
Discrete State Estimators for a Class of Hybrid Systems
on a Lattice

Domitilla Del Vecchio and Richard M. Murray

Control and Dynamical Systems
California Institute of Technology

1200 E California Boulevard, Mail Stop 107-81
Pasadena, CA 91125

{ddomitilla, murray}@cds.caltech.edu

Abstract. In this paper we consider the problem of estimating discrete variables
in a class of hybrid systems where we assume that the continuous variables are
available for measurement. Using lattice and order theory we develop a frame-
work for constructing a discrete state estimator on an enlarged space of variables
with lattice structure, which updates only two variables at each step. We apply
our ideas to a multi-robot system example, the RoboFlag Drill.

1 Introduction

In the last decade hybrid systems models have become very popular in the con-
trol community. Some of the systems under study have been changing from systems
governed by continuous differential equations, to systems characterized by very large
numbers of discrete and continuous variables whose evolution is determined by both
continuous dynamics and logics. Examples include internet systems, continuous plants
controlled by digital controllers, and multi-agent systems. The interplay of continu-
ous dynamics and decision protocols renders these systems interesting and complicated
enough that new mathematical tools are needed for the sake of analysis and control.
Issues like controllability and observability arise naturally when trying to analyze the
properties of these systems for control.

The problem of estimating and tracking the values of non-measurable variables in
hybrid systems with computational effort comparable to the one needed for simulating
the hybrid system itself is a challenging one. Bemporad et al. [2] show that observabil-
ity properties are hard to check for hybrid systems and an observer is proposed that
requires large amounts of computation. A wealth of research has been done on design-
ing observers for discrete event systems both deterministic and non-deterministic. For
non-deterministic systems, [11] studies observability conditions for exact reconstruc-
tion of the current state after each system event, and [4] consider the problem of finding
optimal control strategies for partially observable Markov-decision processes. In the
deterministic case, [3] and [6] show that the complexity of the observer often arises
from the need to compute maps on large sets of values, corresponding to the set of all
possible internal states compatible with the observed output sequence. These same dif-
ficulties are encountered in [12], where the proposed observer fails to be applicable for
large problem sizes.

R. Alur and G.J. Pappas (Eds.): HSCC 2004, LNCS 2993, pp. 311−325, 2004.
 Springer-Verlag Berlin Heidelberg 2004

In this paper we consider the problem of estimation and tracking of non-measurable
discrete variables in deterministic hybrid systems. As a starting point for our study, we
assume that among all the system’s variables the continuous variables are available for
measurement. This simplified scenario has already practical interest as in the case, for
example, of decentralized multi-robot systems. In these systems the continuous vari-
ables may represent physical quantities such as positions and velocities, while discrete
variables may represent the state of the logical system that is used for control and co-
ordination. In these systems, the discrete and continuous variables are heavily coupled
through logical operations and continuous dynamics, rendering difficult the estimation
task. Therefore discrete state estimation strategies where the analysis of the continuous
signal is enough for determining the discrete state, such as the ones proposed by [1],
are not applicable.

Our point of view is that some of the complexity issues, such as those encountered
in [12] or [3, 6], can be avoided by finding a good way of representing the sets of inter-
est and of computing maps on them. As a naive example consider the set S of all natural
numbers between one and one thousand. This set can be represented as S = [1, 1000],
without the need of listing all its elements. Suppose we want to know what set S is
mapped to by a map φ. We can either compute such a map on all the elements of S, or
we can compute it on the least and greatest elements of S. In this case if the map φ has
some properties, the set φ(S) can be deduced by φ(1) and φ(1000) without additional
computation. This simplification is possible thanks to the order structure naturally as-
sociated to N and thanks to the structure of the map φ.

In this paper we formalize these ideas using lattice theory. In particular given a
system Σ defined on its space of variables, we extend it to a larger space of variables
that has lattice structure so as to obtain the extended system Σ̃. Under certain properties
verified by the extension Σ̃, discrete state estimator for system Σ can be constructed,
which updates at each step only two variables. Namely it updates the least and greatest
element of the set of all values of discrete variables compatible with the output sequence
and with the dynamics of Σ. Throughout the paper we will refer to discrete estimator as
observer, implicitly assuming that only the discrete variables are estimated.

The contents of this paper is as follows. In Section 2 we review some basic defi-
nitions and results on lattice theory, and some basic terminology of transition systems.
The main result is given in Section 3, where we provide an explicit construction for
the observer that updates least and maximum elements on a proper lattice structure. In
Section 4 we introduce a multi-robot system, the RoboFlag Drill, and in Section 5 we
show how to apply our ideas to this example. We then conclude the paper with some
simulation results on the RoboFlag Drill system in Section 6.

2 Basic Concepts

In this section we give first some background on lattice theory as it can be found in
[5]. Then we recall basic definitions on transition systems (see [10] for more details).
Finally we recall some basic observability definitions as they can be found in many
references (see [12] for example).

312 D. Del Vecchio and R.M. Murray

A B

C D

x " y

yx

yx

x # y

yx

x # y

yx

x # y

x " y

a

b

c

d f(d)=f(c)

f(a)=f(b)

f

a

b

c
d f(d)

f(c)

f(b)
f(a)

f

A: Order preserving but not order embedding

B: Order embedding but not order isomorphism

Fig. 1. (Left) In diagram A and B x and y are not related, but they have a join and a meet. In
diagram C we show a complete lattice, and in diagram D we show an ordered set that is not a
lattice, since the elements x and y have a meet, but not a join. (Right) In diagram A we show a map
that is order preserving but not order embedding. In diagram B we show an order embedding map
that is not order isomorphism: any two elements maintain the same order relation, but in between
c and d there is nothing, while in between f (c) and f (d) some other elements appears (i.e. it is
not onto).

2.1 Lattice Theory

Given a set χ with an order relation ”≤”, we define the join “"” and the meet ”#” of two
elements x and w in χ as

1. x " w = sup{x,w} and x # w = inf{x,w};
2. if S ⊆ χ, ∨ S = sup S and S ⊆ χ,∧ S = inf S ;

where by sup{x,w} we denote the smallest element in χ that is bigger than both x and
w, and we denote by inf{x,w} the biggest element in χ that is smaller than both x and
w. In analogous way we denote by sup S the smallest element in χ that is bigger than
all the elements in S , and we denote by inf S the biggest element in χ that is smaller
than all the elements in S .

Let χ be a non-empty ordered set. If x #w and x "w exist for any x,w ∈ χ, then χ is
a lattice. If

∨
S and

∧
S exist for all S ⊆ χ, then χ is a complete lattice. Notice that any

finite lattice is complete. In Figure 1 (left) we report diagrams showing ordered sets.
From the diagram it is easy to tell when one element is less than another: x < w if and
only if there is a sequence of connected line segments moving upward from x to w. Let
χ be an ordered set. Then χ is a chain if for all x,w ∈ χ, either x ≤ w or w ≤ x, that is
any two elements are comparable. At the opposite extreme of a chain is an anti-chain.
The ordered set χ is an anti-chain if x ≤ y if and only if x = y. Let χ be a lattice and let
∅ # S ⊆ χ be a subset of χ. Then S is a sublattice of χ if a, b ∈ S implies that a" b ∈ S
and a # b ∈ S .

313Discrete State Estimators for a Class of Hybrid Systems on a Lattice

Definition 1. Let P and Q be ordered sets. A map f : P→ Q is said to be

(i) order preserving if x ≤ w =⇒ f (x) ≤ f (w);
(ii) order embedding if x ≤ w ⇐⇒ f (x) ≤ f (w);

(iii) order isomorphic if it is order embedding and it maps P onto Q.

Definition 2. If P and Q are lattices, then a map f : P → Q is said to be an homomor-
phism if f is join-preserving and meet-preserving, that is for all x,w ∈ P we have that
f (x " w) = f (x) " f (w) and f (x # w) = f (x) # f (w). A bijective homomorphism is a
(lattice) isomorphism.

Every order isomorphic map faithfully mirrors the structure of P onto Q. In Figure 1
(right) we show some examples.

Lemma 1. Let P and Q be ordered sets and f : P→ Q be an order isomorphism. Then
f preserves all joins and meets, that is for any S ⊆ P whenever

∨
S (
∧

S) exists in P
then
∨

f (S) (
∧

f (S)) exists in Q and

f (
∨

S) =
∨

f (S), and f (
∧

S) =
∧

f (S) .

2.2 State Transition Systems

For completeness, we review the basic definitions used in transition systems as
described more completely in other work [10]. Consider a set of variable symbols
V with types type(v) for each v ∈ V . A state s is a function from V into U where
U =

⋃
v∈V type(v). The set of all states is denoted S . A transition relation on S is a

relation R ⊆ S × S . If sRs′ and v ∈ V , we will write v to refer to s(v). The set of all
states is denoted S . For a subset W of V , we denote by s|W the restriction of s to W, so
that we have that S |W = {s|W : s ∈ S }.

Given a transition relation R, an execution of R is a sequence σ = {sk}k∈N such that
skRsk+1 for all k ∈ N. The set of all executions of R is denoted E(R). If σ ∈ E(R) is fixed
and v ∈ V we denote by v(k) the value σ(k)(v). The trajectory of v ∈ V with respect to
σ is the sequence {σ(k)(v)}k∈N.

We now recall the notion of observability for transition systems as it can be found
in [12].

Definition 3. Given a transition relation R on S and an output map g : S → U, for
some U, two executions σ1, σ2 ∈ E(R) are distinguishable if there exists a k such that
g(σ1(k)) # g(σ2(k)).

Definition 4. (Observability) The transition relation R is said to be observable with
respect to the output function g : S → U if any two executions σ1, σ2 ∈ E(R) are
distinguishable.

We will consider state transition systems with both discrete and continuous variables.
VC is the set of continuous variables that we denote with z with type(z) = RN for all
z ∈ VC , and VD is the set of discrete variables that we denote with α with type(α) = U
for all α ∈ VD. In this paper we assume that V = VC ∪ VD, with VC ∩ VD = ∅. We

314 D. Del Vecchio and R.M. Murray

will consider deterministic transition systems, as a consequence the transition relation
becomes a function. In particular we denote by h : U×RN → RN and f : U×RN →U
the functions that update the values of the continuous variables and the values of the
discrete variables respectively. In what follows we will denote a transition system Σ by
the couple (f , h) assuming that VC is the set of measurable variables, that is the output
function is g : S → S |VC .

3 Observer Construction

In this section we show that if we can extend the space Uto a space χwith lattice
structure, and if we can extend the maps f and g to the whole χ such that f is order
isomorphic on suitable subsets of χ, then in the case in which Σ is observable we can
construct a system that at each step updates only two variables. These variables are
the join and the meet of the set of all possible α’s values compatible with the output
sequence; moreover the set that they define converges asymptotically to a set whose
intersection with U is the current value of α. This is stated formally in the following
theorem

Theorem 1. Consider the system Σ = (f , h) with h : U×RN → RN and f : U×RN →
U. Let z ∈ RN denote the continuous variables and α ∈ U the discrete variables.
Assume that variables z are measurable, that is y = z. Assume that

(i) There exist a lattice χ such that U ⊆ χ;
(ii) The map h : U × RN → RN can be extended to the whole χ as h̃ : χ × RN → RN ,

such that h̃|U×RN = h and

Ay(k) := {x ∈ χ : y(k + 1) = ˜

f |U×RN = f and f̃ : Ay → [f̃ (
∧

Ay), f̃ (
∨

Ay)]

h(y(k), x)} = [
∧

Ay(k),
∨

Ay(k)],

which means that Ay ⊆ χ is a lattice and is equal to {x : x ≥ ∧ Ay ∧ x ≤ ∨Ay};
(iii) The map f : U×RN →U can be extended to the whole χ as f̃ : χ×RN → χ, such

that ˜ is an order isomorphism;
(iv) SystemΣ is observable.

Then the following system

L(k) = f̃ (L(k 1)) " (
∧

Ay(k)) , (1)

U(k) = f̃ (U(k 1)) # (
∨

Ay(k)) , (2)

with L(0) =
∧

Ay(0) and U(0) =
∨

Ay(0), is such that

(a) α(k) ∈ [L(k),U(k)] ∩U for all k (correctness);
(b) |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]| (non-increasing error);
(c) |[L(k),U(k)] ∩U α| → 0 as k → ∞ (convergence),

where |S | denotes the cardinality of the set S . Moreover, if the extended system Σ̃ =
(f̃ , h̃) defined on χ×RN with output z is also observable, then properties (a)–(c) become:

(a’) α(k) ∈ [L(k),U(k)];

315Discrete State Estimators for a Class of Hybrid Systems on a Lattice

(b’) |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]|;
(c’) L(k)→ α(k) and U(k)→ α(k) as k → ∞.

Proof. The proof proceeds in two steps. In the first step we show that Assumptions
(i)–(iii) imply that

for all w ∈ [L(k + 1),U(k + 1)], there exists x ∈ [L(k),U(k)] : w = f̃ (x) (3)

for all x ∈ [L(k),U(k)], x ∈ Ay(k). (4)

In the second step we show that properties (3) and (4) together with Assumption (iv)
imply property (c), (a) and (b).

Step 1. Property (4) can be proved directly using the definition of L(k) and U(k)
given in expressions (1) and (2). In fact if x ∈ [L(k),U(k)] then x ≤ U(k) and by (2) we
have x ≤ ∨Ay(k). Also x ≥ L(k), which by (1) implies x ≥ ∧ Ay(k).

To prove (3) we first show that f̃ is an order isomorphism on each sub-lattice of Ay(k),
then we notice that [L(k),U(k)] is a sublattice of Ay(k), and therefore property (3) is
a direct consequence of the definition of order isomorphic maps. Let Āy(k) = [l̄y, ūy]
for some l̄y ∈ Ay(k) and ūy ∈ Ay(k). Clearly Āy(k) ⊆ Ay(k), and Āy(k) is a lattice.
Therefore f̃ : Āy(k) → f̃ (Āy(k)) is a lattice isomorphism since f̃ is an isomorphism on
Ay(k). We now show that f̃ (Āy(k)) = [f (l̄y), f (ūy)]. To prove this equality we need to
show that each element of the first set is contained in the second set, and viceversa. For
any z ∈ f̃ (Āy(k)) we have z ∈ [

∧
f̃ (Āy(k)),

∨
f̃ (Āy(k))]. Since f̃ : Āy(k) → f̃ (Āy(k))

is a lattice isomorphism, by Lemma 1 f̃ (
∧

Āy(k)) =
∧

f̃ (Āy(k)) and f̃ (
∨

Āy(k)) =∨
f̃ (Āy(k)). Then, since l̄y =

∧
f̃ (Āy(k)) and ūy =

∨
f̃ (Āy(k)), we have z ∈ [f̃ (l̄y), f (ūy)].

We now show that for any z ∈ [
∧

f̃ (Āy(k)),
∨

f̃ (Āy(k))] we also have z ∈ f̃ (Āy(k)).
Since

∨
Āy(k) ∈ Ay(k), and

∧
Āy(k) ∈ Ay(k), we have that f̃ (

∨
Āy(k)) ∈ f̃ (Ay(k)),

and f̃ (
∧

Āy(k)) ∈ f̃ (Ay(k)). This in turn implies that f̃ (
∧

Ay(k)) ≤ f̃ (
∧

Āy(k)) ≤
z ≤ f̃ (

∨
Āy(k)) ≤ f̃ (

∨
Ay(k)), so that z ∈ f (Ay(k)). Since z ∈ f (Ay(k)), there exist

x ∈ Ay(k) such that z = f̃ (x). Since f̃ : Ay → f (Ay(k)) is order embedding we have
that f̃ (

∧
Āy(k)) ≤ z = f̃ (x) ≤ f̃ (

∨
Āy(k)) implies

∧
Āy(k) ≤ x ≤ ∨ Āy(k), which in turn

implies that x ∈ Āy(k), and therefore z ∈ f̃ (Āy(k)).
Step 2. Let us prove (a) first (correctness). We show this by induction on the step

k. Initially α ∈ [L(0),U(0)] = [ly, uy]. For the induction step assume that α(k) ∈
[L(k),U(k)], let us show that α(k + 1) ∈ [L(k + 1),U(k + 1)]. This can be shown
by using the fact that f̃ is order preserving. In fact L(k) ≤ α(k) ≤ U(k) implies
f̃ (L(k)) ≤ f̃ (α(k)) ≤ f̃ (U(k)). Also α(k + 1) = f̃ (α(k)) ∈ [ly(k + 1), uy(k + 1)] therefore
α(k+1) ≤ (f̃ (U(k))#uy(k+1)) = U(k+1), and α(k+1) ≥ (f̃ (L(k))"ly(k+1)) = L(k+1).

To prove (b) we can directly use property (3). In fact by (3) we have that for each
w ∈ [L(k + 1),U(k + 1)] there is a x ∈ [L(k),U(k)] such that w = f̃ (x). This in turn
implies that |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]|.

To prove (c) notice that by properties (3), (4), and the fact that U is invariant with re-
spect to f̃ , we have that for each x′ ∈ [L(k+1),U(k+1)]∩U there is x ∈ [L(k),U(k)]∩U,
such that x′ = f (x), and x ∈ Ay(k). This in turn implies that the sequence {x(k), y(k)}k∈N

316 D. Del Vecchio and R.M. Murray

z1

(x1,y1)

z2 z3 z4 z5

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

Fig. 2. Example of the RoboFloag Drill for 5 robots. Here α = {3, 1, 5, 4, 2} and the dashed lines
indicate these assignments. The attackers are moving down along y direction as indicated by the
arrows.

corresponds to an execution σ of system Σ, that is x(k) = σ(k)(x). Therefore for any
x,w ∈ [L(k),U(k)] ∩ U, there are sequences {x(k), y(k)}k∈N and {w(k), y(k)}k∈N corre-
sponding to executions σ1 and σ2 of Σ, where x(k) = σ1(k)(x), w(k) = σ1(k)(w), and
σ1(k)(y) = σ2(k)(y) = y(k) for all k. Since the system is observable, the two executions
must coincide, that is x(k) = w(k). Therefore there exist a k0 such that for all k ≥ k0 we
have that |[L(k),U(k)] ∩U| = 1. This together with (a) proves (c).

We then refer to the system in equations (1) and (2) as an observer for Σ.

4 An Example: The RoboFlag Drill

In this section we consider a simplified version of the RoboFlag Drill system de-
scribed in [8] that is similar to “capture the flag”, only for robots. We do not propose
to devise a strategy that addresses the full complexity of the game. Instead we examine
the following very simple drill or exercise. Some number of blue robots with positions
(zi, 0) ∈ R2 must defend their zone {(x, y) ∈ R2 | y ≤ 0} from an equal number of incom-
ing red robots. The positions of the red robots are (xi, yi) ∈ R2. An example for 5 robots
is illustrated in Figure 2. The red robots move straight toward the blue defensive zone.
The blue robots are assigned each to a red robot and they coordinate to intercept the
red robots. Let N represent the number of robots in each team. The robots start with a
random (bijective) assignment α : {1, ..., N} into {1, ..., N}. At each step, each blue robot
communicates with its neighbors and decides to either switch assignments with its left
or right neighbor or keep its assignment. It is possible to show that the α assignment
reaches the equilibrium value [1, ..., N] (see [8] for details). We consider the problem of
estimating the current assignment α given the motions of the blue robots – which might
be of interest to, for example, the red robots in that they may use such information to
determine a better strategy of attack. We do not consider the problem of how they would
change their strategy in this paper.

317Discrete State Estimators for a Class of Hybrid Systems on a Lattice

The system can be described with a guarded command program. Such programs are
constituted by a set of clauses. Each clause is of the form guard : rule, where guard
is the guard, and rule is the rule. When a guard becomes true the corresponding rule is
executed (for more details see [7]). The description here is similar to the one in [8]).
The red robot dynamics ΣRed are described by the N clauses

yi δ > 0 : y′i = yi δ

for i ∈ {1, ..., N}. These state simply that the red robots move a distance δ toward the
defensive zone at each step. The blue robot dynamics ΣBlue are described by the 3N
clauses

zi < xαi : z′i = zi + δ , zi > xαi : z′i = zi δ, zi = xαi : z′i = zi (5)

for i ∈ {1, ..., N}. For the blue robots we assume that initially zi ∈ [zmin, zmax] and
zi < zi+1 and that xi ≤ zi ≤ xi+1 for all time. We define x = (x1, ..., xN), z = (z1, ..., zN),
α = (α1, ..., αN). The assignment protocol dynamics ΣAssign is defined by

xαi ≥ zi+1 ∧ xαi+1 ≤ zi+1 : (α′i , α
′
i+1) = (αi+1, αi) , (6)

which is a modification of the protocol presented in [8], since two adjacent robots switch
assignments only if they are moving one against the other. The complete RoboFalg
specification is then given by ΣRF := ΣRed ∪ ΣBlue ∪ ΣAssign. In particular the clauses in
(5), representing ΣBlue, model the function h that updates the continuous variables, and
the clauses in (6), representing ΣAssign, model the function f that updates the discrete
variables.

RoboFlag Drill Observation Problem: Given initial values for x and y and the
values of z corresponding to an execution of ΣBlue ∪ ΣAssign, determine the value of α
during that execution.

5 Observer Construction for the RoboFlag Drill System

In this section we first show that the RoboFalg Drill is observable, and then we show
how Theorem 1 can be applied to construct the observer in equations (1- 2).

5.1 Observability

Lemma 2. The system Σ represented by the guarded command program (5) and (6)
with measurable variables z is observable.

Proof. Since we are interested in the observability of the α trajectories, for proving
observability we show that any two executions of ΣBlue ∪ ΣAssign, σ1 and σ2, with
{α1(k)}k∈N # {α2(k)}k∈N have different output sequences. For output we consider the
vector of directions of motion of the zi . Since the measurable variables are the zi’s, also
their direction of motion is measurable; let g(σ(k)) = (g1(σ(k)), ..., gN(σ(k))) denote the
vector of directions at step k for the execution σ. From equations (5) it is clear that the
direction of motion depends only on α and not on z, therefore g(σ) = g(α). Note that
every α trajectory reaches the equilibrium value [1, ..., N], and therefore there is a step k

318 D. Del Vecchio and R.M. Murray

at which f (α1(k)) = f (α2(k)) and α1(k) # α2(k). Therefore it is enough to prove that for
any α1 # α2 we have g(α1) = g(α2) =⇒ f (α1) # f (α2). g(α1) = g(α2) by (5) implies
that (1) zi,1 < xαi,1 ⇐⇒ zi,2 < xαi,2 and (2) zi,1 ≥ xαi,1 ⇔ zi,2 ≥ xαi,2 . This implies that
xαi,1 ≥ zi+1,1 ∧ xαi+1,1 ≤ zi+1,1 ⇔ xαi,2 ≥ zi+1,2 ∧ xαi+1,2 ≤ zi+1,2. By letting α′ = f (α), we
thus have that (α′i,1, α

′
i+1,1) = (αi+1,1, αi,1) ⇔ (α′i,2, α

′
i+1,2) = (αi+1,2, αi,2). Hence if there

exists an i such that αi,1 # αi,2, then there exists a j such that α′j,1 # α
′
j,2, and therefore

f (α1) # f (α2).

5.2 Lattice Structure

We now construct a lattice χand extensions of f and h such that assumptions (i)–(iii)
of Theorem 1 are verified.

We choose as χ the set of vectors in NN with coordinates xi ∈ [1, .., N], that is

χ = {x ∈ NN : xi ∈ [1, ..., N]} .
The partial order that we choose on such a set is given by

∀x,w ∈ χ, x ≤ w if xi ≤ wi ∀i . (7)

We define join and meet in the following way:

∀ x,w ∈ χ, v = x " w if vi = max{xi,wi}
∀ x,w ∈ χ, v = x # w if vi = min{xi,wi} .

In this way we have for example
∨
χ = [N, ..., N] and

∧
χ = [1, ..., 1], and the set χ

with the order defined in (7) is clearly a lattice. The set U is the set of all permutations
of N elements and it is a subset of χ. All the elements in U form an anti-chain of the
lattice, that is any two elements in U in χ are not related by the order defined in (7). In
the sequel we will denote by w the variables with type χ not specifying if the type is U,
and we will always denote by α the variables with typeU.

The function h can be naturally extended in the following way

zi < xwi : z′i = zi + δ , zi > xwi : z′i = zi δ, zi = xwi : z′i = zi (8)

for w ∈ χ. Then the clauses (8) model the function h̃. In analogous way f is extended
as

xwi ≥ zi+1 ∧ xwi+1 ≤ zi+1 : (w′i ,w
′
i+1) = (wi+1,wi) , (9)

for w ∈ χ. Then the clauses (9) model the function f̃ . As a consequence we have two
new functions h̃ : RN × χ → RN and f̃ : RN × χ → χ, such that f̃ |RN×U = f and
h̃|RN×U = h.

5.3 Propert s tie ofope s of the Extended Functions

We anal e inyze in this section the p ofropert s tieope s of the extensions ˜yz r f and h̃ propos t
previous section. I an particul hn p ar we show that rpropertiep s (ii) and (iii) of Theorem 1 hold.

319Discrete State Estimators for a Class of Hybrid Systems on a Lattice

ed in hep

Lemma 3. Property (ii) of Theorem 1 holds with the lattice structure chosen in Section
5.2.

Proof. We need to show that

Ay(k) = {w ∈ χ : y(k + 1) = h̃(y(k),w)} = [
∧

Ay(k),
∨

Ay(k)],

where y = z. By (8) we have that {w ∈ χ : z(k + 1) = h̃(z(k),w)} = {w|xwi > zi, } if
zi(k+1) = zi(k)+ δ, {w ∈ χ : z(k+1) = h̃(z(k),w)} = {w|xwi < zi, } if zi(k+1) = zi(k) δ,
and {w ∈ χ : z(k + 1) = h̃(z(k),w)} = {w|xwi = zi, } if zi(k + 1) = zi(k). By assuming
xi ≤ zi ≤ xi+1 for all time, we have xwi > zi if and only if wi > i and xwi < zi if and only
if wi < i. Therefore

Ay(k) = {w ∈ χ : [(wi > i) ∧ (zi(k + 1) = zi(k) + δ)]

∨ [(wi < i) ∧ (zi(k + 1) = zi(k) δ)]

∨ [(wi = i) ∧ (zi(k + 1) = zi(k))]}
Since also w ∈ χ we have that 1 ≤ wi ≤ N, and therefore there exist ly(k) ∈ χ and
uy(k) ∈ χ such that Ay(k) = {w ∈ χ : w ≥ ly(k) ∧ w ≤ uy(k)}, so that (ii) of Theorem 1
holds.

Lemma 4. Property (iii) of Theorem 1 holds with the lattice structure chosen in Section
5.2.

Proof. We need to show that f̃ : Ay(k) → [f̃ (ly(k)), f̃ (uy(k))] is an order isomorphism
we need to show: a) that it is onto; b) that it is order embedding.

a) To show that it is onto, we show directly that f (Ay) = [f̃ (ly), f̃ (uy)]. We omit
the dependence on k to simplify notation. Our arguments relay on the coordinates
structure of the sets Ay and f̃ (Ay). In particular from equations (9) we deduce that
Ay = (Ay,1, ..., Ay,N), i.e. the set Ay is a vector of sets whose elements are in N, and in
particular Ay,i ∈ {[1, i], [i+ 1,N], [i, i]}. Denote by f̃ (Ay)i the ith coordinate set of f̃ (Ay).
By equations (9) we derive that f̃ (Ay)i ∈ {Ay,i, Ay,i 1, Ay,i 1}. We consider the case where
f̃ (Ay)i = Ay,i 1, the other cases can be treated in analogous way. If f̃ (Ay)i = Ay,i 1 then
f̃ (Ay)i 1 = Ay,i. Then we have that

(i) f̃ (Ay)i = Ay,i 1 and f̃ (Ay)i 1 = Ay,i =⇒
(ii) ∀x ∈ Ay,i we have x ≤ i, and ∀z ∈ Ay,i 1 we have z ≥ i,

which implies (iii) uy,i ≤ i, ly,i ≤ i and uy,i 1 ≥ i, ly,i 1 ≥ i. This last expression finally
implies that

(iv) f̃ (ly)i = ly,i 1, f̃ (uy)i = uy,i 1, and f̃ (ly)i 1 = ly,i, f̃ (uy)i 1 = uy,i .

Since for any i we have that Ay,i = [
∧

Ay,i,
∨

Ay,i] = [ly,i, uy,i], (i) and (iv) imply that
f̃ (Ay)i = [f̃ (ly)i, f̃ (uy)i]. The same reasoning holds for any f̃ (Ay)i ∈ {Ay,i, Ay,i 1, Ay,i 1},
and for any i, therefore f (Ay) = [f̃ (ly), f̃ (uy)].

b) To show that it is order embedding it is enough to note again that f̃ (Ay) is obtained
by switching Ay,i with Ay,i+1, Ay,i 1, or leaving it to Ay,i . Therefore if w ≤ v for w, v ∈ Ay

then f (w) ≤ f (v) since coordinate-wise we will compare the same numbers. By the
same reasoning the reverse is also true, that is if f (w) ≤ f (v) then w ≤ v.

320 D. Del Vecchio and R.M. Murray

The construction of system in equations (1-2) is straightforward, since we need to
“copy” the dynamics reported in (9) and compute a join and a meet. Then write lower
and upper bounds L and U coordinate-wise as U = (U1, ...,UN) and L = (L1, ..., LN)
and initialize L =

∧
χ and U =

∨
χ, so that Li = 1 and Ui = N. Then the guarded

command program which implements the observer in (1-2) is given by

xLi ≥ zi+1 ∧ xLi+1 ≤ zi+1 :

{[(z′i = zi + δ)⇒ (l′y,i = i + 1)] ∨ [(z′i = zi δ)⇒ (l′y,i = 1)]}
∧ {[(z′i+1 = zi+1 + δ)⇒ (l′y,i+1 = i + 2)] ∨ [(z′i+1 = zi+1 δ)⇒ (l′y,i+1 = 1)]}
∧ (L′i , L

′
i+1) = (max{Li+1, l

′
y,i},max{Li, l

′
y,i+1}) (10)

xUi ≥ zi+1 ∧ xUi+1 ≤ zi+1 :

{[(z′i = zi + δ)⇒ (u′y,i = N)] ∨ [(z′i = zi δ)⇒ (u′y,i = i)]}
∧ {[(z′i+1 = zi+1 + δ)⇒ (u′y,i+1 = N)] ∨ [(z′i+1 = zi+1 δ)⇒ (u′y,i+1 = i + 1)]}
∧ (U ′i ,U

′
i+1) = (min{Ui+1, u

′
y,i},min{Ui, u

′
y,i+1}) (11)

Since we have shown that (i)-(iv) of Theorem 1 are verified, then the sequences L(k)
and U(k) have the properties (a)–(c) given by Theorem 1. Note that properties (a’)–(c’)
do not hold since we can prove that the extended system Σ̃ = (f̃ , h̃), with measurable
variables VC is not observable.

5.4 Complexity Considerations

The amount of computation required for updating L and U according to (10) and
(11) is proportional to the amount of computation required for updating the variables α
in system Σ. In fact we have 2N clauses, 2N variables, and 2N computations of “max”
and “min” between values in N. Therefore we can roughly say that the complexity of
the algorithm that generates the sequences L(k) and U(k) is about twice the complexity
of the algorithm that generates the α trajectories. Also note that the clauses in (10) and
(11) are obtained by “copying” the clauses in (9) and correcting them by means of the
output information, according to how the observer is constructed for dynamical systems
(see [9] for details).

By Theorem 1 we have that the function of k |[L(k),U(k)] ∩ U α(k)| tends to
zero and it is non increasing. This function is useful for analysis purposes, but it is not
necessary to compute it at any point in the algorithm proposed in equation (10) and
(11). However, since the sequence L(k) is not converging to the sequence U(k), once
the algorithm has converged, i.e. |[L(k),U(k)] ∩ U| = 1, we cannot recover α from the
values of U(k) and L(k) directly. Instead of computing directly [L(k),U(k)] ∩ U, we
carry out a simple algorithm, that in the case of the RoboFlag Drill example takes at
most (N2 + N)/2 steps and takes as inputs L(k) and U(k) and gives as output α(k) if the
algorithm has converged. This is formally explained in the following paragraph.

Refinement Algorithm. Let ci = [Li,Ui]. Then the algorithm

(m1, ...,mN) = Refine(c1, ..., cN),

321Discrete State Estimators for a Class of Hybrid Systems on a Lattice

which takes assignment sets c1, ..., cN and produces assignment sets m1, ...,mN , is such
that If mi = {k} then k " m j for any j # i.

For such an algorithm we have the properties shown in the following lemmas.

Lemma 5. When the set [L(k),U(k)] ∩ U has converged to α(k), the refinement algo-
rithm is such that (m1(k), ...,mN(k)) = α(k).

Proof. When [L(k),U(k)] ∩U has converged to α, we have that [L(k),U(k)] ∩U is of
the form {α(k), elements not inU}. Denote with ci the sets [Li,Ui] before the refinement
has occurred, and denote with mi the refined version of ci’s. Then we show that among
the sets [Li(k),Ui(k)] there is at least one i for which Li(k) = Ui(k), and therefore
we have at least one singleton to take out from the other coordinates. Then the proof
proceeds by iteration on N.

To indicate that U is the set of permutations of N elements, we will write UN . To
show that when [L(k),U(k)]∩UN has converged to α(k) at least for one i Li(k) = Ui(k)
(ci is a singleton), it is sufficient to notice that if this were not the case we would have
more than one possible α ∈ UN in [L(k),U(k)]. Without loss in generality assume that
such i is equal to N. Then take out that singleton from all the other sets c j for j < N
to obtain new sets m j whose elements take values in a set of possible N 1 natural
numbers. Still there is only one β ∈ UN 1 such that β ∈ (m1, ...,mN 1). Then we can
apply again the reasoning that for this to be true there must exist at least one singleton
among the sets m j, for j ∈ [1,N 1]. Proceeding iteratively, we get the result.

We can also show that the sum of the cardinalities of the mi sets is not increasing along
the time step k. This is formally shown in the following lemma:

Lemma 6. Let ci(k) = [Li(k),Ui(k)], and denote by mi(k) the sets obtained with the
refinement algorithm. Then

N∑
i=1

|mi(k + 1)| ≤
N∑

i=1

|mi(k)|

Proof. Let us denote with primed variables the variables at step k+1 and with unprimed
variables the variables at step k. The proof proceeds by showing that for each j there
exist a k such that m′j ⊆ mk. By equations (10) and (11) we deduce that we can have
one of the following cases for each i: (a) c′i ⊆ ci+1 ∧ c′i+1 ⊆ ci, (b) c′i ⊆ ci, (c)
c′i ⊆ ci 1 ∧ c′i 1 ⊆ ci. Let us consider case (a), the other cases can be treated in
analogous way. Let c j be a singleton. In the refinement process it is deleted from any
other set, so that we have ci+1 = mi+1 c j and ci = mi c j for all i. Assume that in the
first refinement iteration no new singletons are created. We have one of the following
situations: c′j ⊆ c j+1 ∧ c j+1 ⊆ c j, c′j ⊆ c j, c′j ⊆ c j 1 ∧ c′j 1 ⊆ c j. This implies
that one of the c′k is equal to the singleton c j. The sets m′i are created removing such
singleton for all the other sets, so that we obtain m′i + c j = c′i ⊆ ci+1 = mi+1 + c j and
m′i+1 + c j = c′i+1 ⊆ ci = mi + c j. This in turn implies that m′i ⊆ mi+1 and m′i+1 ⊆ mi. This
holds for all of the cases (a),(b), (c), and for each i. Thus

∑N
i=1 |m′i | ≤

∑N
i=1 |mi|.

The same kind of reasoning can be applied if the first refinement iteration of the ci

creates new singletons.

322 D. Del Vecchio and R.M. Murray

It is easy to show that the refinement algorithm can be executed in at most (N2 + N)/2
steps.

6 Simulation Results

The RoboFlag Drill system represented in equations (5) and (6) has been imple-
mented in MATLAB together with the observer reported in equations (10) and (11).
Figure 3 (left) shows the behavior of the quantity

V(k) = |[L(k),U(k)] ∩U|
and

E(k) =
1
N

N∑
i=1

|αi(k) i|.

V(k) represents the the cardinality of the set of all possible assignments at each step.
This quantity gives an idea of the convergence rate of the observer. E(k) is a function of
α, and it is not increasing along the executions of the system ΣAssign∪ΣBlue. This quantity
is showing the rate of convergence of the α assignment to its equilibrium [1, ..., N]. In

1 2 3 4 5 6 7 8 9
0

5

10

15

20

1 2 3 4 5 6 7 8 9
0

5

10

15

1 2 3 4 5 6 7 8 9
0

5

10

15

20

TIME STEP

dotted line = E(k)
solid line = log of V(k)

N=8: results for different initial conditions

0 10 20 30 40 50 60
0

1

2

3

4

5

6

0 10 20 30 40 50 60
0

1

2

3

4

5

6

N=30: results for different initial conditions

dotted line = log of E(k)
solid line = log of W(k)

TIME STEP

Fig. 3. (Left) Example with N=8: note that the function log(V(k)) is always non-increasing and
it is converging to zero. (Right) Example with N=30: note that the function W(k) is always non-
increasing and its logarithm is converging to zero.

Figure 3 (right) we show the results for N = 30 robots per team. In particular we report
the log of E(k) and the log of W(k) defined as

W(k) =
1
N

N∑
i=1

|mi(k)|,

323Discrete State Estimators for a Class of Hybrid Systems on a Lattice

which by virtue of Lemmas 5 and 6 is non increasing and converging to one, that is the
sets (m1(k), ...,mN(k)) converge to α(k) = (α1(k), ..., αN(k)). In the same figure we notice
that when W(k) converges to one, E(k) has not converged to zero yet. This suggests that
the observer is much faster than the dynamics of the system under study. We cannot
explain such a good performance formally yet, and the observer speed issue will be
addressed in future work.

7 Conclusions

We have proposed a way for estimating discrete variables in a class of hybrid sys-
tems where the continuous variables are measured. The observer is constructed on a
lattice structure and it updates the least element and the greatest element of the set of
all discrete variables values compatible with the observed output sequence. These ideas
are applied to a multi-robot example: The RoboFlag Drill. This approach is promising
for reducing the computational effort of the observer since it updates a “cheap” repre-
sentation of a set rather than the set itself.

More work is needed to establish how general the conditions listed in Theorem 1
are, and what is the compromise between generality and complexity. Also more investi-
gation is needed to understand when the extended system is still observable. Computing
the intersection [L(k),U(k)]∩U is needed once the observer has converged for recover-
ing the α value. The complexity of this computation is smaller than (N2 + N)/2 for the
RoboFlag Drill system with N robots, but the general case needs more investigation. A
question to be still addressed is concerned with the speed of convergence; the simulation
results are encouraging to this regard and a formal analysis needs to be developed.

Acknowledgments.
This work was supported in part by the ONR grant N00014-10-1-0890 under the
MURI program, and the NSF Center for Neuromorphic Systems Engineering. We would
like to thank Professor Eric Klavins for his contribution to our knowledge on computer
science related subjects and for his insightful comments.

References

1. A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. Sangiovanni-Vincentelli. Design of
observers for hybrid systems. Lecture Notes in Computer Science 2289,C. J. Tomlin and M.
R. Greensreet Eds. Springer, pages 76–89, 2002.

2. A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controllability of piece-
wise affine and hybrid systems. IEEE Transactions on Automatic Control, 45:1864–1876,
1999.

3. P. E. Caines. Classical and logic-based dynamic observers for finite automata. IMA J. of
Mathematical Control and Information, pages 45–80, 1991.

4. A. R. Cassandra, L. P. Kaelbling, and M. L Littman. Acting optimally in partially observable
stochastic domains. In Proc. 12th Conference on Artificial Intelligence , pages 1023–1028,
Seattle, WA, 1994.

324 D. Del Vecchio and R.M. Murray

5. B. A. Davey and H. A. Priesteley. Introduction to Lattices and Order. Cambridge University
Press, 2002.

6. C. M. Özveren and A. S. Willsky. Observability of discrete event dynamic systems. IEEE
Transactions on Automatic Control, 35(7):797–806, 19.

7. E. W. Dijkstra. Guarded commands, non-determinacy and a calculus for the derivation of
programs. In Proceedings of the international conference on Reliable software, pages 2 –
2.13, Los Angeles, California, 1975. http://portal.acm.org.

8. E. Klavins. A formal model of a multi-robot control and communication task. In Conference
on Decision and Control, Hawaii, 2003.

9. David G. Luenberger. An introduction to observers. IEEE Transactions on Automatic Con-
trol, AC-16:6:596–602, 1971.

10. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur- rent Systems: Speci-
cation. Springer-Verlag, 1992.

11. P. J. Ramadge. Observability of discrete event systems. In Proc. 25th Conference on Decision
and Control, pages 1108–1112, Athens, Greece, 1986.

12. D. Del Vecchio and E. Klavins. Observation of guarded command programs. In Conference
on Decision and Control, Hawaii, 2003.

325Discrete State Estimators for a Class of Hybrid Systems on a Lattice

	Introduction
	Basic Concepts
	Lattice Theory
	State Transition Systems

	Observer Construction
	An Example: The RoboFlag Drill
	Observer Construction for the RoboFlag Drill System
	Observability
	Lattice Structure
	Properties of the Extended Functions
	Complexity Considerations

	Simulation Results
	Conclusions

