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Highlights:

• Intracellular spatial heterogeneity modulates the effective association rate constant of binding reactions
through a binding correction factor (BCF) that fully captures spatial effects

• The BCF depends on molecules size and location (if fixed) and can be determined experimentally

• Spatial heterogeneity may be detrimental or exploited for genetic circuit design

• Traditional well-mixed models can be appropriate despite spatial heterogeneity

Statement of significance: A general and simple modeling framework to determine how spatial het-
erogeneity modulates the dynamics of gene networks is currently lacking. To this end, this work provides
a simple-to-use ordinary differential equation (ODE) model that can be used to both analyze and design
genetic circuits while accounting for spatial intracellular effects. We apply our model to several core biologi-
cal processes and determine that transcription and its regulation are more effective for genes located at the
cell poles than for genes located on the chromosome and this difference increases with regulator size. For
translation, we predict the effective binding between ribosomes and mRNA is higher than that predicted
by a well-mixed model, and it increases with mRNA size. We provide examples where spatial effects are
significant and should be considered but also where a traditional well-mixed model suffices despite severe
spatial heterogeneity. Finally, we illustrate how the operation of well-known genetic circuits is impacted by
spatial effects.
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Abstract

Intracellular spatial heterogeneity is frequently observed in bacteria, where the chromosome occupies
part of the cell’s volume and a circuit’s DNA often localizes within the cell. How this heterogeneity
affects core processes and genetic circuits is still poorly understood. In fact, commonly used ordinary
differential equation (ODE) models of genetic circuits assume a well-mixed ensemble of molecules and,
as such, do not capture spatial aspects. Reaction-diffusion partial differential equation (PDE) models
have been only occasionally used since they are difficult to integrate and do not provide mechanistic
understanding of the effects of spatial heterogeneity. In this paper, we derive a reduced ODE model that
captures spatial effects, yet has the same dimension as commonly used well-mixed models. In particular,
the only difference with respect to a well-mixed ODE model is that the association rate constant of
binding reactions is multiplied by a coefficient, which we refer to as the binding correction factor (BCF).
The BCF depends on the size of interacting molecules and on their location when fixed in space and it is
equal to unity in a well-mixed ODE model. The BCF can be used to investigate how spatial heterogeneity
affects the behavior of core processes and genetic circuits. Specifically, our reduced model indicates that
transcription and its regulation are more effective for genes located at the cell poles than for genes located
on the chromosome. The extent of these effects depends on the value of the BCF, which we found to
be close to unity. For translation, the value of the BCF is always greater than unity, it increases with
mRNA size, and, with biologically relevant parameters, is substantially larger than unity. Our model has
broad validity, has the same dimension as a well-mixed model, yet it incorporates spatial heterogeneity.
This simple-to-use model can be used to both analyze and design genetic circuits while accounting for
spatial intracellular effects.

1 Introduction

Deterministic models of gene circuits typically assume a well-mixed ensemble of species inside the cell [1, 2].
This assumption allows one to describe genetic circuit dynamics through a set of ODEs, for which a number
of established analysis tools are available [1]. However, it is well known that spatial heterogeneity is prevalent
inside bacterial cells [3, 4, 5, 6, 7, 8]. Depending on the origin of replication, plasmids tend to localize within
bacterial cells [9, 10, 11]. Furthermore, chromosome genes (endogenous and synthetically integrated ones
[12]) are distributed in the cell according to the chromosome complex spatial structure. In bacterial cells,
any molecule freely diffusing through the chromosome (e.g., mRNA, ribosome, and protease) experiences
what are known as excluded volume effects, which capture the tendency of species to be ejected from the
nucleoid due to the space occupied by the dense DNA mesh [13]. These excluded volume effects for ribosomes
and RNAP in bacteria have been observed experimentally [14].

Despite the strong evidence in support of spatial heterogeneity within bacterial cells, a convenient mod-
eling framework that captures the spatio-temporal organization of molecules inside the cell is largely lacking.
As a consequence, how spatial effects modulate genetic circuit dynamics remains also poorly understood.
Partial differential equation (PDE) models have been employed on an ad hoc basis to numerically capture
intracellular spatial dynamics for specific case studies [15, 16, 17]. Although a general PDE model of a
gene regulatory network (GRN) can be constructed, it is difficult to analyze and impractical for design [18].
Recently, the method of matched asymptotic expansions was used to simplify the PDEs to a set of ODEs
to analyze ribosome-mRNA interactions [19]. Similarly, [20] used a compartmentalized model to capture
spatial heterogeneity in sRNA-mRNA interactions. However, these results have not been generalized, relied
on simulation, and specific parameter values.

In this paper, we provide a general framework to model spatial heterogeneity through an ODE that has the
same structure and hence dimensionality as a well-mixed ODE model. To this end, we first introduce a PDE
model that captures spatial dynamics. Next, we exploit the time scale separation between molecule diffusion
and biochemical reactions to derive a reduced order ODE model of the space averaged dynamics. This model
accounts for spatial heterogeneity by multiplying the association rate constant of binding reactions by a
factor that depends on the size of freely diffusing species and on the location of spatially fixed species. We
call this factor the binding correction factor (BCF). Thus, this reduced model has the same dimensionality
as traditional well-mixed models, yet it captures spatial effects.

We demonstrate the effects of spatial heterogeneity in genetic circuit behavior by modeling and analyzing
several core biological processes. We show that the transcription rate of a gene and the affinity at which
transcription factors bind to it, is lower (higher) when the gene is located near mid-cell (cell poles) with
respect to the well-mixed model. We show that compared to a well-mixed model, translation rate is always
higher and increases with mRNA size. Finally, we consider a genetic clock, a circuit that produces sustained
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oscillations. We show that for a parameter range where a well-mixed model predicts sustained oscillations,
a model that accounts for spatial heterogeneity of DNA may not show oscillations. All of these phenomena
can be recapitulated by our reduced ODE model.

Methods

We use mathematical models to investigate the effects of spatial heterogeneity, specifically DNA localiza-
tion and excluded volume effects, on genetic circuit behavior. The first part of this section introduces the
mathematical model used, a set of nonlinear PDEs. Model reduction is performed on the resulting PDEs to
obtain the reduced ODE model that we use to predict how molecule size and location affect genetic circuit’s
behavior.

1.1 Reaction-Diffusion Model

A reaction-diffusion model describes the concentration of a species at a given time and location in the cell.
We focus on enzymatic-like reactions since they can be used to capture most core processes in the cell. We
specialize the model to the cases where the reacting species both freely diffuse or where one freely diffuses
while the other one is fixed. For example, mRNA and ribosomes are both freely diffusing, while for RNA
polymerase and DNA, one is freely diffusing and the other one is fixed.

1.1.1 Enzymatic-like reactions that model core biological processes

Let S be a substrate being shared by n enzymes Ei, to form product Pi where i = 1, . . . , n. The rate at which
Ei and S are produced is given by αi and αs, respectively. The decay rates of Ei and S are given by γi and
γs, respectively. Here, we assume that Ei and S can be degraded even in complex form, that is, the complex
is not protecting them from degradation. Finally, all species are diluted as the cell divides at a rate µ. The
biochemical reactions corresponding to this process are given by:

∅ αi−→ Ei
γi+µ−→ ∅, ∅ αs−→ S

γs+µ−→ ∅, ci
γi−→ S, ci

γs−→ Ei, ci
µ−→ ∅, Ei + S

ai



di

ci
κi−→ Pi + Ei + S, (1)

where ci is the complex formed when Ei binds to S, ai is the association rate constant, di is the dissociation
rate constant, and κi is the catalytic rate constant of product formation. These enzymatic-like reactions
capture many core biological processes such as genes transcribed by RNA polymerase, mRNA translated
by ribosomes, or proteins degraded by a common protease [1]. Notice that they differ from the classical
enzymatic reactions since the substrate is not converted into product [1].

E. coli actively regulates its geometry to achieve a near-perfect cylindrical shape [21]. Thus, we model the
cell as a cylinder of length 2L and radius Rc. This geometry is shown in Figure 1-A. We assume angular and
radial homogeneity ((Rc/L)2 � 1) such that the concentration of a species varies only axially (the spatial
x direction). Symmetry relative to mid-cell is assumed and hence only half of the cell is considered, that is,
x ∈ [0, L], where x = 0 is at mid-cell and x = L is at the cell poles. Furthermore, we assume a constant
cross-sectional area along the axial direction.

In [14] it was shown that polysomes were excluded from the dense chromosomal DNA mesh onto the
cell poles. These phenomena is generalized for any species that freely diffuses within the DNA mesh and is
referred to as “excluded volume effects”. Leveraging the diffusion modeling framework from [13], we now
specify the model to capture excluded volume effects. Let v(x) ∈ (0, 1] be the volume fraction (dimensionless)
available to a species to diffuse within the chromosome (Figure 1-B). As derived in [13] and discussed in SI
Section 2.5, the available volume profile v(x) of a species with a radius of gyration r, takes the form

v(x) = e−(r/r∗)2ρ̂(x), (r∗)2 =
Vp

2κπLp
, (2)

where ρ̂(x) is the normalized local density of chromosome DNA length such that 2
L

∫ L
0
ρ̂(x)dx = 1, Lp is

the total length of chromosome DNA, Vp the volume where the DNA polymer is confined, such that Lp/Vp
is the total DNA length per volume , and κ is an empirically determined correction factor (see [13] and
SI Section 2.5). The quantity (r∗)2 is inversely proportional to the total DNA length per volume. The
local DNA density ρ̂(x) is assumed to be monotonically decreasing (i.e, the chromosome is more dense near
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Figure 1: Intracellular spatial geometry. (A) We model the cell as a cylinder of radius Rc and length
2L. The distance between the end of the chromosome and the cell poles is ∆x. (B) The spatial profiles
for the normalized local density of DNA length ρ̂(x) and the fraction of available volume v(x) of a freely
diffusing species with radius of gyration r within the chromosomal mesh. These two quantities are related
by v(x) = e−(r/r∗)2ρ̂(x), where r∗ is a length scale dependent on the averaged chromosome density in the cell
given by (2). The chromosome density is assumed to be monotonically decreasing from mid-cell to the cell
poles (as in [13]), thus the available volume profile are monotonically increasing.

mid-cell than at the cell poles as shown in Figure 1-B). Therefore by (2), the available volume profile is
higher near mid-cell than at the cell poles (i.e., v(0) < v(L)) as shown in Figure 1-B and furthermore, the
discrepancy between v(0) and v(L) increases with r/r∗. For all simulations in this study, we model the
normalized chromosome density as

ρ̂(x) =
1

1 + e20(x/L−1/2)
,

as experimentally determined in [13]. We note that the specific expressions of ρ̂(x) and r/r∗ do not affect
the model reduction result of this paper. The main results in this paper are presented for a constant cell
length L and chromosome DNA density ρ̂(x), however in SI Section 2.13 we relax these assumptions and
allow these quantities to vary in time as the cell divides.

For any given species with concentration per unit length given by y(t, x), free to diffuse, with available
volume v(x), an expression for the flux term, derived in [13] is given by:

J(x, y) = D

(
−∂y(t, x)

∂x
v(x)︸ ︷︷ ︸

towards low concentration

+ y(t, x)
∂v(x)

∂x︸ ︷︷ ︸
towards high available volume

)
= −v(x)2 d

dx

[
y(t, x)

v(x)

]
, (3)

where D is the diffusion coefficient. The flux is driven by two mechanisms: the first is concentration gradient,
which pushes molecules from high to low concentrations and the second drives molecules to regions with a
higher volume fraction. This second term is referred to as the excluded volume effect [13]. From (3), if∣∣∣∣∂y(t,x)

∂x v(x)

∣∣∣∣ < ∣∣∣∣y(t, x)∂v(x)
∂x

∣∣∣∣ and ∂y(t,x)
∂x

∂v(x)
∂x > 0, then the net flux is from low to high concentration, which

is the case when species are repelled from the chromosome to high concentration areas in the cell poles. As
we will show, this mechanism dictates intracellular heterogeneity in the limit of fast diffusion.

For species S, we denote by S(t, x) its concentration per unit length at time t at location x (similarly for
Ei and ci). Assuming sufficently high molecular counts, the reaction-diffusion dynamics corresponding to (1)
describing the rate of change of the species concentrations at position x, are given by [22] :

∂Ei(t, x)

∂t
= − d

dx

[
J(x,Ei)

]
+ αi(t, x)− aiEi(t, x)S(t, x) + (γs + di + κi)ci(t, x)− (γi + µ)Ei(t, x),

∂ci(t, x)

∂t
= − d

dx

[
J(x, ci)

]
+ aiEi(t, x)S(t, x)− (γi + γs + di + κi + µ)ci(t, x), (4)

∂S(t, x)

∂t
= − d

dx

[
J(x, S)

]
+ αs(t, x) +

n∑
j=1

[
− ajEj(t, x)S(t, x) + (γj + dj + κj)cj(t, x)

]
− (γs + µ)S(t, x),
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where J(x, ·) is the flux per unit area per unit time, within the cell. If the species is freely diffusing J(x, ·)
is given by (3), otherwise if the species is spatially fixed, then J(x, ·) = 0 for all x ∈ [0, L]. The boundary
conditions associated with freely diffusing species of (4) are zero flux at the cell poles and cell center due to
the assumed left-right symmetry, which corresponds to:

J(0, ·) = J(L, ·) = 0. (5)

Notice that none of the parameters in (4) appearing in (1) depend explicitly on time and space except for
the production terms αi(t, x) and αs(t, x). The explicit time dependence of the production terms allows us
to capture how genes can be activated or repressed externally with a time varying signal [23]. The explicit
dependence of the production terms on x allows us to capture where the species is produced within the cell
(e.g., DNA in the chromosome or DNA in pole localized plasmid genes).

Dimensionless model: Depending on the parameter regimes, the dynamics of (4) can display time scale
separation. For example, diffusion occurs in the order of mili-seconds compared to minutes for dilution due
to cell-growth and mRNA degradation [2]. Therefore, we are interested in determining the behavior of (4) in
the limit of fast diffusion. We thus rewrite (4) in dimensionless form to make time scale separation explicit.
We nondimensionalize the system variables using dilution (1/µ) as the characteristic time scale, the length
of the cell (L) as the characteristic length, and µ/a1 as the characteristic concentration per length scale:
t∗ = tµ, y∗ = y a1

µ , x
∗ = x

L , where y denotes concentration per unit length and the superscript “∗” is used
on the dimensionless variable. Concentrations are nondimensionalized through a1 because this parameter
contains a concentration scale, it is fixed in time, and it is assumed to be nonzero. The dimensionless form
of (4) is given by

∂E∗i (t∗, x∗)

∂t∗
= − d

dx∗
[
J∗(x∗, E∗i )

]
+ α∗i (t

∗, x∗) +
1

ηi

[
− E∗i (t∗, x∗)S∗(t∗, x∗)

a∗i
d̃i

+ c∗i (t
∗, x∗)

]
− (γ∗i + 1)(E∗i (t∗, x∗) + c∗i (t

∗, x∗)),

∂c∗i (t
∗, x∗)

∂t∗
= − d

dx∗
[
J∗(x∗, c∗i )

]
+

1

ηi

[
E∗i (t∗, x∗)S∗(t∗, x∗)

a∗i
d̃i
− c∗i (t∗, x∗)

]
, (6)

∂S∗(t∗, x∗)

∂t∗
= − d

dx∗
[
J∗(x∗, S∗)

]
+ α∗s(t

∗, x∗) +

n∑
j=1

1

ηj

[
− E∗j (t∗, x∗)S∗(t∗, x∗)

a∗j

d̃j
+ c∗j (t

∗, x∗)

]

− (γ∗s + 1)(S∗(t∗, x∗) +

n∑
j=1

c∗j (t
∗, x∗)),

where a∗i = ai/a1, γ∗s = γs/µ, γ∗i = γi/µ, d∗i = di/µ, κ∗i = κi/µ, α∗i = αia1/µ
2, α∗s = αsa1/µ

2, d̃i =
γ∗i + γ∗s + d∗i +κ∗i + 1, ηi = 1/d̃i, and J∗ = Ja1/(µ

2L). For a freely diffusing species with diffusion coefficient
D, the dimensionless parameter that determines the relative speed of diffusion is denoted by ε = µL2/D
and fast diffusion corresponds to ε � 1. Likewise, ηi in (4) determines the relative speed of the binding
dynamics, where ηi � 1 implies these reactions are fast. From hereon, unless otherwise specified, we work
with variables in their dimensionless form and drop the star superscript for simplifying notation.

Space averaged concentrations: Concentrations per cell are usually the quantities measured exper-
imentally [24] and are the primary quantities of interest. We now derive the space averaged dynamics
corresponding to (6), which describe the dynamics of concentrations per half of the cell. We define Ēi(t),
S̄(t), and c̄i(t) to be the space averaged enzyme, substrate, and complex concentrations, respectively, and are
given by

Ēi(t) =

∫ 1

0

Ei(t, x)dx, c̄i(t) =

∫ 1

0

ci(t, x)dx, S̄(t) =

∫ 1

0

S(t, x)dx,

also giving the concentrations per half of the cell. The dynamics governing these space averaged variables
are derived by integrating (6) in space and applying the boundary conditions (5) and are given by:

dĒi(t)

dt
= ᾱi(t)−

1

ηi

[
Ēi(t)S̄(t)

aiθi(t)

d̃i
− c̄i(t)

]
− (γi + 1)(Ēi(t) + c̄i(t)),

dc̄i(t)

dt
=

1

ηi

[
Ēi(t)S̄(t)

aiθi(t)

d̃i
− c̄i(t)

]
, (7a)

dS̄(t)

dt
= ᾱs(t)−

n∑
j=1

1

ηj

[
Ēj(t)S̄(t)

ajθj(t)

d̃j
− c̄j(t)

]
− (γs + 1)(S̄(t) +

n∑
j=1

c̄j(t)),
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where overbars denote spatially averaged variables and

θi(t) =

∫ 1

0
Ei(t, x)S(t, x)dx[ ∫ 1

0
Ei(t, x)dx

][ ∫ 1

0
S(t, x)dx

] . (7b)

Therefore, to calculate the space averaged concentrations, one could integrate the outputs of the full PDE
(6) directly or use (7) along with (7b), as illustrated in Figure 2. Notice that calculating θi in (7b) requires
solving the full PDE system (6) because of its dependence on the product Ei(t, x)S(t, x). Therefore, in
general, there is no obvious benefit in working with (7). In this paper, we provide a method to compute a
guaranteed approximation of θi without solving the PDEs (6).

Well-mixed model: Next, we define what we have been informally referring to as the “well-mixed”
model [25]. A standard well-mixed model is derived starting from (1) assuming mass action kinetics, that
molecular counts are sufficiently large, and that the intracellular environment is spatially homogeneous (well-
mixed) [1]. We let Ēwm

i (t), S̄wm(t) and c̄wm
i (t), denote the well-mixed concentrations of Ei, S, and ci,

respectively, and their dynamics are given by

dĒwm
i (t)

dt
= ᾱi(t)−

1

ηi

[
Ēwm
i (t)S̄wm(t)

ai

d̃i
− c̄wm

i (t)
]
− (γi + 1)(Ēwm

i (t) + c̄wm
i (t)),

dc̄wm
i (t)

dt
=

1

ηi

[
Ēwm
i (t)S̄wm(t)

ai

d̃i
− c̄wm

i (t)
]
, (8)

dS̄wm(t)

dt
= ᾱs(t)−

n∑
j=1

1

ηj

[
Ēwm
j (t)S̄wm(t)

aj

d̃j
− c̄wm

j (t)

]
− (γs + 1)(S̄wm(t) +

n∑
j=1

c̄wm
j (t)).

Comparing (7) and (8), motivates us to define a′i(t) = aiθi(t), which can be regarded as the effective associ-
ation rate constant between Ei and S in (7). We refer to θi(t) as the binding correction factor (BCF). The
dynamics of the space averaged concentrations (7) coincide with those of the well-mixed model (8) when
θi(t) = 1 (thus a′i(t) = ai) for all time and for all i = 1, . . . , n. From (7b) notice that Ei(t, x) and S(t, x)
being spatially constant for all time is not necessary for θi(t) = 1 for all time. For example, if S(t, x) is spa-
tially constant while Ei(t, x) has an arbitrary spatial profile (or vice-versa), then θi(t) = 1. Thus, the space
averaged concentrations can coincide with those of a well-mixed model despite severe spatial heterogeneity.
In this work, we provide a constant approximation of θi(t) denoted by θ∗i , which depends on spatial variables
such as molecule size and gene location. Under the fast diffusion approximation, we show that θ∗i is close to
θi(t). The space averaged dynamics (7) with θi(t) replaced by θ∗i , thus provides a reduced ODE model that
captures spatial information without having to solve (6). We will compare how solutions to (7) with (7b)
calculated from the full PDE (6) or with θ∗i compare to each other and to the solutions of the well-mixed
model (8).

1.1.2 Three diffusion cases to capture core biological processes

To use model (6) to describe key biological processes, we consider three cases. In Case I, Ei for all i = 1, . . . , n
and S are all freely diffusing within the cell. In Case II, Ei is spatially fixed for all i = 1, . . . , n (J(x,Ei) = 0
for all x ∈ [0, 1] and for all i = 1, . . . , n) and S is freely diffusing. In Case III, Ei is freely diffusing for all
i = 1, . . . , n and S is spatially fixed (J(x, S) = 0 for all x ∈ [0, 1]). Case I may represent mRNA molecules (Ei)
competing for ribosomes (S), all freely diffusing in the cell. Case II captures genes (Ei), which are spatially
fixed and are transcribed by RNA polymerase (S), which freely diffuses. Case III models transcription factors
(Ei), which freely diffuse regulating the same spatially fixed gene (S).

The flux dynamics, the boundary conditions, and a core biological process example for each case are
summarized in Table. 1. When a species is spatially fixed, the flux is zero through the whole domain, that is,
J(x, ·) = 0 for all x ∈ [0, 1]. The available volume profiles for the enzyme, complex, and substrate are denoted
by vEi(x), vci(x), and vS(x), respectively. The available volume profile for the complex vci(x), represents the
probability that the complex has enough free volume to hop into the DNA mesh at position x and it equals
the product of the probability of the two independent events of the enzyme and the substrate hopping into
the DNA mesh [13], thus

vci(x) = vEi(x)vS(x). (9)
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Figure 2: Methods to calculate space averaged concentrations. (A) The time and space dependent
solutions of the full PDE (6) are integrated spatially to yield concentrations per half of the cell. Alternatively,
space averaged concentrations can be calculated using the space average dynamics (7) with the BCF (θi(t)
(7b)) as a time varying parameter. (B) The dynamics of the space averaged concentration is given by the
well mixed model (8) when θi(t) = 1 for all time and for all i = 1, . . . , n.

Furthermore, we define the normalized available volume profiles as

v̂Ei(x) =
vEi(x)∫ 1

0
vEi(x)dx

, v̂ci(x) =
vci(x)∫ 1

0
vci(x)dx

, v̂S(x) =
vS(x)∫ 1

0
vS(x)dx

. (10)

Case I Case II Case III
All species diffuse Substrate diffuse Enzymes diffuse

and enzymes fixed and substrate fixed

Dimensionless Flux

J(x,Ei) = −1

ε
χEiv

2
Ei

d

dx

[ Ei
vEi

]
J(x, S) = −1

ε
v2
S

d

dx

[ S
vs

]
J(x, ci) = −1

ε
χciv

2
ci

d

dx

[ ci
vci

]
J(x,Ei) = 0

J(x, S) = −1

ε
v2
s

d

dx

[ S
vs

]
J(x, ci) = 0

J(x,Ei) = −1

ε
v2
Ei

d

dx

[ Ei
vEi

]
J(x, S) = 0

J(x, ci) = 0

Boundary conditions

J(0, Ei) = J(1, Ei) = 0

J(0, ci) = J(1, ci) = 0

J(0, S) = J(1, S) = 0

J(0, S) = J(1, S) = 0 J(0, Ei) = J(1, Ei) = 0

ε (µL2)/Ds (µL2)/Ds (µL2)/DE1

Dimensionless χEi = DEi/Ds, χci = Dci/Ds N/A N/A
diffusion

Core process mRNAs binding RNAP binding Transcription factors
ribosomes several genes binding promoter

Location of fixed species N/A x∗i x∗s

Table 1: The flux dynamics and the boundary conditions corresponding to (6) for each case of interest along
with a core process example. Here vE,i(x), vS(x), and vc,i(x), are the available volume profiles of Ei, S,
and ci, respectively. The parameters DEi , Dci , and Ds, are the enzyme, complex, and substrate diffusion
coefficients, respectively, ε is a dimensionless parameter that captures the speed of diffusion (with respect
to dilution). A species being spatially fixed translates to the flux being zero throughout the whole spatial
domain. In Case II, for i = 1, . . . , n, x∗i ∈ (0, 1) denotes the location of the fixed species Ei. In Case III,
x∗s ∈ (0, 1) denotes the location of the fixed species S.
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1.2 Numerical Method: Finite Difference

In general, a closed form solution to (6) is not available. Therefore, we rely on numerical solutions to directly
integrate the PDE. In particular, we utilize a finite difference method that is widely used to simulate PDEs
[26]. For a general diffusing species with its concentration given by y(t, x), and available volume profile v(x),
we make the following coordinate transformation u(t, x) := y(t, x)/v(x). In this coordinate, the boundary
conditions (if applicable) are Neumann [27]: ∂u

∂x

∣∣
x=0,1

= 0 and thus are simpler to implement. Furthermore,

with this transformation we observe less stiffness in the numerical simulations. We discretized the spatial
domain into N + 1 equidistant points such that ∆ = 1/N . Using a second order finite difference method, we
approximate the derivatives as:

∂u

∂x

∣∣∣∣
x=x∗i

≈ u(t, xi+1)− u(t, xi−1)

2∆
and

∂2u

∂x2

∣∣∣∣
x=x∗i

≈ u(t, xi+1)− 2u(t, x∗i ) + u(t, xi−1)

∆2
,

that appear in the flux terms (in the case where species freely diffuses). The new boundary conditions give
rise to the following constraints:

∂2u

∂x2

∣∣∣∣
x=0

≈ 2
u(t, x2)− u(t, 0)

∆2
and

∂2u

∂x2

∣∣∣∣
x=1

≈ 2
u(t, xN )− u(t, 1)

∆2
.

This discretization leads to a system of N + 1 ODEs. The resulting set of ODEs are then simulated with
MATLAB, using the numerical ODE solvers ode23s. To calculate the space averaged concentrations, we
implement a second oder trapezoidal integration scheme [27] given by:

ȳ(t) :=

∫ 1

0

y(t, x)dx, ȳ(t) ≈ ∆

2

N∑
j=1

[
y(t, xj) + y(t, xj+1)

]
.

The convergence rate of our numerical method is demonstrated in Section 2.10. For all simulations in this
paper N = 200.

Results

1.3 Time Scale Separation

In this section, we provide a time independent approximation of the BCF (7b) in the limit of fast diffusion,
which depends solely on the size of diffusing species, chromosome density profiles, and the spatial localization
of non-diffusing species. With this approximation, we can compute space averaged solutions in (7) without
solving the PDEs in (6).

1.3.1 Reduced space averaged dynamics when diffusion is fast and fixed species are localized

For Case II and Case III of Table 1, in which one of the reacting species is fixed, we assume that the fixed
species is spatially localized to a small space, that is, we have the situation depicted in Figure 3 (see SI
Section 2.3, Assumption 3 for the mathematical definition). Practically, for Case II, spatial localization at
x∗i requires that the production rate αi(t, x) of the fixed species is smaller than some small threshold δ when
x is outside the interval [x∗i − δ, x∗i + δ] for all time and that the space averaged production rate is ᾱi(t)
independent of δ (similarly for Case III, x∗s, and αs(t, x)). From a biological perspective, having the space
averaged production rate independent of δ is consistent with the fact that the total amount of DNA in the
cell is independent of where the DNA is concentrated. Note that δ is a parameter that controls the amount
of localization, such that δ � 1 implies the production of spatially fixed species being localized to a small
region. Let ε be as in Table 1 that appears in (6), the following definition will provide the candidate reduced
model that approximates (7) well when ε � 1 and δ � 1. Recall that ε is a dimensionless parameter that
captures the speed of diffusion (with respect to dilution).

Let x∗i and x∗s be the location of the fixed species for Case II and Case III, respectively (see Table 1). For
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Figure 3: Graphical representation of localization of fixed species The production rate αi(t, x) is
assumed to be localized at x∗i if αi(t, x) ≤ δ, ∀x /∈ [x∗i − δ, x∗i + δ]. We assume that the space averaged

production ᾱi(t) =
∫ 1

0
αi(t, x)dx is independent of δ.

i = 1, . . . , n, we define the reduced space-averaged dynamics as

d ˆ̄Ei(t)

dt
= ᾱi(t)−

1

ηi

[ ˆ̄Ei(t)
ˆ̄S(t)

ãiθ
∗
i

d̃i
− ˆ̄ci(t)

]
− (γi + 1)( ˆ̄Ei(t) + ˆ̄ci(t)),

dˆ̄ci(t)

dt
=

1

ηi

[ ˆ̄Ei(t)
ˆ̄S(t)

ãiθ
∗
i

d̃i
− ˆ̄ci(t)

]
, (11a)

dS̄(t)

dt
= ᾱs(t)−

n∑
j=1

1

ηj

[
ˆ̄Ej(t)

ˆ̄S(t)
ãjθ
∗
j

d̃j
− ˆ̄ci(t)

]
− (γs + 1)( ˆ̄S(t) +

n∑
j=1

ˆ̄cj(t)),

θ∗i =


∫ 1

0
v̂Ei(x)v̂S(x)dx for Case I

v̂S(x∗i ) for Case II

v̂Ei(x
∗
s) for Case III

, (11b)

where ˆ̄Ei(0) = Ēi(0), ˆ̄S(0) = S̄(0), ˆ̄ci(0) = c̄i(0), as given by (7), and v̂Ei(x), v̂ci(x), and v̂S(x) are given
by (10). Then, we have the following main result of this paper (see SI Section 2.3, Theorem 3 for a formal
statement with the proof).

Result 1. Consider system (6) and let z(t, x) = [E1(t, x), . . . , En(t, x), c1(t, x), . . . , cn(t, x), S(t, x)]T with

z̄(t) =
∫ 1

0
z(t, x)dx. Consider system (11) and let ˆ̄z(t) = [ ˆ̄E1(t), . . . , ˆ̄En(t), ˆ̄c1(t), . . . , ˆ̄cn(t), ˆ̄S(t)]T . Then, for

all t ≥ 0 and ε, δ sufficiently small

||z̄(t)− ˆ̄z(t)|| =

{
O(ε) for Case I

O(ε) +O(δ) for Case II, III
. (12)

By virtue of this result, we can use the simple and convenient ODE model in equations (11) to describe
the space-averaged dynamics of the PDE system (6). In particular, from (11) it appears that spatial effects
are lumped into the BCF approximation θ∗i . Therefore, in order to determine how spatial heterogeneity
affects system dynamics, it is sufficient to analyze how dynamics is affected by parameter θ∗i and how the
expression of θ∗i is, in turn, affected by spatial localization and molecule size (see (11b) and (2)).

Remark 1. As discussed in SI Section 2.3, as ε → 0+, the spatial profile of diffusing molecules approaches
that of their available volume profile, that is,

Ei(t, x) ≈ Ēi(t)v̂E,i(x)︸ ︷︷ ︸
Case I and Case III

, ci(t, x) ≈ c̄i(t)v̂c,i(x)︸ ︷︷ ︸
Case I

, S(t, x) ≈ S̄(t)v̂S(x)︸ ︷︷ ︸
Case I and Case II

,

for the other spatially fixed species we have that their concentrations are localized in a manner as their
production terms .

The consequence of Remark 1 is that knowledge of the space averaged dynamics from system (11) also
leads to knowledge of the spacial profiles of the species within the cell. This information is used to propose
a method to estimate the BCF from experimental data (See SI Section 2.11)
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Remark 2. The approximation result holds for ε � 1, that is, diffusion is much faster than any other time
scales in (6). However, in SI Section 2.4 we motivate why the approximation should still hold (for which the
relationship (9) is key) if ηi/ε = O(1) (binding and unbinding between Ei and S occurs at a similar timescale
as diffusion), and confirmed via numerical simulations in Section 1.4.

The BCF θ∗i in (11b) is temporally constant and thus the reduced model has the same dimensionality as
the well-mixed model (8), yet captures the role of spatial heterogeneity in the interactions between cellular
species. Therefore, θ∗i is a practical and accurate approximation of the BCF when ε� 1 (sufficient for Case
I) and δ � 1 (needed for Cases II-III).

1.3.2 Dependence of the BCF on species size and localization

When diffusion is fast and the expression of spatially fixed species is localized, the BCF is well approximated
by θ∗i given in (11b). Substituting (2) into (11b) and denoting the radius of gyration of Ei and S by re,i and
rs, respectively, we can rewrite θ∗i as

θ∗i =



∫ 1
0
e
−
r2e,i+r

2
s

(r∗)2
ρ̂(x)

dx

[
∫ 1
0
e−(re,i/r

∗)2ρ̂(x)dx][
∫ 1
0
e−(rs/r∗)2ρ̂(x)dx]

for Case I

e−(rs/r
∗)2ρ̂(x∗i )∫ 1

0
e−(rs/r∗)2ρ̂(x)dx

for Case II

e−(re,i/r
∗)2ρ̂(x∗s )∫ 1

0
e−(re,i/r

∗)2ρ̂(x)dx
for Case III

. (13)

From (13), we observe that θ∗i , depends on the spatial localization of spatially fixed species (i.e,. x∗i and x∗s),
the radius of gyration of diffusing species, r∗ (2), and the nominalized local density of DNA length ρ̂(x).

Using (13), we graphically illustrate the dependence of θ∗i on re,i, rs, r
∗, x∗i and x∗s in Figure 4. By

analyzing Figure 4, we observe the following:
Case I: the BCF is always greater than or equal to that of the well-mixed model (8) (where θ∗i = 1 for all

i) and this discrepancy increases with the size of Ei and S. Intuitively, as the size of Ei and S increases, they
are pushed out of the chromosome and co-localize near the cell poles, thus they are confined to a smaller
volume to interact and hence their effective binding strength increases. If only one of the species is large
(with respect to r∗), while the other one is small, then the large species will be ejected from the chromosome
and thus will not be homogeneously distributed throughout the cell, however θ∗i ≈ 1, and thus a well-mixed
model is valid despite this spatial heterogeneity.

Case II and III: where one of the species diffuses (size ry) and the other is fixed at x = x∗, the BFC
is different from unity when ry is sufficiently large. We observe that θ∗i < 1 for x∗ ≤ 0.4 and appears to
approach zero near x∗ = 0 for large ry/r

∗. Similarly, for x∗ ≥ 0.65, θ∗i > 1. This occurs because as the
size of the diffusing species increases, the species is ejected from the chromosome onto the cell poles and
therefore it is more likely to interact with species fixed at the cell-poles than those near mid-cell. Between
0.4 ≤ x∗ ≤ 0.65 there exists a region where θ∗i = 1 for all ry/r

∗. This provides additional evidence that a
well-mixed model may be appropriate despite severe intracellular heterogeneity.

When ρ̂(x) is assumed to be a step function, the upper bound for θ∗i is 1/∆x for Case I-III, as derived in
SI Section 2.5, where ∆x is the distance between the end of the chromosome and the cell poles as shown in
Figure 1. Furthermore, the lower bound for Case I was unity and for Case II-III it was zero.

The value of the BCF provides a measure to determine the extent to which spatial effects modulate
the biomolecular dynamics. Therefore, an experimental method to estimate the BCF is desirable. In SI
Section 2.11, we propose such a method that only requires knowledge of ∆x and of the value of concentration
of freely diffusing species inside and outside the nucleoid.

In SI Section 2.13, we consider how the BCF can vary temporally as the cell divides and the chromosome
density shifts from being concentrated primarily near mid-cell to quarter-cell. We demonstrate that the
BCF can vary by over 50% in time for the case where one species is stationary and localized near mid-cell.
Furthermore, in SI Section 2.14 we show how the BCF is affected when we consider exclusion effects from
the DNA of a pole localized high copy plasmid. We show that for the case where both reactant freely diffuse,
the BCF decreases as the amount of plasmid DNA increases. For the case where one reactant is spatially
fixed and the other freely diffuses, we show that the BCF decreases for a species localized at the cell poles
and increases for a species localized near quarter-cell, as the amount of plasmid DNA increases.
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Figure 4: The BCF in the limit of fast diffusion and localization of spatially fixed species.
Approximation of the BCF denoted by θ∗i (13) is provided for Case I and for Case II/Case III. (A) For Case
I, where Ei and S both freely diffuse, θi ≥ 1 and increases when both the size of Ei (re,i) and S (rs) are
sufficiently large (with respect to r∗). (B) For Case II and III, where one of the species diffuses (size ry) and
the other is fixed at x = x∗, θ∗i is different from unity when the radii of the diffusion species is sufficiently
large. We observe that θ∗i < 1 for x∗ ≤ 0.4 and appears to approach zero near x∗ = 0 for large ry/r

∗.
Similarly, for x∗ ≥ 0.65, θ∗i > 1. Between 0.4 ≤ x∗ ≤ 0.65 there exists a region that θ∗i = 1 for all ry/r

∗.

1.4 Application to Core Processes and Genetic Circuits

In this section we apply the results of the time scale separation analysis from Section 1.3 in order to both
determine and modulate the effects of intracellular heterogeneity on core processes, such as transcription and
translation, and on genetic circuit behavior.

1.4.1 Application of the reduced ODE model to transcription and translation

In this section, we investigate how and the extent to which intracellular heterogeneity affects the core bio-
logical processes of transcription and translation, which are responsible for protein production. We model a
gene (D) being transcribed by RNAP (S) to form a DNA-RNAP complex (cs) to produce mRNA (m). The
mRNA is then translated by ribosomes (R) to form mRNA-ribosome complex (cm) which produces protein
P. The chemical reactions are given by

D + S
as



ds

cs
κs−→ m + S + D︸ ︷︷ ︸

transcription, Case II

, m + R
am



dm

cm
κm−→ P + R + m︸ ︷︷ ︸

translation, Case I

, P
µ−→ ∅, (14)

cs
µ−→ ∅, ∅ αs−→ S

µ−→ ∅, m
γ+µ−→ ∅, cm

γ−→ R cm
µ−→ ∅ ∅ αr−→ R

µ−→ ∅,

where as and ds are the association and dissociation rate constants, respectively, between RNAP and the gene
D, κs is the catalytic rate constant of formation of mRNA m, am and dm are the association and dissociation
rate constants, respectively, between ribosomes and mRNA, κm is the catalytic rate constant of formation of
protein P, αs is the production rate of RNAP, αr is the ribosome production rate, µ is the cell growth rate
constant (set to unity in our nondimensionalization), and γ is the mRNA degradation rate constant. The
transcription reaction is in the form of Case II (Table 1) since the gene does not freely diffuse and the RNAP
freely diffuses. The translation process falls under Case I, since both mRNA and ribosomes freely diffuse.
We assume that the total concentration of D is conserved, so that DT (x) = D(t, x) + cs(t, x) and that DT (x)
is localized at x = x∗. From (11), the dimensionless reduced space averaged dynamics corresponding to (14)
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are given by

dc̄s(t)

dt
= asθ

∗
sD̄(t)S̄(t)− (ds + κs + 1)c̄s(t),

dS̄(t)

dt
= ᾱs(t)− asθ∗sD̄(t)S̄(t) + (κs + ds)c̄(t)− S̄(t),

dm̄(t)

dt
= κsc̄s(t)− amθ∗RR̄(t)m̄(t) + (dm + κm)c̄(t)− (γ + 1)m̄(t) (15)

dc̄m(t)

dt
= amθ

∗
RR̄(t)m̄(t)− (dm + κm + 1 + γ)c̄(t),

dR̄(t)

dt
= ᾱr(t)− amθ∗RR̄(t)m̄(t) + (γ + dm + κm)c̄m(t)− R̄(t),

dP̄ (t)

dt
= κmc̄m(t)− P̄ (t).

Concentration variables are nondimensionalized with respect to the total steady state space averaged RNAP
(S̄T (∞) = ᾱs(∞)/µ), since this quantity is a readily available in the literature. Letting rs, rm, and rR, be
the radius of gyration of RNAP, mRNA, and ribosomes, respectively, we compute the BCF’s via (11b) and
(2),

θ∗s = v̂s(x
∗) =

e−(rs/r
∗)2ρ̂(x∗)∫ 1

0
e−(rs/r∗)2ρ̂(x)dx

, (16a)

θ∗R =

∫ 1

0

v̂m(x)v̂R(x)dx =

∫ 1

0
e
− r

2
m+r2R
(r∗)2

ρ̂(x)
dx

[
∫ 1

0
e−(rm/r∗)2ρ̂(x)dx][

∫ 1

0
e−(rR/r∗)2ρ̂(x)dx]

, (16b)

where v̂s(x) = vs(x)∫ 1
0
vs(x)dx

, v̂m(x) = vm(x)∫ 1
0
vm(x)dx

, v̂R(x) = vR(x)∫ 1
0
vR(x)dx

, and v̂c(x) = vc(x)∫ 1
0
vc(x)dx

are the normalized

available volume profiles of RNAP, mRNA, ribosomes, and of the mRNA-ribosome complex, respectively.
Recall that the quantity (r∗)2 is inversely proportional to the total DNA length per volume. We now
consider the steady state behavior of system (15) by equating the time derivatives to zero. Specifically, we
are interested in how the steady state levels of produced mRNA and protein are affected by θ∗s and θ∗r and,
hence, how they depend on spatial quantities such as rs/r

∗ rm/r
∗, rR/r

∗, and x∗.
Total mRNA steady state level: We are interested in investigating the role of spatial effects on the

binding between RNAP and the DNA and thus on mRNA production. Here we analyze the steady state total
mRNA levels (m̄T = m̄ + c̄m) of (15) rather than the free amount of mRNA (m), since m̄T is independent
of θ∗R as shown by

m̄T = κsc̄s/(γ + 1) with c̄s = D̄T
S̄θ∗S/Ks

1 + S̄θ∗S/Ks
, (17)

where D̄T =
∫ 1

0
DT (x)dx, Ks = ds/as, KR = dm/am. If θ∗S = 1 in (17), then the predicted total mRNA

steady state level will be identical to that of a well-mixed model (as in (8)). From (16) and Figure 4-B,
if the RNAP radius of gyration is sufficiently large with respect to r∗ then θ∗S may be different from unity
(depending on x∗), in which case spatial effects arise. If the DNA is localized near mid-cell (x∗ ≈ 0), then it
implies that θ∗S < 1 from Figure 4-B and, as a consequence, a decreased steady state total mRNA level will
result. Furthermore, for very large values of rs/r

∗ and x∗ ≈ 0 we have that θ∗S → 0 and the total mRNA
steady state levels will approach zero. Similarly, if the DNA is localized near the cell-poles (x∗ ≈ 1), then
it implies that θ∗S > 1 from Figure 4-B and, as a consequence, an increased steady state total mRNA level.
This phenomenon occurs because as the excluded volume effects of RNAP are amplified (large rs/r

∗), RNAP
will localize primarily in the cell poles and hence transcribe pole-localized DNA more efficiently than DNA
near mid-cell (or any region where the local chromosome density is high). When designing genetic circuits, a
plasmid backbone is chosen to provide a certain DNA copy number, however the backbone also determines
where in the cell the plasmid localizes [9, 10, 11]. Therefore, based on our results, localization also affects
steady state total mRNA level. If instead of introducing the DNA via a plasmid, the DNA is integrated
directly into the chromosome, then the location of integration site should be a parameter to consider.

Figure 5-A shows the behavior of the steady state total mRNA level as a function of rs/r
∗ and of the

location of the transcribed gene, when compared to the level predicted by the well mixed model. Simulations
confirm that total mRNA levels are higher for pole localized genes than those near mid-cell and that the
discrepancy increases with the size of RNAP relative to r∗. The agreement between the full PDE model ((62)
in SI Section 2.6) and the reduced ODE model (15) provides numerical validation of the model reduction
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results (explicitly shown in SI Figure 11). In the SI Section 2.6, we show in Figure 9 the transient response
corresponding to Figure 5, for which the full-PDE and reduced models agree. Furthermore, in SI Figure 9,
we also verify that as the size of RNAP increases, it is indeed ejected from the chromosome and adopts its
available volume profile (Remark 1). Furthermore, in SI-Figure 10, we demonstrate that these results hold
independent of the binding and unbinding speed between RNAP and DNA (Remark 2). In SI Section 2.12
we propose an experimental method to test the hypothesis that mid-cell genes are transcribed less effectively
than pole localized genes.

In [28] it was estimated that rs = 6.5 ± 0.1 nm, which implies that rs/r
∗ ≈ 0.3. From Figure 4-B, this

implies that θ∗s ≈ 1.06 when the DNA is at the cell poles and θ∗s ≈ 0.94 when the DNA is near mid-cell, thus
the we expect the binding strength between RNAP and the DNA to deviate by 6% from that of a well-mixed

model. From (17), if Sθ∗S/Ks << 1, then m̄T =
θ∗SκsD̄T S̄
Ks(γ+1) ; thus in this regime the mRNA concentration is

proportional to θ∗S . So we expect at most a 6% difference in steady state mRNA concentration with respect
to what is predicted by a well-mixed model.

Figure 5: Spatial heterogeneity effects on steady state total mRNA and protein levels (A) The
space averaged total mRNA (m̄T ) concentration predicted by the full PDE model ((62) in SI Section 2.6)
and the reduced ODE model (15) normalized by that of the well-mixed model (m̄T,well-mixed) as the size
of the RNAP (rs) varies with respect to r∗. With respect to the well-mixed model, the amount of mRNA
decreases (increases) when the DNA is localized near mid-cell (cell poles). (B) The space averaged protein
concentration (P̄ ) predicted by the full PDE model ((62) in SI Section 2.6) normalized by that of the well-
mixed model (P̄well-mixed) as the size of the of mRNA (rm) and ribosome (rR) varies with respect to r∗. The
amount of protein increases when both the mRNA and ribosome size increases. We set rs/r

∗ = 1 × 10−3,
such that θS ≈ 1 and thus the result is independent of the spatial location where the gene is expressed. We
refer to the well-mixed model as (15) with (16) given by θ∗S = 1 and θ∗R = 1. The parameter values and full
simulation details are provided in SI Section 2.6

Protein steady state level: The steady state protein levels of (15) are given by

P̄ = κmc̄m, with c̄m(t) = m̄T
R̄/KRθ

∗
R

1 + R̄/KRθ∗R
. (18)

From (17) and (18), if θ∗S = 1 and θ∗R = 1, then protein steady state level will be identical to that of
a well-mixed model. From (16) and Figure 4-A, we conclude that θ∗R ≥ 1 and increases with rs/r

∗ and
rm/r

∗. Increasing rs/r
∗ and rm/r

∗ implies that the ribosomes and mRNA are further excluded from the
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chromosome onto the cell poles. Once localized at the cell-poles, the mRNA and ribosomes are more likely
to bind. Figure 5-B shows the behavior of the steady state protein levels as a function of rm and rR, when
compared to the level predicted by the well mixed-model for the full PDE model ((62) in SI Section 2.6).
Simulations confirm that protein levels with respect to a well-mixed model increases when both the mRNA
and ribosome size are sufficiently large. In SI-Figure 13, we show that the reduced ODE model (15) is
within 2% of the full PDE model (SI (62)) for the result in Figure 5-B. In the SI Section 2.6 we show in
Figure 12 the transient response corresponding to Figure 5, for which the full-PDE and reduced model agree.
Furthermore, in SI Figure 12 we verify that as the size of ribosome and mRNA increase, they are ejected
from the chromosome and and become distributed according to their available volume profile (Remark 1).
Furthermore, in SI-Figure 14-15, we demonstrate that these results hold independent of the binding and
unbinding speed between ribosomes and mRNA (Remark 2).

It is well known that most mRNA-ribosome complexes exists in configurations with multiple ribosomes
bounded (polysomes) [29, 30]. To capture the prevalence of these polysomes, we model the translation process
accounting for the fact that one mRNA can be bound to multiple ribosomes. We first model the mRNA
binding simultaneously to Nr − 1 ribosomes to form the cl complex, to which another ribosome binds to to
form the fully loaded ct complex. The leading ribosome with a complete peptide is released from ct at a rate
κt to yield protein P. This is described by the following set of biochemical reactions:

m + (Nr − 1)R
al



dl

cl︸ ︷︷ ︸
ribosome loading

, cl + R
at



dt

ct
κt−→ P + R + cl︸ ︷︷ ︸
peptide release

. (19)

While the ribosome loading reaction in (19) is not in the form of the chemical reactions (1), which assume
bimolecular reactions, we can nevertheless apply our results as follows (see SI Section 2.7 for details). Specif-
ically, ribosome and mRNA profiles will still approach their available volume profiles (Remark 1), that is,
R(t, x) ≈ R̄(t)v̂r(x), m(t, x) ≈ m̄(t)v̂m(x), and cl(t, x) ≈ c̄l(t)v̂cl(x) where vcl(x) = vNr−1

r (x)vm(x) (recall

(9)) and v̂cl(x) = vcl(x)/[
∫ 1

0
vcldx]. This is verified through simulations in SI Section 2.7, Figure 16. By

virtue of the reactants in (19) mirroring their available volume profiles and (7b), we can approximate the
BCF of the loading θ∗l and translation θ∗t reactions in (19), given as

θ∗l =

∫ 1

0
vm(x)vNr−1

R (x)dx

[
∫ 1

0
vm(x)dx][

∫ 1

0
vR(x)dx]Nr−1

=

∫ 1

0
e
− r

2
m+(

√
Nr−1rR)2

(r∗)2
ρ̂(x)

dx

[
∫ 1

0
e−(rm/r∗)2ρ̂(x)dx][

∫ 1

0
e−(rR/r∗)2ρ̂(x)dx]Nr−1

.

θ∗t =

∫ 1

0
vcl(x)vR(x)dx

[
∫ 1

0
vcl(x)dx][

∫ 1

0
vR(x)dx]

=

∫ 1

0
e
− r

2
m+(

√
NrrR)2

(r∗)2
ρ̂(x)

dx

[
∫ 1

0
e
− r

2
m+(

√
Nr−1rR)2

(r∗)2
ρ̂(x)

dx][
∫ 1

0
e−(rR/r∗)2ρ̂(x)dx]

.

In SI Section 2.7, Figure 16-D, we show computationally that θ∗l and θ∗t are good approximations to the
BCF. At this point, we can write the ODE corresponding to this system of reactions and just modify the
association rate constants by θ∗l and θ∗t , as shown in SI Section 2.7, Equation (66). Let Kd = (dl/al)

1/(Nr−1),
Kt = (dt + κt)/at, βl = (γ + 1)/dl, and βt = (γ + 1)/(κt + dt), if βl, βt, R̄/Kt � 1 (dilution and mRNA
degradation is much slower than the rate of ribosome unbinding and Kt is sufficiently large comparer to R̄
[52]), then a simple expression for the steady state protein concentration is given by

P̄ = κtm̄T θ
∗
t R̄/Kt

θ∗l (R̄/Kd)
Nr−1

1 + θ∗l (R̄/Kd)Nr−1︸ ︷︷ ︸
ribosome loading

, (20)

where m̄T is given by (17).
In [13] it was estimated that rm = 20 nm and rR = 10 nm, which implies that rm/r

∗ ≈ 0.88 and
rR/r

∗ ≈ 0.44. Assuming the average distance between ribosomes on an mRNA to be 70 nucleotides [31], for
a 700 nucleotide mRNA (e.g., GFP or RFP), then we have Nr = 10. Thus, for these values, θ∗l ≈ 1.56 and
θ∗t ≈ 1.07. This implies that the forward rate in the reaction of 9 ribosomes binding to an mRNA (al) is
amplified by 56% and the rate at which an additional ribosome binds to this complex (at) increases by 7%
with respect to a well-mixed model. From (20), this would imply up to 67% increase in protein production
with respect to a well-mixed model.
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Taken together, these results suggest that while a well-mixed ODE model may be sufficient to describe
transcription, it is not sufficiently descriptive to capture spatial effects on translation. In this case,the BCF
should be incorporated in the ODE. Additionally, these results are indicative that for other processes in the
cell where complexes of similar size as polysomes are formed, then spatial effects will likely be substantial.

1.4.2 Gene expression regulation by transcription factors

Regulation of gene expression is often performed by transcription factors (TFs) [1]. A transcription factor
can either enhance (for activators) or repress (for repressors) transcription. Spatial affects play an identical
role in gene regulation via activators as they do in gene regulation via RNAP (Figure 5), thus we focus on
transcriptional repressors. In this section, we model transcription regulation where a repressor Pr dimerizes
to form dimer c1 (e.g., TetR dimerizes before binding to a gene [32]) and then blocks transcription of gene
D that produces protein P. The biochemical reactions corresponding to this process are:

∅ α−→ Pr, Pr + Pr

a1



d1

c1︸ ︷︷ ︸
Case I

, c1 + D
a2



d2

c2,︸ ︷︷ ︸
Case II

D
κ−→ P, Pr

γr−→ ∅, P
γp−→ ∅, (21)

where α is the production rate of Pr, a1 (d1) is the association (dissociation) rate constant to form the c1

complex, a2 (d2) is the association (dissociation) rate constant to form the c2 complex, κ is the catalytic rate
constant to produce protein P, and γr and γp are the degradation rate constant of Pr and P , respectively.
Notice that we have lumped the transcription and translation process to produce Pr into one production
reaction and similarly for P. From the results of Section 1.4.1, we know that ᾱ(t) depends on the location
where Pr is expressed (higher if its coding DNA is near the cell poles than mid-cell) and the size of it’s mRNA
(higher for longer mRNAs). Similarly, κ depends on the location where Pr is expressed and it’s mRNA size.
Using the results from Section 1.4.1 we can explicitly model these dependences, however, we opt not to do
so to solely investigate the role of spatial effects on transcriptional repression. Since the repressor Pr, freely
diffuses, the dimerization reaction belongs to Case I. The gene D is spatially fixed and it is repressed by the
freely diffusing c1, thus this interaction falls under Case II. We assume that the total concentration of D
is conserved, so that DT (x) = D(t, x) + c2(t, x) and that DT (x) is localized at x = x∗. The reduced ODE
model corresponding to (21) obeys

dP̄r(t)

dt
= ᾱ(t)− γrP̄r(t),

dc̄1(t)

dt
= a1θ

∗
1P̄

2
r (t)− d1c1(t)− a2θ

∗
2 c̄1(t)D̄(t) + d2c̄2(t), (22)

dc̄2(t)

dt
= a2θ

∗
2D̄(t)c̄i(t)− d2c̄2(t), D̄(t) = 1− c̄2(t),

dP̄ (t)

dt
= κD̄(t)− γpP̄ (t).

Concentration variables were nondimensionalized with respect to the space averaged total DNA D̄T =∫ 1

0
DT (x)dx. From our main result, the BCF’s are given by

θ∗1 =

∫ 1

0

v̂2
Pr (x)dx =

∫ 1

0
v2
Pr

(x)dx

[
∫ 1

0
vPr (x)dx]2

, θ∗2 = v̂c1(x∗) =
vc1(x∗)∫ 1

0
vc1(x)dx

, vPr (x) = e−(r/r∗)2ρ̂(x), (23)

where r is the radius of gyration of Pr, vPr (x) and vc1(x) are the available volume profiles of Pr and c1,
respectively, and from (9), vc1(x) = v2

Pr
(x).

We now consider the steady state behavior of system (22) by equating the time derivatives to zero.
Specifically, we are interested in how the steady state levels of P is affected by the spatial quantities r/r∗

and x∗. From setting (22) to steady state, we obtain

P̄ =
κ

γp
D̄, where D̄ =

1

1 + (P̄r/K)2θ∗
, θ∗ = θ∗1θ

∗
2 = v̂2

Pr (x
∗), (24)

where K =
√
Kd,1Kd,2 and Kd,i = di/ai for i = 1, 2. From (24) and (23), we observe that θ∗ contains all the

spatial information, which includes the size of Pr and the location of the target gene D. If θ∗ = 1, then the
protein concentration would be the same as the well-mixed model. The ratio K/

√
θ∗ can be thought of as

an effective disassociation rate constant of the repressor. If D is located near mid-cell (x∗ ≈ 0 in (23)), then
for r/r∗ � 1 we have θ∗ ≈ 1 (see Figure 4), but as r/r∗ increases, we have that θ∗ < 1 and asymptotically
approaches zero as r/r∗ → ∞. Similarly, if D is located near the cell poles (x∗ ≈ 1 in (23)), then for
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r/r∗ � 1 we have θ∗ ≈ 1 (see Figure 4), but as r/r∗ increases, we have that θ∗ > 1. Thus, the efficacy
of a transcriptional repressor regulating genes in the chromosome (cell-poles) decreases (increases) with TF
size. Intuitively, this occurs because as the TF size increases, excluded volume effects will push it out of the
chromosome onto the cell-poles (see Remark 1), thus interacting with DNA near the cell-poles more frequently
than with DNA near mid-cell. Numerical simulations validate our predictions as shown in Figure 6, where
increasing the transcription factor size leads to higher (lower) repression when the target DNA is localized
at the cell poles (mid-cell) with respect to a well-mixed model. The simulation results also show agreement
between the predictions of the full PDE ((70) in SI Section 2.8) and reduced ODE model (22) (as shown
explicitly in SI Figure 19). Figure 17 in SI Section 2.8, further shows the temporal trajectories corresponding
to Figure 6, also showing agreement between the full PDE model and the reduced ODE model. Finally, all
our results hold independent of the binding and unbinding speeds of the transcription factor dimerizing and
of the dimer binding to the DNA (Figure 18 in SI Section 2.8). In SI Section 2.12 we propose an experimental
method to test the hypothesis that mid-cell genes are regulated less effectively than pole localized genes.

Figure 6: Spatial heterogeneity effects in transcriptional regulation. (A) The repressor Pr dimerizes
and regulates the production of protein P. (B) The steady state space-averaged concentration per-cell of P̄
normalized by its value when P̄r = 0 (24) for the PDE model ((70) in SI Section 2.8), the well-mixed model
((22) with θ∗1 = θ∗2 = 1), and the reduced ODE model (22) when the DNA is located near mid-cell (x∗ ≈ 0
in (24)) and when the DNA is located at the cell-poles (x∗ ≈ 1) for several sizes of Pr. The parameter values
and full simulation details are provided in SI Section 2.8.

The reactions in (21) can be easily extended to CRISPRi/dCas9 repression systems [33], where instead of
two identical species dimerizing, we have two distinct freely diffusing species bind (dCas9 and guide RNA) to
form the complex gRNA-dCas9, which targets a desired DNA sequence. Exploiting the insight gained from
analyzing (21), we expect that due to the large size of dCas9 [34] (which is further augmented as it forms a
complex with the gRNA), it will regulate pole localized DNA (e.g,. ColE1 plasmid DNA [9]) more efficiently
than genes in mid-cell (e.g,. chromosomally integrated) and thus spatial effects are expected to be more
significant when using CRISPRi/dCas9 in genetic circuit design. Specifically, based on approximate values
found in the literature, we estimated that θ∗ ≈ 1 for a transcription factor, while θ∗ can range between 0.9
and 1.1 for dCas9-enabled repression. This indicates that a well-mixed model is appropriate for modeling
transcription factor-enabled repression of gene expression but may not be sufficient to capture effects of
spatial heterogeneity arising with larger repressing complexes such as with dCas9/gRNA (see SI Section 2.8
for details).
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1.4.3 Genetic Oscillator

As a final example, we consider the repressor-activator clock genetic circuit designed in [35] and shown
in Figure 7-A. This circuit produces sustained oscillations if tuned within an appropriate parameter range
[36, 1]. The circuit consists of two proteins Pa and Pr. Protein Pa, is an activator which dimerizes to form
Pa,2 and then binds to its own gene Da to form complex ca,1 to initiate transcription. The dimer Pa,2 also
binds to the gene Dr, which transcribes Pr to form complex ca,2 and initiates transcription. Protein Pr,
dimerizes to form Pr,2 and then represses Pa by binding to Da to form complex cr. The biochemical reactions
corresponding to this circuit are:

Pa + Pa

a1



d1

Pa,2,︸ ︷︷ ︸
Case I, Pa diffuses

Pr + Pr

a2



d2

Pr,2,︸ ︷︷ ︸
Case II, Pr diffuses

Pa,2 + Da

a3



d3

ca,1, Pr,2 + Da

a5



d5

cr,︸ ︷︷ ︸
Case III, Pa,2 and Pr,2 diffuse and Da fixed

Pa,2 + Dr

a4



d4

ca,2,︸ ︷︷ ︸
Case II, Pa,2 diffuse and Dr fixed

Da
κ1−→ Pa, Dr

κ2−→ Pr, Pa
γa−→ ∅, Pr

γr−→ ∅, ca,1
κ3−→ Pa, ca,2

κ4−→ Pr, (25)

where ai (di) for i = 1, . . . , 5 are association (dissociation) rate constants, γa (γr) is the degradation rate
constant of Pa (Pr ) κ1 (κ2) is the basal rate at which gene Da (Dr) is transcribed, and κ3 (κ4) is the
rate at which the DNA-transcription-factor complexes are transcribed for Da (Dr). We assume that the
total concentration of Da is conserved, so that Da,T (x) = Da(t, x) + ca,1(t, x) + cr(t, x) and that Da,T is
localized at x = x∗a. Similarly, we assume that the total concentration of Dr is conserved, so that Dr,T (x) =
Dr(t, x) + ca,2(t, x) and that Dr,T is localized at x = x∗r . The reduced ODE model corresponding to (25) is
given by:

dP̄a(t)

dt
=κ1D̄a(t) + κ3c̄a,1(t)− γaP̄a(t),

dP̄r(t)

dt
= κ2D̄r(t) + κ4c̄a,2(t)− γrP̄r(t),

dP̄a,2(t)

dt
=a1θ

∗
1P̄

2
a (t)− d1P̄a,2(t)− a3θ

∗
3P̄a,2(t)D̄a(t) + d3c̄a,1(t)− a4θ

∗
4P̄a,2(t)D̄r(t) + d4c̄a,2(t), (26a)

dP̄r,2(t)

dt
=a2θ

∗
2P̄

2
r (t)− d2P̄r,2(t)− a5θ

∗
5P̄r,2(t)D̄a(t) + d5c̄r(t),

dc̄a,1(t)

dt
= a3θ

∗
3P̄a,2(t)D̄a(t)− d3c̄a,1(t),

dc̄a,2(t)

dt
=a4θ

∗
4P̄a,2(t)D̄r(t)− d4c̄a,2(t),

dc̄r(t)

dt
= a5θ

∗
5P̄r,2(t)D̄a(t)− d5c̄r(t),

D̄a(t) =1− c̄a,1(t)− c̄r(t), D̄r(t) = D̄r,T − c̄a,2(t).

Concentration variables were nondimensionalized with respect to the space averaged total DNA D̄a,T =∫ 1

0
Da,T (x)dx. Applying our main result, the BCF’s are given by

θ∗1 =

∫ 1

0

v̂2
Pa(x)dx, θ∗2 =

∫ 1

0

v̂2
Pr (x)dx, θ∗3 = v̂Pa,2(x∗a), θ∗4 = v̂Pa,2(x∗r), θ∗5 = v̂Pr,2(x∗a), (26b)

where v̂Pa(x), v̂Pr (x), v̂Pa,2(x), and v̂Pr,2(x) are the normalized available volume profiles (i.e,. v̂Pa(x) =

vPa(x))/
∫ 1

0
vPa(x)dx) of Pa, Pr, Pa,2, and Pr,2, respectively. From (9), notice that vPa,2(x) = v2

Pa
(x) and

vPr,2(x) = v2
Pr

(x). The available volume profiles are given by

vPa(x) = e−(ra/r
∗)2ρ̂(x), vPr (x) = e−(rr/r

∗)2ρ̂(x), (27)

where ra and rr are the radius of gyration of Pa and Pr, respectively. Approximating P̄a,2(t), P̄r,2(t), c̄a,1(t),
c̄a,2(t) and c̄r(t) at their quasi-steady state (since di � γa, γr for i = 1, . . . , 5, [1]), we obtain

P̄a,2(t) =
a1θ1

d1
P̄ 2
a (t), P̄r,2(t) =

a2θ2

d2
P̄ 2
r (t),

c̄a,1(t) =
a3θ3

d3
P̄a,2(t)D̄a(t), c̄a,2(t) =

a4θ4

d4
P̄a,2(t)D̄r(t), c̄r(t) =

a5θ5

d5
P̄r,2(t)D̄a(t),

and, therefore, we can further reduce (26) to

dP̄a
dt

=
α0,A + αA

(
P̄a
Kd,1

)2
1 +

(
P̄a
Kd,1

)2
+
(
P̄r
Kd,2

)2 − γAP̄a, dP̄r
dt

=
α0,R + αR

(
P̄a
Kd,3

)2
1 +

(
P̄a
Kd,3

)2 − γRP̄r (28a)
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where α0,A = κ1D̄a,T (α0,R = κ2D̄r,T ) is the basal production rate of Pa (Pr ), αA = κ3 (αR = κ4D̄r,T ) is
the additional production rate of Pa (Pr) due to activation from Pa, and

Kd,1 =
d1d3

θ∗A,1a1a3
, Kd,2 =

d2d5

θ∗Ra2a5
, Kd,3 =

d1d4

θ∗A,2a1a4
, (28b)

θ∗A,1 = θ∗1θ
∗
3 = v̂Pa(x∗a), θ∗R = θ∗2θ

∗
5 = v̂Pr (x

∗
a), θ∗A,2 = θ∗1θ

∗
4 = v̂Pa(x∗r). (28c)

The form of the dynamics given by (28) was theoretically analyzed in [36, 1], and it was shown that the values
of Kd,i for i = 1, 2, 3, were critical in determining whether sustained oscillations occur. From (28b), these
parameters depend on (28c) and thus on the size of Pa and Pr through the available volume profiles (27) and
the location of Da and Dr (x∗a and x∗r). Numerical simulations demonstrate how these spatial parameters
affect circuit behavior. In our simulation setup, the parameters are chosen such that the well-mixed model
((26) with θ∗R = θ∗A,1 = θ∗A,2 = 1) oscillates, the DNA of Pa and Pr are localized at the cell poles and have

the same copy number (i.e., x∗a = x∗r and D̄r,T = D̄a,T = 1 ), the size of Pr is chosen to be small rr/r
∗ � 1

(thus θ∗R ≈ 1), and the size of Pa is varied (thus varying θ∗A,1 and θ∗A,2). Since Da is localized at the cell
poles, it implies x∗a ≈ 1 and from (28c), we observe that if ra/r

∗ � 1 =⇒ θ∗A,1 ≈ θ∗A,2 ≈ 1 and θ∗A,1, θ
∗
A,2

increase as ra/r
∗ increases. The results of these simulations are shown in Figure 7. When ra/r

∗ � 1 , the
full PDE model ((72) in SI Section 2.9), the reduced ODE model (26), and the well-mixed model are all
in agreement and sustained oscillations are observed. By contrast, when ra/r

∗ = 1, the PDE and reduced
model (which are in agreement with each other as explicitly shown in SI Figure 21) predict that sustained
oscillations will no longer occur. Furthermore, in SI Section 2.9 we demonstrate in Figure 22 that indeed as
the size of Pa increases it is excluded from the chromosome onto the cell poles while the spatial profile of Pr

is homogeneously distributed throughout the cell since rr/r
∗ � 1 (Remark 1).

Figure 7: Spatial effects on the dynamics of genetic circuits. (A) The activator-repressor clock where
Pr represses Pa and Pa activates itself and Pr. Both proteins are expressed from the same cell-pole localized
plasmid. (B) The temporal evolution of Pa is given for the full-PDE model ((72) in SI Section 2.9), the
reduced ODE model (26), and the well-mixed model (same as (26) with θ∗A,1 = θ∗A,2 = θ∗R = 1). When
Pa is small (ra/r

∗ � 1), all three models predict sustained oscillations. When Pa is large (ra/r
∗ = 1),

the full-PDE model and the reduced ODE model predict the oscillations will cease. For both simulations
rr/r

∗ � 1 =⇒ θ∗R ≈ 1. The full simulation details and parameter values are given in SI Section 2.9.
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Discussion

We derived a reduced order ODE model of genetic circuits with the same dimension as traditional ODE
well-mixed models; yet, it captures effects of spatial heterogeneity within bacterial cells (11). In particular,
our reduced model is the same as a well-mixed model where all the association rate constants are multiplied
by the binding correction factor (BCF). This factor depends on the size and location (if fixed in space) of
the reacting species, according to an analytical formula that we derived from first principles (11b) and its
value can be estimated experimentally through simple procedures (SI Section 2.11). We have mathematically
demonstrated that this reduced order model is a good approximation of the space-averaged dynamics resulting
from a reaction-diffusion PDE model under the assumption of fast diffusion. It can therefore be used in place
of PDE models, providing substantial advantages for both simulation and mathematical analysis.

We applied this model to analyze the effects of spatial heterogeneity on core biological processes and
genetic circuits. Specifically, motivated by the fact that DNA, ribosomes, and mRNA have been shown to
localize within the cell [4, 14, 5], we analyzed the transcription and translation processes. We determined
that mRNA levels are lower (higher) when the gene is localized near the mid-cell (cell poles). We also showed
that when the target gene of a transcriptional repressor is near mid-cell (cell poles) the effective repression
is lower (higher) with respect to that of the well-mixed model. This discrepancy is amplified as the size of
the transcription factor increases. The extent of these spatial effects depends on how different the value of
the BCF is from unity. Based on parameters found in the literature, we determined that for the processes of
transcription and its regulation the BCF should be close to unity and hence a well-mixed ODE model should
be sufficient. However, in situations where the nucleoid is highly compacted (from overexpressing mRNA
[13] or translational inhibition [37]), we expect that the available volume profile (2) approaches small values
and, as a consequence, the value of the BCF can substantially deviate from unity (11b).

Our results provide additional interpretations of well-known biological phenomena. For example, it has
been shown that the expression rate of chromosomal genes depends on the locus where the gene is inserted
[38]; that the nucleoid dynamically changes shape to control gene expression and transcription regulation
[4, 39] (e.g., see SI Section 2.13 for how a time varying chromosome density modulates the BCF); and
that coregulation and coexpression among genes depends on their spatial distance [40]. For a fixed amount
of mRNA, we showed that spatial heterogeneity leads to higher translation rates since both mRNA and
ribosome are pushed out of the chromosome into a smaller region near the cell poles, which results in larger
effective binding affinity. How larger, it depends on the value of the BCF. For a polysome with 10 translating
ribosomes, the value of the BCF can deviate from unity by 56% in the ribosome loading step and by 7%
in the peptide release step. These estimates are believed to be conservative since we did not account for
the exclusion effects from the peptide chains attached to the translating ribosome, which will result in even
more pronounced spatial effects. Therefore, a well-mixed model may not be sufficient to capture the effects
of spatial heterogeneity on translation.

Our modeling framework can be easily extended to other aspects of gene expression. For example, we may
consider co-transcriptional translation [41]. In this case, as a result of translation being localized at the gene
location, the effective ribosome binding site strength will also depend on gene location through the BCF.
We may also consider the role of spatial heterogeneity on orthogonal translational machinery [42]. From our
models, we predict that one can tune the rate at which orthogonal ribosomes are formed by creating larger
synthetic 16S rRNA. Furthermore, once the production of orthogonal ribosomes is placed in a feedback form
to decouple genetic circuits [42], our framework suggests that the feedback efficiency may depend on the
spatial location of the synthetic 16S rRNA gene. The value of the parameter r∗, whose squared value is
inversely proportional to the average chromosome density (2), is critical in determining the extent of spatial
effects. In this study we indirectly estimated a value of r∗ based on [13]. However, a more comprehensive
study should be conducted to estimate r∗ for several contexts (SI Section 2.11), or equivalently to estimate
extent of excluded volume effects, which may easily be performed via superresolution imaging [14].

In summary, this paper provides a general and convenient modeling framework to account for DNA local-
ization and excluded volume effects on intracellular species dynamics. While other phenomena contributing
to intracellular spatial heterogeneity, such as crowding [43], sliding, hopping, and dimensionality [17], exist,
this is a first step towards creating a general framework to modify current models to capture spatial infor-
mation. Our model can be used both as an analysis and a design tool for genetic circuits, in which variables
such as gene location and regulator size may be considered as additional design parameters.
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Supplementary Material

2 Time Scale Separation Proofs

2.1 Preliminaries:

Notation: Let z = [z1, . . . , zn]T ∈ Rn (where superscript T denotes the transpose operation) and the j-
th component of z is denoted by zj . A vector of zeros is denoted as 0n = [0, . . . , 0]T ∈ Rn and we use
A = diag(v) ∈ Rn×n to refer to a square matrix with all zeros in the off-diagonals and diagonal elements
specified by the vector v. The (j, k)-th element of matrix A is denoted by Aj,k and In,n is the identity
matrix acting on Rn. Let Rn+ = {[z1, . . . , zn]T : zi > 0, i = 1, . . . , n} denote the positive orthant of Rn. For

a Hilbert space H with inner product 〈·, ·〉H , we denote the norm as || · ||H =
√
〈·, ·〉H . Finally, let overbars

denote spatial integration ū :=
∫ 1

0
u(x)dx.

Definition 1. (Linear Differential Operator) Let v(x) : [0, 1]→ R+ be a smooth function, and consider the
following linear differential operator:

Lv(y) :=
d

dx

[
v2(x)

d

dx

[y(x)

v(x)

]]
, (29)

with domain D(Lv) = {y ∈ L2(0, 1) : v2 d
dx

[
y
v

]∣∣
x=0,1

= 0}:

Next, we introduce the Hilbert space L2
v(0, 1) that we use for our analysis. This space is isomorphic to

L2(0, 1) however, the operator (29) is self-adjoint with respect to the inner product in L2
v(0, 1).

Definition 2. (Weighted L2(0, 1) space) For smooth v : [0, 1] → R+ we denote L2
v(0, 1) as a weighted

space of the square integrable functions such that f ∈ L2
v(0, 1) if and only if : f√

v(x)
∈ L2(0, 1). The

inner-product is defined as 〈f, g〉v :=
∫ 1

0
f(x)g(x)

v̂ dx, for f, g ∈ L2
v(0, 1) and v̂(x) = v(x)

v̄ . Furthermore, let
v = [v1(x), . . . , vn(x)]T , where vi(x) : [0, 1] → R+ is smooth, then z ∈ L2

v((0, 1),Rn) if zi ∈ L2
vi(0, 1) for

i = 1, . . . , n, and the inner product in this space is defined as 〈f , g〉v :=
∫ 1

0
fT (x)[diag(v̂)]−1g(x)dx, for

f , g ∈ L2
v((0, 1),Rn), where v̂i(x) = vi(x)

¯̂vi
.

Remark 3. (Norm equivalence between L2 and L2
v) For smooth v : [0, 1] → R+, let v̂(x) = v(x)/v̄, v̂∗ =

minx∈[0,1] v̂(x) and v̂∗ = maxx∈[0,1] v̂(x), the norms defined on L2
v(0, 1) and L2(0, 1) are related by

1√
v̂∗
||y||L2 ≤ ||y||L2

v
≤ 1√

v̂∗
||y||L2 ,

for any y ∈ L2
v(0, 1). Thus, when performing convergence analysis we may use the norms defined in L2

v(0, 1)
and L2(0, 1) interchangeably.

Lemma 1. (Negative semi-definite and self-adjoint Operator) For smooth v : [0, 1] → R+, let Lv be as in
Definition 1. This operator has the following properties:
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I Has countably many, real, and distinct eigenvalues such that λ1 > . . . > λn > . . . and limn→∞ λn = −∞

II The set of corresponding eigenfunctions {ψi(x)} form a complete orthonormal basis for L2
v(0, 1) (Defi-

nition 2)

III λ1 = 0 and ψ1 = v̂(x) = v(x)
v̄

Proof: The proof of (I) and (II) follow from Sturm-Liouville theory [44]. To prove (III), we take the weighted
inner product of both side of Lvψi = λiψi with ψi, we use orthonormality, use integration by parts, and
apply the boundary conditions:

λi = 〈ψi,Lv(ψi)〉v (30)

=

∫ 1

0

ψi
v̂

d

dx

(
v2 d

dx

(ψi
v

))
dx

=

[
ψi
v̂���

���
��:0

v2 d

dx

(ψi
v

)]
x=0,1

−
∫ 1

0

v̄

(
v
d

dx

(ψi
v

))2

dx

≤ 0.

The maximum of (30) is achieved (λ1 = 0) for ψ1 = v̂(x), since substituting v̂(x) directly into Lv, one
observes that Lv(v̂(x)) = 0 and we have that ||ψ1||L2

v
=
√
〈ψ1, ψ1〉v = 1, therefore λi < 0,∀i > 1. �

The following will introduce the notion of contracting dynamical systems. A dynamical system is said to
be contracting within an open and connected subspace of the state space, if all trajectories starting within this
region converge exponentially to each other. We provide sufficient conditions to guarantee that a dynamical
system is contracting, and finally show that contracting systems have a particular robustness property. The
robustness property will be exploited several times in our analysis to perform our model reduction.

Theorem 1. Let ż = f(t, z) be a dynamical system in the Hilbert space H = Rn where f is a smooth
nonlinear function. A dynamical system is said to be contracting within an open and connected subspace of
the state space χ ⊆ H, if all trajectories starting within this region converge exponentially to each other. A
sufficient condition for a system to be contracting in H is the existence a uniformly positive definite matrix
P (t, z) ∈ Rn×n and constant λ > 0 such that

1

2

[∂f
∂z

T

P + P
∂f

∂z
+ Ṗ

]
≤ −ξP ,∀z ∈ χ,∀t ≥ 0 (31)

where ξ is the contraction rate of the system and Ṗ is the total time derivative of P .

Proof: See Theorem 2 in [45]. �

Lemma 2. (Hierarchies of contracting systems) Let

dz(t)

dt
=

d

dt

[
z1(t)
z2(t)

]
=

[
f1(t, z1)
f2(t, z1, z2)

]
(32)

be dynamical systems in the Hilbert space H = Rn+m where f1 : [0,∞) × Rn → Rn and f2 : [0,∞) ×
Rn × Rm → Rm are smooth nonlinear functions. Then, sufficient conditions for (32) to be contracting in
χ = χ1 ⊕ χ2, where χ1 and χ2 are open connected subspaces of Rn and Rm, respectively, are

I ∂f1

∂z1
satisfies (31) in χ1 for some P 1 ∈ Rn×n such that P 1 = P T

1 > 0

II ∂f2

∂z2
satisfies (31) in χ2 for some P 2 ∈ Rm×m such that P 2 = P T

2 > 0

III ∂f2

∂z1
is uniformly bounded for all t ≥ 0, z1 ∈ χ1, and z2 ∈ χ2

Proof: See hierarchal structures in [45] and applied in [46] �

Lemma 3. (Robustness property of contracting systems) Assume that ż = f(t, z) satisfies the conditions
of Theorem 1, for some P (t, z) = P (t, z)T > 0 in a region χ ⊆ H, and thus it is contracting with some
contraction rate ξ. Furthermore, assume that there exists a positive constant λ∗ ( λ∗) that upper (lower)
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bounds the maximum (minimum) eigenvalue of P for all t ≥ 0. Consider the “perturbed” system żp =
f(t, zp)+d(t, zp), and suppose there exists L1, L2, ζ, ε > 0 such that ζ/ε > ξ and ||d(t, zp)||H ≤ L1e

−ζ/εt+L2ε
for all t ≥ 0 and zp ∈ χ. Then, there exists L∗, ε∗ > 0 such that for all z(0), zp(0) ∈ χ and 0 < ε < ε∗, the
solutions zp(t) and z(t) satisfy

||zp(t)− z(t)||H ≤
√
λ∗

λ∗

(
||zp(0)− z(0)||He−ξt + L∗ε

)
, ∀t ≥ 0.

Proof: This follows from the result of Seciton 3.7 Result vii in [45]. Let Rz(0) be the length of the straight

path connecting zp(0) and z(0), that is, Rz(0) =
∫ zp(0)

z(0)
||δz(0)||H = ||zp(0)−z(0)||H , where δz is the virtual

displacement (see [45] for details. Each point in the straight path connecting zp(0) and z(0) evolves in
time and we denote the length of the path connecting these points be given by Rz(t). Precisely, Rz(t) =∫ zp
z
||δz(t)||H . Notice that

||zp(t)− z(t)||H ≤ Rz(t), (33)

since the straight line path is the shortest path between the trajectories (they would be equal if the initial
straight line segment remained a line for all time, but this is only the case for constant vector fields). Let
R(t) =

∫ zp
z
||P 1/2δz||H . Notice that √

λ∗Rz(t) ≤ R(t) ≤
√
λ∗Rz(t). (34)

From Equation 15 in [45], we have that Ṙ+ ξR ≤ ||P 1/2d||H and thus

R(t) ≤ R(0)e−ξt +
√
λ∗
∫ t

0

||d(τ)||He−ξ(t−τ)dτ .

From (34), we have that

√
λ∗Rz(t) ≤

√
λ∗Rz(0)e−ξt +

√
λ∗
∫ t

0

||d(τ)||He−ξ(t−τ)dτ .

Finally, by (33), this implies that

||zp(t)− z(t)||H ≤
√
λ∗

λ∗

(
||zp(0)− z(0)||He−ξt +

∫ t

0

L1e
−(ζ/ε)τe−ξ(t−τ)dτ +

L2ε

ξ

)
≤
√
λ∗

λ∗

(
||zp(0)− z(0)||He−ξt +

L1

ζ

ε

1− εξ/ζ
+
L2ε

ξ

)
.

The desired result holds for ε∗ = ζ/(2ξ) and L∗ = 2L1/ζ + L2/ξ. �

2.2 Solutions of diffusing states converge to the null space of the differential
operator Lv

Let v : [0, 1] → Rnd+ be a smooth vector-valued function and V (x) = diag(v(x)). For the state vectors
zs(t, x) ∈ Hs := L2((0, 1),Rns),∀t ≥ 0 and zd(t, x) ∈ Hd := L2

v((0, 1),Rnd),∀t ≥ 0, consider the following
reaction-diffusion system:

∂zs(t, x)

∂t
= fs(t, x,zs, zd), t ≥ 0, x ∈ [0, 1],

∂zd(t, x)

∂t
=

1

ε
DLv(zd) + fd(t, x,zs, zd), t ≥ 0, x ∈ (0, 1), (35a)

V 2(x)
d

dx

[
V −1(x)zd(t, x)

]∣∣∣∣
x=0,1

= 0n t > 0,

zs(0, x) = zs,0(x), x ∈ [0, 1],

zd(0, x) = zd,0(x), x ∈ [0, 1],
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where ε ∈ R+, fs : [0,∞) × [0, 1] × Rns × Rnd → Rns and fd : [0,∞) × [0, 1] × Rns × Rnd → Rnd are
smooth functions, D = diag([D1, . . . , Dnd ]T ) such that Di > 0 for all i = 1, . . . , nd, z

i
s,0 : [0, 1] → R+,

zid,0 : [0, 1]→ R+, and

Lv(zd) =
d

dx

[
V 2(x)

d

dx

[
V −1(x)zd

]]
(35b)

is such that Lv = [Lv1(z1
d), . . . ,Lvnd (zndd )]T where Lvi(zid) is an in Definition 1. The elements of zd may

be thought of as “freely diffusing” and those of zs as ”spatially fixed”. For the general system (35), we show
in this section that the spatial profiles of the diffusing species zd, approach those of v(x), that is, the null
space of Lv when ε� 1.

Assumption 1. Consider the system given by (35)

I There exists a positively invariant set χ ⊂ Rns+nd such that if
[zTs (0, x), zTd (0, x)]T ∈ χ, ∀x ∈ [0, 1], then [zTs (t, x), zTd (t, x)]T ∈ χ,∀x ∈ [0, 1],∀t ≥ 0.

II There exists a positive constant M > 0 such that

||fd(t, x,zs, zd)||Hd ≤M, ∀t ≥ 0,∀[zTs , zTd ]T ∈ χ.

Let z⊥d (t, x) = zd(t, x)− V̂ (x)z̄d(t) where z̄d(t) =
∫ 1

0
zd(t, x)dx and V̂ (x) =

[ ∫ 1

0
V (x)dx

]−1

V (x). The

dynamics of z⊥d (t, x) are given by

∂z⊥d (t, x)

∂t
=

1

ε
DLv(z⊥d ) + f⊥d (t, x,zs, zd), t > 0, x ∈ (0, 1),

V (x)
d

dx

[
V −1(x)z⊥d (t, x)

]∣∣∣∣
x=0,1

= 0n t > 0, (35c)

z⊥d (0, x) = zd,0(x)− V̂ (x)z̄d(0), x ∈ (0, 1),

where

f⊥d (t, x,zs, zd) = fd(t, x,zs, zd)− V̂ (x)

∫ 1

0

fd(t, x,zs, zd)dx.

The following theorem is a direct consequence of the operator Lv from Definition 1 being self-adjoint and
negative semi-definite. This result will show that the infinite dimensional left over dynamics z⊥d (t, x) become
order ε after a fast transient.

Theorem 2. Consider the system defined by (35). Suppose that Assumption 1 holds and [zTs,0(x), zTd,0(x)]T ∈
χ,∀x ∈ [0, 1], where χ is defined in Assumption 1-I. Then, there exists ζ, L⊥ > 0 such that for all ε > 0, the
solution z⊥d (t, x) of (35c), satisfies

||z⊥d (t, x)||Hd ≤ ||z⊥d (0, x)||Hde−ζt/ε + L⊥ε, ∀t ≥ 0.

Proof:
Let ψ(t) = ||z⊥d (t, x)||2Hd/2 and τ = t/ε thus

dψ(τ)

dτ
= 〈z⊥d ,

∂z⊥d
∂τ
〉v = 〈z⊥d ,DLv(z⊥d )〉v + ε〈z⊥d ,f

⊥
d (t, x,zs, z̄d, z

⊥
d )〉v.

The following proof uses a similar logic as the the min-max theorem for matrices [49] to derive and upper
bound for 〈z⊥d ,DLv(z⊥d )〉v. Let λi,j and ψi,j denote the j-th eigenvalue and eigenfunction, respectively,
of Lvi(·) (i.e,. Lvi(ψi,j) = λi,jψi,j). Recall that {ψi,j} forms a complete orthonormal basis for L2

vi(0, 1)

(Lemma 1-II). From the orthonormality of the eigenfunctions, linearity of Li
v = Lvi , and the ordering of

eigenvalues (Lemma 1-I), notice that:
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〈z⊥d ,DLv(z⊥d )〉v =

nd∑
i=1

〈z⊥,id , DiLi
v(z⊥,id )〉vi

=

nd∑
i=1

〈 ∞∑
j=2

〈z⊥,id , ψi,j〉viψi,j , DiLi
v

( ∞∑
j=2

〈z⊥,id , ψi,j〉viψi,j
)〉
vi

=

nd∑
i=1

〈 ∞∑
j=2

〈z⊥,id , ψi,j〉viψi,j ,
∞∑
j=2

〈z⊥,id , ψi,j〉viDiLi
v

(
ψi,j

)〉
vi

=

nd∑
i=1

〈 ∞∑
j=2

〈z⊥,id , ψi,j〉viψi,j ,
∞∑
j=2

Diλi,j〈z⊥,id , ψi,j〉viψi,j
〉
vi

=

nd∑
i=1

∞∑
j=2

Diλi,j〈z⊥,id , ψi,j〉2vi

≤
nd∑
i=1

Diλi,2

∞∑
j=2

〈z⊥,id , ψi,j〉2vi

=

nd∑
i=1

Diλi,2〈z⊥,id , z⊥,id 〉vi

≤ −|λ̄2|〈z⊥d , z⊥d 〉v
= −2|λ̄2|ψ(τ)

where λ̄2 = max
i=1,...nd

({Diλ2,i}). The fact that [zTs,0(x), zTd,0(x)]T ∈ χ,∀x ∈ [0, 1] implies that [zTs (t, x), zTd (t, x)]T ∈

χ, ∀x ∈ [0, 1],∀t ≥ 0 by Assumption 1-I. By the cauchy-Schwarz inequality, Assumption 1-II, and the fact
that f⊥d is a projection of fd (thus ||f⊥d ||Hd || ≤ ||fd||Hd) we have that |〈z⊥d ,f

⊥
d 〉v| ≤ ||f

⊥
d ||Hd ||z⊥d ||Hd ≤

M ||z⊥d ||Hd . Let ν ∈ (0, 1) thus

dψ(τ)

dτ
≤− 2|λ̄2|ψ(τ) + εMψ1/2(τ)

≤− 2(1− ν)|λ̄2|ψ(τ)− 2ν|λ̄2|ψ(τ) + εMψ1/2(τ)

≤− 2(1− ν)|λ̄2|ψ(τ), ∀ψ >
[ εM

2ν|λ̄2|
]2
.

Therefore,

ψ(τ) ≤ ψ(0)e−2(1−ν)|λ̄2|τ +
[ εM

2ν|λ̄2|
]2
,∀τ ≥ 0.

Finally,

||z⊥d (t, x)||Hd ≤ ||z⊥d (0, x)||Hde−ζt/ε +
M√

2ν|λ̄2|
ε,

where ζ = (1− ν)|λ̄2| and L⊥ = M√
2ν|λ̄2|

. �
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2.3 Model Reduction of Enzymatic-like Reaction In the Limit of Fast diffusion

The spatial-temporal dynamics of Ei, S, and ci as described by the biochemical reactions (1) in the main
text, are given in dimensionless form by

∂Ei(t, x)

∂t
= − d

dx

[
J(x,Ei)

]
+ αi(t, x) +

1

ηi

[
− Ei(t, x)S(t, x)

ãi

d̃i
+ ci(t, x)

]
− (γi + 1)(Ei(t, x) + ci(t, x)),

∂ci(t, x)

∂t
= − d

dx

[
J(x, ci)

]
+

1

ηi

[
Ei(t, x)S(t, x)

ãi

d̃i
− ci(t, x)

]
, (36a)

∂S(t, x)

∂t
= − d

dx

[
J(x, S)

]
+ αs(t, x) +

n∑
j=1

1

ηj

[
− Ej(t, x)S(t, x)

ãj

d̃j
+ cj(t, x)

]

− (γs + 1)(S(t, x) +

n∑
j=1

cj(t, x)),

where the flux term and the boundary conditions are given in Table 2 for three cases of interest, ηi = 1/d̃i,
and d̃i = γi + γs + di + κi + 1. If applicable, vEi(x), vs(x), vci(x) are the available volume profiles of Ei, S,
and ci, respectively, and let

v̂Ei(x) =
vEi(x)∫ 1

0
vEi(x)dx

, v̂s(x) =
vs(x)∫ 1

0
vs(x)dx

, v̂ci(x) =
vci(x)∫ 1

0
vci(x)dx

. (36b)

Case I: All species diffuse II: Substrate diffuses III: Enzymes diffuses
and enzymes fixed and substrate fixed

Dimensionless Flux

− d

dx

[
J(x,Ei)

]
=

1

ε
χEiLvEi (Ei)

− d

dx

[
J(x, S)

]
=

1

ε
LvS (S)

− d

dx

[
J(x, ci)

]
=

1

ε
χciLvci (ci)

− d

dx

[
J(x,Ei)

]
= 0

− d

dx

[
J(x, S)

]
=

1

ε
LvS (S)

− d

dx

[
J(x, ci)

]
= 0

− d

dx

[
J(x,Ei)

]
=

1

ε
LvEi (Ei)

− d

dx

[
J(x, S)

]
= 0

− d

dx

[
J(x, ci)

]
= 0

Boundary conditions

J(0, Ei) = J(1, Ei) = 0

J(0, ci) = J(1, ci) = 0

J(0, S) = J(1, S) = 0

J(0, S) = J(1, S) = 0 J(0, Ei) = J(1, Ei) = 0

ε (µL2)/Ds (µL2)/Ds (µL2)/DE1

Dimensionless diffusion χEi = DEi/Ds, χci = Dci/Ds

Location of fixed species N/A x∗i x∗s

Table 2: The flux dynamics and the boundary conditions corresponding to (36) for Cases I-III. Here vE,i(x),
vS(x), and vc,i(x), are the available volume profiles of Ei, S, and ci, respectively, and Lv is as in Definitions 1.
The parameters DEi , Dci , and Ds, are the enzyme, complex, and substrate diffusion coefficients, respectively,
ε is a dimensionless parameter that captures the speed of diffusion (with respect to dilution). A species being
spatially fixed translates to the flux being zero throughout the whole spatial domain. In Case II, we denote
the location of the fixed species Ei, as x∗i ∈ (0, 1) for i = 1, . . . , n. In Case III, we denote the location of the
fixed species S, as x∗s ∈ (0, 1).

We denote Ēi(t), S̄(t), and c̄i(t) to be the space averaged enzyme, substrate, and complex concentrations,

respectively (e.g., Ēi(t) =
∫ 1

0
Ei(t, x)dx). The dynamics governing these space averaged variables are derived

by integrating (36) in space and applying the boundary conditions and are given by:

dĒi(t)

dt
= ᾱi(t)−

1

ηi

[ ãi
d̃i

[

∫ 1

0

Ei(t, x)S(t, x)dx]− c̄i(t)
]
− (γi + 1)(Ēi(t) + c̄i(t)), (37a)

dc̄i(t)

dt
=

1

ηi

[ ãi
d̃i

[

∫ 1

0

Ei(t, x)S(t, x)dx]− c̄i(t)
]
, (37b)

dS̄(t)

dt
= ᾱs(t)−

n∑
j=1

1

ηj

[
ãj

d̃j
[

∫ 1

0

Ej(t, x)S(t, x)dx]− c̄j(t)
]
− (γs + 1)(S̄(t) +

n∑
j=1

c̄j(t)), (37c)
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where overbars denote spatially averaged variables. We make the follow assumptions necessary to state our
main result

Assumption 2. Consider (36), for i = 1, . . . , n, assume that

I the functions αi(t, x) and αs(t, x) are smooth in each argument

II there exists constant α̃i > 0 such that 0 < αi(t, x) ≤ α̃i,∀t ≥ 0,∀x ∈ [0, 1]

III there exists constant α̃s > 0 such that 0 ≤ αs(t, x) ≤ α̃s,∀t ≥ 0,∀x ∈ [0, 1]

IV the functions vE,i(x), vS(x), and vci(x) = vE,i(x)vS(x) (as in Table 2) are smooth, strictly greater than
zero, and bounded above by unity.

The following assumption makes precise what it means for the spatially fixed species Ei (in Case II) and
S (in Case III) to be spatially localized at x∗i and x∗s, respectively.

Assumption 3. (Localization of spatially fixed species) Consider the system (36). Let x∗i ∈ (0, 1) for Case II
and x∗s ∈ (0, 1) for Case III, be given by Table 2. Let δ∗ = min(x1, . . . , xn, 1−x1, . . . , 1−xn) for Case II and
δ∗ = min(x∗s, 1− x∗s) for Case III. We assume that for a given δ > 0 such that δ < δ∗, the functions αi(t, x)
and αs(t, x) satisfy

• for Case II: αi(t, x) ≤ δ, for all x /∈ [x∗i − δ, x∗i + δ], ∀t ≥ 0

• for Case III: αs(t, x) ≤ δ, for all x /∈ [x∗s − δ, x∗s + δ], ∀t ≥ 0,

Furthermore, we assume for Cases I-III, that there exists ᾱ∗s > 0, ᾱi,∗ > 0, and ᾱ∗i > 0 for i = 1, . . . , n

independent of δ, such that ᾱi,∗ <
∫ 1

0
αi(t, x)dx ≤ ᾱ∗i ,∀t ≥ 0 and

∫ 1

0
αs(t, x)dx ≤ ᾱ∗s ,∀t ≥ 0.

The following definition will provide the candidate reduced model to approximates (37).

Definition 3. (Reduced space-averaged dynamics) Let x∗i ∈ (0, 1) for Case II and x∗s ∈ (0, 1) for Case III,
be given by Table 2. For i = 1, . . . , n, consider the system

d ˆ̄Ei(t)

dt
= ᾱi(t)−

1

ηi

[ ˆ̄Ei(t)
ˆ̄S(t)

ãiθ
∗
i

d̃i
− ˆ̄ci(t)

]
− (γi + 1)( ˆ̄Ei(t) + ˆ̄ci(t),

dˆ̄ci(t)

dt
=

1

ηi

[ ˆ̄Ei(t)
ˆ̄S(t)

ãiθ
∗
i

d̃i
− ˆ̄ci(t)

]
, (38a)

dS̄(t)

dt
= ᾱs(t)−

n∑
j=1

1

ηj

[
ˆ̄Ej(t)

ˆ̄S(t)
ãjθ
∗
j

d̃j
− ˆ̄ci(t)

]
− (γs + 1)( ˆ̄S(t) +

n∑
j=1

ˆ̄cj(t)),

θ∗i =


∫ 1

0
v̂Ei(x)v̂S(x)dx for Case I

v̂S(x∗i ) for Case II

v̂Ei(x
∗
s) for Case III

, (38b)

where ˆ̄Ei(0) = Ēi(0), ˆ̄S(0) = S̄(0), ˆ̄ci(0) = c̄i(0), as given by (37),and v̂Ei(x), v̂ci(x), and v̂S(x) are given by
(36b).

Theorem 3. Consider the system (36) and let

z(t, x) = [E1(t, x), . . . , En(t, x), c1(t, x), . . . , cn(t, x), S(t, x)]T , z̄(t) =

∫ 1

0

z(t, x)dx (39)

Let ε > 0, x∗i ∈ (0, 1) and x∗s ∈ (0, 1) be given for Case I-III by Table 2. Let ˆ̄Ei(t),
ˆ̄S(t), and ˆ̄ci(t) be as in

Definition 3 and let
ˆ̄z(t) = [ ˆ̄E1(t), . . . , ˆ̄En(t), ˆ̄c1(t), . . . , ˆ̄cn(t), ˆ̄S(t)]T .

Suppose that Assumptions 2 holds for Cases I-III. Then, there exists L1, ε
∗ > 0, Ωz ⊂ L2((0, 1),R2n+1) and

Ωz̄ ⊂ R2n+1 such that for all z(0, x) ∈ Ωz, z̄(0) ∈ Ωz̄, 0 < ε < ε∗, the solutions z̄(t) and ˆ̄z(t) satisfy

||z̄(t)− ˆ̄z(t)||R2n+1 ≤ |∆z|, ∀t ≥ 0, (40)

where |∆z| = L1ε for Case I. For Cases II-III, if in addition, Assumption 3 holds for all 0 < δ < δ∗, there
exists L3 > 0 such that for all 0 < δ < δ∗, there exists L2(δ) and Ωz,δ ⊂ L2((0, 1),R2n+1) such that (40)
holds for all z(0, x) ∈ Ωz,δ, z̄(0) ∈ Ωz̄, 0 < ε < ε∗ with |∆z| = L2(δ)ε+ L3δ.
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Remark 4. The constant L2(δ), guaranteed to exist in Theorem 3 for Cases II-III, depends on δ. Therefore,
for a given η > 0, if one wishes to to have ||z̄(t)− ˆ̄z(t)||R2n+1 ≤ η, ∀t ≥ 0, then one would chose δ such that
L3δ < η and then choose ε sufficiently small (depending on δ) such that L2(δ)ε+ L3δ ≤ η.

Remark 5. The set Ωz, guaranteed to exist in Theorem 3, depends on δ in Cases II-III and this dependence
is made precise in the proof.

Road map of proof : The rest of this section is dedicated towards proving Theorem 3. We first apply
Theorem 2 to show that the spatial profile of a freely diffusing species converges to its available volume
profile (e.g,. vE,i(x), vS(x), and vci(x)) exponentially fast in the time scale associated with diffusion. If
the localization assumption holds, then (37) has the form described by Definition 3, but with additional
“disturbance” terms of order ε and δ. We proceed to demonstrate the system described in Definition 3 is
contracting and apply the robustness property of contracting systems (Lemma 3) to show closeness between
its solutions and those of (37).

The following result will define a positively invariant and bounded subset of R2n+1 such that solutions
to (36) starting within this set at t = 0, remain within this set for all times and spatial values. To apply
Theorem 2 to (36), the existence of such a positively invariant set is required by Assumption 1.

Claim 1. Consider the system given by (36), with Cases I-III specified by Table 2. Suppose Assumptions 2
holds. Let χ = {z ∈ R2n+1 : zi ≥ 0,∀i and zT~n ≤ Γ}, where

~n = [bT , 2bT , 1], Γ =
( n∑
j=1

α̃j + α̃S
)
/v∗, v∗ =


minni=1 minx∈[0,1] vc for Case I

minx∈[0,1] vS(x) for Case II

minni=1 minx∈[0,1] vE for Case III

,

b = [1, . . . , 1]T ∈ Rn, vE = [vE1
(x), . . . , vEn(x)]T , vc = [vc1(x), . . . , vcn(x)]T .

Let z(t, x) be given by (39), if z(0, x) ∈ χ,∀x ∈ [0, 1], then z(t, x) ∈ χ,∀t ≥ 0,∀x ∈ [0, 1]. Thus χ defines a
positively invariant set of (36).

Proof: We apply Theorem 1 in [50], which states that for a parabolic PDE system with sufficiently smooth
coefficients, a closed convex subset of euclidean space is positively invariant if the vector field corresponding
to the “reaction dynamics” never points outwards at the boundaries of the set. To apply this theorem we
first make a coordinate transformation. The spatial differential operator (as in Definition 1) for a general
diffusing species y(t, x) with available volume profile v(x), given by

Lv(y) =
d

dx

[
v2(x)

d

dx
(
y(t, x)

v(x)
)
]

= v(x)
∂2y(t, x)

∂x2
− y(t, x)

∂2v(x)

∂x2
,

is not in the standard form stipulated by Equation 1.2 in [50]. Therefore, for Cases I-III, the following
coordinate transformation is made

u(t, x) = Λ−1z(t, x), Λ =


diag([vTE ,v

T
c , vS ]T ) for Case I

diag([bT , bT , vS ]T ) for Case II

diag([vTE , b
T , 1]T ) for Case III

. (41)

With the transformation u(t, x) = y(t, x)/v(x), the differential operator L̂v given by

L̂v(u) :=
1

v
Lv(uv) = v(x)

∂2u(t, x)

∂x2
+ 2

∂v(x)

∂x

∂u(t, x)

∂x
,

is in the postulated form. Let

fEi(t, x,z) =αi(t, x)− 1

ηi

[
Ei(t, x)S(t, x)

ãi

d̃i
− ci(t, x)

]
− (γi + 1)(Ei(t, x) + ci(t, x)),

fci(t, x,z) =
1

ηi

[
Ei(t, x)S(t, x)

ãi

d̃i
− ci(t, x)

]
, (42)

fs(t, x,z) =αs(t, x)−
n∑
j=1

1

ηj

[
Ej(t, x)S(t, x)

ãj

d̃j
− cj(t, x)

]
− (γs + 1)(S(t, x) +

n∑
j=1

cj(t, x)),
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and f(t, x,z) = [fE1 , . . . , fEn , fc1 , . . . , fcn , fs]
T is the vector field of the reaction dynamics of (36). The

vector field corresponding to the reaction dynamics of the transformed system is given by f̂(t, x,u) :=
Λ−1f(t, x,Λu). Let

~nu(x) =


[vTE , 2v

T
c , vS(x)]T for Case I

[bT , 2bT , vS(x)]T for Case II

[vTE , 2b
T , 1]T for Case III

,

and χu(x) = {u ∈ R2n+1 : ui ≥ 0,∀i and uT~nu(x) ≤ Γ}. We now check that the vector field f̂(t, x,u) does

not point outward at all the boundary points of χu(x),∀x ∈ [0, 1]. Checking that f̂
i
(t, x,u)

∣∣
ui=0

≥ 0,∀u ∈
χu(x),∀x ∈ [0, 1],∀t ≥ 0 is equivalent to checking f i(t, x,z)

∣∣
zi=0

≥ 0, thus notice that for i = 1, . . . , n

fEi(t, x,z)
∣∣
Ei=0

= αi(t, x) + (di + κi + γs)ci(t, x) ≥ 0, ∀z ≥ 02n+1,∀x ∈ [0, 1],∀t ≥ 0

fci(t, x,z)
∣∣
ci=0

=
1

ηi

[
Ei(t, x)S(t, x)

ãi

d̃i

]
≥ 0, ∀z ≥ 02n+1,∀x ∈ [0, 1],∀t ≥ 0

and

fs(t, x,z)
∣∣
S=0

= αs(t, x) +

n∑
j=1

(dj + κj + γj)cj(t, x) ≥ 0, ∀z ≥ 02n+1,∀x ∈ [0, 1],∀t ≥ 0.

The set ∂χu(x) = {u ∈ R2n+1 : uT (x)~nu(x) = Γ}, corresponds to the boundary points defined by planar
surface uT (x)~nu(x) = Γ with normal vector ~nu(x), we need to check that for all boundary point u∗ ∈ ∂χu(x)

we have that f̂
T

(t, x,u∗) ≤ 0,∀x ∈ [0, 1],∀t ≥ 0:

f̂
T

(t, x,u∗)~nu(x) =
[ n∑
j=1

αj(t, x)− (γj + 1)(uj,∗Λj,j + uj+n,∗Λj+n,j+n
]

+ αs(t, x)− (γs + 1)(u2n+1,∗Λ2n+1,2n+1 +

n∑
j=1

uj+n,∗Λj+n,j+n)

≤
n∑
j=1

α̃j + α̃s − (

n∑
j=1

(uj,∗Λj,j + 2uj+n,∗Λj+n,j+n) + u2n+1,∗Λ2n+1,2n+1)

≤
n∑
j=1

α̃j + α̃s − (

n∑
j=1

(uj,∗ + 2uj+n,∗) + u2n+1,∗)v∗, Assumption 2

≤
[ n∑
j=1

α̃j(x)
]

+ α̃s(x)− Γv∗, u∗ ∈ ∂χu(x),∀x ∈ [0, 1] =⇒ u∗,T~n ≤ Γ

=
[ n∑
j=1

α̃j
]

+ α̃s −
[ n∑
j=1

α̃j
]
− α̃s

= 0, ∀x ∈ [0, 1],∀t ≥ 0.

Thus, χu(x) is a positively invariant set in the u(t, x) coordinates. The corresponding invariant set in the
z(t, x) coordinates is given by χ. �

Corollary 1. The positivity of Ei(t, x), S(t, x), and ci(t, x) imply the positivity of Ēi(t) =
∫ 1

0
Ei(t, x)dx,

S̄(t) =
∫ 1

0
S(t, x)dx, and c̄i(t) =

∫ 1

0
ci(t, x)dx.

Definition 4. Consider the systems given by (36) and (37) and let Cases I-III correspond to those in Table 2.
We define

For Case I and Case III: E⊥i (t, x) = Ei(t, x)− Ēi(t)v̂Ei(x),

For Case I: c⊥i (t, x) = ci(t, x)− c̄i(t)v̂ci(x), (43a)

For Case I and Case II: S⊥(t, x) = S(t, x)− S̄(t)v̂S(x),
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and

For Case I: w⊥(t, x) = [E⊥1 , . . . , E
⊥
n , c

⊥
1 , . . . , c

⊥
n , S

⊥]T ,

For Case II: w⊥(t, x) = S⊥, (43b)

For Case III: w⊥(t, x) = [E⊥1 , . . . , E
⊥
n ]T .

Lemma 4. Consider the systems given by (36) and let ε > 0 be defined for Cases I-III by Table 2. Let
w⊥(t, x) be as in Definition 4 and suppose Assumption 2 holds. Let χ ⊂ R2n+1 be as described in Claim 1
and let z(t, x) be given by (39). Then there exists ζ, L⊥ > 0 such that for all z(0, x) ∈ χ,∀x ∈ [0, 1] and
ε > 0, w⊥(t, x) satisfies

||w⊥(t, x)||L2((0,1),Rm) ≤ ||w⊥(0, x)||L2((0,1),Rm)e
ζt/ε + L⊥ε, ∀t ≥ 0,

where m = 2n+ 1 in Case I, m = 1 in Case II, and m = n in Case III.

Proof: This results follows directly from Theorem 2 where Assumption 1-I is satisfied by χ and Assumption 1-
II is satisfied by the smoothness of the reaction dynamics in (36), the compactness of the sets χ and [0, 1],
and the temporal boundedness (Assumption 2). �

Remark 6. From the proof of Theorem 2, one can observe that L⊥ depends on the size of χ. Once Assump-
tion 3 is made, the size of χ will depend on δ for Case II-III. Thus, L⊥ depends on δ for Cases II-III.

Next we define the space averaged total enzyme and substrate quantities and show that these are the same
for (37) and (38). Furthermore, we will show the dynamics for these quantities are governed by uncoupled,
linear, and contracting ODEs.

Definition 5. (Total space average enzyme and substrate concentrations) For (37), we define the total
space averaged enzyme and substrate for i = 1. . . . , n as Ēi,T (t) = Ēi(t) + c̄i(t), S̄T (t) = S̄(t) +

∑n
j=1 c̄j(t),

respectively, and similarly for (38), we define ˆ̄Ei,T (t) = ˆ̄Ei(t) + ˆ̄ci(t) and ˆ̄ST (t) = ˆ̄S(t) +
∑n
j=1

ˆ̄cj(t), the
dynamics of these quantities are given by

dĒi,T (t)

dt
= ᾱi(t)− (γi + 1)Ēi,T (t),

dS̄T (t)

dt
= ᾱs(t)− (γs + 1)S̄T (t), (44a)

d ˆ̄Ei,T (t)

dt
= ᾱi(t)− (γi + 1) ˆ̄Ei,T (t),

d ˆ̄ST (t)

dt
= ᾱs(t)− (γs + 1) ˆ̄ST (t). (44b)

Remark 7. For i = 1, . . . , n, Ēi,T (t) = ˆ̄Ei,T (t),∀t ≥ 0 and S̄T (t) = ˆ̄ST (t),∀t ≥ 0 since from Definition 3, we

have that Ēi,T (0) = ˆ̄Ei,T (0) and S̄T (0) = ˆ̄ST (0).

Remark 8. From the linear and uncoupled structure of (44), it is clear that the dynamics for Ēi,T (t) are
contracting with contraction rate λi = γi+1 for all i = 1, . . . , n. Similarly, the S̄T (t) dynamics are contracting
with contraction rate λs = γs + 1.

Claim 2. Consider the systems (37), (38), and (44). Let ᾱ∗i , ᾱi,∗, and ᾱ∗s be as in Assumption 3. Assume
that Ēi,T (0) ≤ Ē∗i,T , and that S̄T (0) ≤ S̄∗T . Then

(I) S̄(t) ≤ S̄∗T ,∀t ≥ 0, (II) ˆ̄S(t) ≤ S̄∗T ,∀t ≥ 0, (III) Ēi(t) ≤ Ē∗i,T ,∀t ≥ 0,

where Ē∗i,T =
ᾱ∗i
γi+1 and S̄∗T =

ᾱ∗s
γs+1 . Furthermore, if we assume that Ēi,∗ ≤ Ēi(0), where Ēi,∗ =

ᾱi,∗
γi+1+ãiS̄∗T

,

then we have that
(IV ) Ēi,∗ ≤ ˆ̄Ei(t) ≤ Ē∗i,T ,∀t ≥ 0.

Proof: Let ˆ̄ST (t) be given by (44), and let ˆ̄S∗T (t) be given by

d ˆ̄S∗T (t)

dt
= ᾱ∗s − (γs + 1) ˆ̄S∗T (t) =⇒ ˆ̄S∗T (t) = ˆ̄S∗T (0)e−(γs+1)t + (1− e−(γs+1)t)S̄∗T (45)
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where ˆ̄S∗T (0) = ˆ̄ST (0) = S̄T (0) ≤ S̄∗T , which implies that ˆ̄S∗T (t) ≤ S̄∗T ,∀t ≥ 0. Let es,T (t) = ˆ̄S∗T (t) − ˆ̄ST (t)
such that

ės,T (t) = ᾱ∗s − ᾱs(t)︸ ︷︷ ︸
≥0,∀t≥0, Assumption 3

−(γs + 1)es(t),

which implies that R+ is a positively invariant set for the es,T (t) dynamics. Since es,T (0) = 0, this implies

that es,T (t) ≥ 0,∀t ≥ 0 and thus S̄T (t) = ˆ̄ST (t) ≤ ˆ̄S∗T (t) ≤ S̄∗T ,∀t ≥ 0 (first equality from Remark 7). From
the positivity of S̄(t) and c̄i(t),∀i =, . . . , n (Corollary 1), we have that S̄(t) ≤ S̄T (t) ≤ S̄∗T ,∀t ≥ 0, thus

proving (I). Similarly, ˆ̄S(t) ≤ ˆ̄ST (t) ≤ S̄∗T ,∀t ≥ 0, thus proving (II).

Let ˆ̄Ei,T (t) be given by (44) and ˆ̄E∗i (t) be given by

d ˆ̄E∗i (t)

dt
= ᾱ∗i − (γi + 1) ˆ̄E∗i (t) =⇒ ˆ̄E∗i (t) = ˆ̄E∗i (0)e−(γi+1)t + (1− e−(γi+1)t)Ē∗i,T , (46)

where ˆ̄E∗i (0) = ˆ̄Ei,T (0) = Ēi,T (0) ≤ Ē∗i,T , which implies that ˆ̄E∗i (t) ≤ Ē∗i,T ,∀t ≥ 0. Let ei,T (t) = ˆ̄E∗i (t) −
ˆ̄Ei,T (t) and thus

ėi,T (t) = ᾱ∗i − ᾱi(t)︸ ︷︷ ︸
≥0,∀t≥0, Assumption 3

−(γi + 1)ei(t),

which implies that R+ is a positively invariant set for the ei,T (t) dynamics. Since ei,T (0) = 0, this implies

that ei,T (t) ≥ 0,∀t ≥ 0 and thus Ēi,T (t) = ˆ̄Ei,T (t) ≤ ˆ̄E∗i (t) ≤ Ē∗i,T ,∀t ≥ 0 (first equality from Remark 7).

From the positivity of Ēi(t) and c̄i(t) (Corollary 1), we have that Ēi(t) ≤ Ēi,T (t) ≤ Ē∗i,T ,∀t ≥ 0, thus proving

(III). By similar logic, we also have that ˆ̄Ei(t) ≤ ˆ̄Ei,T (t) ≤ Ē∗i,T ,∀t ≥ 0, thus proving part of (IV).

Let ˆ̄Ei,∗(t) such that ˆ̄Ei,∗(0) = ˆ̄Ei(0) and

d ˆ̄Ei,∗(t)

dt
= ᾱi,∗−(γi+1) ˆ̄Ei,∗(t)−ãiθ∗i ˆ̄Ei,∗(t)S̄

∗
T =⇒ ˆ̄Ei,∗(t) = ˆ̄Ei,∗(0)e−(γi+1+ãiS̄

∗
T )t+(1−e−(γi+1+ãiS̄

∗
T )t)Ēi,∗,

(47)

where ˆ̄Ei,∗(0) = ˆ̄Ei(0) = Ēi(0) ≥ Ēi,∗, which implies that ˆ̄Ei,∗(t) ≥ Ēi,∗,∀t ≥ 0. Let ei(t) = ˆ̄Ei(t) − ˆ̄Ei,∗(t)
such that

ėi(t) = ᾱi(t)− ᾱi,∗︸ ︷︷ ︸
≥0,∀t≥0, Assumption 3

−(γi + 1 + ãiθ
∗
i S̄
∗
T )ei(t) + ãiθ

∗
i

ˆ̄Ei,∗(t) (S̄∗T − ˆ̄S(t))︸ ︷︷ ︸
≥0,∀t≥0, by (II)

,

which implies that R+ is a positively invariant set for the ei(t) dynamics. Since ei(0) = 0, this implies that

ei(t) ≥ 0,∀t ≥ 0 and thus ˆ̄Ei,∗(t) ≥ Ēi,∗,∀t ≥ 0. Thus proving (IV).
�

Remark 9. By Assumption 3, we have that Ē∗i,T and S̄∗T are independent of δ and thus these upper bounds

for Ēi(t) and S̄(t), respectively, are also independent δ.

The following results demonstrates that Assumption 3 implies that the concentration of fixed species is
localized at the region specified in Table 2. The parameter δ > 0, controls the amount of localization.

Proposition 1. Consider the systems given by (36). Let x∗i ∈ (0, 1) for Case II and x∗s ∈ (0, 1) for Case
III, be given by Table 2. Suppose that Assumption 3 holds for x∗i , x

∗
s, and a given δ > 0. Let Ei,T (t, x) =

Ei(t, x) + ci(t, x) and ST (t, x) = S(t, x) +
∑n
j=1 cj(t, x). Then, for all Ei,T (0, x) ≤ δ, ∀x /∈ [x∗i − δ, x∗i + δ] for

Case II, and ST (0, x) ≤ δ, ∀x /∈ [x∗i − δ, x∗i + δ] for Case III, we have that

1. Case II: Ei(t, x) ≤ δ, ∀x /∈ [x∗i − δ, x∗i + δ], ∀t ≥ 0,∀i = 1, . . . , n,

2. Case III: S(t, x) ≤ δ, ∀x /∈ [x∗s − δ, x∗s + δ], ∀t ≥ 0,

Proof: For Case II, Ei,T (t, x) satisfies

∂Ei,T (t, x)

∂t
= αi(t, x)− (γi + 1)Ei,T (t, x). (48a)
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For c /∈ [x∗i − δ, x∗i + δ] we have that Ei(t, c) ≤ Ei,T (t, c) ≤ αi(t,c)
γi+1 ≤

1
γi+1δ ≤ δ, ∀t ≥ 0. Similarly, for Case

III, ST (t, x) satisfies
∂ST (t, x)

∂t
= αs(t, x)− (γs + 1)ST (t, x). (48b)

For c /∈ [x∗s − δ, x∗s + δ] we have that S(t, c) ≤ ST (t, c) ≤ αs(t,c)
γs+1 ≤

1
γs+1δ ≤ δ, ∀t ≥ 0. �

The following claim will aid us in rewriting (37) in the form of the reduced dynamics given by (38) with
additional “disturbance” terms of order ε and δ. The claim is written to handle Case I-III.

Claim 3. For a given y1(t, x) ∈ H and y2(t, x) ∈ H, where H = L2(0, 1), suppose that y1(t, x), y2(t, x) ≥
0,∀t ≥ 0,∀x ∈ [0, 1] and that there exists y∗1 , y

∗
2 ∈ R+ such that ||y1(t, x)||H ≤ y∗1 ,∀t ≥ 0 and ||y2(t, x)||H ≤

y∗2 ,∀t ≥ 0, let ȳ1(t) =
∫ 1

0
y1(t, x)dx ≤ ȳ∗1 and ȳ2(t) =

∫ 1

0
y2(t, x)dx ≤ ȳ∗2 . Let v̂1(x) and v̂2(x) be smooth

positive functions and denote y⊥1 (t, x) = y1(t, x)− ȳ1(t)v̂1(x) and y⊥2 (t, x) = y2(t, x)− ȳ2(t)v̂2(x).

1. There exists constant k1, k2 > 0 such that∫ 1

0

y1(t, x)y2(t, x)dx = ȳ1(t)ȳ2(t)θ + ∆(t), ∀t ≥ 0

where θ =
∫ 1

0
v̂1(x)v̂2(x)dx and |∆(t)| ≤ k1||y⊥1 (t, x)||H + k2||y⊥2 (t, x)||H .

2. Suppose that for a given x∗ ∈ (0, 1) and δ > 0 such that [x∗ − δ, x∗ + δ] ⊂ [0, 1] we have that
y2(t, x) ≤ δ, ∀x /∈ [x∗− δ, x∗+ δ]. Furthermore assume that ȳ∗1 and ȳ∗2 are independent of δ. Then there
exists constant k3(δ), k4 > 0 such that∫ 1

0

y1(t, x)y2(t, x)dx = ȳ1(t)ȳ2(t)θ + ∆(t), ∀t ≥ 0

where θ = v̂1(x∗) and |∆(t)| ≤ k3(δ)||y⊥1 (t, x)||H + k4δ.

Proof: To proof the first claim, notice that∫ 1

0

y1(t, x)y2(t, x)dx =

∫ 1

0

(
ȳ1(t)v̂1(x) + y⊥1 (t, x)

)(
ȳ2(t)v̂2(x) + y⊥2 (t, x)

)
dx

= ȳ1(t)ȳ2(t)

∫ 1

0

v̂1(x)v̂2(x)dx+

∫ 1

0

y⊥1 (t, x)
(
ȳ2(t)v̂2(x) + y⊥2 (t, x)

)
+ ȳ1(t)v̂1(x)y⊥2 (t, x)dx︸ ︷︷ ︸

∆(t)

= ȳ1(t)ȳ2(t)θ + ∆(t)

where θ =
∫ 1

0
v̂1(x)v̂2(x)dx. Let v̂∗1 = maxx∈[0,1](v̂1(x)) and leveraging the Cauchy-Schwarz inequality in H,

∣∣∆(t)
∣∣ =

∣∣∣∣ ∫ 1

0

y⊥1 (t, x)
(
ȳ2(t)v̂2(x) + y⊥2 (t, x)

)
+ ȳ1(t)v̂1(x)y⊥2 (t, x)dx

∣∣∣∣
=

∣∣∣∣〈y⊥1 (t, x), y2(t, x)〉H + 〈ȳ1(t)v̂1(x), y⊥2 (t, x)〉H
∣∣∣∣

≤
∣∣∣∣〈y⊥1 (t, x), y2(t, x)〉H

∣∣∣∣+

∣∣∣∣〈ȳ1(t)v̂1(x), y⊥2 (t, x)〉H
∣∣∣∣

≤ ||y⊥1 (t, x)||H ||y2(t, x)||H + ||ȳ1(t)v̂1(x)||H ||y⊥2 (t, x)||H
≤ ||y⊥1 (t, x)||Hy∗2 + ȳ∗1 v̂

∗
1 ||y⊥2 (t, x)||H ,

thus k1 = y∗2 and k2 = ȳ∗1 v̂
∗
1 . For the second part of the claim, notice that

ȳ2(t) =

∫ x∗−δ

0

y2(t, x)dx+

∫ x∗+δ

x∗−δ
y2(t, x)dx+

∫ 1

x∗+δ

y2(t, x)dx =

∫ x∗+δ

x∗−δ
y2(t, x)dx+ ȳ2,δ(t)

where

ȳ2,δ(t) =

∫ x∗−δ

0

y2(t, x)dx+

∫ 1

x∗+δ

y2(t, x)dx and |ȳ2,δ(t)| ≤ (x∗ − δ)δ + (1− x∗ − δ)δ ≤ 2δ.
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Next,∫ 1

0

y1(t, x)y2(t, x)dx =

∫ 1

0

(
ȳ1(t)v̂1(x) + y⊥1 (t, x)

)
y2(t, x)dx

=

∫ 1

0

ȳ1(t)v̂1(x)y2(t, x)dx+

∫ 1

0

y⊥1 (t, x)y2(t, x)dx

=

∫ 1

0

ȳ1(t)v̂1(x)y2(t, x)dx+ ∆1(t)

= ȳ1(t)
[ ∫ x∗−δ

0

v̂1(x)y2(t, x)dx+

∫ x∗+δ

x∗−δ
v̂1(x)y2(t, x)dx+

∫ 1

x∗+δ

v̂1(x)y2(t, x)dx
]

+ ∆1(t)

= ȳ1(t)

∫ x∗+δ

x∗−δ
v̂1(x)y2(t, x)dx+ ∆2(t) + ∆1(t)

= ȳ1(t)v̂1(c)

∫ x∗+δ

x∗−δ
y2(t, x)dx+ ∆2(t) + ∆1(t), for some c ∈ [x∗ − δ, x∗ + δ]

= ȳ1(t)ȳ2(t)v̂1(c)− ȳ1(t)v̂1(c)ȳ2,δ(t) + ∆2(t) + ∆1(t)

= ȳ1(t)ȳ2(t)v̂1(c) + ∆3(t) + ∆2(t) + ∆1(t)

= ȳ1(t)ȳ2(t)v̂1(x∗) + ∆4(t) + ∆3(t) + ∆2(t) + ∆1(t)

= ȳ1(t)ȳ2(t)θ + ∆(t),

where θ = v̂1(x∗) and ∆(t) =
∑4
i=1 ∆i(t), the existence of c is guaranteed by the mean-value theorem for

integrals [51]. Notice that

|∆1(t)| =
∣∣ ∫ 1

0

y⊥1 (t, x)y2(t, x)dx
∣∣ =

∣∣〈y⊥1 (t, x), y2(t, x)〉H
∣∣ ≤ ||y2(t, x)||H ||y⊥1 (t, x)||H ≤ y∗2 ||y⊥1 (t, x)||H ,

|∆2(t)| =
∣∣∣∣ȳ1(t)

[ ∫ x∗−δ

0

v̂1(x)y2(t, x)dx+

∫ 1

x∗+δ

v̂1(x)y2(t, x)dx
]∣∣∣∣

≤ y∗1 v̂∗1
∣∣∣∣ ∫ x∗−δ

0

y2(t, x)dx+

∫ 1

x∗+δ

y2(t, x)dx

∣∣∣∣
= ȳ∗1 v̂

∗
1

∣∣∣∣ȳ2,δ(t)

∣∣∣∣
≤ 2ȳ∗1 v̂

∗
1δ

|∆3(t)| = |ȳ1(t)v̂1(c)ȳ2,δ(t)| ≤ 2ȳ∗1 v̂
∗
1δ,

the following uses the smoothness v̂1(x) to guarantee uniform continuity i.e., the existence of Lv > 0 such
that for all x1, x2 ∈ (0, 1), we have that |v̂1(x2)− v̂1(x1)| ≤ Lv|x2 − x1|, and hence

|∆4(t)| =
∣∣ȳ1(t)ȳ2(t)(v̂1(c)− v̂1(x∗))

∣∣ ≤ ȳ∗1 ȳ∗2∣∣v̂1(c)− v̂1(x∗)
∣∣ ≤ 2ȳ∗1 ȳ

∗
2Lvδ.

Finally, ∣∣∆(t)
∣∣ =

∣∣∣∣ 4∑
i=1

∆i(t)

∣∣∣∣ ≤ 4∑
i=1

∣∣∣∣∆i(t)

∣∣∣∣ ≤ k3||y⊥1 (t, x)||H + k4δ,

where k3 = y∗2 and k4 = 2ȳ∗1(2v̂∗1 + ȳ∗2Lv). �

Remark 10. In the proof of Claim 3-2, y∗2 may depend on δ since we assume that ȳ∗2 is independent of δ (one
expects that y∗2 increases with decreasing δ), thus k3 may depend on δ.

Corollary 2. Consider the systems given by (36). The assumptions necessary to apply Claim 3 to∫ 1

0

Ei(t, x)S(t, x)dx,
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are satisfied by Claim 1, Proposition 1, and Claim 2 (along with Remark 9). Furthermore, considering the
results from Lemma 4, we are guaranteed he existence of Li > 0 for i = 1, . . . , 5 such that for all ε > 0∫ 1

0

Ei(t, x)S(t, x)dx = Ēi(t)S̄(t)θ∗i + ∆i(t), ∀t ≥ 0,

where θ∗i is given by (38b) for Cases I-III (as in Table 2), and

|∆i(t)| ≤

{
L1ε+ L2e

−ζt/ε for Case I

L3(δ)ε+ L4(δ)e−ζt/ε + L5δ for Case II and Case III
, (49)

where ζ is as in Lemma 4. The coefficients L3 and L4 may depend on δ by the discussion in Remark 6 and
Remark 10.

Let c̄(t) = [c̄1(t), . . . , c̄n(t)]T where ˆ̄ci(t) is given by (37) , ĒT (t) = [Ē1,T (t), . . . , Ē1,T (t)]T where Ēi,T (t)
is given by (44), ˆ̄c(t) = [ˆ̄c1(t), . . . , ˆ̄cn(t)]T , where ˆ̄ci(t) is given by (38), the c̄(t) and ˆ̄c(t) dynamics may be
written as

dc̄(t)

dt
= f c(ĒT , S̄T , c̄) + ∆(t), (50a)

dˆ̄c(t)

dt
= f c(ĒT , S̄T , ˆ̄c), (50b)

where ∆i = ∆i(t) as in Corollary 2 and f c : Rn × R× Rn → R is given by

f ic(ĒT , S̄T , ˆ̄c) =
1

ηi

[(
Ē
i
T (t)− ˆ̄c

i
(t)
)(
S̄T (t)−

n∑
j=1

ˆ̄c
j
(t)
) ãiθ∗i
d̃i
− ˆ̄c

i
(t)
]

=
1

ηi

[ ˆ̄Ei(t)
ˆ̄S(t)

ãiθ
∗
i

d̃i
− ˆ̄c

i
(t)
]
,

we used the fact that Ēi,T (t) = ˆ̄Ei,T (t) and S̄T (t) = ˆ̄ST (t) (Remark 7). By the form of (50), it is clear that
the c̄(t) dynamics (50a) are in the form the ˆ̄c(t) (50b) with additional “perturbation” terms of order ε and δ.
The variables ĒT (t), S̄T (t), and c̄(t) are enough to fully describe (37) and ĒT (t), S̄T (t), and ˆ̄c(t) are enough
to fully describe (38). Notice that

∂f ic(ĒT , S̄T , ˆ̄c)

∂Ē
i
T

=
1

ηi
ˆ̄S(t)

ãiθ
∗
i

d̃i
,

∂f ic(ĒT , S̄T , ˆ̄c)

∂Ē
j
T

= 0,
∂f ic(ĒT , S̄T , ˆ̄c)

∂S̄T
=

1

ηi
ˆ̄Ei(t)

ãiθ
∗
i

d̃i
, (51)

and by Claim 2 these terms are uniformly bounded in time and for i = 1, . . . , n. Considering Lemma 2 with

z1(t) = [Ē
T
T (t), S̄T (t)]T and z2(t) = ˆ̄c(t), then condition (I) is satisfied by the discussion in Remark 8 and

condition (III) is satisfied by (51), thus we can treat ĒT and S̄T (t) as time varying inputs to (50b) when
showing that (II) is satisfied.

We now show that the dynamics (50b) are contracting and thus we can apply the robustness property of
contracting systems (Lemma 3) to show that the solutions of (50b) and (50a) are close.

Lemma 5. Consider the system (36) and let ε > 0 be defined for Case I-III by Table 2. Let ˆ̄c(t) be given
by (50b) and c̄(t) be given by (50a). Suppose the conditions of Claim 1, Lemma 4, and Claim 2 hold. Then,
there exists Lc,1, ε

∗ > 0, such that for all ε ≤ ε∗, the solutions ˆ̄c(t) and c̄(t) satisfy

|ˆ̄c(t)− c̄(t)| ≤ |∆c|, ∀t ≥ 0, (52)

where |∆c| = Lc,1ε for Case I. For Cases II-III, if in addition, the conditions of Proposition 1 hold for all
0 ≤ δ ≤ δ∗, there exists Lc,3 > 0 such that for all 0 < δ < δ∗, there exists Lc,2(δ) such that (52) is satisfied
with |∆c| = Lc,2(δ)ε+ Lc,3δ.

Proof: Consider the metric

P (t) = diag([
1

ã1θ∗1
ˆ̄E1(t)

, . . . ,
1

ãnθ∗n
ˆ̄En(t)

]T ) (53)

where ˆ̄Ei(t) is given by (38). The total time derivative of P is given by

Ṗ (t) = −P (t)diag(vp), where vip =
d ˆ̄Ei(t)

dt
/ ˆ̄Ei(t) = ᾱi(t)/

ˆ̄Ei(t)−(γi+1)−ãiθ∗i ˆ̄S(t)+(γs+ki+di)
ˆ̄ci(t)

ˆ̄Ei(t)
.
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The Jacobian of (50b) is given by

∂f c
∂ ˆ̄c

= −diag(vc) + σ, where vic = ãiθ
∗
i

ˆ̄S(t) + d̃i,

and σ is a rank one matrix given by

σ = [ã1θ
∗
1

ˆ̄E1(t), . . . , ãnθ
∗
n

ˆ̄En(t)]T [−1, . . . ,−1].

With the chosen metric P (t), we have that

Pσ = − [1, . . . , 1]T [1, . . . , 1]︸ ︷︷ ︸
σ1

=⇒ −nIn,n ≤ σ1 ≤ 0In,n

since the symmetric rank one matrix σ1, has n− 1 zero eigenvalues and the nontrivial eigenvalue is λσ = −n
for eigenvector vn = [1, . . . , 1]T . Recalling the positivity of ˆ̄Ei(t), ˆ̄ci(t),

ˆ̄S(t) (Claim 1), and ᾱi(t), we have
that

1/2

(
P (t)

∂f c
∂c

+
∂fTc
∂c

P (t) + Ṗ (t)

)
= −Pdiag(1/2vp + vc) + Pσ

≤ −Pdiag(1/2vp + vc)

≤ − min
i=1,...,n

(
1/2(γi + 1) + γs + κi + di

)
P

= −ξP .

By Theorem 1, the system (50b) is contracting with contraction rate ξ = 1/2 + γs + mini=1,...,n

(
1/2γi +

κi + di

)
. Assumptions 2, 3 imply that (49) holds for ∆i(t) in (50a). Therefore, for a given δ > 0, we apply

the result from Lemma 3 to the nominal system (50b) and the perturbed system (50a). Let ε∗ = ζ/(2ξ) and
recalling that c̄i(0) = ˆ̄ci(0), then by Lemma 3, there exists l1, l2(δ), l3 > 0 such that for all ε < ε∗

|c̄i(t)− ˆ̄ci(t)| ≤Ml1ε, ∀t ≥ 0, for Case I |c̄i(t)− ˆ̄ci(t)| ≤M(l2(δ)ε+ l3δ), ∀t ≥ 0, for Case II-III,

where M is a constant upper bound on the square root of the ratio of the biggest and smallest eigenvalues
of P (t). Thus Lc,1 = Ml1, Lc,2(δ) = Ml2(δ), and Lc,3 = Ml3. We now show that M exists. Let r(t) be the
ratio of the biggest and smallest eigenvalues of P (t). By Claim 2, there exists Ēi,∗, Ē

∗
i,T ∈ R+ independent

of ε and δ such that Ēi,∗ ≤ ˆ̄Ei(t) ≤ Ē∗i,T ,∀t ≥ 0, and thus

r(t) =
maxi=1,...,n ãiθ

∗
i

ˆ̄Ei(t)

mini=1,...,n ãiθ∗i
ˆ̄Ei(t)

≤
maxi=1,...,n ãiθ

∗
i Ē
∗
i,T

mini=1,...,n ãiθ∗i Ēi,∗
=⇒ M2 =

maxi=1,...,n ãiθ
∗
i Ē
∗
i,T

mini=1,...,n ãiθ∗i Ēi,∗
.

�

Corollary 3. Recall Definition 5 and Remark 7, we have that

|Ēi(t)− ˆ̄Ei(t)| = |Ēi,T (t)− c̄i(t)− ( ˆ̄Ei,T (t)− ˆ̄ci(t))| = |ˆ̄ci(t)− c̄i(t)| ≤ |∆c|

and

|S̄(t)− ˆ̄S(t)| = |S̄T (t)−
n∑
j=1

c̄j(t)− ( ˆ̄ST (t)−
n∑
j=1

ˆ̄cj(t))| = |
n∑
j=1

ˆ̄cj(t)− c̄j(t)| ≤
n∑
j=1

|ˆ̄cj(t)− c̄j(t)| ≤ n|∆c|

where |∆c| is as in Lemma 5. Thus, the quantity |∆z| as claimed to exist in Theorem 3, may be given by
|∆z| = |∆c|

√
2 + n2.

Remark 11. We now comment on the sets Ωz ∈ Rn+1 and Ωz̄ ∈ Rn+1 as claimed to exist in Theorem 3. Let
χ be as in Claim 1.
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• For Cases I-III we require that z(0, x) ∈ χ,∀x ∈ [0, 1] for Lemma 4 to hold. In Case I, Ωz ∈ Rn+1 = χ.
In Case II, for Proposition 1 to hold we also require that for i = 1 . . . , n, that Ei(0, x)+ci(0, x) ≤ δ, ∀x /∈
[x∗i − δ, x∗i + δ], thus Ωz is the intersection between the set that satisfies this condition and χ. In Case
III, for Proposition 1 to hold we also require that S(0, x) +

∑n
j=1 cj(0, x) ≤ δ, ∀x /∈ [x∗i − δ, x∗i + δ], thus

Ωz is the intersection between the set that satisfies this condition and χ. As discussed in Remark 6, χ
may depend on δ.

• For Claim 2 to hold, we assumed that Ēi,∗ ≤ Ēi(0), Ēi(0)+ c̄i(0) ≤ Ē∗i,T , and that S̄(0)+
∑n
j=1 c̄j(0) ≤

S̄∗T , thus Ωz̄ is the set that satisfies these conditions.

2.4 Fast Diffusion and Bingding Dynamics

The approximation result of Theorem 3, holds well if w⊥ is small, where w⊥ is given by Definition 4. This
was guaranteed by Lemma 4 which is based on Theorem 2. The proof of Theorem 2 was based on the principle
that the 1

εDLv(z⊥d ) term dominates the f⊥d (t, x,zs, zd) term in (35c) and thus all solutions converged to
z⊥d → 0, the quasi-steady state of 1

εDLv(z⊥d ). However, for (36), if ε and ηi are of similar order of magnitude,

the corresponding term in f⊥d (t, x,zs, zd) may be comparable to 1
εDLv(z⊥d ) and cannot be neglected. The

terms ε and ηi being comparable corresponds to diffusion and the binding between Ei and S occurring at
similar timescales, which often time occurs within the cell [2]. Here we show that when both diffusion and
the binding dynamics dominate in (36), z⊥d = 0 is still the quasi-steady state, that is, all freely diffusing
species mirror their available volume profile.

When both diffusion and the binding dynamics dominate in (36) we have that

∂Ei(t, x)

∂t
=

1

ηi

[
− ηi

d

dx

[
J(x,Ei)

]
− Ei(t, x)S(t, x)

ãi

d̃i
+ ci(t, x)

]
︸ ︷︷ ︸

fast

+αi(t, x)

− (γi + 1)(Ei(t, x) + ci(t, x)),

∂ci(t, x)

∂t
=

1

ηi

[
− ηi

d

dx

[
J(x, ci)

]
+ Ei(t, x)S(t, x)

ãi

d̃i
− ci(t, x)

]
︸ ︷︷ ︸

fast

, (54)

∂S(t, x)

∂t
=

1

η1

[
− η1

d

dx

[
J(x, S)

]
+

n∑
j=1

η1

ηj
(−Ej(t, x)S(t, x)

ãj

d̃j
+ cj(t, x))

]
︸ ︷︷ ︸

fast

+αs(t, x)

− (γs + 1)(S(t, x) +

n∑
j=1

cj(t, x)).

We compute the quasi-steady state of the “fast dynamics in (54) for Cases I-III, that is Ei(t, x), ci(t, x), and
S(t, x) such that

0 =
1

ηi

[
− ηi

d

dx

[
J(x,Ei)

]
− Ei(t, x)S(t, x)

ãi

d̃i
+ ci(t, x)

]
,

0 =
1

ηi

[
− ηi

d

dx

[
J(x, ci)

]
+ Ei(t, x)S(t, x)

ãi

d̃i
− ci(t, x)

]
, (55)

0 =
1

η1

[
− η1

d

dx

[
J(x, S)

]
+

n∑
j=1

η1

ηj
(−Ej(t, x)S(t, x)

ãj

d̃j
+ cj(t, x))

]
.

Case I: In this case, (55) is satisfied for

Ei(t, x) = Ēi(t)v̂Ei(x), S(t, x) = S̄(t)v̂S(x), ci(t, x) = c̄i(t)v̂ci(x),

with the additional constraint that

Ei(t, x)S(t, x)
ãi

d̃i
+ ci(t, x) = 0 =⇒ Ēi(t)v̂Ei(x)S̄(t)v̂S(x)

ãi

d̃i
+ c̄i(t)v̂ci(x) = 0,∀x ∈ [0, 1], (56)
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which in general (56) is a stringent condition since it is required to hold for all x ∈ [0, 1]. However, by the
key fact that vci(x) = vEi(x)vS(x) ((9) in the main text), (56) is satisfied for all x ∈ [0, 1] by

c̄i(t) = Ēi(t)S̄(t)
ãi

d̃i
θ∗i , where θ∗i =

∫ 1

0
vEi(x)vS(x)dx[ ∫ 1

0
vEi(x)dx

][ ∫ 1

0
vS(x)dx

] .
Case II and III: For this cases, (55) is satisfied for

Case II: S(t, x) = S̄(t)v̂S(x), Case III: Ei(t, x) = Ēi(t)v̂Ei(x),

with the additional constraint that Ei(t, x)S(t, x) ãi
d̃i

+ ci(t, x) = 0 which implies that

Case II: ci(t, x) = Ei(t, x)S̄(t)v̂S(x)
ãi

d̃i
, Case III: Ei(t, x) = Ēi(t)v̂Ei(x)S(t, x)

ãi

d̃i
. (57)

Thus, when both diffusion and the binding dynamics dominate, the quasi-steady states are still those
that correspond to freely diffusing species converging to their available volume profile. We observed that for
Case I, this was possible by the fact that vci(x) = vEi(x)vS(x). In a future study it should be shown that
this quasi-steady state is a stable solution of the fast dynamics in (54).

2.5 Available Volume Profiles and Bounds on θ∗i

Following [13], we introduce a model of the available volume profiles of a freely diffusing species within the

DNA mesh of the cell. Let ρ(x) be the local density of DNA length such that
∫ 1

0
ρ(x)dx = ρ̄ =

Lp
Vp

, where

Lp is the total length of chromosome DNA, Vp the volume where the DNA polymer is confined, and let

ρ̂(x) = ρ(x)
2ρ̄ . For a species diffusing inside the cell with radius of gyration r, we model the available volume

profile v(x) as:

v(x) = e−κπr
22ρ̄ρ̂(x) = e−(r/r∗)2ρ̂(x), (58)

where κ is an empirical coefficient (as discussed in [13]) and r∗2 = 1/(2κπρ̄). From the parameter values in
[13], r∗ ≈ 23 nm. As commented in SI Section 2.11, r∗ can be estimated for a given context (e.g., growth
conditions and strain ) by analyzing the concentration profile inside the cell of a freely diffusing species with
a known radius of gyration, which is possible via superresolution imaging [14].

As shown in Figure 8, we estimate the chromosome density as a step function.

ρ̂(x) =


1

2(1−∆x)
, x ∈ [0, 1−∆x]

0, x ∈ (1−∆x, 1]

=⇒ v̄ =

∫ 1

0

v(x)dx = v0(1−∆x) + ∆x, (59)

where v0 = e−
(r/r∗)2
2(1−∆x) and ∆x is the distance between the end of the chromosome and the cell poles (see

Figure 1 in the main text). Its clear now, that our choice to define ρ̂(x) = ρ(x)
2ρ̄ was motivated by the fact

that when ∆x = 1/2 (nucleoid evenly spread out between mid-cell and the halfway point between mid-cell

and the cell poles), we have the convenient expressions ρ̂(0) = 1 and v0 = e−(r/r∗)2

. Notice that v0 → 0 as
(r/r∗)2 →∞. Thus,

v̂(x) =
v(x)

v̄(x)
=


0 ≤ v0

v0(1−∆x) + ∆x
≤ 1, x ∈ [0, 1−∆x]

1 ≤ 1

v0(1−∆x) + ∆x
≤ 1

∆x
, x ∈ (1−∆x, 1]

Bounds on θ∗i (13): For the species Ei and S as described in the main text with radius of gyration re,i and
rs, respectively. The available volume profiles are given by

vEi(x) = e−(re,i/r
∗)2ρ̂(x) and vS(x) = e−(rs/r

∗)2ρ̂(x),

respectively, We summarize the bounds on θ∗i as in (13) in the main text, assuming ρ(x) is a step function
as above. Let

v0,Ei = vEi(0) = e−
(re,i/r

∗)2

2(1−∆x) , and v0,S = vS(0) = e−
(rs/r

∗)2
2(1−∆x) , (60)

and Case I-III as in (13) in the main text, the bounds on θ∗i are given by
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Figure 8: Idealization of the chromosome density which yields a simple estimate of the available
volume profile. The chromosome density is approximated as a step function implying by (58) that the
available volume profile is also a step function. Here ∆x is the distance between the end of the chromosome
and the cell poles.

• For Case I, this idealization implies that

θ∗i =
v0,Eiv0,S(1−∆x) + ∆x[

v0,Ei(1−∆x) + ∆x
][
v0,S(1−∆x) + ∆x

] =⇒ 1 ≤ θi ≤
1

∆x
(61a)

The upper limit of θ∗i is 1
∆x and is reached as v0,Ei and v0,S approach zero, which occurs as re,i/r

∗ →∞
and rs/r

∗ → ∞. The lower limit of θ∗i is unity and is achieved if v0,Ei or v0,S approach one, which
occurs if any of the two species is sufficiently small (re,i/r

∗ � 1 or rs/r
∗ � 1 ). Since θ∗i ≥ 1, it implies

that the binding betwen Ei and S is always equal to or greater than that predicted by a well-mixed
model ((8) in the main text).

• For Case II-III, let x∗i and x∗s as in Assumption 3 in the main text and thus

ai =

{
v0,S , Case II

v0,Ei , Case III
, (61b)

θ∗i =


0 ≤ ai

ai(1−∆x) + ∆x
≤ 1, x∗i ≤ 1−∆x for Case II and x∗s ≤ 1−∆x for Case III

1 ≤ 1

ai(1−∆x) + ∆x
≤ 1

∆x
. x∗i > 1−∆x for Case II and x∗s > 1−∆x for Case III

(61c)

When x∗i ≤ 1 − ∆x for Case II and x∗s ≤ 1 − ∆x for Case III, we have that θ∗i ≤ 1, the lower limit
θ∗i = 0 is achieved when re/r

∗ → ∞ for Case II (rs/r
∗ → ∞ for Case III), the upper limit θ∗i = 1 is

achieved when re/r
∗ → 0 for Case II (rs/r

∗ → 0 for Case III). When x∗i > 1−∆x for Case II and x∗s >
1−∆x for Case III, we have that θ∗i ≥ 1, the lower limit θ∗i = 1 is achieved when re/r

∗ → 0 for Case
II (rs/r

∗ → ∞ for Case III), the upper limit θ∗i = 1/∆x is achieved when re/r
∗ → ∞ for Case II

(rs/r
∗ →∞ for Case III).

2.6 Protein Production: Transcription and Translation

We consider gene (D) being transcribed by RNAP (S) to form a DNA-RNAP complex (cs) to produce mRNA
(m) which is translated by ribosomes (R) to form mRNA-ribosome complex (cm) which produces protein
P . The mRNA’s degrade at rate γ. The RNAP, and ribosomes are produced at rates αs(t, x), αr(t, x),
respectively. We assume all species dilute at rate µ, the cells growth rate. The corresponding biochemical
reactions are:

D + S
as



ds

cs
κs−→ m + S + D︸ ︷︷ ︸

transcription, case II

, m + R
am



dm

cm
κm−→ P + R + m︸ ︷︷ ︸

translation, case I

∅ αs−→ S, ∅ αr−→ R, m
γi−→ ∅, Cm

γi−→ R,

where γ is the mRNA degradation rate, as and ds are the association and dissociation rate constants,
respectively, between RNAP and the gene D, κs is the catalytic rate of formation of mRNA m, am and dm
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are the association and dissociation rate constants, respectively, between ribosomes and mRNA , κm is the
catalytic rate of formation of protein P. We assume that the total concentration of D is conserved, so that
DT (x) = D(t, x) + cs(t, x) and that DT (x) is localized at x = x∗.
Spatial-temporal Dynamics: The dynamics corresponding to these biochemical reactions are given by:

∂cs(t, x)

∂t
= asS(t, x)D(t, x)− (ds + κs)cs(t, x)− cs(t, x), (62a)

∂S(t, x)

∂t
= Ls(S) + αs(t, x) +

[
− as,iD(t, x)S(t, x) + (ds + κs)cs(t, x)

]
− S(t, x), (62b)

∂m(t, x)

∂t
= Lm(m) + κscs(t, x)− amm(t, x)R(t, x) + (κm + dm)cm(t, x)− (1 + γ)m(t, x), (62c)

∂cm(t, x)

∂t
= Lc(cm) + amm(t, x)R(t, x)− (κm + dm + 1 + γ)cm, (62d)

∂R(t, x)

∂t
= LR(R) + αR(t, x) +

[
amm(t, x)R(t, x) + (κm + dm + γ)cm(t, x)

]
−R(t, x). (62e)

where the spatial variable has been normalized by L (cell-length) and the time variable has been normalized
by 1/µ the time scale associated with dilution. The flux dynamics and boundary conditions are given by,

Lm(m) = − d

dx

[
Jm(x,m)

]
, Jm(x,m) = −χmvm(x)2 d

dx

[
vm(x)−1m

]
, Jm(x,m)

∣∣
x=0,1

= 0, (63a)

Lc(cm) = − d

dx

[
Jc(x, cm)

]
, Jc(x, cm) = −χcvc(x)2 d

dx

[
vc(x)−1cm

]
, Jc(x, cm)

∣∣
x=0,1

= 0, (63b)

LR(R) = − d

dx

[
JR(x,R)

]
, JR(x,R) = −χRvR(x)2 d

dx

[
vR(x)−1R

]
, JR(x,R)

∣∣
x=0,1

= 0, (63c)

Ls(S) = − d

dx

[
Js(x, S)

]
, Js(x, S) = −χsvs(x)2 d

dx

[
vs(x)−1S

]
, Js(x, S)

∣∣
x=0,1

= 0. (63d)

where vm(x), vc(x), vR(x), and vs(x) are the available volume profiles for the mRNA, mRNA-ribosome
complex, ribosome, and RNAP, respectively and χm = Dm/(L

2µ), χc = Dc/(L
2µ), χR = DR/(L

2µ),
and χs = Ds/(L

2µ), are the dimensionless diffusion coefficients for the mRNA, mRNA-ribosome complex,
ribosome, and RNAP, respectively. The space averaged protein concentration P̄ (t) is given by

dP̄ (t)

dt
= κmc̄m(t)− P̄ (t), with c̄m(t) =

∫ 1

0

cm(t, x)dx.

Values for dimensionless parameters:

We set all production rates with respect to that of RNAP such that ᾱS =
∫ 1

0
αS(x)dx = 1. All time scales

relative to µ = 0.5 1/hr, consistent with the experiments [52] The total number of RNAP (NRNAP) ranges
between 2,000 -10,000 we took it to be 5,000 [14]. The total number of ribosomes (Nribo) was taken to be

10, 000 and since both RNAP and ribosomes and RNAP are stable, it implies ᾱr =
∫ 1

0
αr(x)dx = Nribo

NRNAP
= 2.

mRNA degradation is about 10 times faster than dilution [2], therefore, γ = 10.The rate of transcription
(translation) is about 80 (40) times faster than dilution [2], thus we choose κs = 80 and κm = 40. We

assumed that the DNA is on a high copy plasmid (≈ 500 copies) and thus D̄T =
∫ 1

0
DT (x)dx = NDNA

NRNAP
= 0.1.

The association and dissociation rate constants are varied as shown below to show that all of our results
hold dispiite fast binding and unbinding but we maintain the ratio ds/as = dm/am = 1.

The length of the cell is about 3µm and thus L = 1.5µm [13]. The diffusion coefficient of RNAP is taken
to be Ds = 0.22µm2/s [53] and thus χs = 704. The diffusion coefficient of free ribosomes is taken to be
Dr = 0.4µm2/s [13] and thus χr = 1280. In [14], the diffusion coefficient of polysomes is 0.05± 0.02µm2/s,
and thus we take the diffusion coefficient of a free mRNA to be the upper bound 0.07µm2/s and thus
χm = χc = 224.

For the following, the spatial profiles for the production rates are given proportional to their functional
form since the constant that fully specifies them is such that the production rate per-cell satisfies the above
values.
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Additional simulation details for Figure 5-A in the main text: DT (x) ∝ e−20x when DNA near
mid cell and DT (x) ∝ e20(x−1) when DNA at cell poles. The RNAP production was kept roughly spatially
constant αs(x) ∝ e−.001x. The binding and unbinding coefficients for DNA-RNAP were as = 1000 and
ds = 1000. We set am = dm = 0 such that mRNA did not bind to ribosomes and thus the free amount of
mRNA is equivalent to the total mRNA.
Additional simulation details for Figure 5-B in the main text: DT (x) ∝ e−.001x is chosen to be
roughly constant. The RNAP production was kept roughly spatially constant αs(x) ∝ e−.001x. The ribosome
production was kept roughly spatially constant αr(x) ∝ e−.001x. The RNAP radius of gyration was taken to
be rs/r

∗ = 0.001 such that its excluded volume effects were negligible. The binding and unbinding coefficients
for DNA-RNAP were as = 1000 and ds = 1000. The binding and unbinding coefficients for ribosome-mRNA
were am = 10 and dm = 10.

Figure 9: RNAP steady state spatial profiles and space averaged mRNA transients For the
following we refer to the well-mixed model as (15) with (16) given by θs = 1 and θr = 1. Here time is
nondimensionalized with the time scale associated with dilution. (A) DNA transcribed by RNAP (S) to form
mRNA (m) (B) The steady state RNAP spatial profile predicted by (62), normalized by spatial averaged
value. From the results on the main text this should mirror the normalized available volume profile, which
it does (Remark 1). Note as the size of RNAP increases, it is further excluded from the chromosome. (C)
The temporal space-average concentration of mRNA when the DNA is localized mid-cell for several sizes of
RNAP for the well-mixed model, reduced ODE model (15) , and PDE (62). (D) The temporal space-average
concentration of mRNA when the DNA is localized near the cell poles for several sizes of RNAP for the
well-mixed model, reduced ODE model (15) , and PDE (62). The simulation set up and parameters are
identical to those of Figure 5-A.

2.7 Multiple Ribosomes on a Single Strand of mRNA

The biochemical reactions that models a polysome with Nr bound ribosomes are given by

m + (Nr − 1)R
al



dl

cl︸ ︷︷ ︸
ribosome loading

, cl + R
at



dt

ct
κt−→ P + R + cl︸ ︷︷ ︸

translation

, (64)
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X: 2
Y: 0.8016
Z: 0.01196

X: 2
Y: 0.8016
Z: 0.01232

Figure 10: The error in the RNAP approximation for several binding and unbinding speeds
between DNA and RNAP Let S(t, x) be as in (62) and S⊥(t, x) = S(t, x)− S̄(t)v̂s(x) be the a measure

of the error in our approximation, where ||y(t, x)|| = (
∫ 1

0
(y2(t, x)))1/2, and ηTX = 1/(κs + ds + 1). The

values of ηTX are varied by modifying ds while maintaining as/ds = 1. Here time is nondimensionalized
with the time scale associated with dilution. (A) The relative error in time for several values of rs for
ηTX = 91 =⇒ ds = 10. (B) The relative error in time for several values of rs for ηTX = 1081 =⇒ ds = 1000.
For both values of ηTX the error is high at t = 0 since the initial RNAP spatial profile is chosen to be a
constant but quickly decays to less than 2%. The rest of the simulation set up and parameters are identical
to those of Figure 5-A.

Figure 11: The relative error between the space averaged PDE model and the reduced ODE
model from the data in Figure 5-a in the main text The relative error in the steady state space
averaged mRNA for the full PDE model (m̄T,P ) and the reduced model (m̄T,o) from the data in Figure 5-a
in the main text. When the DNA is pole localized the relative error is less than 1% and when the DNA is
localized near mid-cell the error is less than 10%.

where the first and second reaction model the loading and translation steps, respectively. The translation
dynamics corresponding to (64) are given by

∂m(t, x)

∂t
= Lm(m) + κscs(t, x)− alm(t, x)RNr−1(t, x) + dlcl(t, x)− (1 + γ)m(t, x), (65a)

∂cl(t, x)

∂t
= Lc,l(cl) + alm(t, x)RNr−1(t, x)− dlcl(t, x)− atcl(t, x)R(t, x) + (dt + κt)ct(t, x)− (γ + 1)cl(t, x),

(65b)

∂R(t, x)

∂t
= LR(R) + αR(t, x) + (Nr − 1)

[
alm(t, x)RNr−1(t, x)− dlcl(t, x)

]
(65c)

− atcl(t, x)R(t, x) + (dt + κt)ct(t, x)−R(t, x), (65d)

∂ct(t, x)

∂t
= Lc,t(ct) + atcl(t, x)R− (dt + κt)ct(t, x)− (γ + 1)ct(t, x), (65e)

(65f)
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Figure 12: Ribosome and mRNA steady state spatial profiles and space averaged transients For
the following we refer to the well-mixed model as (15) with (16) given by θs = 1 and θr = 1. Here time
is nondimensionalized with the time scale associated with dilution. (A) The steady state ribosome spatial
profile predicted by (62), normalized by spatial averaged value. From the results on the main text this should
mirror the normalized available volume profile, which it does. Note as the size of the ribosome increases,
it is further excluded from the chromosome. (B) The steady state mRNA spatial profile predicted by (62),
normalized by spatial averaged value. From the results on the main text this should mirror the normalized
available volume profile, which it does. Note as the size of the mRNA increases, it is further excluded from the
chromosome. (C) The temporal space averaged concentration of ribosomes normalized by the steady state of
the well-mixed model for the reduced ODE model (15) and the PDE model (62) when rm/r

∗ = rR/r
∗ = 1.8.

(D)The temporal space averaged concentration of mRNA normalized by the steady state of the well-mixed
model for the reduced ODE model (15) and the PDE model (62) when rm/r

∗ = rR/r
∗ = 1.8. The simulation

set up and parameters are identical to those of Figure 5-B.

where cs(t, x) is given by (62), Lm(m) and LR(R) are given by (63) and

Lc,l(cl) = − d

dx

[
Jc,l(x, cl)

]
, Jc,l(x, cl) = −χcvl(x)2 d

dx

[
vl(x)−1cl

]
, Jc,l(x, cl)

∣∣
x=0,1

= 0,

Lc,t(ct) = − d

dx

[
Jc,t(x, ct)

]
, Jc,t(x, ct) = −χcvt(x)2 d

dx

[
vt(x)−1ct

]
, Jc,t(x, ct)

∣∣
x=0,1

= 0,
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X: 1.8
Y: 1.8
Z: 0.02012

X: 1.8
Y: 1.8
Z: 0.01397

Figure 13: PDE and reduced ODE model agree well in protein production example Let PPDE(100)
be the steady state protein space averaged concentration predicted by (62) and PODE(100) be the steady
state protein space averaged concentration predicted by (15). Let ηTL = 1/(κm + dm + 1 + γm). The values
of ηTL are varied by modifying dm while maintaining am/dm = 1. (A) The relative error for several values
of rm and rs for ηTL = 51 =⇒ dm = 10. (B) The relative error for several values of rm and rs for
ηTX = 1041 =⇒ dm = 1000. For both cases the relative error is less than 2.1% The rest of the simulation
set up and parameters are identical to those of Figure 5-B.

X: 63
Y: 2.405
Z: 0.1825

X: 63
Y: 2.405
Z: 0.1515

Figure 14: The error in the mRNA approximation for several binding and unbinding speeds
between mRNA and ribosome Let m(t, x) be as in (62) and m⊥(t, x) = m(t, x) − m̄(t)v̂m(x) be the a

measure of the error in our approximation, where ||y(t, x)|| = (
∫ 1

0
(y2(t, x)))1/2, and ηTL = 1/(κm + dm +

1 + γm). The values of ηTL are varied by modifying dm while maintaining am/dm = 1. Here rR,m is a
sequence corresponding to the mRNA and ribosome pairs from Figure 5-B. Here time nondimensionalized
with the time scale associated with dilution. (A) The relative error in time for several values of rR,m for
ηTL = 51 =⇒ ds = 10. (B) The relative error in time for several values of rR,m for ηTL = 1041 =⇒ ds =
1000. For both values of ηTL the error is high at t = 0 since the initial mRNA spatial profile is chosen to
be a constant but quickly decays to less than 20%. The rest of the simulation set up and parameters are
identical to those of Figure 5-B.
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Figure 15: The error in the ribosome approximation for several binding and unbinding speeds
between mRNA and ribosome Let m(t, x) be as in (62) and R⊥(t, x) = R(t, x) − R̄(t)v̂r(x) be the a

measure of the error in our approximation, where ||y(t, x)|| = (
∫ 1

0
(y2(t, x)))1/2, and ηTL = 1/(κm + dm +

1 + γm). The values of ηTL are varied by modifying dm while maintaining am/dm = 1. Here rR,m is a
sequence corresponding to the mRNA and ribosome pairs from Figure 5-B. Here time nondimensionalized
with the time scale associated with dilution. (A) The relative error in time for several values of rR,m for
ηTL = 51 =⇒ ds = 10. (B) The relative error in time for several values of rR,m for ηTL = 1041 =⇒ ds =
1000. For both values of ηTL the error is high at t = 0 since the initial mRNA spatial profile is chosen to be a
constant but quickly decays to less than 1%. The rest of the simulation set up and parameters are identical
to those of Figure 5-B.

where vl(x) = vm(x)vNr−1
R (x) and vt(x) = vl(x)vR(x). Integrating (65) in space yields:

dm̄(t)

dt
= κsc̄s(t)− alθl(t)m̄(t)R̄Nr−1(t) + dlc̄l(t)− (1 + γ)m̄(t), (66a)

dc̄l(t)

dt
= alθl(t)m̄(t)R̄Nr−1(t)− dlc̄l(t)− atθt(t)c̄l(t)R̄(t) + (dt + κt)c̄t(t)− (γ + 1)c̄l(t), (66b)

dR̄(t)

dt
= ᾱR(t) + (Nr − 1)

[
alθl(t)m̄(x)R̄Nr−1(t)− dlc̄l(t)

]
(66c)

− atθt(t)c̄l(t)R̄(t, x) + (dt + κt)c̄t(t)− R̄(t), (66d)

dc̄t(t)

dt
= atθt(t)c̄l(t)R̄(t)− (dt + κt)c̄t(t)− (γ + 1)c̄t(t), (66e)

dP̄ (t)

dt
= κtc̄t(t)− P̄ (t) (66f)

where

θl(t) =

∫ 1

0
m(t, x)RNr−1(t, x)dx

[
∫ 1

0
m(t, x)dx][

∫ 1

0
R(t, x)dx]Nr−1

, θt(t) =

∫ 1

0
cl(t, x)R(t, x)dx

[
∫ 1

0
cl(t, x)dx][

∫ 1

0
R(t, x)dx]

. (67)

The production rate of P̄ denoted by ᾱP is given by ᾱP = κtc̄t(t). From our analysis in Section 2.2, we expect
that R(t, x) ≈ R̄(t)v̂r(x), m(t, x) ≈ m̄(t)v̂m(x), and cl(t, x) ≈ c̄l(t)vl(x) (this is verified computationally in
Figure 16), and thus we can estimate θ∗l (t) and θ∗t (t) by the constants

θl(t) ≈ θ∗l =

∫ 1

0
vm(x)vNr−1

R (x)dx

[
∫ 1

0
vm(x)dx][

∫ 1

0
vR(x)dx]Nr−1

, θt(t) ≈ θ∗t =

∫ 1

0
vl(x)vR(x)dx

[
∫ 1

0
vl(x)dx][

∫ 1

0
vR(x)dx]

, (68)

this is verified via simulation in Figure 16)-D.
Let Kd = (dl/al)

1/(Nr−1), Kt = (dt+κt)/at, βl = (γ+1)/dl, and βt = (γ+1)/(κt+dt), if βl, βt, βtR/Kt �
1 (dilution and mRNA degradation is much slower the rate of ribosome unbinding and Kt is sufficiently large),
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(A)

(C)

(B)

(D)

Figure 16: BCF for Polysome with 10 Ribosomes (A) The steady state mRNA spatial concentra-
tion profile (m(100, x)) predicted by (65) normalized by the space averaged concentration along with the

normalized mRNA available volume profile (v̂m(x) = vm(x)/
∫ 1

0
vm(x)dx). (B) The steady state ribosome

spatial concentration profile (R(100, x)) predicted by (65) normalized by the space averaged concentration

along with the normalized mRNA available volume profile (v̂r(x) = vr(x)/
∫ 1

0
vr(x)dx). (C) The steady

state polysome (loaded with 9 ribosomes) spatial concentration profile (cl(100, x)) predicted by (65) nor-
malized by the space averaged concentration along with the normalized mRNA available volume profile

(v̂cl(x) = vcl(x)/
∫ 1

0
vcl(x)dx). (D) The BCF’s θl(t) and θt(t) given by (67) and their constant approxima-

tion θ∗l and θ∗t given by (68). For these simulations, we do not model transcription directly but instead set
κscs(t, x) = 1, such that at steady state mT (x) = m(x) + cl(x) + ct(x) = κscs(t, x)/(γ+ 1) = 0.09 for γ = 10.
The used parameter values are Nr = 10, χm = χc = 224 , χr = 1280, at = 10, dt = 10, κt = 40, al = aNr−1

t

dl = dNr−1
t , αr(t, x) = 1, rm/r

∗ = 0.88 and rR/r
∗ = 0.44.

then a simple expression for the steady state protein is given by

P̄ = κtc̄t = κtm̄T θ∗t R̄/Kt︸ ︷︷ ︸
translation

θ∗l (R̄/Kd)
Nr−1

1 + θ∗l (R̄/Kd)Nr−1︸ ︷︷ ︸
ribosome loading

,

where m̄T = m̄+ c̄l + c̄t = κsc̄s/(γ + 1) is the total mRNA.

2.8 Transcription Factor Regulation

Intracellular signaling to control gene expression is often done via transcription factors (TFs). In this section
we model a general transcription factor architecture where the repressor Pr dimerizes to form c1 (e.g., TetR
dimerizes before targeting gene [32]) and then blocks the transcription of gene D that produces protein P.
The biochemical reactions corresponding to this process are:

∅ α−→ Pr, Pr + Pr

a1



d1

c1︸ ︷︷ ︸
Case I

, c1 + D
a2



d2

c2,︸ ︷︷ ︸
Case II

D
κ−→ P, (69)

where α is the production rate of Pr, a1 (d1) is the association (dissociation) constant to form the c1 complex,
a2 (d2) is the association (dissociation) constant to form the the c2 complex, and κ is the catalytic rate to
produce protein P. Since the repressor Pr, freely diffuses, the dimerization reaction belongs to Case I. The
gene D is spatially fixed and it is repressed by the freely diffusing c1, thus this interaction falls under Case II.
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Figure 17: Transcription factor regulation transient response The transient response corresponding
to Figure 6 in the main text when P̄r/K = 2.5

We assume that the total concentration of D is conserved, so that DT (x) = D(t, x) + c2(t, x). The reaction
diffusion equations corresponding to (69) are

∂Pr(t, x)

∂t
= χr

d

dx

[
v2
Pr (x)

d

dx

[Pr(t, x)

vPr (x)

]]
+ α(t, x)− γrPr(t, x), (70a)

∂c1(t, x)

∂t
= χc

d

dx

[
v2
c1(x)

d

dx

[c1(t, x)

vc1(x)

]]
+ a1P

2
r (t, x)− d1c1(t, x)− a2c1(t, x)D(t, x) + d2c2(t, x), (70b)

∂c2(t, x)

∂t
= a2c1(t, x)D(t, x)− d2c2(t, x), (70c)

D(t, x) = DT (x)− c2(t, x), (70d)

where vPr (x) (χr = Dr/(L
2µ)) and vc1(x) (χc = Dc1/(L

2µ)) are the available volume profiles (dimensionless
diffusion coefficients) of Pr and c1, respectively, and from (9), vc1(x) = v2

Pr
(x). The boundary conditions

corresponding to (70) are[
v2
Pr (x)

d

dx

[Pr(t, x)

vPr (x)

]]
x=0,1

= 0,

[
v2
c1(x)

d

dx

[c1(t, x)

vc1(x)

]]
x=0,1

= 0.

Values for dimensionless parameters: The growth rate we used to nondimensionalize the time scales was
µ = 0.5 1/hr, consistent with the experiments [52]. The length of the cell is about 3µm and thus L = 1.5µm
[13]. The diffusion coefficient of the transcription factor is taken to be Dr = Dc1 = 0.4µm2/s (that of LacI)
[54] and thus χr = χc = 1280. The transcription factor was assumed to be stale thus γr = µ. The total
concentration of D given by D̄T was used to nondimensionalize the other concentration variables such that
D̄T = 1.
Additional simulation details for Figure 6 in the main text: DT (x) ∝ e−20x when DNA near mid
cell and DT (x) ∝ e20(x−1) when DNA at cell poles. The transcription factor production was kept roughly
spatially constant αs(x) ∝ e−.001x. The binding and unbinding coefficients were chosen to be a1 = a2 = 1000
and d1 = d2 = 1000 such that the dissociations constants Kd,1 = d1

a1
= Kd,2 = d2

a2
= 1.

Approxmating BCF from known parameter values:
From (9) and (2) in the main text, we observe that the effective radius of gyration of a dimer complex is√

2r, where r is the radius of gyration of the individual species. In [55] it was estimated that the radius of
gyration for the Tet repressor dimer is 3.1 nm and thus we estimate the radius of gyration of the monomer as
r = 3.1/

√
2. From the expression for θ∗ given by (24), Figure 4-B, and r = 3.1/

√
2, we have that θ∗ ≈ 0.99

and θ∗ ≈ 1.01, when the target DNA is near mid-cell and the cell poles, respectively. Thus, for TetR,
the binding strength between the repressor and the DNA varies by about 1% with respect to a well-mixed
model in this parameter range. In [56] it was estimated that the radius of gyration for the Lac repressor
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Figure 18: Infinite dimensional dynamics decay in time independently of binding/unbinding
speed Let y(t, x) be as in (70) (represents Pr(t, x) or c1(t, x)) and let y⊥(t, x) = y(t, x) − ȳ(t)v(x) be
the a measure of the error in our approximation, where v(x) is the available volume profile of the species.

Let ||y(t, x)|| = (
∫ 1

0
(y2(t, x)))1/2, η1 = d1/µ, and η2 = d2/µ and recall that in the simulations we keep

d1/a1 = d2/a2 = 1. We show ||y⊥||/||y||, the relative error for several values of η1 and η2 over dimensionless
time (with respect to µ) both when the DNA is near mid-cell and the cell poles. The other simulation
parameters are identical to those used to generate Figure 6 in the main text. For each time point shown, we
took the max relative error with respect to the sizes of Pr used to generate Figure 6. The error is high at
t = 0 since the initial spatial profiles were chosen to be a constant but note that they quickly decay.
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Figure 19: The relative error between the space averaged PDE model and the reduced ODE
model from the data in Figure 6 in the main text The relative error in the steady state space averaged
protein for the full PDE model (P̄P ) and the reduced model (P̄o) from the data in Figure 6 in the main text.
The errors are less than 1.7% both when the DNA is localized at mid-cell and at the cell poles.

tetramer is r = 5.3 nm. Assuming that the tetramer is made up of two dimers, then the radius of gyration
of each individual dimer is given by r = 5.3/

√
2. From the expression for θ∗ given by (24), Figure 4-B, and

r = 5.3/
√

2, we have that θ∗ ≈ 0.97 and θ∗ ≈ 1.03, when the target DNA is near mid-cell and the cell poles,
respectively. Thus, for the Lac repressor the binding strength between the transcription factor and the DNA
varies by about 3% with respect to a well-mixed model in this parameter range.

While we could not find an exact value for the radius of gyration of the dcas9-gRNA complex, in [57] it
was shown that the size of the Cas9-gRNA complex is roughly 10 nm. If we assume this value to be the radius
of gyration, from Figure 4-B, we have that the BCF for this complex is θ∗ = 0.9 and θ∗ = 1.1 when the target
DNA is near mid-cell and the cell poles, respectively. Thus, the binding strength between the Cas9-gRNA
complex and the DNA varies s by about 10% with respect to a well-mixed model in this parameter range.

2.9 Oscillator

Now we consider the repressor activator clock genetic circuit [35]. This circuit produces sustained oscillations
if tuned within an appropriate parameter range [36, 1]. The circuit consists of two proteins Pa and Pr. Protein
Pa, is an activator which dimerizes to form Pa,2 and then binds to its own gene Da to form complex ca,1 to
initiate transcription. The dimer Pa,2 also finds to the gene Dr, which transcribes Pr to form complex ca,2

and initiates transcription. Protein Pr, dimerizes to form Pr,2 and then represses Pa by binding to Da to
form complex cr. The biochemical equations corresponding to this circuit are:

Pa + Pa

a1



d1

Pa,2,︸ ︷︷ ︸
Case I, Pa diffuses

Pr + Pr

a2



d2

Pr,2,︸ ︷︷ ︸
Case II, Pr diffuses

Pa,2 + Da

a3



d3

ca,1, Pr,2 + Da

a5



d5

cr,︸ ︷︷ ︸
Case III, Pa,2 and Pr,2 diffuse and Da fixed

Pa,2 + Dr

a4



d4

ca,2,︸ ︷︷ ︸
Case II, Pa,2 diffuse and Dr fixed

(71a)

Da
κ1−→ Pa, Dr

κ2−→ Pr, Pa
γa−→ ∅, Pr

γr−→ ∅, ca,1
κ3−→ Pa, ca,2

κ4−→ Pr, (71b)

where ai (di) for i = 1, . . . , 5 are association (dissociation) rate constants, γa (γr) is the degradation rate of
Pa (Pr ) κ1 (κ2) is the basal rate at which gene Da (Dr) is transcribed, and κ3 (κ4) is the rate at which the
DNA-transcription-factor complexes are transcribed for Da (Dr). We assume that the total concentration
of Da is conserved, so that Da,T (x) = Da(t, x) + ca,1(t, x) + cr(t, x). Similarly, we assume that the total
concentration of Dr is conserved, so that Dr,T (x) = Dr(t, x) + ca,2(t, x). The spatiotemporal dynamics
describing (71) are given by
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∂Pa(t, x)

∂t
= χa

d

dx

[
v2
Pa(x)

d

dx

[Pa(t, x)

vPa(x)

]]
+ κ1Da(t, x) + κ3ca,1(t, x)− γaPa(t, x),

∂Pr(t, x)

∂t
= χr

d

dx

[
v2
Pr (x)

d

dx

[Pr(t, x)

vPr (x)

]]
+ κ2Dr(t, x) + κ4ca,2(t, x)− γrPr(t, x),

∂Pa,2(t, x)

∂t
= χa

d

dx

[
v2
Pa,2(x)

d

dx

[Pa,2(t, x)

vPa,2(x)

]]
+ a1P

2
a (t, x)− d1Pa,2(t, x)

− a3Pa,2(t, x)Da(t, x) + d3ca,1(t, x)− a4Pa,2(t, x)Dr(t, x) + d4ca,2(t, x),

∂Pr,2(t, x)

∂t
= χr

d

dx

[
v2
Pr,2(x)

d

dx

[Pr,2(t, x)

vPr,2(x)

]]
+ a2P

2
r (t, x)− d2Pr,2(t, x) (72)

− a5Pr,2(t, x)Da(t, x) + d5cr(t, x),

∂ca,1(t, x)

∂t
= a3Pa,2(t, x)Da(t, x)− d3ca,1(t, x),

∂ca,2(t, x)

∂t
= a4Pa,2(t, x)Dr(t, x)− d4ca,2(t, x),

∂cr(t, x)

∂t
= a5Pr,2(t, x)Da(t, x)− d5cr(t, x),

Da(t, x) =Da,T (x)− ca,1(t, x)− cr(t, x), Dr(t, x) = Dr,T (x)− ca,2(t, x)

where vPa(x), vPr (x), vPa,2(x), and vPr,2(x) are the available volume profiles of Pa, Pr, Pa,2, and Pr,2,
respectively, χa = Da/(L

2µ) is the dimensionless diffusion coefficient of Pa and Pa,2, χr = Dr/(L
2µ) is the

dimensionless diffusion coefficient of Pr and Pr,2. From (9), vPa,2(x) = v2
Pa

(x) and vPr,2(x) = v2
Pr

(x). The
boundary conditions corresponding to (72) are[

v2
Pa(x)

d

dx

[Pa(t, x)

vPa(x)

]]
x=0,1

= 0,

[
v2
Pr (x)

d

dx

[Pr(t, x)

vPr (x)

]]
x=0,1

= 0,

[
v2
Pa,2(x)

d

dx

[Pa,2(t, x)

vPa,2(x)

]]
x=0,1

= 0,

[
v2
Pr,2(x)

d

dx

[Pa,2(t, x)

vPr,2(x)

]]
x=0,1

= 0.

Parameters for Figure 7 in the main text: The growth rate we used to nondimensionalize the time
scales was µ = 0.5 1/hr, consistent with the experiments [52]. The length of the cell is about 3µm and thus
L = 1.5µm [13]. The diffusion coefficient of the transcription factor is taken to be Da = Dr = 0.4µm2/s (that
of LacI) [54] and thus χa = χr = 1280. The following dimensionless parameters were chosen such that the
well-mixed model displayed sustained oscillations: a1 = 220, d1 = 1000, a2 = 1000, d2 = 1000, a3 = 1000, d3 =
1000, a4 = 1000, d4 = 1000, a5 = 1000, d5 = 1000, κ3 = 250, κ1 = .04, κ4 = 30, κ2 = .004, γa = 1, γr = 0.5.
Furthermore, we choose di and ai for i = 1, . . . 5 large, to demonstrate our results hold even for large binding
and unbinding rates. The total concentration of Da which is the same as Dr since we assume they are on the
same plasmid, is given by D̄T and it was used to nondimensionalize the other concentration variables such
that D̄T = 1. The total DNA spatial profile was chosen as DT (x) ∝ e50(x−1) to model DNA at cell poles.

2.10 Numerical Method Convergence Rate

For the simulation in Figure 5-A when the DNA is localize at the cell-poles and rs/r
∗ = 1, we varied the

number of spatial nodes used to discretized the spatial domain to demonstrate the convergence rate of our
numerical scheme. Let N be the number of points used to discretize the spatial domain and let m̄N (t) as
the space averaged mRNA concentration for that given discretization. We considered when N = 1024 to be
the true solution m1024(t) and thus define the following relative error

e∞ = max
t∈[0,T ]

∣∣∣∣m̄N (t)− m̄1024(t)

m̄1024(t)

∣∣∣∣, (73)

where we took its max value over the time interval of the simulation t ∈ [0, T ] where T = 100. The results
from this numerical experiment are shown in Figure 22. The convergence rate of our numerical scheme is
O(N−2) as expected for a second order finite difference numerical scheme.
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Figure 20: The activator is excluded from the chromosome as its size increases The steady state
spatial profiles normalized by the average values for Pa and Pr, that is Pa(∞, x)/P̄a(∞) and Pr(∞, x)/P̄a(∞)
for the results of Figure 7 in the main text. As the size of Pa increases it is excluded from the chromosome.
The repressor remains homogeneously distributed throughout the cell. The parameter values and simulation
details are identical to those of Figure 7 in the main text.

Figure 21: The relative error between the space averaged PDE model and the reduced ODE
model from the data in Figure 7 in the main text The relative error in the steady state space averaged
activator protein concentration for the full PDE model (P̄a,P ) and the reduced model (P̄a,o) from the data
in Figure 7 in the main text. Note that for the case when Pa is small, large relative errors occur near when
P̄a(t) reaches a minimum during each period of oscillation. Otherwise all errors are less than 1%.

2.11 Estimating r∗ from Concentration Profiles and Estimating the BFC

Estimate r∗: As discussed in Remark 1 in the main text, we expect the concentration profile of a freely
diffusing species to mirror that of the normalized available volume profile. That is, for a freely diffusing
species y, with concentration y(t, x), and available volume profile v(x), we expect

y(t, x) ≈ ȳ(t)v̂(x) where ȳ(t) =

∫ 1

0

y(t, x)dx, and v̂(x) =
v(x)∫ 1

0
v(x)dx

. (74)

Suppose the radius of gyration of y denoted by r, is known and as discussed in the main text, we have
that v(x) = e−(r/r∗)2ρ̂(x). Approximating ρ̂(x) as a step function as in (59), we have that v(1) ≈ 1 and

v(0) = e−
(r/r∗)2
2(1−∆x) , where ∆x is the distance between the end of the chromosome and the cell poles (see

Figure 1 in the main text). Let let yin and yout denote the the average concentration inside and outside the
nucleotide, respectively, which are given by

yin =
1

1−∆x

∫ 1−∆x

0

y(x)dx, yout =
1

∆x

∫ 1

1−∆x

y(x)dx.
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Figure 22: Convergence rate of numerical scheme used to simulate PDEs in this work For the
simulation in Figure 5-A when the DNA is localize at the cell-poles and rs/r

∗ = 1, we varied the number
of spatial nodes used to discretize the spatial domain to demonstrate the convergence rate of our numerical
scheme. Let N be the number of points used to discretize the spatial domain and let m̄N (t) as the space
average mRNA concentration for that given discretization. We considered when N = 1024 to be the true
solution m1024(t) and the relative error e∞ is given by (73). The relative error is given by the red markers
and the blue dashed lines serve as references for O(N−2) convergence rates.

Let ψy = yout/yin and from (74), we have that

ψy = yout/yin = v(0)/v(1) = v(0) = e−
(r/r∗)2
2(1−∆x) , (75)

then r∗ can be estimated assuming one knows ∆x, that is, how far the dense nucleoid region extends beyond
mid-cell. A similar calculation was done in [13], using the fact that the free ribosome concentration is 10%
higher at the cell poles than mid-cell. To estimate ψ, it is sufficient to know the average concentration of a
species inside and outside nucleoid region.
Estimate the BCF: The BCF provides a measure to determine the extent to which spatial effects modulate
the biomolecular dynamics. Therefore, an experimental method to estimate the BCF is desirable. We propose
a method that only requires knowing ∆x and the concentration of freely diffusing species inside and outside
the nucleoid .

Suppose that for Case I and Case III, the concentration of Ei is measured inside and outside the nucleoid
and denoted by Ein

i and Eout
i , respectively. Similarly, for Case I and Case II, we assume that Sin and Sout is

measured. If a fluorescence imaging method is used to measure these quantities (as in [14]), then we emphasize
that the free Ei and S must be measured, not when they are in complex form (ci). Let ψi = Eout

i /Ein
i and

ψs = Sout/Sin. By (75), ψi = v0,Ei and ψs = v0,S , where v0,Ei and v0,S are as in (60). Thus, using (61) we
can estimate the BCF for Cases I-III by

• Case I:

θ∗i =
ψiψs(1−∆x) + ∆x[

ψi(1−∆x) + ∆x
][
ψs(1−∆x) + ∆x

] ,
• Case II and Case III:

ai =

{
ψs, Case II

ψi, Case III
,

θ∗i =


0 ≤ ai

ai(1−∆x) + ∆x
≤ 1, x∗i ≤ 1−∆x for Case II and x∗s ≤ 1−∆x for Case III

1 ≤ 1

ai(1−∆x) + ∆x
≤ 1

∆x
x∗i > 1−∆x for Case II and x∗s > 1−∆x for Case III.

As re,i/r
∗ →∞ (rs/r

∗ →∞) we have that ψi → 0 (ψs → 0), thus ψi and ψs are a measure of the excluded
volume effects on Ei and S, respectively. Physically, this is expected because when Ei is severely expelled
from the nucleoid by available volume effects, we have that Eout

i � Ein
i and similarly for S.
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2.12 Experimental Setups to Verify the Role of Spatial Effects Predicted by
Model

A potential experiment to test our hypothesis that genes near the poles our transcribed more effectively
than gene near mid-cell, is to measure the rate of transcription (via Quantitative PCR) of a gene under the
control of the T7 promoter. This promoter is solely transcribed by the T7 RNAP which specifically targets
the promoter, thus this system can be considered orthogonal to the endogenous transcription machinery [58].
By appending random base pairs (BPs) to the sequence of T7 RNAP that do not effect its functionally, we
can control its size and thus how much excluded volume effects it experiences. We can then measure the
transcription rate of the gene when it is localized in the cell-poles and mid-cell. The results of this experiment
should look similar to Figure 5-A in the main text, as the size of the T7 RNAP increases the mid-cell (pole)
gene has lower (higher) transcription rate. For the mid-cell localized gene, this can be repeated in parts of
the chromosome which are known to be dense to amplify these effects.

To experientially validate our analytical prediction that protein steady state levels will increase with
mRNA size, we propose expressing a florescence protein from a plasmid with an appended sequence of base
pairs added downstream of the stop codon. The appended sequence should have a low affinity to recruit
ribosome such that the amount of ribosomes sequestered by the mRNA are the same as without the appended
sequence. Assuming this appended sequence does not affect the lifetime of the mRNA, then it should yield
the same functional protein which can be used to quantify the mRNA excluded volume effects. This appended
sequence of base pairs will allow us to control the size of the mRNA without increasing its ribosome usage.
From our theory, for longer appended sequences, more protein expression is expected.

To validate the hypothesis that a transcriptional repressor regulates genes near the poles more effectively
than gene near mid-cell, we propose a genetic circuit on a plasmid expressing a repressor that targets a gene
expressing a florescence protein. The transcription factor chosen should be large enough or dimerize to have
considerate excluded volume effects. The target DNA expressing protein should be placed on several axial
locations in the cell (under the same promoter) achieved by using backbones with different localization profiles
and/or different chromosomal integration sites. We should observe that the effective disassociation constant
of the repression curve increases as the target genes location is closer to the mid-cell. The disassociation
constant is proportional to the amount of repressor necessary to cause the genes expression to decrease by
half.

2.13 Cell Division: Time Varying Cell Length and Chromosome Profile

As the cell divides it partitions molecular species amongst daughter cells, this along with changes in the cell
length cause dilution effects on intracellular concentrations. Furthermore, early in the cell division cycle, the
chromosome density is highest mid-cell, but as the cell divides the peak chromosome density tends towards
the cell-poles [14, 13] (to distribute genes evenly among daughter cells). From the results in the main text,
we expect this temporal changes in the chromosome density will effect the BCF since species are repelled
away from regions with high chromosome density via excluded volume effects. In this section, we provide the
modeling framework to account for dilution effects and temporal fluctuations in the chromosome density.

Dilution effects on spaced average concentrations: Here we demonstrate how cell division and a
time varying cell length effects space average concentrations. Let N̄p(t) be the total molecular count in a
cell population of a molecule of interest (i.e., ribosomes) as the cell expands and divides. To model dilution
from cell division, assume that N̄p(t) is identically distribute among Ncells(t) number of cells such that
Ncells(t) = Ncells(0)eµt, where µ is the cell growth rate and each cell has a volume given by Vc(t) = 2πR2L(t),
where R is the cell radius and 2L(t) is the cell length. The total population volume is then given by
V (t) = Nc(t)Vc(t) and letting c̄(t) be the number of molecules per total volume (concentration), this quantity

is given by c̄(t) =
N̄p(t)
V (t) , note that this is identical to the concentration per cell volume (since we assume all

cells in the population have identical averaged concentrations). This implies that

˙̄c(t) =
˙̄Np(t)

V (t)
− V̇ (t)

V (t)
c̄(t)︸ ︷︷ ︸

dilution effects

=
˙̄Np(t)

V (t)
− ( µ︸︷︷︸

cell division

+
L̇

L︸︷︷︸
varying length

)c̄(t).

Dilution effects on local concentrations: Let N(t, x) be the number of molecules per unit length of a

cell such that that
∫ L(t)

0
N(t, x)dx =

N̄p(t)
Ncells(t)

. The temporal evolution of N(t, x) in the presence of dilution
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and a moving boundary, which introduces an advective term [59] (to account for the extra diffusion as the
cell length varies), is given by

∂N(t, x)

∂t
= D

d

dx

[
v2(x)

d

dx
[
N(t, x)

v(x)
]
]

︸ ︷︷ ︸
diffusion

− d

dx
(u(t, x)N(t, x))︸ ︷︷ ︸

advection

+ f(t, x,N)︸ ︷︷ ︸
reaction

−µN(t, x)︸ ︷︷ ︸
dilution

, (77)

with boundary conditions

D

[
v2(x)

d

dx
[
N(t, x)

v(x)
]

]
x=0,x=L(t)

= 0,

where u(t, x) = x
L(t) L̇(t) is the velocity of a material point induced by the increase in cell length. Notice

that our current finite difference method with a stationary mesh cannot be applied directly to (77), thus
we propose the following spatial coordinate transformation y(t, x) = x

L(t) (and to be consistent with the

nondimensionalization from the main text), which renders a stationary domain. Let c(t, y) := N(t, yL(t))

and thus dN
dt = dc

dt = ∂c
∂t + ∂c

∂y
∂y
∂t = ∂c

∂t −
∂c
∂yy

L̇
L , finally

∂c

∂t
=
∂c

∂y
y
L̇

L
+

D

L2(t)

d

dy

[
v2(y)

d

dy
[
c

v(y)
]
]
− 1

L(t)

d

dy
(uc) + f(t, c)− µc,

=
D

L2(t)

d

dy

[
v2(y)

d

dy
[
c

v(y)
]
]

+ f(t, c)− (µ+
L̇

L
)c.

Notice that the effective dilution coefficient is now given by D
L2(t) , which as expected increases as cell length

increases and 2
∫ 1

0
c(t, y)dy = 2

∫ L(t)

0
N(t,x)
L(t) dx = ˙̄c(t), thus the space averaged under this coordinate system

provides us the concentration per cell volume. The boundary conditions are

D

[
v2(y)

d

dy
[
c(t, y)

v(y)
]

]
y=0,y=1

= 0.

Time varying chromosome density: We now model the chromosome density varying in time ρ̂ := ρ̂(t, x)
as the cell divides. This implies that the available volume profiles will also depend on time since v(x, t) =
e−

r
r∗ ρ̂(x,t), and thus

∂c

∂t
=

D

L2(t)

d

dy

[
v2(t, y)

d

dy
[

c

v(t, y)
]
]

+ f(t, c)− µ̃(t)c,

where µ̃(t) is the effective dilution rate given by

µ̃(t) = µ+
L̇(t)

L(t)
(78)

The quantities L(t) and v(t, x) will vary with a time scale related to cell growth, for example, let T1/2 = ln(2)
µ

be the cell doubling time, then one possibility is

L(t) = L0(1−∆L cos(2πt/T1/2)), (79)

for this choice of L(t), the effective dilution rate (78) is graphically shown in Figure 23. In [13] it was shown
the cell length late in the cell division cycle was 4.4µm (compare to its nominal length 3µm), thus for our
simulations we take ∆L = 0.2.

In [14] it was experimentally shown how the chromosome density varies with time and a model for the
density in early (ρ̂1(y)) and late (ρ̂2(y)) in the cell division process were provided in [13]

ρ̂1(y) = c1
1

1 + e20(y−1/2)
ρ̂2(y) = c2

e−6(1/2−y)2

+ e−6(1/2+y)2

1 + e20(y−2/3)

where c1 and c2 are chosen such that
∫ 1

0
ρ̂1dy =

∫ 1

0
ρ̂2dy = 1/2. To capture the transition between ρ̂1 and ρ̂2

as the cell divides we propose the following model

ρ̂(t, y) = 1/2

(
ρ̂1(y) cos2(πt/T1/2) + ρ̂2(y) sin2(πt/T1/2)

)
, (80)
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Figure 23: Varying cell length modulates dilution rate The effective dilution rate (78) is given for L(t)
given by (79) and ∆L = 0.2, where t1/2 is time normalized by the cell doubling time (t1/2 = t/T1/2).

notice that
∫ 1

0
ρ(t, y)dy = 1/2,∀t ≥ 0. The model for the cell length and the chromosome density is shown

in Figure 24. The model for the chromosome density is consistent with experimental observations where late
in the division phase the chromosome is in the form of two lobes, where each lobe of DNA will correspond
to a daughter cell.

Figure 24: The cell length and chromosome density varies over time The normalized cell length
L(t)/L0 (79) with ∆L = 0.2 and the chromosome density ρ̂(t, y) (80) shown over one cell division cycle,
where t1/2 is time normalized by the cell doubling time. The model for the chromosome density is consistent
with experimental observations [14, 13] where late in the division phase the chromosome is in the form of
two lobes, where each lobe of DNA will correspond to a daughter cell.

Time scale separation: When the scale associated with diffusion is much fast than dilution D/L0 � µ
(and any other time scale associated with the reaction dynamics), we can treat L(t) and v(t, y) as constant
in time when performing model reduction as in Section 1.3 in the main text, thus we expect (similar to the
results of the main text)

c(t, y) ≈ c̄(t)v̂(t, y), (81)

where c̄(t) =
∫ 1

0
c(t, y)dy and v̂(t, y) = v(t, y)/

∫ 1

0
v(t, y)dy. So all of our previous analysis still holds except

that the BCF will vary slowly (slow with respect to the time scale of diffusion) as the cell divides.
Example: We verify via simulations the prediction that (81) holds and that the BCF can be treated as a
slowly (with respect to diffusion) varying parameter. Consider the simple bimolecular reaction:

E + S
a


d

c, ∅ αe−→ E, ∅ αs−→ S, (82)
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with dynamics given by

∂E(t, y)

∂t
=

De

L2(t)

d

dy

[
v2
e(t, y)

d

dy
[
E(t, y)

ve(t, y)
]
]

+ αe(y)− aE(t, y)S(t, y) + dc(t, y)− µ̃(t)E(t, y),

∂S(t, y)

∂t
=

Ds

L2(t)

d

dy

[
v2
s(t, y)

d

dy
[
S(t, y)

vs(t, y)
]
]

+ αs(y)− aE(t, y)S(t, y) + dc(t, y)− µ̃(t)S(t, y), (83)

∂c(t, y)

∂t
=

Dc

L2(t)

d

dy

[
v2
c (t, y)

d

dy
[
c(t, y)

vc(t, y)
]
]

+ aE(t, y)S(t, y)− µ̃(t)c(t, y),

where αe(y) and αs(y) are the production rates of E and S, respectively. The space averaged dynamics

(Ē(t) =
∫ 1

0
E(t, y)dy, S̄(t) =

∫ 1

0
S(t, y)dy, and c̄(t) =

∫ 1

0
c(t, y)dy) are given by

dĒ(t)

dt
= ᾱe − aθ(t)Ē(t)S̄(t) + dc̄(t)− µ̃(t)Ē(t),

dS̄(t)

dt
= ᾱs − aθ(t)Ē(t)S̄(t) + dc̄(t)− µ̃(t)S̄(t), (84)

dc̄(t)

dt
= aθ(t)Ē(t)S̄(t)− µ̃(t)c̄(t),

where the BCF is given by

θ(t) =

∫ 1

0
E(t, y)S(t, y)dy[ ∫ 1

0
E(t, y)dz

][ ∫ 1

0
S(t, y)dy

] . (85)

We first focus on the E(t, y) dynamics when a = 0 and d = 0

∂E(t, y)

∂t
=

De

L2(t)

d

dy

[
v2
e(t, y)

d

dy
[
E(t, y)

ve(t, y)
]
]

+ αe(y)− µ̃(t)E(t, y) (86)

to show the effects of having time varying dilution µ̃(t) and available volume profiles on the expression level.
Figure 25 shows how the space averaged concentration Ē(t) is modulated by the time varying dilution µ̃(t).
We observe that the concentration reaches a periodic steady state centered at unity where the oscillations
have a period that coincides with the doubling time. Furthermore, in Figure 26, we verify that

E(t, x) ≈ Ē(t)v̂e(t, y)

where v̂e(t, y) = ve(t, y)/
∫ 1

0
ve(t, y)dy as expected (since diffusion much faster than dilution De/(L0µ)� 1).

Thus, even with a time varying ve(t, y), the enzyme will be expelled from the chromosome to areas of higher
available volume.

Figure 25: Enzyme expression as cell length varies The space averaged enzyme expression (86) there
is no binding/unbinding with S (a = 0 and d = 0). The oscillations arise due to changes in the cell length
during cell division. The simulation parameters are: re/r

∗ = 2 µ = 1 De/(L0µ) = 13 × 103 αe(y) = 1,
∆l = 0.2.

Next, we demonstrate how the binding dynamics are effected by having a time varying available volume
profile, therefore a 6= 0 in (83). Similar to “Case 1” in the main text, we consider the case when De, Ds, Dc 6= 0
(all species freely diffuse), where we expect the BCF to be approximated by

θ∗(t) =

∫ 1

0
ve(t, y)vs(t, y)dy[ ∫ 1

0
ve(t, y)dy

][ ∫ 1

0
vs(t, y)dy

] . (87)
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(a) Normalized available volume profile

0.5 1 1.5 2

(b) Normalized enzyme concentration

Figure 26: The normalized enzyme spatial profile matches that of its normalized available volume
profile. The enzyme concentration spatial profile normalized by its space average shown over one cell division
cycle after four cell division cycles (“steady state”) matches its available volume as expected (86). The
simulation parameters are: re/r

∗ = 2 µ = 1 De/(L0µ) = 13× 103 αe(y) = 1, ∆l = 0.2.

This is verified in Figure 27, where θ(t) given by (85) and θ∗(t) given by (87) are shown after three doubling
times and are shown to be in good agreement. The BCF varies periodically in time (with the period consistent
with the doubling time) and oscillates near a nominal value of 1.5 with amplitude 0.04.

Next we look at the the case when S and c are spatially fixed (Ds = Dc = 0) and localized near y∗, which
is similar to “Case 2” in the main text. For this scenario we expect the BCF to be approximated by

θ∗(t) = v̂s(t, y
∗). (88)

The results are shown in Figure 28 when y∗ = 0 and y∗ = 1 after three doubling times, there is good
agreement between the BCF and its approximation. When y∗ = 0 (S localized near mid-cell), the BCF is
less than unity and oscillates near a nominal value of 0.55 with amplitude 0.3. When y∗ = 1 (S localized
near the cell poles), the BCF is greater than unity and oscillates near a nominal value of 2 with amplitude
0.1.

These results suggest that the BCF for a species localized near mid-cell will vary significantly as the cell
density varies during cell division. This is expected because as shown in Figure ??, the chromosome density
is initially high near mid-cell but decreases by half as the cell divides, thus no longer excluding from that
region.

Figure 27: The BCF for the case when all species freely diffuse The binding correction factor θ(t)
(85) and its approximation θ∗ (87) over two cell division cycles. The BCF oscillates around a nominal value
of 1.5 with amplitude 0.04 and period consistent with the doubling time. The simulation parameters are
re/r

∗ = rs/r
∗ = 2, rc/r

∗ = 2
√

2, µ = 1, De/L0 = Ds/L0 = Dc/L0 = 13× 103 αe(y) = αs(y) = 1, ∆l = 0.2,
d = 100, a = 100.

2.14 Exclusion Effects from Plasmid DNA Density

The genome of E. coli MG1655 has 4.6 Mbp [60]. Comparatively, a single plasmid can have .01 Mbp a copy
number as high as 500-700 (e.g. pUC19). Therefore, the total plasmid and chromosome basepair count may
be comparable in applications with high copy number plasmids. In these applications, it may be necessary to
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(a) y∗ = 0 (b) y∗ = 1

Figure 28: The BCF for the case when S is spatially fixed at y∗ The binding correction factor θ(t) (85)
and its approximation θ∗ (88) over two cell division cycles. The BCF oscillates with a period consistent with
the doubling time. When y∗ = 0 (S localized near mid-cell), the BCF is less than unity and oscillates near a
nominal value of 0.55 with amplitude 0.3. When y∗ = 1 (S localized near the cell poles), the BCF is greater
than unity and oscillates near a nominal value of 2 with amplitude 0.1. This is shown for a molecule localized
near mid-cell y∗ = 0 and near the cell poles y∗ = 1. The simulation parameters are re/r

∗ = rs/r
∗ = 2,

rc/r
∗ = 2

√
2, µ = 1, De/L0 = Ds/L0 = Dc/L0 = 13× 103 αe(y) = αs(y) = 1, ∆l = 0.2, d = 100, a = 100.

account how plasmid DNA repels freely diffusing species and ”excludes” them. To do so we modify our model
of the DNA density ρ̂(x) as shown in Figure 29 to account for plasmid DNA. For the DNA density profiles
from Figure 29, we calculate the approximate BCF θ∗ (13), these are shown in Figure 30. For Case 1 where
the reactants freely diffuse. We observe that the BCF decreases as the plasmid DNA density increases (as
shown in Figure 29). This occurs because as the plasmid DNA increases the overall density profile becomes
more uniform. Note that when the plasmid DNA is sufficiently high to render an almost uniform DNA
density profile, the BCF is unity as expected. For Case 2, where one reactant freely diffuses and the other is
fixed at x∗. As the plasmid density increases (as shown in Figure 29) we observe that the BCF decreases at
the cell poles (as expected since species are excluded from dense plasmid DNA mesh) and increases at region
near x∗ ≈ 0.65 (where there is minimal overlap between chromosome and plasmid DNA). When the plasmid
DNA density is similar to that of the chromosome rending a uniform DNA distribution, we observe that the
BCF is unity everywhere (as expected since there are no exclusion effects).

Figure 29: DNA density with plasmid contributions. The DNA density now includes contributions
from plasmid DNA. We show several profiles with increasing plasmid density. For this results we had
ρ̂(x) = 1

1+e20(x−1/2) + 1
1+e20(−x+xs) where xs ∈ [1/2, 3/2] is the parameter we varied to get difference plasmid

densities (xs = 3/2 lowest plasmid density and xs = 1/2 highest plasmid density).
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(a) Case 1: Reactants freely diffuse
(b) Case 2: One reactant diffuses and the other fixed at
x∗

Figure 30: The approximate BCF θ∗ when plasmid DNA is accounted for (a) Case 1 where the
reactants freely diffuse. We observe that the BCF decreases as the plasmid DNA density increases (as shown
in Figure 29). This occurs because as the plasmid DNA increases the overall density profile becomes more
uniform. Note that when the plasmid DNA is sufficiently high to render an almost uniform DNA density
profile, the BCF is unity as expected. (b) Case 2 where one reactant freely diffuses and the other is fixed
at x∗. As the plasmid density increases (as shown in Figure 29) we observe that the BCF decreases at the
cell poles (as expected since species are excluded from dense plasmid DNA mesh) and increases at region
near x∗ ≈ 0.65 (where there is minimal overlap between chromosome and plasmid DNA). When the plasmid
DNA density is similar to that of the chromosome rending a uniform DNA distribution, we observe that the
BCF is unity everywhere (as expected since there are no exclusion effects). The simulation parameters are
r/r∗ = 1 and ρ̂(x) as in Figure 29.
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