.

Definition 2. (Node disturbance attenuation.) Node i has e-static disturbance atten-
uation property in V; x W if h;(vi, w;,0) = h;(v;,0,0) for all (v;,w;) € V; x W,.

For a node with e-static disturbance attenuation property, the effect of distur-
bance input on reference output is attenuated by a factor of €, and can be written
as y; = h;(v;,0,0) + O(¢) for € sufficiently small. This property does not require
any information on the network, and is a characterization of each node in isolation.
It can be achieved, for example, by implementing decentralized controllers in the
nodes. When node i is part of the network, since w; also depends on &, it may grow
unbounded as € — 0, in principle. The next property on the network excludes this
possibility and guarantees that w; is smooth in € as € — 0.
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Definition 3. (Network e-well-posedness.) Consider a network where the nodes are
connected according to (9), and the steady state i/o response of each node follows
(10). It is locally e-well-posed in ¥V x VW C V x W if there is an open set WW C W
and €* > 0 such that there exists w(v,€) € W that satisfies

wi =Y gj(vj,wj,e),forallie {1, n}. 12)
J#

Furthermore, w(v, €) is continuously differentiable in € for all (v,w,&) € V x W x
(—€%¢).

The following result provides sufficient conditions for local e-static network dis-
turbance decoupling (see [29] for details).

Theorem 1. A network has local €-static network disturbance decoupling property
inV x W if (1) each node i has €-disturbance attenuation property in V; X W;, and
(2) the network is locally €-well-posed in V x W.

While condition (1) in Theorem 1 can be obtained by implementing decentralized
controllers in the nodes, condition (2) needs to be certified by exploring more prop-
erties of the network. We further assume that when € = 0, steady state disturbance
output of each node (d;) is affine in its disturbance input (w;) for all (v,w) € V x W

8i(vi,wi,0) = gi(vi) + &i(vi)wi. (13)

In this case, the local e-well-posedness property of a network can be certified by
the diagonal dominance of an interconnection matrix A, whose (j,k)-th element is
defined as

1, if j=k,
A = 14
uHt) {—gm), if j # k. o

This result is stated in the following theorem, and we refer the readers to [29] for
detailed proofs and discussions. Note that the positivity of i/o signals implies that
8i(vi), &:(vi) must be positive.

Theorem 2. Assume that the steady state disturbance i/o response of each node i
follows (13) and that the nodes are connected according to (9). If the interconnection
matrix defined in (14) is diagonally dominant for all v € V, then there exists an open
set W such that the network is locally €-well-posed in V x W.

Since all diagonal elements in A are positive and all off-diagonal elements are
negative, a direct consequence of Theorem 2 is that as the number of nodes in the
network increases, the set of admissible reference inputs V' such that the intercon-
nection matrix A remain diagonally dominant shrinks in size.

Note that the diagonal dominance condition in Theorem 2 resembles a network
small-gain theorem for stability test [34]. However, in the context of [34], the ele-
ments in the interconnection matrix are dynamic i/o gains of the individual nodes,
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while here, the elements in interconnection matrix A are steady state i/0 gains.
Therefore, instead of guaranteeing stability, Theorem 2 guarantees, roughly speak-
ing, that a steady state of the network remains O(1) as € — 0. In the next section,
we propose a biomolecular feedback controller design that guarantees €-static net-
work disturbance decoupling of the resource competition network. We then study
its stability in Section 6.

B o
. X, :
Wb % ;
o ’TTVK,L |
Tt t
= 4

' gene i SRNA i !

Fig. 6 (A): Decentralized implementation of sSRNA-based feedback controllers in a GRN. (B):
Biomolecular mechanism of the controller, where elements of the controller are shaded in blue.

5 Biomolecular realization of disturbance decoupling through
decentralized sRNA-based feedback

Small RNAs (sRNAs) are short non-coding RNAs that can bind to complementary
RNAs to induce their rapid degradation [20]. Recently, they have been identified
as critical gene regulators in nature. For example, negative feedback systems us-
ing SRNA have been identified in iron homeostasis [21], quorum sensing [33] and
sugar metabolism [18]. In this section, we demonstrate that decentralized sRNA-
based feedback controllers (Figure 6) can achieve e-static network disturbance de-
coupling. We first introduce the biomolecular mechanism of this controller and then
show that each node has &-static disturbance attenuation property and the resulting
network is €-well-posed.

A diagram of node i equipped with the proposed sSRNA-based feedback is shown
in Figure 6B. In node i, the output protein x; transcriptionally activates production
of sSRNA s;, which binds with the mRNA m; to form a complex which then degrades
rapidly [21]. When ribosome availability decreases, less X; is produced, resulting in
reduced production of s;, which in turn increases mRNA concentration to compen-
sate for reduction in ribosome concentration. Based on reaction rate equations [20],
an ODE model of each node i can be written as follows:
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I’i’li = GT}VZ' — 5m,~ — Gm,’S,‘/ki,
xi/ksi

S; = Gnlm — 551' - Gmisi/kiy (]5)
. m,'/K','

=R ——
i 11—|—mi/Ki+WZ‘ ek

where m;, s; and x; each represents the concentration of mRNA, sRNA and TF output
in node i. Recall from (7)-(8) that disturbance input w; =} ;;m; /x; and reference
input v; = F;(u;), where F;(u;) represents regulatory interactions. In (15), d and y
are the decay rate constants of mRNAs and proteins, respectively, which we have
assumed to be the same for all nodes without loss of generality; k; and ky; are disso-
ciation constants characterizing mRNA-sRNA binding, and the binding of x; with
the SRNA promoters, respectively; k; is the dissociation constant of free ribosomes
with RBS of mj, and G represents the rapid degradation of the mRNA-sRNA com-
plex. To compensate for the decrease in gene expression due to rapid degradation
(G) of mRNA and sRNA, we set their transcription rates (G7; and GTj;) to scale with
G. This can be implemented physically by increasing the DNA amount of the gene
and the SRNA. By letting € := § /G, the steady state of (15) can be found to be:

TiKikgiyvi(1+w;)

m; = +0O(e),
' TyuR; — (Yksi+ Ri)Tivi )
TyiR; — (Yksi +Ri)Tv;
= +O(e), (16)
' Kiksiy(1+w;) )
Tikgivi
- O
i T — Tiv; +0(e),

when the reference input v; belongs to the node admissible input set V;:

T5R;
i =q Vi < . 1
V {v o<y < Ti('yksi“i’Ri)} (17)

Since the zero-th order approximation of steady state output x; in (16) is independent

of disturbance input w;, node i has &-disturbance attenuation property for all v; € V;

and w; positive. To verify if the GRN with decentralized sSRNA-based controllers is

locally e-well-posed, we note that the steady state disturbance output of node i is:
om; Tiksiyvi(1+w;)

= — = ’ |
4= T TaRi— (ki + Rt O (18)

which is affine in the disturbance input w; when € = 0. This satisfies the assumption
in (13) with

gilVi TR — (Yksi + Ri)Tivi
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Therefore, according to Theorem 2, the network is e-well-posed in a network ad-
missible input set V, in which the interconnection matrix defined according to (14)
is diagonally dominant for all v € V. Specifically, we can write

Vi=dveV:) gi(v) <1 Vi=1,-,np. (19)
J#i

Hence, due to Theorem 1, the network has the e-disturbance decoupling property
if the reference inputs satisfy v € V. This implies that steady state output of each
node 7 in the GRN tracks its reference input v;, and becomes essentially decoupled
from resource demand by the rest of the network. Note that as we discussed in the
Section 4, according to (19), since g j(v j) is positive for each v; € V;, the size of the
admissible input set of the resource competition network shrinks as more nodes are
added to the node. This is a major trade-off of this decentralized feedback design.

6 Stability of decentralized SRNA-based feedback

In the previous section, we demonstrate that the steady state output of each node
depends essentially only on its own reference input (v;) as long as the reference
inputs fall into the admissible input set (v € V). However, these results do not imply
stability of the corresponding network steady state. To study stability, we consider
a special case where the network is homogeneous such that parameters of and the
external reference input to each node are identical. We further assume that there is no
regulatory interaction among nodes (Fig.7) so that we do not account for instability,
if any, due to regulatory interactions. Let x; := [mi,si,xi]T be the states of node
i, one steady state of the network lies on the diagonal of the 3n-dimensional space:
*T *T

x*=[xiT, .-, x:T]T with x} = --- = x};. Here, through linearization, we demonstrate

that network steady state x* is indeed locally asymptotically stable.

V; :’O v=F(u)
4 ‘,x

Fig. 7 Homogeneous GRN with decentralized feedback controllers and resource competition for
stability certification. Each node i takes an external reference input v; and is equipped with an
sRNA-based feedback controller (blue solid edges). The nodes are connected by hidden interac-
tions arising from resource competition (red dashed edges).



14 Yili Qian and Domitilla Del Vecchio

To this end, we leverage the following network stability result from vehicle for-
mation control [15]. Consider a network consists of N identical linear time-invariant
nodes, dynamics of each node i are described by

Ni=Pani+Ppu;, G =PoiMi,  VWij=Po(Ni—M;), jE€ T (20)

where 1); € R™ are the states of the node, u; is the input, {; and y; ; are the absolute
and relative measurements, respectively, and J; C {1,--- ,N}\ {i} represents the set
of nodes that communicate with node i. P4, Pg, Pc1 and Pcy are constant matrices
with appropriate dimensions. The communication scheme defines a directed graph
of the network, whose Laplacian L is defined as

Liy=1, Lij = {_‘17’17 j.G i 21
0, Jj&Jd
We assume that the following decentralized controller is applied to each node i:
6; = Kz 0, + Kp1 & + Ko i, u; = Kc0; +Kp1 & + Kpa i, (22)
where
1
Vi= 17 ]EZJ Vij, (23)

and 6; € R? are the controller states. K4, Kgi, Kg>, Kc, Kp1 and Kp; are constant
matrices with appropriate dimensions. The following result converts the stability
problem of the network, which is an N x (m + p)-dimensional system, into stability
problems of N disconnected (m + p)-dimensional systems.

Theorem 3. [15] Decentralized controllers (22) stabilize the network if and only if
the following matrices (24) are Hurwitz for all N eigenvalues (A1, -+ ,Ay) of L:

Py + PpKp1Pct + AiPsKpoPos PeKe

 l=1,---,N. 24
Kp1Pc1 + 4Ky Peo Ky 24

Applying Theorem 3 to a GRN connected through ribosome competition signif-
icantly reduces the technical difficulties in network stability certification. In partic-
ular, since disturbance input to each node i follows w; =Y ;.;m;/k;, the resultant
directed graph of the network is a complete graph, with graph Laplacian

N B B I
n—1 n—1 n—1
S e T B
n—1 n—1 n—1
L= . . . (25)
S I I T 1
n—1 n—1 n—1

The eigenvalues of £ are
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A =0 and A =n/(n—1) (repeated). (26)

Therefore, by linearizing the network at steady state x*, its local stability can be
certified by stability of 2 lower dimensional subsystems. In particular, linearizing
(15) results in the following linearized node dynamics

ffli = —(Gs;k/ki + 5)m, — Gm;‘si/ki,
Si = GTy; fsixi — Gsz‘mi/k,- — (Gm:‘ /k,' + 5)Si,

(27)
xi = Riqiimi+Ri qu/m/ — ’)/xi7
J#i
where we have defined
d - xi/ksi 1/ky;

T - : 28
Ja dxi 1+xi/ki | (14x7/ki)? (28)
gii= = mi/ K; _ (A Ejmi/x)/ s 09)

T omy 1+mi/Ki+):j7éimj/Kj < (1 +m?/’q+2j7éim7/7(j)2’

a = I (30)
q“ = =— - _ . i .
U Omp Vb mi ki Y jmi/x | (LbmE K+ LK)

System (27) can be put into the form in Theorem 3. Specifically, we take

. _ * A _ * .
ni= {m”} ) 0; = x;, Py = [ Gsi/ki—8 Gm; [ki

Si —GSZF/]C,' —Gm;‘/k,-—5 ’
0
Ky =—7, Kc=1, Kp1 =0,
Kpy =0, K1 =Rilgii+(n—1)gqij|, Kp=n—1.

Using (26), Theorem 3 implies that stability of the network can be implied by

demonstrating that the following two matrices Aéquiv and

A2

equiv

, each corresponding to A; =0 and A, =n/(n— 1), are Hurwitz:

~Gs; Jki— 8 —Gm [k; 0
quuw = ~Gs ki —Gm /ki— 8 GTify | , 31
Rilgii + (n—1)q;j] 0 -y

and
—Gs;‘/k,- — 5 —Gm;‘/k,- 0
quuiv = | —Gsi/ki —Gm![ki—38 GTyfsl. (32)
Ri(qii — qij) 0 -y
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Assume that the reference inputs are within the admissible reference input set V,
by substituting in the steady states found in (16) and using Routh-Hurwitz condi-
tion, both matrices can be found Hurwitz, showing that a homogeneous network
composed of decentralized sSRNA-based feedback controllers is stable when v € V.

7 Application examples

Here, we apply the decentralized sSRNA-based feedback controllers to two GRNs of
Figure 3. Both networks failed to perform as expected due to hidden interactions
arising from resource competition. In Figure 8, we simulate the steady state i/o re-
sponses of the single-input motif (Figure 8A) and the activation cascade (Figure
8B) equipped with decentralized feedback controllers described in Section 5. Con-
sistently with our predictions, as G increases (i.e. € decreases), the steady state i/o
responses of the networks become closer to the hypothetical case where disturbance
inputs to all nodes are assumed to zero (i.e. w; = Z#,-mj/icj = 0 for all i). These
simulations support our claim that decentralized sSRNA-based feedback can increase
network’s robustness to resource competition. We envision that with the decentral-
ized controllers, GRNs with increased size and complexity can be constructed in a
modular fashion, bringing synthetic biology one step closer to real-world applica-
tions.

8 Discussion and conclusions

In this paper, we review our recent research outcomes on the resource competition
problem in genetic circuits. We demonstrate that resource competition creates hid-
den interactions among nodes, changing the intended topology of the circuit. To
mitigate the effects of resource competition, we take a control theoretic perspective.
We treat these hidden interactions as disturbances, and formulate a static network
disturbance decoupling problem. In a network with network disturbance decoupling
property, the reference output of each node depends essentially only on its own ref-
erence input, and not on the hidden interactions among nodes. We give algebraic
conditions on node dynamics and on the network that guarantees disturbance de-
coupling, and demonstrate that these conditions can be obtained by decentralized
sRNA-based feedback controllers in vivo. While these results are promising, we
still need to tackle the case in which the inputs to the nodes are time-varying and the
results we obtain are global instead of being local. These problems are particularly
difficult due to the nonlinear and singular structure of the dynamics when feedback
gains are increased. To the best of our knowledge, such peculiar structures do not
have a counter-part in more traditional engineering systems. Therefore, a solution
will likely require the development of novel control theoretic methods.
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Genetic circuit

G=1 G =100
w/ sRNA feedback
A ma
- =
- < i \
O ----.'8 xl o 0
‘/8 X, g &
XN )(N
oL - 0
o o " e i "
u[nm] u [nM]
B 100 100
R ®
O — () — O 9 oy
A4 T S 50
! . ] - > N
1 N |
: ]
ok 0

0 . .
0 o

u [nM] u [nM]

== W/0 resource competition — W/ resource competition

Fig. 8 Steady state i/o responses of the single-input motif (A) and the activation cascade (B) with
different G values. In the network interaction graph, black solid edges represent transcriptional
regulation, red dashed edges represent hidden interactions due to resource competition and blue
solid edges represent SRNA-based feedback. We simulate the responses with resource competition
using model (15) and w; =Y. ;+;m; /Kj (red solid lines). We further assume w; = 0 for all i to obtain
the steady state i/o responses without resource competition (black solid line with square markers).
Simulation parameters are listed in Table 1.

Our results provide examples of how introducing systems and control concepts
can help address concrete problems in synthetic biology. In general, synthetic biol-
ogy is an exciting platform to leverage existing control theoretic tools and to intro-
duce new ones. Due to various sources of uncertainties and disturbances present in
living cells, the advancement of synthetic biology relies heavily on our capabilities
to engineer robust, modular and scalable biomolecular systems. While such capa-
bilities are still largely missing at this stage, they can be significantly improved by
synthesizing feedback controllers in biomolecular systems.

Table 1 Simulation parameters (i = 1,2)

S % T L ki kK ke R mm Ty To ki B
Unit hr ' hr— T nM-hr™T nM-hr~T nM oM uM M nM-hr— - nM?> nM> nM -

Figure 3A 10 103 103 10> 1 10° 10> 10° - - - -
Figure 3B 5 10° 10% 1 102 10° 10° - - - 107
Figure 3C 5

10° 10 10° 10° 10> 10°
10° 102 1 102 10° 10°

Figure 8A 10
Figure 8B 5

1200 1200 10 -
1200 120 10 1073

[Sy S . N
NS STR S ST i NS ]

2
2 4
10° 10° 1 2 102 10° 10° 4 - - - -
1 2
2 4
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