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Abstract. In this paper, a cascade discrete-continuous state estimator on a partial
order is proposed and its existence investigated. The continuous state estimation
error is bounded by a monotonically nonincreasing function of the discrete state
estimation error, with both the estimation errors converging to zero. This work
shows that the lattice approach to estimation is general as the proposed estima-
tor can be constructed for any observable and discrete state observable system.
The main advantage of using the lattice approach for estimation becomes clear
when the system has monotone properties that can be exploited in the estimator
design. In such a case, the computational complexity of the estimator can be dras-
tically reduced and tractability can be achieved. Some examples are proposed to
illustrate these ideas.

1 Introduction

The analysis of systems that show “hybrid” behavior is precious to several engi-
neering areas. Embedded systems and complex systems such as the Internet, biological
systems, multi-agent systems, and many others provide examples of such a hybrid be-
havior. The problem of estimating the state becomes relevant when asking to control
these systems or to verify the correctness of their behavior as is in the case of air-traffic
control systems ([11], [2]).

The coupling of continuous and discrete dynamics renders the analysis of these
systems hard. As pointed out by Bemporad [3], one of the biggest issues is complexity.
One of the sources of such complexity is the absence of mathematical tools able to
handle a uniform analysis of both the logic evolution and of the continuous evolution.
In Del Vecchio et al. [5], it was shown that a partial order on the discrete variables can be
used in order to reduce complexity of the discrete state estimator and achieve scalability
in the number of variables to be estimated. In this paper, similar ideas are applied in
order to estimate the continuous and the discrete variables in a unified framework.

There is a wealth of research on hybrid observer design. The pioneering work of
Caines [4] proposes the observer tree method for the estimation of the discrete state of
a finite state machine. The observer tree method is used also in Balluchi et al. [1] for the
estimation of the discrete state. The estimator proposed in this paper is similar to the
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decoupled estimator design proposed by [1], except that in the present work the contin-
uous and the discrete states are estimated simultaneously and asymptotic convergence
and thus tracking of the state is achieved. If the dimension of the discrete variables
set is very large, the estimation problem relying on observer-tree methods becomes in-
tractable. If the system has some order preserving properties with respect to a suitable
partial order, the method that is proposed in this paper generates a computationally effi-
cient estimator. As opposed to [12], which proposes to detect the discrete state change
a posteriori, here estimation and tracking of the state is sought.

The basic assumption this paper relies on is that the discrete state can be estimated
without the aid of the continuous state estimate. This way, the continuous state estimate
can be driven by the discrete state estimate. Thus, a cascade discrete-continuous state
estimator is constructed that achieves convergence of the estimation error to zero and
thus tracks the value of the state. The estimator is constructed on a larger variable space
equipped with a partial order, where the extended system has some properties that are
referred to as order compatibility for the discrete state dynamics and induced order com-
patibility for the continuous state dynamics. The proposed estimator can be constructed
for any system that is observable and discrete state observable, and thus the lattice ap-
proach to estimation is general. The main advantage of this method is clear when the
system enjoys some monotonic properties that the estimator can exploit directly. In such
a case the complexity of the estimator is drastically reduced and a scalability property
can be achieved in the number of variables to be estimated. This is shown in simulation
examples.

This paper is organized as follows. In Section 2, basic notions on partial orders
and on observability are reviewed. In Section 3, the model is introduced. In Section 4,
the estimation problem is stated formally, and a solution is proposed in Section 5. The
existence result of the proposed estimator is in Section 6. To show the generality of the
proposed estimation scheme, the estimator is constructed for three different examples in
Section 7. Section 8 gives some computational complexity estimates that clearly show
the cases where the developed approach reduces the computational burden.

2 Basic concepts

This section reviews basic notions on partial order theory and on observability of
deterministic transition systems.

2.1 Partial Orders

A partial order is a set χwith a partial order relation “≤”, and it is denoted (χ,≤). The
join “g” and the meet ”f” of two elements x and w in χ are defined as xgw = sup{x,w}
and x f w = inf{x,w}, if S ⊆ χ,

∨

S = sup S and
∧

S = inf S , where sup{x,w}
denotes the smallest element in χ that is bigger than both x and w, and inf{x,w} denotes
the largest element in χ that is smaller than both x and w. If x < w and there is no other
element in between x and w, we write x � w.

Let (χ,≤) be a partial order. If x f w ∈ χ and x g w ∈ χ for any x,w ∈ χ, then (χ,≤)
is a lattice. Let (χ,≤) be a lattice and let S ⊆ χ be a non-empty subset of χ. Then (S ,≤)
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is a sublattice of χ if a, b ∈ S implies that a g b ∈ S and a f b ∈ S . If any sublattice
of χ contains its least and greatest elements, then (χ,≤) is called complete. Given a
complete lattice (χ,≤), we will be concerned with a special kind of a sublattice called
an interval sublattice defined as follows. Any interval sublattice of (χ,≤) is given by
[L,U] = {w ∈ χ : L ≤ w ≤ U} for L,U ∈ χ. That is, this special sublattice can
be represented by only two elements. For example, the intervals of (R,≤) are just the
familiar closed intervals on the real line. The cardinality of an interval sublattice [L,U]
is denoted |[L,U]|.

The power lattice of a set U, denoted (P(U),⊆), is given by the power set of U,
P(U) (the set of all subsets of U), ordered according to the set inclusion ⊆. The meet
and join of the power lattice is given by intersection and union. The bottom element is
the empty set, that is ⊥ = ∅, and the top element isU itself, that is > = U.

Let (P,≤) and (Q,≤) be partially ordered sets. A map f : P → Q is (i) an order
preserving map if x ≤ w =⇒ f (x) ≤ f (w); (ii) an order embedding if x ≤ w ⇐⇒
f (x) ≤ f (w); (iii) an order isomorphism if it is order embedding and it maps P onto Q.

A partial order induces a notion of distance between elements in the space. In this
paper, the distance function on a partial order is defined as follows.

Definition 1. (Distance on a partial order) Let (P,≤) be a partial order. A distance d on
(P,≤) is a function d : P × P→ R such that the following properties are verified:

(i) d(x, y) ≥ 0 for any x, y ∈ P and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);

(iii) if x ≤ y ≤ z then d(x, y) ≤ d(x, z).

Because this paper is concerned with a partial order on the space of the discrete variables
as well as with a partial order on the space of the continuous variables, it is useful to
introduce the Cartesian product of two partial orders (see [9] for example).

Definition 2. (Cartesian product of partial orders) Let (P1,≤) and (P2,≤) be two partial
orders. Their Cartesian product is given by (P1 × P2,≤), where P1 × P2 = {(x, y) | x ∈
P1 andy ∈ P2} and (x, y) ≤ (x′, y′) if and only if x ≤ x′ and y ≤ y′. For any (p1, p2) ∈
P1 × P2 the standard projections π1 : P1 × P2 → P1 and π2 : P1 × P2 → P2 are such
that π1(p1, p2) = p1 and π2(p1, p2) = p2.

2.2 Deterministic Transition Systems and Observability

The class of systems this work is concerned with are deterministic, infinite state
systems with output defined as follows. A deterministic transition system (DTS) is the
tuple Σ = (S ,Y, F, g), where S is a set of states with s ∈ S ; Y is a set of outputs with
y ∈ Y; F : S → S is the state transition function; g : S → Y is the output function. An
execution of Σ is any sequence σ = {s(k)}k∈N such that s(0) ∈ S and s(k + 1) = F(s(k))
for all k ∈ N. The set of all executions of Σ is denoted E(Σ).

Definition 3. (Observability) The deterministic transition system Σ = (S ,Y, F, g) is
said to be observable if any two different executions σ1, σ2 ∈ E(Σ) are such that there
exists a k such that g(σ1(k)) , g(σ2(k)).

In the following section, the class of observable deterministic transition systems is re-
stricted to those that are also discrete state observable.
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3 The Model

In this section, the distinction between the portion of the state that takes values in a
finite set and the portion that takes values in an infinite possibly dense set is explicitly
made. For a system Σ = (S ,Y, F, g), suppose that S = U×Z withU a finite set, andZ
an infinite possibly dense set; F = ( f , h), where f : U ×Y → U and h : U ×Z → Z;
g : U ×Z → Y is the output map. These systems have the form

α(k + 1) = f (α(k), y(k)) (1)
z(k + 1) = h(α(k), z(k)) (2)

y(k) = g(α(k), z(k)),

and they are referred to as the tuple Σ = (U × Z,Y, ( f , h), g). The function f that
updates the discrete variable α can be represented by a set of logic statements, or by a
look-up table or recursive formula as is the case of finite state machines ([8]). For each
value of α, the equation (2) is a difference equation. Before stating the problem in more
detail, an additional definition is given.

Definition 4. (Discrete state observability) The system Σ = (U×Z,Y, ( f , h), g) is said
to be discrete state observable if for any execution with output sequence {y(k)}k∈N, the
following are verified

(i) The set of α compatible with the pair (y(k), y(k + 1)), that is {α ∈ U | y(k) =
g(α, z(k)) and y(k + 1) = g( f (α, y(k)), h(α, z(k)))} := S(k) does not depend on z(k);

(ii) if two executions σ1 = {α1(k), z1(k)}k∈N and σ2 = {α2(k), z2(k)}k∈N are such that the
sequences {α1(k)}k∈N , {α2(k)}k∈N, then there is k > 0 such that α1(k) ∈ S(k) and
α2(k) < S(k).

Item (i) is trivially verified if g(α, z) = (gα(α), gz(α, z)), where gα : U → {Y1, Y2, ..., Ym}

partitions the set U in equivalence classes. We allow two steps in order to have an
equivalence class that is independent of z(k), as this is often the case when α acts in
the z dynamics. From this definition, it follows that a discrete state observable system
admits a discrete state estimator that does not involve the continuous state estimate.
This property will allow to construct a cascade discrete-continuous state estimator as
defined in the following section.

4 Problem Statement

Consider the deterministic transition system Σ = (U × Z,Y, ( f , h), g), with the
output sequence {y(k)}k∈N. It is desirable to determine and track the value of the current
state (α(k), z(k)) of the system. This is more formally stated in the following problem.

Problem 1. (Cascade discrete-continuous state estimator) Given the deterministic tran-
sition system Σ = (U × Z,Y, ( f , h), g), find functions f1, f2, f3, f4, f5 with f1 :
χ×Y×Y → χ, f2 : χ×Y×Y → χ, f3 : L×χ×Y×Y → L, f4 : L×χ×Y×Y → L,
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f5 : L → ZE , withU ⊆ χ, (χ,≤) a lattice,Z ⊆ ZE with (ZE,≤) a lattice, χ×ZE ⊆ L,
(L,≤) a lattice, such that the update laws

L(k + 1) = f1(L(k), y(k), y(k + 1))
U(k + 1) = f2(U(k), y(k), y(k + 1))
qL(k + 1) = f3(qL(k), L(k), y(k), y(k + 1))
qU(k + 1) = f4(qU(k),U(k), y(k), y(k + 1)) (3)

with zL(k) = f5(qL(k)) and zU(k) = f5(qU(k)), where L(k),U(k) ∈ χ, L(0) :=
∧

χ,
U(0) :=

∨

χ, qL(k), qU(k) ∈ L, qL(0) =
∧

L, qU(0) =
∨

L, and zL(k), zU(k) ∈ ZE ,
have the following properties

(i) L(k) ≤ α(k) ≤ U(k) (correctness);
(ii) |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]| (non-increasing error);

(iii) There exists k0 > 0 such that [L(k),U(k)]∩U = α(k) for any k ≥ k0 (convergence);
(i’) zL(k) ≤ z(k) ≤ zU(k);

(ii’) there is a nonnegative function V : N → R such that d(zL(k), zU(k)) ≤ V(k), with
V(k + 1) ≤ V(k);

(iii’) There exists k′0 > k0 such that d(zL′ (k), zU′ (k)) = 0 for any k ≥ k′0, where L′ =
∧

([L,U]∩U), U ′ =
∨

([L,U]∩U), zL′ (k) = f5(qL′ (k)), zU′ (k) = f5(qU′ (k)), qL′ (k+
1) = f3(qL′ (k), L′(k), y(k), y(k+1)), and qU′ (k+1) = f4(qU′ (k),U ′(k), y(k), y(k+1)),
with qL′ (0) = qL(0) and qU′ (0) = qU(0), for some distance function “d”.

The update laws (3) are in cascade form as the variables L and U are updated on the
basis of their previous values and on the basis of the output, while the variables qL

and qU are updated on the basis of their previous values and on the basis of the values
of L and U respectively. Note that the lower and the upper bound estimates of z(k) are
outputs of the laws that update qL(k) and qU(k), which lie in the spaceL. Properties (iii)
and (iii’) roughly ask that the lower and upper bounds shrink to α(k) and z(k). Property
(ii’) gives a monotonic bound on the continuous variable estimation error.

Note that the distance function “d” has been left unspecified for the moment, as
its form depends on the particular partial order chosen (ZE,≤). In the case in which
Z = ZE and the order is established component-wise, the distance can be the classical
euclidean distance. In the following section, a solution to the Problem 1 is proposed.

5 Estimator Construction

Given the deterministic transition system Σ = (U × Z,Y, ( f , h), g), a set of suffi-
cient conditions that allow a solution to Problem 1 is provided. With this respect, some
definitions involving the extension of the system Σ to a lattice are useful.

Definition 5. (System extension) Consider the system Σ = (U × Z,Y, ( f , h), g). Let
(χ,≤), (ZE,≤), and (L,≤) be lattices with U ⊆ χ, Z ⊆ ZE , and χ × ZE ⊆ L. An
extension of Σ on the lattice (L,≤) is given by Σ̃ = (L,Y, F̃, g̃) such that

(i) F̃ : L ×Y → L and F̃|U×Z×Y = ( f , h), and L − (U ×Z) is invariant under F̃;
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(ii) F̃|χ×ZE×Y = ( f̃ , h̃) where f̃ : χ × Y → χ, f̃ |U×Y = f , h̃ : χ × ZE → ZE , and
h̃|U×Z = h;

(iii) g̃ : L → Y and g̃|U×Z = g;
(iv) for any q ∈ L there exist (w1, z̄1), (w2, z̄2) ∈ χ×ZE such that (w1, z̄1) ≤ q ≤ (w2, z̄2),

where aL(q) := max(L,≤){(w, z̄) ∈ χ×ZE | q ≥ (w, z̄)} and aU(q) := min(L,≤){(w, z̄) ∈
χ ×ZE | q ≤ (w, z̄)}.

Item (iv) of the above definition establishes that the chosen lattices are such that any
element in L that is not in χ × ZE can be approximated by two elements in χ × ZE ,
aL(q) and aU(q). These are the lower and upper approximation of q respectively. Note
that if q ∈ χ × ZE , then aL(q) = aU(q) = q. The next definition links the discrete state
dynamics of Σ̃ with the partial order (χ,≤).

Definition 6. (Order compatibility) The pair (Σ̃, (χ,≤)) is said to be order compatible
if the following are verified

(i) {w ∈ χ | y(k + 1) = g̃( f̃ (w, y(k)), h̃(w, z(k))) and y(k) = g̃(w, z(k))} = [lw(k), uw(k)]
for lw(k), uw(k) ∈ χ;

(ii) f̃ : ([lw(k), uw(k)], y(k))→ [ f̃ (lw(k), y(k)), f̃ (uw(k), y(k))] is order isomorphic.

Item (i) in the above definition establishes that the set of w ∈ χ compatible with the pair
(y(k), y(k+1)) for any executionσ with output sequence {y(k)}k∈N is a sublattice interval
in χ. Note that S(k) = [lw(k), uw(k)]∩U by definition . Two steps k, k+1 are allowed to
obtain a set of w ∈ χ compatible with the output that does not depend on the values of z.
For the construction of a cascade discrete-continuous state estimator, the case in which
the partial order (L,≤) is induced by the partial order (χ,≤) by means of the system
dynamics is of interest. Thus, a new notion of order compatibility is introduced in the
next definition.

Definition 7. (Induced order compatibility) The pair (Σ̃, (L,≤)) is said to be induced
order compatible if

(i) for any w1 ≤ w2 in [lw(k), uw(k)], there are lq(k,w1), uq(k,w2) ∈ L such that

{q ∈ L |π1 ◦ aL(q) = w1, π1 ◦ aU(q) = w2, y(k + 1) = g̃(F̃(q, y(k))), and y(k) = g̃(q)}
⊆ [lq(k,w1), uq(k,w2)];

(ii) aL(lq(k,w1)) = (w1, lz(k,w1)) and aU(uq(k,w2)) = (w2, uz(k,w2)), for lz(k,w1), uz(k,w2)
∈ ZE;

(iii) F̃ : ([lq(k,w1), uq(k,w2)], y(k)) → [F̃(lq(k,w1), y(k)), F̃(uq(k,w2), y(k))] is order
preserving, and F̃ : (α × [lz(k, α), uz(k, α)], y(k))→ [F̃(α, lz(k, α), y(k)),
F̃(α, uz(k, α), y(k))] is order isomorphic;

(iv) for any [L,U] ⊆ [lw(k), uw(k)]

d
(

π2 ◦ aL ◦ F̃(lq(k, L), y(k)), π2 ◦ aU ◦ F̃(uq(k,U), y(k))
)

≤ γ(|[L,U]|),

for some distance function “d”,γ : N→ R a monotonic function of its argument.
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Item (i) of this definition means that a sublattice interval in (χ,≤) compatible with the
output pair (y(k), y(k + 1)) induces a sublattice interval in (L,≤) corresponding to the
same output pair. Item (ii) specifies that such output interval is approximated by the
Cartesian product of two sublattice intervals in (χ,≤) and in (ZE ,≤). Item (iii) estab-
lishes the usual order preserving properties of the extension, and item (iv) establishes
that the size of the interval lattice in (ZE ,≤) induced by an interval [L,U] ∈ χ increases
with the size of [L,U]. A solution to the Problem 1 is proposed by the following theo-
rem.

Theorem 1. Given the system Σ = (U ×Z,Y, ( f , h), g), assume that there are lattices
(χ,≤), (ZE,≤), and (L,≤), with U ⊆ χ, Z ⊆ ZE, and χ × ZE ⊆ L such that the
pairs (Σ̃, (χ,≤)) and (Σ̃, (L,≤)) are order compatible and induced order compatible
respectively. Then a solution to Problem 1 is provided by

L(k + 1) = f̃ (lw(k) g L(k), y(k))
U(k + 1) = f̃ (uw(k) f U(k), y(k))
qL(k + 1) = F̃(qL(k) g lq(k, lw(k) g L(k)), y(k))
qU(k + 1) = F̃(qU(k) f uq(k, uw(k) f U(k)), y(k)). (4)

with zL(k) = π2 ◦ aL(qL(k)) and zU(k) = π2 ◦ aU(qU(k)).

Proof. The idea of the proof is analogous to the one proposed in [7]. Here, a sketch
is provided, which highlights the differences due to the more general framework con-
sidered in this paper. For the proof of (i)-(ii)-(iii), the reader is deferred to [5]. Define
U∗ = uw(k)fU(k), L∗ = lw(k)g L(k), q∗U = qU(k)f lq(k,U∗), and q∗L = qL(k)g lq(k, L∗).
The dependence of uq and lq on their arguments is omitted, as well as the dependence
of F̃ on y.

Proof of (i’). By using induction argument on k and exploiting the order preserving
property of F̃, one can show that qL(k) ≤ (α(k), z(k)) ≤ qU(k) (see Figure 1) for any k.
By the the fact that π2 ◦ aL and π2 ◦ aU are order preserving functions, (i’) follows (see
Figure 1).

Proof of (ii’). Using the order preserving property of F̃, of π2 ◦ aL, and of π2 ◦

aU , one deduces that zL(k + 1) ≥ π2 ◦ aL ◦ F̃(lq(k, L∗)) and zU (k + 1) ≤ π2 ◦ aU ◦

F̃(uq(k,U∗)) (see Figure 1). By exploiting the property (iii) of the distance function in
Definition 1, and the property (iv) given in Definition 7, one can infer that d(zL(k +
1), zU(k + 1)) ≤ γ(|[L∗,U∗]|). Since f̃ is order isomorphic, it follows that |[L∗,U∗]| =
|[ f̃ (L∗, y), f̃ (U∗, y)]|. Thus, (ii’) of Problem 1 is satisfied with V(k) = γ(|[L(k),U(k)]|).

Proof of (iii’). For k > k0, L′(k) = α(k) = U ′(k) as [L(k),U(k)] ∩ U = α(k). As a
consequence, qL′ (k+1) = F̃(qL′ (k)g lq(k, α(k))) and qU′ (k+1) = F̃(qU′ (k)guq(k, α(k))),
where lq(k, α) = (α, lz(k, α)) and uq(k, α) = (α, uz(k, α)). One then uses the facts that
(α, lz(k, α)) ≤ qL′ (k) g lq(k, α(k)), qU′ (k) g uq(k, α(k)) ≤ (α, uz(k, α)), the fact that F̃ :
(α×[lz(k, α), uz(k, α)])→ [F̃(α, lz(k, α)), F̃(α, uz(k, α))] is order isomorphic, and the fact
thatL−(U×Z) is invariant under F̃. Proceeding by contradiction, if for any k there are
(α′, z′1), (α′, z′2) in [qL′(k), qU′ (k)] ∩ (U ×Z) that are compatible with the output, there
must be (α, z1), (α, z2) ∈ [qL′ (k − 1), qU′(k − 1)] ∩ (U ×Z) such that (α′, z′1) = F(α, z1)
and (α′, z′2) = F(α, z2). Also, (α, z1), (α, z2) are compatible with the output as well (see
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U(k + 1)

y(k)

α(k + 1)

L(k + 1)

y(k + 1)

uw(k)

f̃

L∗

α(k)

L(k)lw(k)

U∗

U(k)

y(k)

uq

lq

(α(k), z(k))
q∗L

qU(k)

qL(k)

F̃

q∗U

y(k + 1)

qU(k + 1)

F̃(uq)

(α(k + 1), z(k + 1))

F̃(lq)

qL(k + 1)π2 ◦ aL

z(k + 1)

π2 ◦ aU
zU(k + 1)

zL(k + 1)

Fig. 1. Hasse diagrams representing the updates of the estimator in Theorem 1.

Figure 1). Since this is true for any k, one can construct two executions of Σ that are
different and share the same output sequence. This contradicts observability of Σ. Then
there must be k > k0 such that [qL′(k), qU′ (k)] ∩ (U ×Z) = (α(k), z(k)), and therefore
zL′ (k) = zU′ (k) = z(k).

In the following section, conditions in order to verify the assumptions needed for the
construction of the estimator given in Theorem 1 are given. I particular, observability
and discrete state observability are sufficient conditions for the estimator construction,
and therefore the proposed estimation approach on a lattice is general.

6 Estimator Existence

The following theorem shows that if the system Σ is observable and discrete state
observable, the lattices (L,≤), (ZE,≤), and (χ,≤) introduced in the previous section
exist, such that the extended system is both order compatible with (χ,≤) and induced
order compatible with (L,≤).

Theorem 2. Assume that the system Σ = (U×Z,Y, ( f , h), g) is observable and discrete
state observable. Then there exist lattices (χ,≤), (ZE,≤), (L,≤) withU ⊆ χ,Z ⊆ ZE ,
and χ×ZE ⊆ L, and an extension Σ̃ of Σ on (L,≤) that is order compatible with (χ,≤)
and induced order compatible with (L,≤).
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Proof. To prove that discrete state observability implies the existence of a lattice (χ,≤
) and an extension on (L,≤) of Σ that is order compatible with (χ,≤), the reader is
deferred to [6]. Briefly, it can be shown that the lattice (χ,≤) can be chosen as (χ,≤) =
(P(U),⊆). Moreover, the function f̃ : χ × Y → χ is defined f̃ (w, y) = f (α1, y) g ... g
f (αn, y) for any w = α1 g ... g αn, and f̃ (⊥, y) = ⊥. Next, lattices (ZE,≤), and (L,≤)
with extensions h̃ and F̃ that satisfy the desired properties are constructed as well.

Define {z|y = g(α, z), α ∈ U} := m(α, y). ThenZE is defined in the following way:
(i) Z ⊆ ZE; (ii) m(α, y) ∈ ZE for any y ∈ Y and α ∈ U; (iii) ZE is invariant under
h, i.e. if z̄ ∈ ZE , then h(α, z̄) ∈ ZE for any z̄ ∈ ZE and α ∈ U; (iv) ZE is closed
under finite unions and finite intersections. By construction, (ZE ,≤) is a lattice where
the order is established by inclusion. Each element inZE is either a submanifold ofZ
or a union of disjoint submanifolds. Also, (χ×ZE ,≤) is a lattice with order established
component-wise. Define (L,≤) := (P(χ×ZE),⊆). Obviously, χ×ZE ⊆ L. Any element
q ∈ L has the form q = (w1, z̄1) g ... g (wk, z̄k), where z̄ j ∈ ZE and wi ∈ χ.

Define the function F̃ : L × Y → L in the following way. For any q = (w1, z̄1) g
... g (wk, z̄k) ∈ L, define (omit the dependence on y for simplifying notation)

F̃(q) := F̃(w1, z̄1) g ... g (F̃(wk, z̄n),

where F̃(wi, z̄i) := ( f̃ (wi), h̃(wi, z̄i)). Let wi = αi,1 g ... g αi,pi and z̄i = mi,1 g ... g mi,ni

with mi,1 submanifolds of Z, then h̃ : χ × ZE → ZE is defined such that h̃(wi, z̄i) :=
gl, jh(αi,l,mi, j). From this definition, it follows that F̃ is order preserving. Also, F̃(⊥) :=
⊥.

The function g̃ : L → Y is defined in the following way. For any q ∈ L for
q = (w1, z̄1) g ... g (wk, z̄k), wi = αi,1 g ... g αi,pi , and z̄i = mi,1 g ... g mi,ni

g̃(q) := y iff g̃(wi, z̄i) = y,

with g̃(wi, z̄i) = y iff g(αi,l,mi, j) = y for any l, j, where g(αi,l,mi, j) = y if and only if
mi, j ⊆ m(αi, j, y) by definition of m(αi, j, y).

For any q = (w1, z̄1) g ... g (wk, z̄k) ∈ L, its lower and upper approximations are
defined as aL(q) := (w1 f ... f wk, z̄1 f ... f z̄k) and aU(q) := (w1 g ... g wk, z̄1 g ... g z̄k).
An example of elements in the lattice (L,≤) with lower and upper approximations is
shown in Figure 2.

The lattices and the system extension have been constructed. Now, the items of
Definition 6 and Definition 7 can be checked. Item (i) of Definition 6 is satisfied with
[lw, uw] = [⊥,w] for w = α1 g ... g αn, with αi such that g(αi, z(k)) = y(k) and
g̃( f (αi, y(k)), h̃(αi, z(k))) = y(k + 1). Items (i)-(ii) of Definition 7 are satisfied with
{q ∈ L | y(k) = g̃(q), π1 ◦ aL(q) = ⊥, π1 ◦ aU(q) = w} = [⊥, uq(k,w)] with uq(k,w) =
(α1,m(α1, y(k))) g ... g (αn,m(αn, y(k))) if w = α1 g ... g αn. Also, aL(⊥) = ⊥ and
π2 ◦ aU(uq(k,w)) = m(α1, y(k)) g ... g m(αn, y(k)).

Item (iii) of Definition 7 is satisfied because F̃ is order preserving by construction
and because F̃ : α × [⊥,m(α, y)]→ [⊥, F̃(α,m(α, y))] is one-one because the system is
observable.
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aL((α1, z1) g (α2, z2)) = ⊥
aU((α1, z1) g (α2, z2)) = (α1 g α2, z1 g z2)

(α1, z1) g (α2, z2)

(α2, z1) (α1, z2) (α1, z1) (α2, z2)

(α1 g α2, z1 g z2)
∈ L and not in χ × ZE

∈ χ ×ZE

(α2, z1) g (α1, z2)

⊥

Fig. 2. Hasse diagram representing elements in the lattice (L,≤).

To verify (iv) of Definition 7, a distance function onZE is defined. For any z̄1, z̄2 ∈

ZE , define

d(z̄1, z̄2) :=















|dim(z̄1) − dim(z̄2)| if z̄1 and z̄2 are related
1 if z̄1 and z̄2 are not related,

(5)

where if z̄ = m1 g ... g mn, dim(z̄) :=
∑

i dim(mi), and dim(mi) denotes the dimension
of the submanifold mi ⊂ Z. Define dim(⊥) = 0, dim(z) = 1 for any z ∈ Z, thus a
submanifold isomorphic to Rm has dimension m + 1. Properties (i)-(ii) of Definition
1 are verified. (Note that any two points in Z are not related.) To verify (iii) of the
Definition 1, consider z̄1 ≤ z̄2 for z̄1, z̄2 ∈ ZE , and compute d(⊥, z̄1) and d(⊥, z̄2).
If z̄1 ≤ z̄2, by the way ZE has been constructed, it means that there are mi and m′i
submanifolds inZE such that z̄1 = m1 g ...gmn, and z̄2 = m′1 g ...gm′p with n ≤ p, and
for any i there is a j such that mi ⊆ m′j. Thus, dim(z̄1) = dim(m1) + ... + dim(mn) and
dim(z̄2) = dim(m′1)+ ...+ dim(m′p) with n ≤ p and dim(mi) ≤ dim(m′i). Thus expression
(5) defines a distance function according to Definition 1. Thus, for any [⊥,U] ⊆ [⊥, uw]
with U = α1 g ... g αn

d(⊥, π2 ◦ aU ◦ F̃(uq(k,U))) = d(⊥, h(α1,m(α1, y)) g ... g h(αn,m(αn, y))),

as F̃(uq(k,U)) = ( f (α1), h(α1,m(α1, y))g ...g ( f (αn), h(αn,m(αn, y)), aU ◦ F̃(uq(k,U)) =
( f (α1)g ...g f (αn), h(α1,m(α1, y))g ...gh(αn,m(αn, y))), and thus π2◦aU ◦ F̃(uq(k,U)) =
h(α1,m(α1, y)) g ... g h(αn,m(αn, y)). Concluding, the definition of distance yields to

d(⊥, h(α1,m(α1, y)) g ... g h(αn,m(αn, y))) =
n
∑

i=1

dim(h(αi,m(αi, y)) ≤ dM |[⊥,U]|,

where dM = maxidim(h(αi,m(αi, y)).

Remark 1. In the case the system Σ is monotone and observable in two steps (see [7]),
the same result holds withZE = Z and L = χ × Z.
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This theorem shows that for observable and discrete state observable systems it is al-
ways possible to construct the estimator on a lattice proposed in Theorem 1. However,
the main advantage of the use of such a method is clear when the space of discrete
and/or the space of continuous variables can be extended to lattices where the order
relation can be efficiently computed using algebraic properties. This is the case of the
monotone deterministic transition systems considered in [7]. To illustrate this point, in
the next section three examples are proposed.

7 Simulation examples

The first example is a linear hybrid automaton where a lattice of the type constructed
in the proof of Theorem 2 is used. The second example is characterized by a continuous
dynamics which is monotone (see [10]), and this allows to have ZE = Z with a cone
partial order. The third example is a multi-robot example proposed in [7], which is a
monotone DTS, and thus it allows the largest complexity reduction.

Example 1. Linear discrete time hybrid automaton. DefineU = {α1, α2, α3, α4, α5},

α1

α2

α3

α4

α5

Y1

Y2

⊥

α2 α3 α4 α5

f̃ (Y2) Y2
Y1

f̃ 2(Y1)f̃ (Y1)

>
(χ,≤)

α1

Fig. 3. Map f and output function for the automaton of Example 1 (left). Lattice (χ,≤) and the
extended function f̃ (right).

and α(k + 1) = f (α(k)) where f is defined in the Figure 3 left. Assume Z = Rn,
z(k + 1) = A(α(k))z(k) + B(α(k)), where A(αi) = Ai ∈ R

n × Rn and B(αi) = Bi ∈ Z. The
output function g is such that g(α, z) = (gα(α), gz(α, z)), where gα : U → {Y1, Y2} and
gz(α, z) = C(α)z, with C(αi) = Ci ∈ R

m ×Z.
An instance of such an example is considered with n = 3, where A1 = ((1, 1, 1)′,

(0, 1, 1)′, (0, 0, 1)′)′, A2 = ((1/2, 1/2, 1/2)′, (1, 2, 2)′, (0, 0, 1)′)′, A3 = ((2, 1, 1)′, (0, 1, 1)′,
(2, 0, 0)′)′, A4 = ((1, 1, 1)′, (1, 1, 0)′, (0, 0, 1)′)′, A5 = ((1, 0, 0)′, (1, 1, 1)′, (1, 1, 0)′)′,
C1 = (1, 0, 0), C2 = (1, 1, 2), C3 = (0, 0, 0), C4 = (1, 0, 0), and C5 = (0, 1, 1). The
values of Bi are not relevant for computing the estimator performance, and thus they
are omitted.
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For the discrete state estimate, the minimal lattice (χ,≤) where the system is ex-
tended is shown in Figure 3 right. Its size is always smaller than |U|2 as pointed out in
[6], and its construction is analogous to the construction of the observer tree as done in
[4] and [1].

For the continuous state estimate, the lattice (ZE,≤) is constructed according to the
proof of Theorem 2, where the submanifolds are affine linear subspaces. Thus, zU (k) at
each step k is a collection of affine linear subspaces, each given by the set of z ∈ R3

such that Mi(k)z = (Y(k) − Vi(k)), where Mi(k) = (C(αi)′, (C( f (αi))A(αi))′, ...,
(C( f k−1(αi))A( f k−2(αi)))′)′, Vi(k) = (0,C( f (αi))B(αi), ...C( f k−1(αi))B( f k−2(αi)))′, Y(k) =
(y(0), ..., y(k−1))′, and αi is such that f k−1(αi) ∈ [⊥,U(k)], for U(k) ∈ χ and i ∈ {1, .., 5}.
When only one αi is left in [⊥,U(k)] and the corresponding matrix Mi(k) has rank equal
to n, the estimator has converged. Thus, define d(⊥, zU(k)) =

∑5
i=1 β(Mi(k)) where

β(Mi(k)) :=















0 if f k−1(αi) < [⊥,U(k)]
(n + 1) − rank(Mi(k)) otherwise

As a consequence, when d(⊥, zU(k)) = 1, the estimator has converged and z(k) =
M j(k)†(Y(k)−V j(k)) for some j ∈ {1, ..., 5}, where M j(k)† is the pseudoinverse of M j(k).
Note that, after the first k at which d(⊥, zU(k)) = 1, the state of the system is tracked.
The behavior of d(⊥,U(k)) := |[⊥,U(k)]| and of d(⊥, zU(k)) are illustrated in the left
plot of Figure 4. Note that a simultaneous discrete-continuous state estimation allows
faster convergence rates of the continuous estimate with respect to the case in which the
continuous estimate takes place after the discrete estimate has converged.
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d(     , U(k)) 
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L
(k),z

U
(k)) 

time step k 

T 

Fig. 4. Estimator performance: example 1 (left) and example 2 (right).

In this example, the continuous variable space does not have monotone properties.
As a consequence, the representation of the elements of (χ,≤) and of (ZE,≤) involves
a listing of objects: for χ, there is a listing of αis and for Z we have a listing of linear
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subspaces. Moreover, to represent each linear subspace, a number of constants larger
than n (the number of constants needed for representing an element in Rn) is needed. A
measure of the complexity of the estimator is given in the sequel. If |U| is very large,
this choice of the partial orders renders the estimation process prohibitive. A case in
which a different partial order must be used for computational tractability, is presented
in Example 3.

Example 2. This example considers the case in which it is possible to chooseZE =

Z because the system is monotone (see [7] for a formal definition). Let again U =
{α1, α2, α3, α4, α5}, and α(k + 1) = f (α(k)) where f is defined in Figure 3 (left). The
continuous dynamics is given by

z1(k + 1) = (1 − β)z1(k) − βzi,2(k) + 2βX(α(k))
z2(k + 1) = (1 − λ)z2(k) + λX(α(k)), (6)

where β = 0.1, λ = 0.1, X(αi) := 10i for i ∈ {1, ..., 5}. The minimal lattice (χ,≤)
is shown in Figure 3 (right). In this case L = χ × Z, where Z = R2, and the order
(Z,≤) is chosen such that (za

1, z
a
2) ≤ (zb

1, z
b
2) if and only if za

2 ≤ zb
2. The function h̃ :

χ × Z → Z is defined by defining the function X̃ : χ → R in the following way.
X̃(Y1) := max(X(α1), X(α2), X(α3)) = 30, X̃(Y2) := max(X(α3), X(α5)) = 50, and in
analogous way for the others, that is X̃( f̃ (Y2)) = 50, X̃( f̃ 2(Y1)) = 50, X̃( f̃ (Y1)) = 50,
and X̃(⊥) := 0. With this choice, h̃(w1, za) ≤ h̃(w2, zb) for any (w1, za) ≤ (w2, zb), that is
the system is monotone. Convergence plots are shown in Figure 4 (right).

As opposite to Example 1, in this case the representation of the elements in ZE

requires only n scalar numbers, and the computation of the order relation is straightfor-
ward. This alleviates the computational burden with respect to the previous example.

Example 3. This example shows the case in which there is a (χ,≤), whose order
relation can be computed algebraically, and ZE = Z = R

20, with order established
according to the cone order. There are N = 10 discrete variables updated in a highly
coupled fashion (the assignments), each living in the set {1, ...,N}. As a consequence
U = [1,N]N . This example is the multi-robot example described in detail in [7], and
it is a monotone DTS. Here, only convergence plots are shown, and they are in Figure
5. The size of U is of the order of NN , but thanks to the monotonic properties of the
system, the computational complexity of the estimator is linear with N.

8 Complexity considerations

The scope of the proposed examples is two-fold. First, they give an idea of the range
of systems to which the lattice estimation approach applies (just observable and discrete
state observable systems). Second, they point out that the lattice approach alleviates the
computational burden of the estimator and even renders intractable problems tractable
when the system has monotone properties and a good choice of the lattices is made. To
make this point more formal, the computational complexity in each of the examples is
estimated as function of the continuous variables, the discrete variables, and the sizes of
the sets where the discrete variables lie. This section is not meant to be a formal treat-
ment of computational complexity, but has the scope of giving a qualitative measure of
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Fig. 5. Estimator performance: example 3. W(k) represents the discrete state estimation error and
V(k) is the monotonic function bounding the continuous state estimation error.

the computational complexity diversity of the proposed examples. Let n be the number
of continuous variables (3 for the first example, 2 for the second, and 20 in the third),
N be the number of discrete variables (1 in the first example, 1 in the second example,
and 10 in the third example), and u be the set where each discrete variable lie ( in the
first and second example u = U, and in the third u = {1, ...,N} and U = uN). The
computational cost of the estimator is computed as

computational cost ∝ S + aUC

where S is the sum of the sizes of the look-up tables used at each update of the estimator,
and aUC is the algebraic update cost of each estimator update. The cost of any set of
algebraic computation is set to 1. One can verify that S ∝ |u|2N in the first two examples,
and that S ∝ 2N in the third one. In the first example, aUC ∝ |u|Nn, and aUC ∝ 2n in the
second and third examples. This is shown in the following table.

Table 1: Estimator computational cost

Example 1 |u|2N + |u|Nn

Example 2 |u|2N + 2n

Example 3 2N + 2n

From the table, one notice that moving from Example 1 to Example 3 the computational
burden due to the size of u decreases, and it disappears in the case of the third example.
This is due to the monotone properties of the continuous dynamics in Example 2 and
Example 3, and to the existence of a lattice (χ,≤) with algebraic properties in Example
3. Note also that the complexity reduction that characterizes the third example does not
occur because the discrete variables dynamics decouples, as in fact it is heavily coupled.
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9 Conclusions

In this paper, a cascade discrete-continuous state estimator design is proposed under
observability and discrete state observability assumptions. As pointed out also in the
simulation examples section, the proposed approach is general. The main advantage
of using a lattice approach to the estimation problem is clear when the system has
monotone properties that can be exploited in the estimator construction. In this case,
the computational complexity is drastically reduced and a scalability property holds
in the number of variables to be estimated. Thanks to this feature, the estimator can be
efficiently designed even for systems with large discrete state spaces, for which the state
estimation problem is intractable if the monotone properties are not directly exploited
(see Example 3).

The results obtained in this paper suggest that a partial order structure is a possible
way for overcoming complexity issues in the estimation of hybrid systems. A future
research trust will try to generalize these ideas to the coupled discrete-continuous state
estimation problem. Given the promising results obtained using partial order theory for
state estimation problems, the authors will explore the possibility of applying similar
tools for other control and analysis problems in hybrid systems.
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