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Abstract

The number of equilibrium points of a dynamical system dictates important qualitative properties, such as the ability of the
system to store different memory states, and may be significantly affected by state-dependent perturbations. In this paper, we
develop a methodology based on tools from degree theory to determine whether the number of equilibrium points in a positive
dynamical system changes due to structured state-dependent perturbations. Positive dynamical systems are particularly well
suited to describe biological systems where the states are always positive. We prove two main theorems that utilize the
determinant of the system’s Jacobian to find algebraic conditions on the parameters determining whether the number of
equilibrium points is guaranteed either to change or to remain the same when a nominal system is compared to its perturbed
counterpart. We demonstrate the application of the theoretical results to genetic networks where state-dependent perturbations
arise due to disturbances in cellular resources. These disturbances constitute a major problem for predicting the behavior of
genetic networks. Our results determine whether such perturbations change a genetic network’s number of steady states. The
framework and results presented can be applied to a broad class of nonlinear dynamical systems beyond genetic networks.
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1 Introduction true in practice, since a number of interactions exist be-
tween the network under study and the rest of the cell. A
class of such unwanted interactions, whose effects have
been well characterized, consists of interactions due to
sharing a limited amount of cellular resources [16]. These
interactions manifest themselves as a state-dependent
perturbation in the dynamical model of the network and
may result in a dramatic change in the qualitative be-
havior of the system [17]. So far, a theoretical investiga-
tion of the potential consequences of these perturbations
on the emergent features of a biological network, such as
the network’s number of equilibria, has been missing.

The number of equilibrium points of a dynamical system
is of general theoretical interest [1-3] and is specifically
relevant to applications in systems biology [4, 5], popu-
lation dynamics [6, 7], electrical systems [8], and, more
recently, in synthetic biology [9, 10]. In particular, multi-
stability is a central property of dynamical models of
biological regulatory network motifs implicated in cell-
fate determination. In these models, each steady state
is typically associated with a distinct cellular phenotype
and transitions among steady states capture the process
of cellular differentiation [11]. A change in the number
of equilibria may reflect a change in the phenotypic di-
versity of a multi-cellular organism and is, therefore, a
relevant feature to consider.

Related work. There is a large body of theoretical work
aimed at determining structural conditions for chemi-
cal reaction networks under which a chemical network
exhibits a single positive steady state, most notably de-
ficiency theory [12,13,18,19]. Unfortunately, many sys-
tems of practical interest, such as those considered in
this paper, do not have a deficiency of zero or one, so
these results are often not applicable. The authors of [20]
elaborate on tools of deficiency theory and provide re-

Most mathematical models of both natural and syn-
thetic biological network motifs assume the network to
be “isolated” from the cellular context. This is rarely
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sults about the number of equilibrium points of a chem-
ical reaction network; however, they require the system
to be described by mass-action kinetics [21], which leads
to large systems of ODEs that are prohibitive for design
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and analysis. Other structural conditions exist to pro-
vide insight into qualitative changes in dynamical sys-
tem behavior—most notably, these conditions examine
the sign pattern of the Jacobian relating to the signs of
cycles in the associated graph of the system [14, 15, 22].
However, these methods do not take parameters into ac-
count, whose ranges are often known for synthetic ge-
netic networks. Related work also exists specifically for
monotone systems [5].

We consider the class of positive dynamical systems—
systems where all states are positive—which are com-
monly used to capture the dynamics of biological net-
works where the states of the system represent concen-
trations of chemical species. We present a mathemati-
cal framework for determining situations where a posi-
tive dynamical system maintains its number of equilib-
rium points when it is affected by a structured state-
dependent perturbation to its dynamics. This frame-
work is useful for analyzing biological systems but may
also be applicable to other fields. We present a novel
methodology to accomplish this using tools from degree
theory [23,24]. This requires checking whether the de-
terminant of the system’s Jacobian does or does not
change sign over a subset of the state space that con-
tains the equilibrium points as the system is perturbed.
This methodology enables us to find algebraic condi-
tions on the system’s parameters under which the num-
ber of equilibrium points does or does not change with-
out having to solve for the equilibrium points explicitly.
Our first result, Theorem 10, provides conditions guar-
anteeing that the number of equilibrium points of a sys-
tem does not change when the perturbation is consid-
ered. The next result, Theorem 12, provides conditions
guaranteeing that the number of equilibrium points of a
system changes as the perturbation is considered. These
results give easily verifiable algebraic conditions for de-
termining the robustness of the qualitative behavior of a
system to a class of structured, state-dependent pertur-
bations. We illustrate the application of our results to
gene regulatory networks where state-dependent pertur-
bations arise from changes in the availability of resources
necessary for the system to function. Fluctuations in the
availability of resources has recently appeared as a ma-
jor bottleneck to the ability of predicting the behavior
of genetic networks [16, 17,25, 26]. In this work, we pro-
vide a predictive tool that can be used to practically
analyze and design genetic networks that behave as ex-
pected from theory.

This paper is organized as follows. We first present a mo-
tivating example in Section 2. Next, we formulate the
problem, provide mathematical background, and state
our main results in Sections 3, 4, and 5. Finally, in Sec-
tion 6, we demonstrate the theoretical results through
examples of genetic networks with resource sharing to
illustrate the practical relevance of these results.

2 Problem Motivation

The general problem of when state-dependent pertur-
bations change the qualitative behavior of a dynamical
system (i.e., the number of equilibrium points) is of rel-
evance to several application domains. In this section,
we illustrate an instance of this problem in the context
of gene regulatory networks in which the perturbation
arises due to fluctuations in the amount of resources
available to the network, which are necessary for the net-
work’s operation. Fluctuation in the availability of re-
sources has recently appeared as a major bottleneck to
predicting the behavior of genetic network, and there-
fore limits our ability to design networks that behave as
intended [17,25—-27]. In turn, unpredicted changes to the
number of equilibrium points may completely disrupt
a network’s intended function. As an example, consider
the toggle switch, which is currently the most widely
used genetic network in biotechnology applications [28—
31]. It is a bistable system that can switch an output of
interest on or off depending on the input. One of its re-
cent applications is in the design of kill switches, which
are safety mechanisms embedded in genetically modi-
fied cells that trigger cell death if the functionality of
the cell has been compromised—resulting in a biohaz-
ard [29,31]. If, due to fluctuations in gene expression
resources, the toggle switch becomes monostable, as we
show may occur in the following, cell death may not be
triggered when needed and harmful cells may be kept
alive in the environment.

A standard non-dimensionalized model of the toggle
switch realized by mutual activations (Figure 1), in
which perturbations in available resources are not in-
cluded, can be written as follows:

j?l :Fl(u,:cg)f:cl i‘QZFQ(I'l)*II}Q (1)

where x; and x5 represent the concentration of proteins
x; and X9, u represents the concentration of an input,
Fi(-) and Fy(-) are smooth functions in the form of Hill
functions [32] and are continuous, increasing, bounded,
and positive for positive inputs. Note that this system
is a positive system—all states are nonnegative for all
time if the initial condition is positive. Additionally, it
is straightforward to show that the states of this sys-
tem are bounded since Fi () and F»(-) are bounded. We
will use these properties in proving our results in Sec-
tion 5. Biological systems require resources such as en-
zymes for the production and degradation of proteins,
which will be referred to throughout the paper as pro-
duction or degradation resources, respectively. We now
consider the same genetic network, except we include
the fact that production resources are finite. Then, the



dynamical system becomes the perturbed system

l.El = Fl(U7x2) — X1 (2&)
14+ JiFi(u, z2) + JaFa (1)
) Fy(xq)
_ — 2, 2
2 1+J1F1(U,(E2)+J2F2(l’1) 2 ( )

as derived in [33] and experimentally validated in [17].
Here J; and Jy represent the resource demand coeffi-
cients by proteins x; and xo, respectively. We consider
this type of structured, state-dependent perturbations
throughout the paper. We now simulate (1) and (2) by
slowly varying the input, uw, and observing the corre-
sponding steady state concentration of the output, xo,
shown in Figure 1.
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Fig. 1. Simulation of genetic toggle switch in (1) and (2)
showing differing number of equilibrium points from state
dependent perturbations due to fluctuations in the avail-
ability of resources. Parameters used for the simulation are

140.0774(z2)? 140.0774(z1 )"
Fi(u,z2) = u+ﬁ and F(x1) = Wl(ilig, and
J1 = J2 =0.03.

As it can be seen in Figure 1, the two systems have dif-
ferent steady state responses. The nominal system (1)
exhibits bistability for an input range of u between 0.48
and 1.18 while the perturbed system (2) has one equilib-
rium point for all values of u. Thus, the state-dependent
perturbation causes this nominally bistable system to
undergo a change in its number of equilibrium points re-
sulting in the loss of bistability and a failure in the sys-
tem’s behavior. This difference in the number of equilib-
rium points between the nominal and perturbed systems
is not easily predicted by inspection of the dynamics.

3 Problem Formulation

In this section, we present a framework to determine
the effects of state-dependent perturbations of a general
form that can capture the fluctuations in both produc-
tion and degradation resources in a genetic network. We
do so by comparing two systems: a nominal system and
a perturbed one. We then represent these two systems
as a single parameterized system, and, using this rep-
resentation, we present easily checkable analytical con-
ditions to address the question of when the number of

equilibrium points differ between the nominal and the
perturbed systems.

We consider a nominal system in the form
& = h(z) — Az, (3)

where z € RZ,, h : R® — R" is C! and bounded and
positive for all positive arguments, and A is a diagonal
matrix with strictly positive entries. Eq. (3) may repre-
sent a model of a biomolecular network in the absence of
perturbations on production and degradation resources
[9]. We now consider the perturbed system

&= h(r) ©a(z) +g(z) — A, (4)

where ® represents the element-wise product, a : R™ —
R™ may represent a perturbation on production re-
sources, and g : R™ — R™ may represent a perturbation
on degradation resources [17, 34, 35]. We are interested
in comparing the number of equilibrium points of the
nominal system (3) and the number of equilibrium
points of the perturbed system (4). To this end, consider
the two-parameter system

=h(z)®1+ plalz) — 1] + Ag(x) — Az, (5)

where 1 represents a vector of 1’s, and u, A € [0, 1] x [0, 1]
are control parameters and are allowed to vary between
0 and 1. For p = A = 0, (5) becomes the nominal system
(3), while for 4 = A = 1, (5) becomes the perturbed sys-
tem (4). Our goal is to determine conditions under which
the nominal system (3) and the perturbed system (4)
are guaranteed to have the same number of equilibrium
points. This may be addressed by analyzing the number
of equilibrium points of the parameterized system (5) as
the parameters change between 0 and 1. Thus, the prob-
lem of comparing the number of equilibrium points of
the systems (3) and (4) may be restated as

Problem 1 Determine conditions under which the
number of equilibrium points of (5) is guaranteed to be
constant or is guaranteed to change as p and A are varied
between 0 and 1.

4 Mathematical Preliminaries

Here, we introduce mathematical objects necessary to
state our results. Additional mathematical background
and all the proofs of lemmas are given in Appendix A.

Notation. A domain is an open, connected set in R™.
A set, Q C R", is called a bounded domain if it is open,
connected, and there exists a ball with finite radius, r,
such that Q C B(0, ). The closure of a set € is denoted
as (), the interior int(£2) is the largest open set contained
in €, and the boundary of a domain €2 is denoted as



o0 = Q\int(Q2). z > 0, z € R™ denotes a vector with all
components nonnegative. The positive orthant is the set
R%, = {z : 2 > 0}. Given a family of functions f, x(z)
that are continuous with respect to p and A\, we denote

the set of zeros as S, » = {& > 0: fuA(z) = 0} for any
fixed p, A.

Definition 2 Given a C! vector field f : R® — R", a

point xg € R™, is called degenerate if det (%) =0.

Additionally, x¢ is called a degenerate zero if f(xo) =0
and det (%) =0.

Definition 3 Let 2 C R" be a bounded domain, let f :
Q = R"™ beC, and assume f has no degenerate zeros and
has no zeros on the boundary of Q2. Then the topological
degree of f with respect to zero, or more briefly, the
degree of f, isdeg(f,Q) = > sign (det (%&?))

zEf~1(0)NQ
where f~1(0) is the set of zeros of f in Q and sign(-) is
the sign function.

Lemma 5 provides a condition under which the cardi-
nality of the set of zeros of a family of vector fields is
constant. The following theorem comes from [36] and is
one of the main theorems of degree theory. This theorem
states that the degree is a topological constant [23, 37]
and will be used in the proofs of Lemma 9 and Theo-
rem 12.

Theorem 4 [36] Consider a bounded domain @ C R™
and a family of C* vector fields fy : Q@ — R™. Let \* > 0
and suppose that fy is continuous with respect to A for
A € [0, A*], such that fx does not have any zeros on the
boundary of Q for all X € [0,\*]. Then deg(fx,Q) is
constant for all A € [0, \*].

Lemma 5 Consider a bounded domain 2 C R™. Let
fr: Q= R™beaCl family of vector fields and continuous
with respect to A\. Fiz \* > 0 and assume that, for all

x € 0, frlx) # 0 for every X € [0,\*]. If, for all
A € [0,A*], det (%ﬁ) # 0 for all x € Sy, then the
cardinality of S\ does not depend on .

Now, consider the system of ordinary differential equa-
tions (ODEs)
&= f(x) (6)

where x € R” and f : R®™ — R" is a C! vector field. We
say a point x € R"™ is an equilibrium point if f(z) = 0.

Definition 6 A vector field, f : R — R™, is positive
invariant on the positive orthant if for everyi=1,... n,
whenever x > 0 and x; = 0, then f;(x) > 0. We say that
a dynamical system is positive invariant on the positive
orthant if it has dynamics of the form (6) and f(z) is a
positive invariant vector field.

Definition 7 Given a domain Q C R", a continuous
vector field h : Q@ — R™ is bounded over Q if there
exists an M € R such that |h(x)| < M for all z € Q.
Given a dynamical system & = f(x), where f : R™ — R"™
is continuous, a trajectory of the dynamical system is
bounded if there exists an M, T € Rsq such that||z(t)| <
M forallt > T. We say a dynamical system is bounded
if all trajectories are bounded.

Definition 8 A function g : R™ — R" is mass dissipat-
ing if there exists some m € RZy such that m - g(x) < 0
for all z € RY,.

5 Main Results

‘We now present the main theoretical results of the paper.
Theorem 10 provides a sufficient condition on the deter-
minant of the Jacobian of (5) where if the Jacobian is
nonsingular over a set containing all equilibrium points,
then the system is guaranteed not to change its number
of equilibrium points as p and A are varied. Next, we
state a converse theorem, Theorem 12, which provides a
condition where the number of equilibrium points of a
dynamical system in the form of (5) changes as p and A
are varied, based on the determinant of the system’s Ja-
cobian. The use of these results is illustrated in Section 6.
Finally, Theorem 14 finds a set guaranteed to contain
at least one equilibrium point for all values of the pa-
rameter u. Before stating our main results, we present
a lemma that demonstrates that our general form (5)
satisfies all assumptions required by Lemma 5.

Lemma 9 Consider the continuous time dynamical sys-
tem

i =h(z)O[1l+u(a(r)—1)]+Ag(z)—Az = Jux(@), (7)

where x € R%,, h : R® — R™ and g : R" — R" are
positive invariant C1 vector fields, o : R™ — R™ is a C*
vector field, A is a diagonal matrix with strictly positive
diagonal entries. Assume that 0 < a(z) < 1, g is mass
dissipating, h(x) has no zeros on the boundary of the

positive orthant, and & = fo o(z) is bounded. Fiz p* €
[0,1] and \* > 0. Then, for all u, X € [0, u*] x [0, \*],

(a) (7) is positive invariant on the positive orthant;

(b) There exists a positive vector m, a positive scalar M,
and a set Q@ = {x € R%; : m - (Az) < M} such that
Sua C int(Q);

(c) deg(fux, 1) = (=1)" and S\ # 0.

Theorem 10 Consider the dynamical system (7) with

the same assumptions as Lemma 9. Choose a fized u* €

[0,1] and \* > 0. If there exists a set A, x C RZ, such

that S, 5 C Ay and det (WT;W) £ 0 for all
VreA, a

A €10, ][0, A*], thend = fo,0(z) andd = fu» r+(x)




have the same number of equilibrium points in the positive
orthant.

PROOF. Fix p* € [0,1] and A* > 0. By Lemma 9,
system (7) is positive invariant and there exists 2 C RZ,,
such that S, x C int(Q) for all u, A € [0, p*] x [0, A*] so
Lemma 5 may be applied over this Q for p* € [0,1] and
A* > 0. Choose a set A, » such that S, x C A, . Now,
fix A = 0 and vary p from 0 to p*. For each u € [0, p*],

if det (af“’(x ) # 0forallz € A, o, then, by Lemma 5,

& = foo(xz) and & = f,= o(z) have the same number
of equilibrium points in € and therefore the positive
orthant. Next, fix p = p* and vary A from 0 to A\*. For

each A € [0, \*], if det (M) #0forall z € A« »,

then, by Lemma 5, & = f,,« o(z) and & = f,,« x+(x) have
the same number of equilibrium points in the positive
orthant. Finally, by the transitive property of equality on
the numbers of equilibrium points, & = fy o(z) and & =
fu= .2 (z) have the same number of equilibrium points
in the positive orthant. The condition we proved is that

det (W) # 0 along the path p € [0, u*], A =0; u =

©*, A € [0, \*]. This path is contained in [0, z*] X [0, \*],
which implies the statement in the theorem. ([

Remark 11 The condition in Theorem 10 must be
checked for all p, A € [0,p*] x [0, \*]. It is not pos-
sible to check just the endpoints (u,A) = (0,0) and
(1, A) = (p*, A*). For example, (7) (let \* = 0) may
undergo a pitchfork or saddle-node bifurcation when
w = p*/2, resulting in a change in the number of equilib-
rium points while the determinant of the Jacobian over
Ao with p = p* may be non-zero.

Special cases of (7) may be considered by letting either
w* =0 or \* =0 and are relevant when considering sys-
tems where only production or degradation resources are
shared. The construction of the set A, » in Theorem 10
allows us to avoid calculating the equilibrium points of
the system explicitly. This enables us to provide ana-
lytical characterization of conditions to guarantee that
the number of equilibrium points remains constant, thus
avoiding resorting to numerical methods.

Theorem 10 represents a significant sharpening and gen-
eralization of the results presented in [36]. The system
considered in [36] is a one-parameter system and is re-
quired to be linear and non-degenerate when \ =

Thus, it has one equilibrium point, while in Theorem 10,
it is not required for the system with u = A = 0 to
be either linear or to have one equilibrium point. In the
case where the system has one equilibrium point when
uw=A=0and A, =RE,, Theorem 10 and the global
implicit function theorem have similarities [38]. How-
ever, these two theorems are not equivalent in general:
the global implicit function theorem provides conditions

under which a system has one equilibrium point, while
Theorem 10 guarantees that two systems have the same
number of equilibrium points.

A theorem is now presented which provides conditions to
guarantee that the number of equilibrium points changes
in system (7) as p and A are varied.

Theorem 12 Consider the dynamical system (7) with
the same assumptions as Lemma 9 and assume that
foo(x) = 0 has one solution, zoo, for x € R%,. De-

note a nonempty subset ‘SA'M,\ C Sua. For some fized
w* €10,1] and A* > 0, assume that det (M> #0
for all © € Sy« -. Then & = fu«\-(x) has more
than one equilibrium point zf and only if there ex-
ists a set By« x- such that S,L A+ C int(B« x+) and

sign (det <M>) #+ sign (det (M)> for

all x € By z+.

PROOF. Fix p* € [0,1] and A* > 0. Suppose that
the number of equilibrium points is constant and
equal to 1 for all p,A € [0,p*] x [0,\*]. Without
loss of generality, assume that when y = A = 0,

det (W) > 0 for g9 € Sp,0. Choose 2 as

in Lemma 9. Then, deg(fo,0,2) = +1 by Lemma 9
and the definition of degree. Now, suppose that there
exists a set By« - such that a mnonempty subset

Su* A C Sprp- s SAN*)\* C int(By- z-), and suppose
de t(LL()) < 0 for all z € int(By- ). Then

deg(fu=.a+,Q) < 1. This is a contradiction since, by
Theorem 4, deg(fo,0,Q) = deg(fu«-,Q) = 1. There-
fore, the number of equilibrium points of & = fy(z)
and & = fu-\«(z) are different. Furthermore, since
deg(fo,0,?) is odd, then & = f,,« y« () must have an odd
number of equilibrium points strictly greater than one
by Theorem 4 since the degree over {2 constant. Note
that there exists at least one degenerate point for some
(e, A) € [0, u*] % [0, A*]; however, Theorem 4 still applies,
since Theorem 4 applies for more general definitions of
degree that allows for the existence of degenerate points.
To prove the converse, suppose (7) has multiple equilib-
rium points when p = p* and A = A* and, without loss

of generality, suppose that det (%*87@’*)) > 0 for
all = x+ € S+ x+. Then deg(fyu+ r-,Q) > 1. This con-
tradicts Lemma 9. Then, there exists some z* € Su A
such that det W) < 0. Choose By« »- as a
sufficiently small open ball aroynd x*. Therefore, there
exists a set B« x« such that Sy« x« C int(B,- x-) and

sign (det (M>) # sign (det (31‘“87;(1))) for all
T € Byx - a



Theorem 12 allows us to find conditions where the num-
ber of equilibrium points change as p or A are varied.
The condition that the system & = fpo(x) has one
equilibrium point rules out all local bifurcations where
equilibrium points collide and exchange stability proper-
ties without changing the number of equilibrium points
present overall (e.g. transcritical bifurcations [3]). Us-
ing Theorems 10 and 12, it is possible to determine con-
ditions where the number of equilibrium points change
or remain constant as p and A are varied. Theorems 10
and 12 are applied to a few examples in Section 6.

We now present a result that characterizes the region
in which an equilibrium point of (5) resides. This result
is helpful for choosing A, » as required by Theorem 10
when A\* = 0 to guarantee that (7) maintains its number
of equilibrium points as p is varied.

Definition 13 A square matriz A is positive (negative)
semidefinite, denoted by A = 0 (A = 0), if 2T Az > 0
(xT Az <0).

Note that in (7), if all elements of () are the same, then
a(z) may be considered to be scalar and the element-wise
product becomes scalar multiplication. In the following
theorem, this is the case, i.e. a : R" — R.

Theorem 14 Consider a dynamical system in the form

D] h(z)

for x € RY,, where h : R" — R" is C! and positive
invariant and has no zeros on the boundary of the pos-
itive orthant, o : R™ — R s C* and 0 < a(z) < 1 for
all z € RY,, and A is a diagonal matriz with strictly
positive entries. Fix p* € [0,1]. If 3 af“ =%k _ A+
i ((a(x) = 1) + h(z)22) < Oforallu € [0, u*] and for
alz € {z € RE, : TAx < af'Axzg} for some xg € Sy,
then there exists exactly one equilibrium point, x,,, such
that Az, < 2 Axo for all p € [0, p*].

= [+ plafz) - — Az £ fy (8)

PROOF. First, (8) is positive invariant by Lemma 9,
and may be written as @ = f,(x). Setting &£ = 0 and
differentiating f,(x) = 0 with respect to p (which can
be done since h and « are C! and p appears linearly in

fu) gives
af, o 0
ﬁﬂ + @ =0 (9)
ox Ou ou
where %ﬁ = (a(z,) — 1)h(x,). Then, rearranging (9),
T
substituting, and multiplying both sides by 89”“ , wWe
have

oz T of.\ oz, B 8xtT

Additionally, when & = 0 in (8), we have
1

(1 + pla(z,) — 1)) Az, (11)

at the equilibrium point, z,,. Then, substituting (11) into
T
oz, T (0f,\ 0z, 1—a(zy) Oz,
(10) gives o (ai) on = TFn(ale)-D) (Tﬁ) Az,
Fix pu* € [0,1] and suppose there exists a set D C RY,
such that z, € D and M

h(z,) =

=< 0 for all u €

z€D
[0, u*]. Then %ﬂ <%f;) dx: < 0 for all z € D. Since
0 < a(r) <1, then W«%ln > OTfor all z € R,
and all p € [0, p*], which gives aa% Az, < 0. Inte-
rating by parts gives [/ Bm‘lTAJ:AdA S v
grating by parts gives [f' & Avadfi = afAzs|

I TA&”“ dji < 0, and, since A is symmetric, this im-
plies that

® 8.1’;;T
o O

Azxpdi = (;nga:u — ngxo) <0.

1
2

In particular, J:Z Az, < r8' Azy. Additionally, D exists
and D = {x € RY : 2" Az < zf Az} since we have
just shown that 2, € {z € RY, : 27 Az < xf Az} for
all u € [0, u*]. O

Theorem 14 guarantees that (8) always has one equilib-
rium point contained in the set {z € R%, : 2"Az <

¥ Azo} when % =< 0 in that set for all y € [0, u*].
Note that it is not required for (8) to have one equilib-
rium point globally—there may exist other equilibrium
points outside the set {z € R%, : 27 Az < xf Azo}. For
systems with one equilibrium point, Theorem 14 may be
used in conjunction with Theorem 10 to show that the
equilibrium point in the set {z € R, : 27 Az < 2l Az}
is unique as p is varied from 0 to p* by choosing A, =
{z € RY, : 2T Az < af'Azo}. We will illustrate this in
Section 6 through an example.

6 Application of Theory

In this section, we present examples to demonstrate the
use of the theorems in Section 3 to genetic networks
where fluctuations in production or degradation re-
sources are captured by state-dependent perturbations
« or g, respectively, for systems in the form of (5). In
Example 6.1, we consider a genetic cascade and use
Theorems 10 and 14 to find conditions where the sys-
tem is guaranteed to maintain its number of equilibrium
points. In Example 6.2, we revisit the design of a genetic
toggle switch network. Specifically, we use Theorem 10



to find conditions where the system has multiple equi-
librium points and show that different designs of the
genetic toggle switch behave differently when consid-
ering perturbations in production resources. We show
that one of the toggle switch designs is more robust than
the other when these perturbations are considered. Due
to space limitations, we demonstrate the application of
our results to systems with perturbations of degrada-
tion resources and for systems with more than 2 states
in the extended version of the paper [39].

6.1 Genetic Cascades

Cascades are one of the most common genetic networks
in both natural [40] and engineered systems [9]. We con-
sider a two-node cascade shown in Figure 2 in which
protein x; either activates (Figure 2a) or represses (Fig-
ure 2b) the production of protein xo. The experimentally
verified model [17] with perturbations in production re-
sources in the form of (7) is given as

OO OO

Fig. 2. Diagram of two-node cascade network: (a) Activation
cascade (b) Repression cascade

b

£y = Fy(u) [1 Tu <1+11F1(“>1+"2F2(m) ) 1” : x(11,2 )
a

X = Fy(xq) [1 +u (1+J1F1(u)1+J2F2(:1;1) — 1)} — X2,
(12b)

LM . o .
where F(z) = igjm with positive constants a;, b;, and
k3

n; for i = 1,2. Comparing (12) with (7) gives h(z) =

— [1$1]T *
[F1(w), Ea(2)]", afz) = e AR e HEA

A = diag([1, 1]). In this example, A* = 0 so we will sim-
plify notation of the sets A4, » and S, to A, and S,
respectively. The determinant of the Jacobian of (12) is
given as

O\ _ Fy (u) F5 (1)
det (81:) - M(l + J1Fi(u) + Jo Fa(x1))?

(13)

It can be seen from (13) that if F(-) > 0, then choosing
A, = Rzzo, and A, contains all equilibrium points and

det (8&%) > 0 for all x € A, since all terms in (13)

are nonnegative. Under these conditions, # = f;(z) and
& = fo(z) have the same number of equilibrium points
by Theorem 10. These conditions physically correspond
to activation of xo by X1, so a two-protein activation
cascade with perturbations in production resources always
has one equilibrium point.

We now investigate whether a repression cascade where
Fj(-) < 0 is guaranteed to have one equilibrium point
for any parameters using Theorems 10 and 14. Note that
when g = 0, the system (12) becomes 2y = Fy(u) —
x1;%9 = Fy(x1) — x2. The equilibrium point is easily
shown to be unique and is given as 1 = Fj(u);z2 =
F5(Fy(u)) due to the cascade structure of the system.
Additionally, (12) with x4 = 0 satisfies the conditions
of Theorem 14. Choose A, = {x € R, : 23 + 23 <
Fi(u)? + Fy(Fi(u))?}. Now, the Jacobian of (12) is neg-
ative definite over A, if

—uFy(u) Fy(x1) <(1+ JiFi(u) + JoFo(a1))?, (14a)
4+ 4puBFy (1) >a(F)(z1))? (14b)

for all + € A, (derived using the principal mi-

F1(u) _

nors), where f (1+J1F1(u;+J2F2(m1))2 and o =
TPy ()42 Fa (21)+(J1 Py (w) 4+ Jo Fa (21))2 ) 2

e (B8 N O Z I A : Note

that (14a) is always satisfied whenever Fy(zy) > —1
(using the fact that 0 < Fy(-) < 1). Additionally, solv-
ing the quadratic equation in (14b) for Fj(-) by using
the fact that since 0 < Fij,Fp < 1, then 0 < g < 1,
and 0 < a < 1, we can guarantee that (14b) is satisfied
whenever 2 — 2v/2 < Fj(x1) < 2 over A,. The lower
bound is found by maximizing the negative root of (14b)
over a, 3, u € [0,1], while the upper bound is found by
minimizing the positive root of (14b) over «, 5, 1 € [0, 1]
(i.e. worst case parameters). Then, if (1) satisfies this
condition, the equilibrium point is unique and contained
in the set {z € R : 22 +23 < Fy(u)?+ Fy(Fy(u))?} for
all p € [0,1] by Theorem 14. Combining with the pre-
vious result that the equilibrium point is unique when
Fj(z1) > 0, (12) is guaranteed to have one equilibrium
point for any set of parameters when Fj(z) > 2 — 2v/2
for all x € R>g.

It was shown in [33] that a two-node repression cascade
may have multiple equilibrium points. Due to space lim-
itations, we use Theorem 12 to find conditions where
the system with resource perturbations is guaranteed
to change its number of equilibrium points in the ex-
tended version of this paper [39]. We have shown that
the number of equilibrium points of an activation cas-
cade is more robust to production resource fluctuations
than that of a repression cascade. Therefore, if we seek to
design a genetic cascade with increasing input/output
response, choosing activations is a more robust strategy
than choosing repressions. Additionally, the number of
equilibrium points of cascades is more robust to produc-
tion resource fluctuations if the maximum of the func-
tion |F4(-)] is small.

6.2 Genetic Toggle Switch

‘We now revisit the motivating example presented in Sec-
tion 2 and derive analytical conditions using our results



under which the number of equilibrium points of the sys-
tem changes when perturbed by resource sharing. Con-
sider a genetic toggle switch shown in Figure 3. The tog-
gle switch may be created either where x; and xo mu-
tually activate each other (activation toggle, Figure 3a)
or mutually repress each other (repression toggle, Fig-
ure 3b). We assume the toggle switch is perturbed by
production resource fluctuations, and we wish to find
conditions, when it is possible, for the system to exhibit
multiple equilibrium points. The normalized, nondimen-

(@) ————~ (b

& ©e_ ®

“

Fig. 3. Diagrams of possible toggle switch designs: (a) Ac-
tivation toggle switch design. (b) Repression toggle switch
design; - indicates repression.

sionalized model of the system with resource perturba-
tions in the form of the parameterized system (7) is given
as

= p {1 i (1 n JlFiﬂ(fzj)ﬁ;QFz(xl) ! 1” ;1?)
iy = By [1 +p (1 n JlFf?:(ﬂ:;)iﬁj‘lFQ(xl) ) 1” (_1:12)

Comparing this with (7), h(z) = [B1,82)7, a(z) =

x x T .
(Pe)PrfaCloe A = diag([1,1]), and g(z) = 0.

Since g(z) = 0, we drop A from our notation for clarity.
The functions Fy and F5 have the form F;(x;) = i:izj
for nonnegative constants a;, b; and integer n; > 1.
Additionally, 81 and Py are positive constants such
that Fi(xo) < f1 and Fy(z1) < B and all © € R2>0~
Then (15) satisfies the conditions on h, g, @, and A in
Lemma 9 and Theorem 12. When p = 0, (15) is linear
with one unique equilibrium point at 1 = B1;x2 = Ba,
while when g = 1, (15) has the dynamics of the toggle
switch with resource sharing.

Using Theorem 12, we will find a necessary condition
such that (15) has multiple equilibrium points. Note

that det (ai) > 0 for all z € R%, when p = 0. Let

Bry
C= 1 and B = {z e Ry det (2512)) <o}
I , and By z € RS, det ( =5 < 0. By
Theorem 12, if (15) has multiple equilibrium points,
then at least one equilibrium point exists in B;. We
now simplify our reasoning by taking advantage of the
symmetry of (15). We assume that J; = Jo = J and
Fi(-) = F»(-) = F(-). Since the dynamics of z; and
are symmetric, this implies that the trajectories of (15)
are symmetric about the line 1 = 2 and all equilib-
rium points must appear symmetrically about the line

r1 = 9. We will now find a condition on 81;7(95) such that
B; is nonempty, which is necessary for (15) to exhibit
multiple equilibrium points by Theorem 12.

Since deg(f,) = 1 by Lemma 9, then the number of
equilibrium points is odd. Since the determinant of the
Jacobian of (15) is symmetric about the line 1 = x5 and
the number of equilibrium points is odd, there always
exists an odd number of equilibrium points on the line
21 = x2. The dynamics of (15) restricted to 1 = x5 = x
are given as

By Lemma 9, the degree of (16) is —1, which implies that
there exists at least one equilibrium point on the line
r1 = 29 = x such that det (afali‘im)) < 0 by the definition
of degree. Thus, we can restrict our attention to the line
r1 = a2 to find a necessary condition for the existence

of By in Theorem 12. We denote ag—f) as F'(x). Then,
the determinant of the Jacobian of (16) is given as

o (22) <14 P (F(2))?

1+ 2JF(2))3
(17)
We now evaluate (17) when g = 1 and find an equality
to eliminate the dependence of (17) on F'(x). With p = 1

and setting the derivative in (16) to 0, H%?()x)

is satisfied at any equilibrium point z* that lies on the
line &1 = xo. Then, solving for F(x*), we have

(16)

2pJ F(x)F' ()
(14+2JF(x))?

= ¥

*

T

F@™) =157

(18)

Since F(x) > 0 for all © > 0, then all equilibrium points
z* satisfy 2* € [0, 55). Substituting (18) into (17) with
p=1, we find

det (%Q) =1+2J(1 —2Jz*)F'(z*)

— (1 =2Jz*)3(F'(z*))%.  (19)

. of
Next, setting det (6—;

quadratic inequality in (19) for F’(x*), we find that if
(15) has multiple equilibrium points by Theorem 12,
there exists an equilibrium point z* such that

J+VIZ2+1 - 2]z

) < 0 and solving the resulting

/ *

F'(z*) > 1= 2/ , or (20a)
I Ry ey ey

F'(z") < 12722 . (20b)

Note that an equilibrium point z* € By if and only if
x* satisfies (20). Furthermore, if (20) is never satisfied



for any z* € [0, 55), then (20) is never satisfied for any

equilibrium point and, by Theorem 12, (15) exhibits one
equilibrium point.

We restrict our attention to the activation toggle switch,
as presented in Section 2 where F'(z) > 0 for all x > 0.
Note that when J = 0 (no resource sharing), the right-
hand side of (20a) is 1. It can be shown that the right-
hand side of (20a) is increasing with increasing J for all
z € [0, 55) by taking the derivative with respect to .J.
Increasing J corresponds to increased resource demand
by the proteins x; and x5. Thus, an activation toggle
switch that meets the condition in (20a) when J = 0,
may not satisfy it when J > 0. Specifically, there exists
an F'(x) that satisfies (20) when J = 0, but not when
J >0, and any F’(x) that satisfies (20) for some J > 0
also satisfies (20) when J = 0. Therefore, in the activa-
tion toggle switch, a system that nominally has multiple
equilibrium points may have one equilibrium point when
perturbed with resource sharing. Due to space limita-
tions, we use Theorem 10 to find a condition on F’(x)
such that (15) is guaranteed to always have one equilib-
rium point in the extended version [39].

7 Discussion

The number of equilibrium points is an important qual-
itative property of dynamical systems. In this paper,
we developed a theoretical framework to determine al-
gebraic conditions under which the number of equilib-
rium points of a positive dynamical system changes when
state-dependent perturbations are considered. Our re-
sults allow for the analysis of this problem without hav-
ing to explicitly find the equilibrium points, thus allow-
ing us to determine parametric conditions under which
the number of equilibrium points of a nominal system
and a perturbed system differ.

We applied our tools to genetic networks as a specific ap-
plication example. State-dependent perturbations such
as arising from fluctuations in available resources have
recently appeared as a major problem to our ability of
predicting a genetic network’s behavior. We have illus-
trated our results on a genetic toggle switch and on a ge-
netic cascade to show how to determine parameter con-
ditions under which the number of equilibrium points of
the nominal and perturbed systems are guaranteed to be
the same or to differ. These conditions allow us to both
design networks in a way such that they are robust to
perturbations in resources, and to select the most robust
network topologies.
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A Additional Proofs and Mathematical Back-
ground

Definition 15 A point xg € R™ is an isolated zero of a
vector field f : R™ — R™ if f(zg) = 0 and there exists an
e > 0 such that xg is the only point in the ball B(xg,¢)

satisfying f(x) = 0.

Definition 16 Let Q and f be as in Definition 8 and
suppose f has only isolated zeros. Let x; be a zero of f and
Q; be a sufficiently small open and bounded neighborhood
of x; € Q; such that x; is the only solution of f(x) =0 in
Q;, then the index of an isolated zero of f is ®(f,z;) =
deg(f7 Q’L)

Lemma 17 LetQ C R”, f : Q — R" be aC" vector field,
and suppose that det (%(x)) # 0 for all z € f~1(0).

Then the number of zeros of f in € is equal to the sum
of the absolute values of the indexes of f in Q, i.e. n =

2[R, @)l

PROOF. The proof follows by Definitions 3 and 16.
Since det (%(x)) # 0 for all z € f~10), all ze-
ros of f are isolated by the Inverse Function Theo-
rem [42] and Definition 16 may be applied. Note that

S Jsign (det (3£(@)))| = i 19(f,22)
zef=1(0)
|sign(z)| = 1 for any z # 0 which is assumed in Defini-
tion 3. |

since

n =

PROOF. Lemma 5. Choose a fixed A* > 0 and let n de-
note the cardinality of Sy. Suppose that det (%) #

0 for each x} € Sy for every A € [0,\*], then n is

i
finite since all zeros are isolated. Partition the inter-
val [0, \*] into N subintervals according to P = {0 =



A0s ALy« -y An—1, Ay = A*}. Consider the kth subinter-
val [Ag, Ag+1], where Ay is fixed and Ap41 will be chosen
later. For \; and for each xf‘k € Sy, there exists an open
ball Q' =

Ak
2% is the unique solution of fy,(z) = 0 for z € Q;* by

the Inverse Function Theorem [42]. Note that z? is con-
tinuous, since f) is continuous with respect to A\. Choose
Akt1 such that for all X € [Ag, Aeya], 23 € QM for all
i=1,...,nsince x} is continuous. Apply Lemma 17 to

B(Jj/-\k €¥) containing the zero ac;\k such that

1)

K3
each QM since each zero is isolated, contained in Q'
and the index for each z? is nonzero for all A € [\, Ag11]-
Then, for all A € [\, Ax11], the cardinality of the set S
is constant and equal to n. Note that, by Theorem 4, if
any zeros appear, they must appear from a degenerate
zero, since the degree over any domain with no zeros on
the boundary is constant. Repeat over each subinterval
until Ay = A*. Then the cardinality of S is constant
and equal to n for all A € [0, A*]. O

Lemma 18 For any positive invariant vector fields f :
R™ — R"™ and g : R®™ — R™ and for nonnegative scalars,
a,b € Rxg, af(z) + bg(z) is positive invariant. Further-
more, for nonnegative vectors c,d € R%, c® f(z)+d®
g(x) is positive invariant.

PROOF. We show that hy(x) = af(x)+bg(x) is a pos-
itive invariant vector field for positive constants a,b €
R>g. Consider the boundary of the positive orthant,
OR%Z) = {z :2; =0and z > Oforeachi¢ = 1,...,n}.
Since f(x) > 0 and g(z) > 0 for all z € 9RZ, and
a,b > 0, then af(z) +bg(x) > 0 for all 2 € IRZ,. Thus,
hi(x) is positive invariant. Similarly, for ¢,d € RZ,,
ho(z) = ¢ ® f(z) +d ® g(x) is positive invariant, since
on f(z) >0 and g(x) > 0 for all z € ORZ, and ¢,d > 0,
then ¢ ® f(x) +d ® g(x) > 0 for all z € ORZ,. Thus,
ha(x) is positive invariant. - O

PROOF. Lemma 9. We first show that (7) is positive
invariant. Since h(z), g(x), and —Axz are C' positive in-
variant functions, a(x) is C!, and 0 < a(x) < 1 for
xz € RZ,, it follows that p(a(r) — 1) +1 > 0 for any
p € [0,1]. Then f, x(z) is C! positive invariant for all
w, A € 10,1] x [0,00) by Lemma 18. This proves (a).

Next, to prove (b), we construct a bounded domain, €2,
over which we will consider the set of equilibrium points
of (7) in the positive orthant. To construct €2, choose
an m > 0 such that m - g(x) < 0, which can be done
since ¢ is mass dissipating. Now, by assumption, x(t)
is bounded for the system & = h(x) — Az, so Ax(¢) is
also bounded for all ¢ > 0. Furthermore, m - (Ax(t)) is
finite. Choose M > sup {m - (Az(t))}. We now define
>0

Q= {z € Ry, : m-(Az) < M}. We prove that f, x
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has no zeros on the boundary of 2. We first observe
that f, x(z) has no zeros on the sides of Q : {z : x; =
Oand z > 0 foreachi =1,...,n} for all u, A € [0,1] x
[0, 00) since h(x) has no zeros in the set OR%, = {x :
x; = 0and x > 0 foreach i = 1,...,n} and both g(x)
and —Ax are positive invariant and «(z) > 0. Now, we
show that f,  has no zeros on the boundary defined by
{z : m- (Az) = M} and no zeros in the positive orthant
outside of €. To this end, consider

m- fux=m-(ho 1+ p(a(z) 1))+
m-Ag—m- (Ax)

m- furx=m-(la—-—1)Oh)+m-h+m-Ag—
m - Az.

Since @ < 1, then m- (u(aw — 1) ® h) < 0. It then follows
that m- fux <m-h+m-Ag—m- (Az). Furthermore,
since g is mass dissipating with respect to m, we have
m-g<0andm- f,» <m-h—m-(Az). Since M >
sup {m - (Az(t))}, this implies that sup,{m - h(z(t))} <
>0

M. Then, for {z : m-(Az) > M}, we have m- f, x» < m-
h(z)—m-(Az) < m-h(x)—M < 0.Som- f, » < 0 for all
points on the outer boundary of Q : {x : m - (Az) = M}
for all u, A € [0,1] x [0, 00) since m is a positive vector.
This implies that f,, » has no zeros on the boundary of (2
for any p, A € [0, 1] %[0, 0o). Similarly, since m- f,, x(z) <
0 for all z € {z : m - (Az) > M}, then there exist
no zeros in the positive orthant outside of Q for any
wy A € 10,1]x[0, 00). Therefore the interior 2 contains all
zeros in the positive orthant for all u, A € [0, 1] x [0, c0).
This proves (b).

To prove (c), we will find deg(f, x,). Note that by
Theorem 4, deg(f,, x,2) = deg(fo,0,2) where foo(z) =
h(z) — Az. Since z(t) is bounded, Q is compact, and,
since h(z) is continuous over €, then h(z(t)) is bounded
over . We can rewrite as h(z) = ¢ ® 8(z) where 3 :
R" —» R"is C', 0 < B(z) < 1 for all z € RZ,, and
¢; = sup{hi(x)} for eachi = 1,...,n. We now define the
x>0

auxiliary function f,(z) = ¢ © [1 +v(8(z) — 1)] — Az
with parameter v € [0,1]. Then fi(z) = foo(z) and
fo(z) = ¢ — Az, which is linear. Since 0 < f(z) < 1
and ¢ > 0, then fy is positive invariant and has no zeros
on the boundary of €2, as shown previously. Addition-
ally, fo(x) has one zero in Q, namely x = A~ '¢, and the

Jacobian is 9¢ = —A. Then det (%) =TT, (—Ay)
and sign (det (% ) = (=1)"sodeg(fo(z),Q) = (—1)"
by Definition 3. Then, by Theorem 4, deg(f, x,2) =

deg(fo.0,Q) = deg(f1,Q) = deg(fo, Q) = (—1)". Fur-
thermore, S, x # () by Definition 3. This proves (c). O



