
A Partial Order Approach to Discrete Dynamic
Feedback in a Class of Hybrid Systems

Domitilla Del Vecchio

University of Michigan, Department of Electrical Engineering and Computer Science,
1301 Beal Avenue, Ann Arbor, MI 48109

ddv@umich.edu

http://www.eecs.umich.edu/∼ddv

Abstract. We consider the dynamic feedback problem in a class of hybrid sys-
tems modeled as (infinite) state deterministic transition systems, in which the con-
tinuous variables are available for measurement. The contribution of the present
paper is twofold. First, a novel framework for performing dynamic feedback is
proposed which relies on partial orders on the sets of inputs and of discrete states.
Within this framework, a state estimator updates a lower and an upper bound of
the set of current states. A controller then uses such upper and lower bounds to
compute the upper and lower bounds of the set of inputs that maintain the cur-
rent state in a desired set. Second, we show that under dynamic controllability
assumptions, the conditions that allow to apply the developed algorithms can al-
ways be verified. Therefore, the partial order approach to dynamic feedback is
general. A multi-robot system is presented to show the computational advantages
in a system in which the size of the state set can be so large as to render enumer-
ation and exhaustive techniques inapplicable.

1 Introduction

Controller design problems under language specification have been extensively studied
for discrete systems in the computer science literature (see [10] for an overview). A
control perspective in the context of discrete event systems was given by [7]. The ap-
proach has been extended to specific classes of hybrid systems such as timed automata
[1] and rectangular automata [11]. These works are mainly concerned with state feed-
back. An output map is considered in the literature of viability theory for hybrid systems
(see for example [2] and [5]), in which static output feedback is usually performed. In
this paper, we consider the dynamic control problem for systems with continuous and
discrete variables in the case in which the continuous variables are measured. This sim-
plified scenario has practical interest in multi-robot systems in which the continuous
variables represent the position and the velocity of a robot, while the discrete variables
regulate the internal communication and coordination protocol. This work thus relates
also to the computer science literature addressing control under partial observation of
automata and of discrete event systems. In [7], the control problem of discrete event
systems under language specifications is considered. The proposed control algorithms
with full observation have polynomial complexity in the number of states. In the case of
partial observations, the control problem becomes NP complete at worse. In a practical
system, the number of states can be exponential in the number of constituent processes,

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 159–173, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

160 D. Del Vecchio

and therefore these control methodologies are prohibitive. Caines and Wang [6], con-
sider the problem of steering the state of a partially observed automata to a final desired
state. A dynamic programming methodology is proposed, which leads to a complexity
of the control computation that is polynomial in the size of the state set, of the input
set, and of the output set. Modular synthesis and special structures on the process are
suggested (by [8], for example) in order to reduce computation.

In this work, we exploit a partial order structure on the set of inputs and of states
to construct a feedback system that updates the lower and upper bound of the set of
possible current system states and gives as output the lower and upper bounds of the
set of inputs that satisfy the system specifications. This can be achieved under suitable
order preserving assumptions of the system dynamics with respect to the state and to
the input. We then show that if the system is controllable by dynamic output feedback
one can always find partial orders on which the assumptions needed for the construction
of the proposed controller are verified. We finally show how these assumptions can be
relaxed. A multi-robot example is proposed, which shows how to apply the proposed
methodology in an attack-defense scenario. This paper is organized as follows. In sec-
tion 2, we introduce the system model. In section 3, we introduce the control problem
on a partial order. In section 4, we give a solution to the problem and in Section 5 we
show that the proposed construction is possible if the system is controllable. In sec-
tion 6, a relaxed version of the main theorem is proposed and a multi-robot example is
illustrated. An appendix contains notions on partial order theory and the proofs.

2 Deterministic Transition Systems

Definition 1. A deterministic transition system is a tuple Σ = (Q,I,Y, F, g) in which
Q is a set of states, Y is a set of outputs, I is a set of inputs, F : Q × I −→ Q is a
transition function, and g : Q −→ Y is an output function.

An execution of Σ is any sequence σ = {s(k)}k∈N such that s(0) ∈ Q and s(k + 1) =
F(s(k), u(k)) for u(k) ∈ I for all k ∈ N. The set of all executions of Σ is denoted
E(Σ). The output sequence g(σ) is also denoted {y(k)}k∈N with y(k) = g(s(k)). Given a
system execution σ, s(k) = σ(k)(s) denotes the value of the state at step k along such
an execution. Let S ⊆ Q be a subset of the state set. We would like to design a control
algorithm that based on the output sequence {y(k)}k∈N of Σ determines control inputs
that guarantee that σ(k)(s) ∈ S for all k. The initial set, denoted X0 ⊆ Q is the set in
which the initial condition of the system Σ is constrained to lie, that is, s(0) ∈ X0. The
next definition proposes a concept of dynamic output feedback analogous to the one
proposed by [9].

Definition 2. The system Σ is said to be controllable by dynamic output feedback
with respect to set S and initial set X0 ⊆ S if there exist a feedback system Σ f =

(P(Q),Y,P(I),H2,H1) such that for all executions σ ∈ E(Σ) with output sequence
{y(k)}k∈N if X(k + 1) = H2(X(k), y(k)), u(k) ∈ H1(X(k), y(k)), with X(0) = X0, then (i)
σ(k)(s) ∈ X(k) and (ii) X(k) ⊆ S for all k.

In this definition, X(k) is the set of all possible states compatible with the system dynam-
ics and with the output sequence, while H2 is the update function of a state estimator.

A Partial Order Approach to Discrete Dynamic Feedback 161

The function H1 for all set of possible states X, determines the set of inputs that map
such a set inside S . Let y ∈ Y, we denote the set of all possible states compatible with
such an output by Oy(Σ) = {s ∈ Q | g(s) = y}. We refer to this set as an output set.

Proposition 1. Let X0 ⊆ S . System Σ is controllable by dynamic output feedback with
respect to set S and initial set X0 ⊆ S if and only if {u ∈ I | F(Oy(Σ) ∩ S , u) ⊆ S } � ∅.
The theorems that will be proven rely on the condition that a system is controllable by
dynamic output feedback with respect to a set S . This proposition allows to replace such
controllability condition by {u ∈ I | F(Oy(Σ) ∩ S , u) ⊆ S } � ∅ for all y ∈ Y. In this pa-
per, we do not focus on the problem of checking whether the condition of Proposition 1
is verified in a given system, but we focus on how to construct a dynamic feedback
controller when such a condition is verified. For completeness, a system Σ is said to be
controllable by static output feedback if for all y ∈ Y the set {u ∈ I | F(Oy(Σ), u) ⊆ S }
is not empty. A system that is controllable by dynamic output feedback is not neces-
sarily controllable by static output feedback. In fact, in the static output feedback no
memory is needed in the controller. This memory is instead used in the dynamic output
feedback case, in which a state estimator on-line restricts at each step the set of all pos-
sible current system states. We next specialize the structure of system Σ to explicitly
model the evolution of continuous and discrete variables.

3 Problem Setup

Given a deterministic transition system Σ = (Q,I,Y, F, g), we specialize it to the case
Q = A × Z, in which A is a discrete set of variables denoted α ∈ A, Z is a set of
continuous variables denoted z ∈ Z, and I is a discrete set of inputs denoted u ∈ I.
The transition function is the pair F = (f , h), in which f : A × Z × I −→ A and
h : A × Z −→ Z. The set of outputs is defined as Y = Z × Z and the output
function is g : A × Z −→ Y. For the remainder of this paper, we denote by Σ =
(A×Z,I,Y, (f , h), g) the system represented by the following difference equations

α(k + 1) = f (α(k), z(k), u(k)), z(k + 1) = h(α(k), z(k)) (1)

(y1(k), y2(k)) = (z(k), h(α(k), z(k))) .

Any execution of the system Σ is of the formσ = {α(k), z(k)}k∈N and the output sequence
is given by {y(k)}k∈N = {y1(k), y2(k)}k∈N. Given any execution σ of the system, we will
denote the values of z and α at step k along such an execution by σ(k)(z) and σ(k)(α),
respectively. Given the measured variables z, we consider the problem of determining
the input u such that the discrete state α is kept inside a set S ⊆ A. IfA and I are finite
and discrete, in order to compute the set of inputs that map a set X ⊆ A inside S , we
can compute f (α, z, u) for all u ∈ I and all α ∈ X and check whether it is contained in
S . Assuming the size of X and the size of S of the order of the size ofA, this requires
a number of computations of order |I||A|2. IfA is given by the product of a number of
sets (as it is in the multi-agent systems that we consider) this approach is not practical
as the number of computations is exponential in the number of agents. We thus propose
an alternative procedure, whose idea can be explained in the following simple example.

162 D. Del Vecchio

Assume α ∈ N, X = [2, 11], S = [1, 10], u ∈ Z, and that f (α, z, u) = f (α, u) = α + u.
For computing the set of inputs in Z such that f (X, u) ⊂ S , it is enough to compute
the set of u ∈ Z such that f (2, u) ≥ 1 and the set of u ∈ Z such that f (11, u) ≤
10, and then intersect these two sets. These two sets are intervals in Z: [−1,∞) and
(−∞,−1], respectively. The intersection of these two sets gives the answer u = {−1}.
This simplification is due to the fact that the spaces A and I are equipped with an
order (total in this case), while the function f preserves such orders. This argument will
be formalized in a general framework in this paper by using partial order theory. We
next state the problem of determining a feedback system Σ f that updates the lower and
upper bounds of the set of possible current states and gives as output the lower and
upper bounds of the set of allowed inputs.

Problem 1. (Dynamic Output Feedback on a Lattice) Given system Σ = (A×Z,I,Y,
(f , h), g) with initial set X0 ⊆ S , find a deterministic transition system Σ f = (χ×χ,Y, Ĩ×
Ĩ, (H21,H22), (H11,H12)) with H21 : χ × χ × Y → χ, H22 : χ × χ × Y → χ, H11 :
χ × χ × Y → Ĩ, H12 : χ × χ × Y → Ĩ, (χ,≤) and (Ĩ,≤) lattices, with A ⊆ χ and
I ⊆ Ĩ, such that if u(k) ∈ [H11(L(k),U(k), y(k)),H12(L(k),U(k), y(k))] ∩ I, L(k + 1) =
H21(L(k),U(k), y(k)), U(k + 1) = H22(L(k),U(k), y(k)), L(0),U(0) ∈ χ, and {y(k)}k≥0 =

g(σ), we have (i) σ(k)(α) ∈ [L(k),U(k)] ∩A and (ii) [L(k),U(k)] ∩A ⊆ S .

The variables L(k) and U(k) are the lower and the upper bounds in a partial order (χ,≤)
of the set of possible current states. The functions H11 and H12 determine the lower
and upper bounds of the set of inputs that map the set [L(k),U(k)] ∩A inside S . In the
next section, we determine the form of the functions H11,H12,H21,H22 that solve this
problem.

4 Problem Solution

To solve Problem 1, we need to re-define the original system on the partial orders.

Definition 3. Consider the system Σ = (A × Z,I,Y, (f , h), g). An extension of Σ on
partial orders (χ,≤) and (Ĩ,≤) with A ⊆ χ and I ⊆ Ĩ is given by a new system
Σ̃ = (χ × Z, Ĩ,Y, (f̃ , h̃), g̃), in which

(i) (Ĩ,≤) =
⋃

x(Ĩ(x),≤), where for all x ∈ χ, (Ĩ(x),≤) is a sublattice of (Ĩ,≤) with
I ⊆ Ĩ(x) and with the sublattices (Ĩ(x),≤) for all x ∈ χ compatible partial orders;

(ii) f̃ |A×Z×I = f , h̃|A×Z = h, and g̃|A×Z = g.

Item (i) requires to have input set extensions allowed at different states in χ, which
all contain the inputs in I. Item (ii) requires that the extended system is equal to the
original system when restricted to the original sets A and I. In the sequel, we will
denote by Σ̃|I the system Σ̃ in which the input set is restricted to I.

Definition 4. The pair (Σ̃, (χ,≤)) is said to be output interval compatible if

(i) for all y ∈ Y, Oy(Σ̃) is an interval lattice, that is, Oy(Σ̃) = [∧Oy(Σ̃),∨Oy(Σ̃)];
(ii) f̃ : ([∧Oy(Σ̃),∨Oy(Σ̃)], z, u)→ [f̃ (∧Oy(Σ̃), z, u), f̃ (∨Oy(Σ̃), z, u)] is an order isomor-

phism for all (z, u) ∈ Z × I.

A Partial Order Approach to Discrete Dynamic Feedback 163

If the pair (Σ̃, (χ,≤)) is output interval compatible, we can use the result of [4], in which
a state estimator on a partial order that updates a lower bound L and an upper bound U
of the set of all possible current states is given by the update laws

L(k + 1) = f̃ (L(k) �
∧

Oy(k)(Σ̃), z(k), u(k)) (2)

U(k + 1) = f̃ (U(k) �
∨

Oy(k)(Σ̃), z(k), u(k)). (3)

These update laws are such that σ(k)(α) ∈ [L(k),U(k)] ∩ A. As a consequence, the
functions H21 and H22 that solve item (i) of Problem 1 are given by equations (2) and
(3), respectively. One contribution of this work is to determine also the functions H11

and H12 of Problem 1, which determine the dynamic feedback law. In order to proceed,
we give the following definition.

Definition 5. The pair (Σ̃, (Ĩ,≤)) is input interval compatible if for all x ∈ χ and z ∈ Z

(i) f̃ : (x, z, Ĩ(x))→ [f̃ (x, z,∧Ĩ(x)), f̃ (x, z,∨Ĩ(x))] is order preserving and onto;
(ii) f̃ : (x, z, Ĩ(x))→ [f̃ (x, z,∧Ĩ(x)), f̃ (x, z,∨Ĩ(x)] is either�-preserving or f̃ (x, z,∨Ĩ(x))
=
∨S̃ , and it is either �-preserving or f̃ (x, z,∧Ĩ(x)) = ∧S̃ .

This definition establishes that f̃ preserves the order in the second argument. The � (�)
preserving properties guarantee that the set of inputs that is mapped to the same point
through f̃ is a lattice. The following theorem gives the expressions of the functions
H11 and H12. A pictorial interpretation of H11 and H12 is given in Figure 1. Denote
f̃ −1
x,z (w) := {u ∈ Ĩ(x) | f (x, z, u) = w}.

Theorem 1. Let system Σ = (A×Z,I,Y, (f , h), g) be controllable by dynamic output
feedback with respect to S ⊆ A and initial set X0 ⊆ S . Let (χ,≤) and (Ĩ,≤) be such
that A ⊆ χ and I ⊆ Ĩ. Let S̃ ⊆ χ be an interval lattice such that S̃ ∩ A = S . Assume
that the extension Σ̃ = (χ ×Z, Ĩ,Y, (f̃ , h̃), g̃) is such that

(i) Σ̃ |I is controllable by dynamic output feedback with respect to S̃ ;
(ii) the pair (Σ̃, (χ,≤)) is output interval compatible;

(iii) the pair (Σ̃, (Ĩ,≤)) is input interval compatible.

Then, a solution to Problem 1, Σ f , is given by functions H21 and H22 given by expres-
sions (2) and (3), respectively, with L(0) = ∧S̃ , U(0) = ∨S̃ , and

H11(L(k),U(k), y(k)) =
∧

f̃ −1
L′(k),z(k)

(
f̃ (L′(k), z(k),

∧Ĩ(L′(k))) �
∧

S̃
)

�
∧

f̃ −1
U′ (k),z(k)

(
f̃ (U ′(k), z(k),

∧Ĩ(U ′(k))) �
∧

S̃
)

H12(L(k),U(k), y(k)) =
∨

f̃ −1
L′(k),z(k)

(
f̃ (L′(k), z(k),

∨Ĩ(L′(k))) �
∨

S̃
)

�
∨

f̃ −1
U′ (k),z(k)

(
f̃ (U ′(k), z(k),

∨Ĩ(U ′(k))) �
∨

S̃
)
,

(4)

in which L′(k) = L(k) � ∧Oy(k)(Σ̃), U ′(k) = U(k) � ∨Oy(k)(Σ̃).

164 D. Del Vecchio

d
∧

S̃

∨
f̃ −1
L′ (c)

∧
f̃ −1
U′ (b) ∧ Ĩ

∧
f̃ −1
L′ (d)

∨ Ĩ

b

∨
f̃ −1
U′ (a)

U ′ ∨
S̃

f̃ (U′, [
∧ Ĩ(U′),

∨ Ĩ(U′)])

L′
f̃ (L′, [

∧ Ĩ(L′),
∨ Ĩ(L′)])

c

a

Fig. 1. Abstraction of Hasse diagrams to rhombi. In the picture, a = f̃ (U′,∨Ĩ(U′)) � ∨S̃ , b =
f̃ (U′,∧Ĩ(U′)) � ∧S̃ , c = f̃ (L′,∨Ĩ(L′)) � ∨S̃ , d = f̃ (L′,∧Ĩ(L′)) � ∧S̃ , H11 =

∨f̃ −1
U′ (a), and H12 =

∧f̃ −1
L′ (d). The dependencies on z and on k have been omitted.

5 Generality of the Partial Order Approach

We next show that if the system Σ is controllable by dynamic output feedback, the
assumptions of Theorem 1 can be verified by suitable choices of (χ,≤), (Ĩ,≤), and Σ̃.

Theorem 2. If system Σ is controllable by dynamic output feedback with respect to
S ⊆ A and initial set X0 ⊆ S , then there are partial orders (χ,≤) and (Ĩ,≤), an
interval lattice S̃ ⊆ χ with S̃ ∩A = S , and an extension Σ̃, such that Σ̃ |I is controllable
by dynamic output feedback with respect to S̃ , (Σ̃, (χ,≤)) is output interval compatible,
and (Σ̃, (Ĩ,≤)) is input interval compatible.

The assumption that Σ is controllable by dynamic output feedback with respect to S is
needed to show that Σ̃|I is also controllable by dynamic output feedback with respect to
the interval lattice S̃ . Such assumption is not needed to show output and input interval
compatibility of (Σ̃, (χ,≤)) and of (Σ̃, (Ĩ,≤)), respectively. In case Σ is not controllable
by dynamic output feedback with respect to S , Σ̃|I will also not be controllable by
dynamic output feedback with respect to any interval lattice S̃ such that S̃ ∩A = S and
for any choice of partial orders. This implies that [H11,H12] ∩ I might be empty.

Example 1. The proof of Theorem 2 is constructive (see Appendix). We illustrate in
this example how to construct the extended input partial order on a finite state/finite
input system. Let A = {α1, α2, α3}, I = {u1, u2, u3}, and let the update function F be
given in the table of Figure 2. According to the proof of Theorem 2, we have (χ,≤) =
(P(A),⊆) and for all x ∈ χ, we have Ĩ(x) = P(I) ∪ Ix, in which Ix contains “silent
inputs” introduced to satisfy the onto property of item (i) of Definition 5. We start with
x = α1 � α2 � α3. By computing f̃ (x, ũ) (with f̃ (x, ũ) = f (x, ũ) where x ⊆ A and
ũ ⊆ I in the righthand side) for all ũ ∈ P(I), we note that f̃ (x, ũ) = α1 � α2 � α3 for

A Partial Order Approach to Discrete Dynamic Feedback 165

ũ ∈ {u1 � u2 � u3, u1 � u2, u2, u2 � u3}, f̃ (x, ũ) = α1 � α2 for ũ ∈ {u1, u2 � u3}, f̃ (x, u3) =
α1. As a consequence, the elements in χ that are less than f̃ (x, u1 � u2 � u3) (where
u1�u2�u3 =

∨Ĩ(x)) for which there is not an input in P(I) that map x to them are given
by {α1 �α2, α2, α2 �α3, α3}. Thus, the set of silent inputs is Ix = {ε1, ε2, ε3, ε4} such that
f̃ (x, ε1) = α1 �α2, f̃ (x, ε2) = α2, f̃ (x, ε3) = α2 �α3, f̃ (x, ε4) = α3. We then establish the
order among the elements in Ix ∪P(I) by following the procedure outlined in item 3 of
the proof of Theorem 2 to guarantee the �-preserving property of item (ii) of Definition
5. Since f̃ (x, ε1)−< α1 �α2 �α3 and supũ∈P(I){ũ | f̃ (x, ũ) = α1 �α2 �α3} = u1 � u2 � u3,
we set ε1−< u1 � u2 � u3. Also, f̃ (x, ε1) >−α1 and supũ∈P(I){ũ | f̃ (x, ũ) = α1} = u3. Then,
we set ε1 >−u3. Finally, ε1 >−ε2 because f̃ (x, ε1) >− f̃ (x, ε2). Proceeding in a similar way
for all of the other silent inputs, we obtain the additional relations: ε2−< ε3, ε4−< ε3,
ε4−< u1 � u3, ε3−< u1 � u2 � u3. The resulting extended input partial order Ĩ(x) is shown
in the left plot of Figure 2. For x = α2 � α3, the resulting Ĩ(x) is shown in the right plot
of Figure 2.The reader can verify that when x = αi for some i, Ix = ∅.

u1 u2 u3

ε2ε4

⊥

ε1

Ĩ(x)
x = α1 � α3

ε3

u1 u2 u3 ε2 ε4

⊥

Ĩ(x)
x = α1 � α2 � α3

ε1 ε3

α1 α2

u1

u2

u3

α1 α3 α1

α2 α1 α3

α1 α1 α1

α3

Fig. 2. Example 1. The table represents the update function F(α, u). The pictures at the center
and at the right represent the extended input sets for x = α1 � α2 � α3 and x = α1 � α3 with the
associated partial orders, respectively. The blue elements are the silent inputs Ix.

Computational considerations. For a finite state-finite input system, the sizes of Ĩ and
of χ are related to the computational load of the proposed algorithms as these partial
order structures need to be computed and stored in memory. The size of these partial
orders does not affect computation in those systems in which the partial orders have
algebraic properties as we will see in Example 2 of the next section. The amounts of
computation c needed for computing such partial orders can be estimated to be c ≤
K
∑|A|2

i=1 |Xi||I||S |, in which Xi are the sets on which the estimator evolves, |A|2 is the
number of such sets, and K > 0. This amount of computation is comparable to the one
obtained by using enumeration and exhaustive techniques.

In this section, we have shown that the partial order approach to dynamic feedback
is general and that the worst case computation is proportional to the one of exhaustive
searches. The partial orders constructed in the proof of Theorem 2 and in Example
1 are not unique and have mainly a theoretical relevance as they are impractical for
implementation in systems with a large number of states and inputs. Thus, we propose
in the next section a relaxed version of Theorem 1.

166 D. Del Vecchio

6 Relaxations and Application to a Multi-robot Example

Consider the case in which partial orders (χ,≤) and (Ĩ,≤) have been chosen and the
assumptions of Theorem 1 do not all hold. Some possible relaxations of the basic as-
sumptions of Theorem 1 are as follows:

(R1) the set S̃ ⊆ χ such that S̃ ∩ A = S is given by S̃ =
⋃M

i=1 S̃ i, in which S̃ i are
intervals and S̃ ∩ Oy(Σ̃) is an interval;

(R2) f̃ : χ × Z × I → χ is a piece-wise order isomorphism, that is, for all interval
[L,U] ⊆ χ, we have that there are disjoint intervals [Lj,U j] with

⋃
j[L

j,U j] = [L,U]
such that f̃ ([L j,U j], z, u) → [f̃ (L j, z, u), f̃ (U j, z, u)] is an order isomorphism for all j
and any u ∈ I;

(R3) for all interval [L,U] ⊆ S̃ ∩ Oy(Σ̃) there are a function f̃ ′ : χ × Ĩ → χ with
f̃ ′ : (x, [∧Ĩ,∧Ĩ]) → [f̃ ′(x,∧Ĩ), f̃ ′(x,∨Ĩ)] an order isomorphism for all x ∈ χ and an
order preserving map in the first argument, constants L∗ ≤ U∗ ∈ χ, and constants LS ≤
US ∈ χ such that {u ∈ I | f̃ ([L,U], z, u) ⊆ S̃ } ⊇ I∩{ũ ∈ Ĩ | f̃ ′([L∗,U∗], ũ) ⊆ [LS ,US]},
with the righthand set not empty.

It is always possible to determine a set S̃ that is a union of intervals and any function
can always be broken into order isomorphisms. The expressions of the functions H12

and H11 as given in formulas (4) stay the same, but one should substitute f̃ ′ in place
of f̃ , L∗ and U∗ in place of L′ and U ′, and LS and US in place of ∧S̃ and ∨S̃ . Due to
the piecewise isomorphic nature of the function f̃ , the update laws (2-3) become: L(k +
1) = ∧L̄ j≤Ū j L̄ j, L̄ j = f̃ (L j(k), z(k), u(k)) � ∧Oy(k+1)(Σ̃) and U(k + 1) = ∨L̄ j≤Ū j Ū j, Ū j =

f̃ (U j(k), z(k), u(k)) � ∨Oy(k+1)(Σ̃), in which L j,U j establish the intervals where f̃ is an
order isomorphism in the first argument, and L(0) = ∧Oy(0)(Σ̃), U(0) = ∨Oy(0)(Σ̃).

Example 2. We consider a version of the “capture the flag” game for robots called
“RoboFlag Drill” already considered in [4], in which now the attackers can use their
estimates of the assignments of the opponents to decide the next action to take. Briefly,
some number of robots with positions (zi, 0) ∈ R2, which we refer to as blue robots,
must defend their zone {(x, y) ∈ R2 | y ≤ 0} from an equal number of incoming robots,
which we refer to as red robots. The positions of the red robots are (xi, yi) ∈ R2. The
red robots move toward the blue defensive zone. The blue robots are assigned each
to a red robot and they coordinate to intercept the red robots. In this work, we allow
the red robots to swap their horizontal location with a nearby red robot as appropriate.
Let N represent the number of robots in each team. The RoboFlag Drill system can be
specified by the rules yi(k + 1) = yi(k) − δ if yi(k) ≥ δ,

zi(k + 1) = zi(k) + δ if zi(k) < xαi(k), zi(k + 1) = zi(k) − δ if zi(k) > xαi(k) (5)

(αi(k + 1), αi+1(k + 1)) = (αi+1(k), αi(k)) if xαi(k) ≥ zi+1(k) ∧ xαi+1(k) ≤ zi+1(k) (6)

(xi(k + 1), xi+1(k + 1)) = (xi+1(k), xi(k)) if swapi,i+1(k). (7)

The variable αi is the red robot that blue robot i is required to intercept. Equation (6)
establishes that two blue robots trade their assignments only when the current assign-
ments cause them to go toward each other. Rule (7) allows two adjacent red robots

A Partial Order Approach to Discrete Dynamic Feedback 167

to swap their horizontal position. If the red robots never swap horizontal position, the
assignments of the blue robot reaches an equilibrium value in which no more conflicts
among the assignments of the blue robots are present (the attackers have all been in-
tercepted). In this work, we want to solve the following problem: Given measurements
z(k) determine control inputs swapi,i+1(k) such that there are always at least two pairs
of blue robots with conflicting assignments. To formalize this problem, we translate the
rules (5-6-7) to the form Σ = (A × Z,I,Y, (f , h), g). Thus, let {1, ...,N} be the loca-
tions at which the red robots can reside, that is, the location denotes the order along
the x direction at which the red robots are displaced. With abuse of notation, let xi de-
note the x coordinate of location i and αi the location to which blue robot i is assigned.
We assume xi ≤ zi ≤ xi+1 for all i and for all time. We set A = perm(N), Z = RN ,
I = {u ∈ {−1, 0, 1}N | ui = 1 ⇔ ui+1 = −1, uN � 1, u1 � −1} (ui = 1 iff swapi,i+1 is
true), Y = RN × RN . The functions are defined as follows: f (α, z, u) = G(F(α, z), u), in
which F(α, z) is represented by relations (6) and G(β, u) = β′, with u j = 1 ⇒ [(if βi =

j ⇒ β′i = j + 1) and (if βi = j + 1 ⇒ β′i = j)]. The function h(α, z) is represented
by relations (5). Let the entropy of the blue robots be defined by E = 1

2

∑N
i=1 |αi − i|.

In the absence of input to the system (i.e. u(k) = 0 for all k), E converges to zero.
We define the set S as S = {α | E ≥ 2}, which can be computed and is given by
S = {α | ∃ i, j, with j > i + 1 such that αi � i and α j � j}. If α ∈ S , there are at least
two pairs of blue robots with conflicting assignments.

To apply the dynamic control algorithm using the relaxations (R1-R2-R3), we need
to determine the partial orders (χ,≤) and (Ĩ,≤), the set S̃ satisfying item (R1), the ex-
tended function f̃ , and finally the function f̃ ′ with the intervals [L∗,U∗] and [LS ,US]
as given in item (R3). Set (χ,≤) = (NN ,≤) with order established component-wise.
Given any set X ⊆ NN , we denote [X] j the projection along j of such set. Then, a
set S̃ ⊆ χ is given by S̃ =

⋃
i S̃ i, in which S̃ i for each i are intervals of four types:

(a) there are l < j such that [S i]l = [l + 1,N] and [S i] j = [j + 1,N]; (b) there are
l < j such that [S i]l = [1, l − 1] and [S i] j = [j + 1,N]; (c) there are l < j with
j > l + 1 such that [S i]l = [l + 1,N] and [S i] j = [1, j − 1]; (d) there are l < j
such that [S i]l = [1, l − 1] and [S i] j = [1, j − 1]. This can be checked by recall-
ing that α ∈ ⋃i S̃ i if α ∈ S̃ i for some i. Define the extension F̃ : χ × Z → χ as
F with now α ∈ NN . Clearly, F̃|A×Z = F. Also, we define h̃ : χ × Z → Z as h
with α ∈ NN , for which h̃|A×Z = h. One can check that the output set is an inter-
val and that the function F̃ is an order isomorphism on the output set. The function
G̃ : χ × I → χ is defined as G in which the first argument belongs to NN . Then
f̃ = G̃ ◦ F̃, in which one can check that f̃A×Z×I = f . We thus have defined the extended
system Σ̃ = (χ × Z,Y,I, (f̃ , h̃), g̃). For the input set, we consider Ĩ = {−1, 0, 1}N
with order established componentwise. It is easy to show that the extended system
Σ̃|I = (χ × Z,I,Y, (f̃ , h̃), g̃) satisfies the dynamic controllability condition with re-
spect to S̃ if N > 4. We are left to determine the function f̃ ′ with the intervals [L∗,U∗]
and [LS ,US] as given in item (R3). For all x = (x1, ..., xN) ∈ χ and ũ = (ũ1, ..., ũN) ∈ Ĩ,
we set f̃ ′(x, ũ) = (f̃ ′1(x1, ũ1), ..., f̃ ′N(xN , ũN)), in which f̃ ′(xi, ũi) := xi + ũi. The follow-
ing algorithm, computes the sets [L∗,U∗] and [LS ,US] component-wise for all intervals
[L,U] ⊆ S̃ ∩ Oy(Σ̃). Let P′ = F̃([L,U], z)

168 D. Del Vecchio

Fig. 3. Convergence plots of the estimator and of the entropy with N = 15 and α(0) =
(4, 8, 9, 2, 13, 15, 6, 5, 12, 10, 1, 14, 3, 7, 11). For the controlled system E > 2 always. From the
uncontrolled system plot, one realizes that a strategy that estimates the state first and then com-
putes the controller once the estimator has converged does not work.

Algorithm

Initialize f lagi = 0, L∗i = U∗i = i, LS
i = 1, and US

i = N for all i
For i = 1 : N

If min(P′i) = i and f lagi−1 = 0 =⇒ LS
i = 1, US

i = i − 1 and f lagi = 1
End
For i = 2 : N

If max(P′i−1) = i − 1 and f lagi−1 = 0 =⇒ LS
i−1 = i, US

i−1 = N and f lagi = 1
End
For i = 1 : N

If min(P′i) ≥ i + 1 and f lagi+1 = 0 =⇒ L∗i = U∗i = i + 1, LS
i = i + 1, US

i = N
If max(P′i) ≤ i − 1 and f lagi = 0 =⇒ L∗i = U∗i = i − 1, LS

i = 1 US
i = i − 1

End.

The idea behind this algorithm is as follows. Say that [P′]i = [i,N] and that we want to
remove i from it by swapping red robot i with red robot i−1. This can be done by asking
that i + ũi ∈ [1, i − 1], which gives ũi ≤ −1. Finally, note that the function f̃ is a com-
position of a function F̃, which is an order isomorphism, and a function G̃, which is a
piecewise order isomorphism. To see this, let ũi = −1 and P′i = [i,N] for example, then
we can re-write [i,N] = [i, i]∪ [i+ 1,N] so that G̃i : ([i, i],−1)→ [G̃i(i,−1), G̃i(i, 1)] =
[i − 1, i − 1] and G̃i : ([i + 1,N],−1)→ [G̃i(i + 1,−1), G̃i(N,−1)] = [i + 1,N] are order
isomorphisms. Figure 3 shows the behavior of the estimator error (given by W(k) =
1/N
∑N

i=1 |mi(k)|, in which mi(k) is the coordinate set [Li(k),Ui(k)] minus all the single-
tons that occur at other coordinates) and of the entropy E(k) = 1/2

∑N
i=1 |αi(k) − i|. In

this example, the computation requirement for the implementation of the dynamic con-
troller is proportional to N (number of variables to control and estimate). If we had not
used any structure, we would have had a number of computations at least of the order
of (N!)2 as the size of the output set and of the set S are both of the order of N!. Note
also that this simplification is not due to the fact that the dynamics decouples as it is
heavily coupled between the robots.

7 Conclusions

We have proposed a partial order approach to dynamic feedback for the discrete vari-
ables of a hybrid system, which relies on partial order theory to compute only suitable

A Partial Order Approach to Discrete Dynamic Feedback 169

lower and upper bounds to determine the dynamic controller. We have shown that such
an approach is general as it can be applied to any system that is controllable by dynamic
output feedback. The worst case computation load of the proposed approach does not
exceed the one of exhaustive searches under partial observations. The main computa-
tional advantage is obtained when one can choose suitable partial orders in which the
computation of joins and meets is efficiently performed. A multi-robot example showed
this point. The next step is to consider the dynamic feedback problem also for the con-
tinuous variables and establish system structures that allow efficient choices of partial
orders. As we mentioned, this work was not concerned with analysis problems: these
are left to our future work, in which we would like to determine efficient computations
of escape tubes and controlled invariance kernels by the computation of suitable lower
and upper bounds, only. Finally, we plan to consider in our future work uncertainty in
the system dynamics by modeling it as nondeterminism. On the application side, we
will extend these results to the design of safety controllers under partial observation in
the context of intelligent transportation systems.

References

1. E. Asarin, O. Maler, and A. Pnueli. Symbolic controller design for discrete and timed sys-
tems. Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol-
ume 999, P. Antsakilis, W. Kohn, A. Nerode, and S. Sastry, Eds. Springer Verlag, pages 1–20,
1995.

2. J. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and N. Seube. Impulse differential inclu-
sions: A viability approach to hybrid systems. IEEE Transactions on Automatic Control,
47(1):2–20, 2002.

3. B. A. Davey and H. A. Priesteley. Introduction to Lattices and Order. Cambridge University
Press, 2002.

4. D. DelVecchio, R. M. Murray, and E. Klavins. Discrete state estimators for systems on a
lattice. Automatica, 42(2):271–285, 2006.

5. A. Deshpande and P. Varaiya. Viable control of hybrid systems. In Hybrid Systems II, Lecture
Notes in Computer Science, volume 999, P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry,
Eds. Springer Verlag, pages 128–147, 1995.

6. P. E.Caines and S. Wang. Classical and logic based regulator design and its complexity for
partially observed automata. In Conf. on Decision and Control, pages 132–137, 1989.

7. P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of
the IEEE, 77(1):81–98, 1989.

8. K. Rohloff and S. Lafortune. On the synthesis of safe control policies in decentralized control
of discrete event systems. IEEE Transactions on Automatic Control, 48(6):1064–1068, 2003.

9. E. D. Sontag. Mathematical Control Theory. Springer, 1998.
10. W. Thomas. On the synthesis of strategies in infinite games. In Proceedings of the STACS

95, E. W. Mayr and C. Puech, Eds. Springer Verlag, pages 1–13, 1995.
11. H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Conf. on Decision

and Control, pages 4607–4613, 1997.

Appendix I. Partial Order Theory

In this section, we introduce the main notation and definitions about partial orders that
will be used in this work. For a complete overview, the reader is referred to [3]. A partial

170 D. Del Vecchio

order is a set χ with a partial order relation “≤”, and we denote it by the pair (χ,≤). for
all x,w ∈ χ, the sup{x,w} is the smallest element that is larger than both x and w. In a
similar way, the inf{x,w} is the largest element that is smaller than both x and w. We
define the join “�” and the meet “�” of two elements x and w in χ as x � w = sup{x,w}
and x�w = inf{x,w}. If S ⊆ χ, ∨S = sup S and ∧S = inf S . If x�w ∈ χ and x�w ∈ χ
for all x,w ∈ χ, then (χ,≤) is a lattice. Let (χ,≤) be a lattice and let S ⊆ χ be a non-
empty subset of χ. Then, (S ,≤) is a sublattice of χ if a, b ∈ S implies that a� b ∈ S and
a�b ∈ S . Any interval sublattice of (χ,≤) is given by [L,U] = {w ∈ χ | L ≤ w ≤ U} for
L,U ∈ χ. That is, this special sublattice can be represented by only two elements. for all
set S , we denote by P(S) the set of all subsets of S . On P(S), it is possible to establish
a partial order relation determined by the inclusion relation. Therefore, (P(S),≤) with
“≤” established by the inclusion relation is a lattice. Let (χ,≤) be a partial order and let
x,w ∈ χ. We will use the notation x−< w to say that x ≤ w and there is not an element
that is larger than x and smaller than w; we will use the notation x >−w to say that x ≥ w
and there is not an element that is larger than x and smaller than w. for all w, x ∈ χ,
we denote w ‖ x if they are not related by the order relation. Let (P,≤P) and (Q,≤Q)
be two partial orders and let X = P ∩ Q. They are said to be compatible partial orders
if for all pair x1, x2 ∈ X we have that x1 ≤P x2 if and only if x1 ≤Q x2. Let (P,≤P)
and (Q,≤Q) be two compatible partial orders. Then, the union of the two partial orders,
denoted (P,≤P) ∪ (Q,≤Q) is the new partial order (R,≤), in which R = P ∪ Q and for
all x1, x2 ∈ R we have that x1 ≤ x2 if and only if x1 ≤Q x2 or x1 ≤P x2. In the sequel,
when we will have two compatible partial orders, we will omit the subscript of “≤” as
there will be no ambiguity on the partial order relation between any two elements. We
now consider maps on partial orders. Let (P,≤) and (Q,≤) be partially ordered sets. A
map f : P → Q is (i) an order preserving map if x ≤ w =⇒ f (x) ≤ f (w); (ii) an
order embedding if x ≤ w ⇐⇒ f (x) ≤ f (w); (iii) an order isomorphism if it is order
embedding and it maps P onto Q. The map f : P → Q is said to be �-preserving if for
all x,w ∈ P, we have that f (x � w) = f (x) � f (w). It is said to be �-preserving if for all
x,w ∈ P, we have that f (x�w) = f (x)� f (w). One can show that if f is order preserving,
then for all x, y ∈ P, we have that f (x) � f (w) ≤ f (x � w) and f (x) � f (w) ≥ f (x � w).

Appendix II. Proof of Theorems and Propositions

Proof. (Proof of Proposition 1) (⇐)Choose functions H1 and H2 as H2(X(k), y(k)) =
F(X(k) ∩ Oy(k)(Σ), u(k)), u(k) ∈ H1(X(k), y(k)) with H1(X(k), y(k)) = {u ∈ I | F(X(k) ∩
Oy(k)(Σ), u) ⊂ S } and X(0) = X0. We show that the set H1(X(k), y(k)) is not empty for all
k and that properties (i) and (ii) of Definition 2 are satisfied. We proceed by induction
argument on the step k. (Base case) By assumption, X(0) ⊆ S and s(0) ∈ X(0). As a
consequence, {u ∈ I | F(X(0)∩Oy(0)(Σ), u) ⊆ S } is not empty. (Induction step) Assume
X(k) ⊆ S and s(k) ∈ X(k), then H1(X(k), y(k)) = {u ∈ I | F(X(k)∩Oy(k)(Σ), u) ⊆ S } � ∅
because {u ∈ I | F(X(k) ∩ Oy(k)(Σ), u) ⊆ S } ⊇ {u ∈ I | F(S ∩ Oy(k)(Σ), u) ⊆ S } and
the latter set is nonempty by assumption. Thus, if u(k) ∈ H1(X(k), y(k)) we have by
construction that X(k+1) ⊆ S . Also, since s(k) ∈ X(k) and s(k) ∈ Oy(k)(Σ), we have that
s(k + 1) ∈ X(k + 1).

A Partial Order Approach to Discrete Dynamic Feedback 171

(⇒) Assume that {u ∈ I | F(Oy(Σ) ∩ S , u) ⊆ S } = ∅ for some y. Let s(0) ∈ S
be such that y(0) = g(s(0)) and {u ∈ I | F(Oy(0)(Σ) ∩ S , u) ⊆ S } = ∅. Thus {u ∈
I | F(X0 ∩ Oy(0)(Σ), u) ⊆ S } = ∅. Assume that the system is controllable by dynamic
output feedback with respect to X0 ⊆ S . Then, there are functions H1 : P(Q) × Y −→
P(I) and H2 : P(Q) × Y × I −→ P(Q) such that X(1) = H2(X0, y(0)) ⊆ S , s(1) ∈ X(1)
and u(0) ∈ H1(X0, y(0)). For guaranteeing s(1) ∈ X(1) with s(1) = F(s(0), u(0)) and
s(0) ∈ X0 ∩ Oy(0)(Σ), we need that F(X0 ∩ Oy(0)(Σ), u(0)) ⊆ X(1). However, F(X0 ∩
Oy(0)(Σ), u(0)) � S and X(1) ⊆ S . This leads to a contradiction.

Proof. (Proof of Theorem 1) The dependencies on z are neglected. Equations (2-3)
imply that α(k) ∈ [L(k),U(k)] ∩ A. Thus, property (i) of Problem 1 is true. We next
show that
(a) {u ∈ I | f̃ ([L′(k),U ′(k)], u) ⊆ [∧S̃ ,∨S̃]} = I∩ [H11(L(k),U(k), y(k)),H12(L(k),U(k),

y(k))];
(b) [H11(L(k),U(k), y(k)), H12(L(k),U(k), y(k))]∩ I is not empty.

Proof of (a). Since [L′(k),U ′(k)] ⊆ Oy(k)(Σ̃), the function f̃ preserves the ordering
in the first argument. As a consequence, we have that {u ∈ I | f̃ ([L′(k),U ′(k)], u) ⊆
[∧S̃ ,∨S̃]} = {u ∈ I | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ } ∩ {u ∈ I | ∧S̃ ≤ f̃ (U ′(k), u) ≤ ∨S̃ }. Also, we
have that {u ∈ I | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ } = I ∩ {u ∈ Ĩ(L′(k)) | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ }
and that {u ∈ I | ∧S̃ ≤ f̃ (U′(k), u) ≤ ∨S̃ } = I ∩ {u ∈ Ĩ(U ′(k)) | ∧S̃ ≤ f̃ (U ′(k), u) ≤ ∨S̃ }.
As a consequence, we have that

{u ∈ I | f̃ ([L′(k),U ′(k)], u) ⊆ [
∧

S̃ ,
∨

S̃]} =
I ∩ {u ∈ Ĩ(L′(k)) | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ }∩
{u ∈ Ĩ(U ′(k)) | ∧S̃ ≤ f̃ (U ′(k), u) ≤ ∨S̃ }.

(8)

One can readily verify that {u ∈ Ĩ(L′(k)) | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ } = f̃ −1
L′(k)((f̃ (L′(k),

Ĩ(L′(k))) ∩ [∧S̃ ,∨S̃]), which derives from the definition of f̃ −1
L′(k). By the onto property

in item (i) of Definition 5, we also have that f̃ (L′(k), Ĩ(L′(k))) = [f̃ (L′(k),∧Ĩ(L′(k))),
f̃ (L′(k),∨Ĩ(L′(k)))]. As a consequence, we obtain that {u ∈ Ĩ(L′(k)) | ∧S̃ ≤ f̃ (L′(k), u)
≤ ∨S̃ } = f̃ −1

L′(k)([f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃ , f̃ (L′(k),∨Ĩ(L′(k))) � ∨S̃]).We are thus left to

show that f̃ −1
L′(k)([f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃ , f̃ (L′(k), ∨Ĩ(L′(k))) � ∨S̃]) = [∧f̃ −1

L′(k)(f̃ (L′(k),
∧Ĩ(L′(k))) � ∧S̃),∨f̃ −1

L′(k)(f̃ (L′(k),∨Ĩ(L′(k))) � ∨S̃)]. To show this, we show that any ele-
ment of the first set belongs to the second and viceversa. Any element of the second set
is also an element of the first set due to the order preserving property of f̃ in the second
argument as established in item (i) of Definition 5. Assume now that u is in the first set,
then f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃ ≤ f̃ (L′(k), u) ≤ f̃ (L′(k),∨Ĩ(L′(k))) � ∨S̃ . We next show
that w ≤ u in which w = ∧f̃ −1

L′(k)

(
f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃

)
. If f̃ (L′(k),∧Ĩ(L′(k))) = ∧S̃ ,

we have that ∧f̃ −1
L′(k)

(
f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃

)
=
∧Ĩ(L′(k)) and therefore we have that

∧f̃ −1
L′(k)(f̃ (L′(k), ∧Ĩ(L′(k))) � ∧S̃) ≤ u. If instead f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃ , by item

(ii) of Definition 5, we have that f̃ is �-preserving in the second argument. Since
w ≤ f̃ (L′(k), u), it must be that either ∧f̃ −1(w) ≤ u or ∧f̃ −1(w) ‖ u by the order
preserving property of f̃ in the second argument. Let us show that ∧f̃ −1(w) ‖ u is
not possible. By the �-preserving property, we have that f̃ (∧f̃ −1

L′(k)(w) � u) = w �

172 D. Del Vecchio

f̃ (L′(k), u). Since w ≤ f̃ (L′(k), u), we have that w � f̃ (L′(k), u) = w, which in turn
implies that f̃ (L′(k),∧f̃ −1(w) � u) = w. By the definition of ∧f̃ −1

L′(k)(w), it follows that

we must have ∧f̃ −1
L′(k)(w) ≤ u. One can proceed in a similar way to show that u ≤

∨f̃ −1
L′(k)

(
f̃ (L′(k),∨Ĩ(L′(k))) � ∨S̃

)
. As a consequence, we have concluded that

{u ∈ Ĩ(L′(k)) | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ } =
[
∧

f̃ −1
L′(k)

(
f̃ (L′(k),

∧Ĩ(L′(k))) �
∧

S̃
)
,
∨

f̃ −1
L′(k)

(
f̃ (L′(k),

∨Ĩ(L′(k))) �
∨

S̃
)
].

(9)

Similar reasonings can be used to show that equation (9) holds for U ′(k). Equations (8),
(9) and (9) with U′(k) in place of L′(k) prove (a). Given (a), to show (b) one can show
that {u ∈ I | f̃ ([L′(k),U ′(k)], u) ⊆ [∧S̃ ,∨S̃]} is not empty. This is true if [L′(k),U ′(k)] ⊆
Oy(Σ̃)∩S̃ as by assumption Σ̃|I is controllable by dynamic output feedback with respect
to S̃ . We can show that [L′(k),U ′(k)] ⊆ Oy(k)(Σ̃) ∩ S̃ by induction on the step k. In fact,
[L′(0),U ′(0)] ⊆ Oy(Σ̃) ∩ S̃ as L(0) = ∧S̃ and U(0) = ∨S̃ . Assume that [L′(k),U ′(k)] ⊆
Oy(k)(Σ̃) ∩ S̃ , let us show that also [L′(k + 1),U′(k + 1)] ⊆ Oy(k+1)(Σ̃) ∩ S̃ . Since
[L′(k),U ′(k)] ⊆ Oy(k)(Σ̃) ∩ S̃ , we have that I ∩ [H11(L(k),U(k), y(k)),H12(L(k),U(k),
y(k))] is not empty. We thus can take u(k) ∈ I ∩ [H11(L(k),U(k), y(k)),H12(L(k),U(k),
y(k))] and apply it to the system. By construction of H11(L(k),U(k), y(k)) and H12(L(k),
U(k), y(k)), we have that [L(k + 1),U(k + 1)] ⊆ S̃ . Thus, [L′(k + 1),U′(k + 1)] ⊆
S̃ ∩ Oy(k+1)(Σ̃). Therefore, (b) is shown.

Proof. (Proof of Theorem 2) We determine a system extension Σ̃ and we show that the
properties of Definition 5 are satisfied.

1. Define χ = P(A) and (χ,≤) = (P(A),⊆). The bottom element is ⊥χ = ∅. Let
x ∈ χ be given by x = α1 � ... � αn with αi ∈ A, for all u ∈ I we define the function
f̃ : χ×I → χ as f̃ (x, u) = f (α1, u)�...� f (αn, u) for u ∈ I. Output interval compatibility
of the pair (Σ̃, (χ,≤)) follows immediately.

2. for all x ∈ χ, the extended input set Ĩ(x) is defined as P(I)
⋃

Ix, in which the
order among the elements in P(I) is established according to inclusion relation, and
the sets Ix for all x are called the sets of silent inputs and are defined as follows. for
all ũ ∈ P(I), we have ũ = u1 � ... � up for some ui ∈ I. Then, we define f̃ (x, ũ) =
f̃ (x, u1)� ...� f̃ (x, up). Let us initialize Ix = ∅ and let I = {u1, ..., um}. for all w ∈ χ such
that w ≤ f̃ (x, u1� ...�um), if there is not a ũ ∈ P(I) such that f̃ (x, ũ) = w, define a silent
input ε such that f̃ (x, ε) = w. Thus, we add such silent input to Ix, that is, Ix = Ix ∪ ε.

3.WenextestablishtheorderamongthesilentinputsandtheinputsinP(I).forallε ∈ Ix,
let w = f̃ (x, ε). By construction, f̃ (x, ε) ≤ f̃ (x, u1 � ... � um). Let {w1, ...,wk} be the set of
elements with wi ≤ f̃ (x, u1 � ... � um) such that either wi−< f̃ (x, ε) or wi >− f̃ (x, εi). Let
ũi ∈ Ĩ(x) be such that f̃ (x, ũi) = wi. If ũi ∈ Ix then set ũi >−ε if and only if wi >− f̃ (x, εi) and
ũi−< ε if and only if wi−< f̃ (x, εi). If ũi ∈ P(I), there may be several such inputs so that
f̃ (x, ũi) = wi. Let ũi be the greatest of such inputs, that is, ũi = sup(P(I),≤){ũ | f̃ (x, ũ) = wi}.
(By the way f̃ has been defined on elements ofP(I) it follows that f̃(x, ũi) = wi.) Then, we
set ũi >−ε if and only if wi >− f̃ (x, εi) and ũi−< ε if and only if wi−< f̃ (x, εi). Let⊥I = ∧Ĩ(x)
such that every element that does not have a lower element is strictly greater than it. We
also define f̃ (x,⊥I) = ⊥χ. Note that by construction, the top element of Ĩ(x) is given by
u1 � ... � um =

∨Ĩ(x). By construction, (Ĩ(x),≤) are compatible partial orders.

A Partial Order Approach to Discrete Dynamic Feedback 173

From item 2., it follows that f̃ : (x, Ĩ(x)) → [f̃ (x,∧Ĩ(x)), f̃ (x,∨Ĩ(x))] is onto. To
show that it is also order preserving, we show that for all ũ1 ≤ ũ2 in Ĩ(x) also f̃ (x, ũ1) ≤
f̃ (x, ũ2). Let ũ1,1−< ũ1,2−< ...−< ũ1,k be the chain between ũ1,1 = ũ1 and ũ1,k = ũ2.
Consider any consecutive pair ũ1,i−< ũ1,i+1. Then if ũ1,i, ũ1,i+1 ∈ P(I), by the definition
of f̃ on elements in P(I) given in item 1., we have f̃ (x, ũ1,i) ≤ f̃ (x, ũ1,i+1). If either one
of ũ1,i, ũ1,i+1 is in Ix (that is, it is a silent input), by the definition of the order in item 3.,
we have that ũ1,i−< ũ1,i+1 if and only if f̃ (x, ũ1,i)−< f̃ (x, ũ1,i+1). Since, this holds for all
consecutive pair (ũ1,i, ũ1,i+1), we thus have that f̃ (x, ũ1) ≤ f̃ (x, ũ2).

To show property (ii) of Definition 5, note that S̃ = [⊥χ,∨S̃] for ∨S̃ = P(S) ∈ χ.
As a consequence, we have that f̃ (x,∧I(x)) = ∧S . Thus, we are left to show that
for all x ∈ χ, f̃ (x, ·) is �-preserving in the second argument when the second argu-
ment is ranging in Ĩ(x). Let ũ1, ũ2 ∈ Ĩ(x), we need to show that f̃ (x, ũ1 � ũ2) =
f̃ (x, ũ1) � f̃ (x, ũ2) for all x ∈ χ. By the order preserving property of f̃ in the sec-
ond argument, we already know that f̃ (x, ũ1) � f̃ (x, ũ2) ≤ f̃ (x, ũ1 � ũ2). Let us de-
note f̃ (x, ũ1) � f̃ (x, ũ2) = a and let us in fact show that a = f̃ (x, ũ1 � ũ2). Let ũ be
such that f̃ (x, ũ) = a. If ũ ∈ P(I), then let it be the largest such ũ. Consider the
two chains w1−< w2−< ...−< wk1 and v1−< v2−< ...−< vk2 , in which w1 = f̃ (x, ũ1),
vk2 = wk1 = a, and f̃ (x, ũ2) = v1. for all two consecutive elements on such chains
wi−< wi+1, there are ũ1,i, ũ1,i+1 ∈ Ĩ(x) such that f̃ (x, ũ1,i) = wi and f̃ (x, ũ1,i+1) =
wi+1. If ũ1,i, ũ1,i+1 are both in P(I) then wi ≤ wi+1. Also, if ũ1,i ∈ P(I), we as-
sume it is the largest input such that f̃ (x, ũ1,i) = wi. If one or both of the inputs
ũ1,i, ũ1,i+1 is a silent input, by item 3., we have that ũ1,i−< ũ1,i+1. Since this is true
for all i ∈ {1, ..., k − 1}, we finally obtain that ũ1 ≤ ũ. Repeating this process for
the chain v1−< v2−< ...−< vk2 , one also obtains that ũ2 ≤ ũ. Since ũ1 and ũ2 can-
not have two different joins, it must be that either ũ ≤ ũ1 � ũ2 or ũ1 � ũ2 ≤ ũ. By
the order preserving property of f̃ , we have that ũ1 � ũ2 ≤ ũ implies f̃ (x, ũ1 � ũ2) ≤
f̃ (x, ũ) = a. But, we assumed that a < f̃ (x, ũ1 � ũ2), as a consequence it must be that
ũ ≤ ũ1 � ũ2. However, by definition ũ1 � ũ2 is the smallest element that is larger than
both ũ1 and ũ2. This in turn implies ũ = ũ1 � ũ2 and therefore a = f̃ (x, ũ1 � ũ2).
Finally, we set (Ĩ,≤) as the union of the lattices (Ĩ(x),≤) constructed above. This
union is well defined as all of the partial orders (Ĩ(x),≤) are compatible by construc-
tion. Thus, one can add a bottom and a top element for Ĩ to make (Ĩ,≤) a lattice.
To conclude the proof, we need to show that {u ∈ I | f̃ ([⊥, x], u) ⊆ [⊥,∨S̃]} is
not empty for [⊥, x] ⊆ S̃ ∩ Oy(Σ̃). Note that {u ∈ I | f̃ ([⊥, x], u) ⊆ [⊥,∨S̃]} =
{u ∈ I | f̃ (x, u) ≤ ∨S̃ }. The latter set is also equal to {u ∈ I | f (x, x) ⊆ S }.
This is not empty as x ⊆ S ∩ Oy(Σ) and Σ is controllable by dynamic output feed-
back with respect to S . Thus, Σ̃|I is controllable by dynamic output feedback with
respect to S̃ .

	Introduction
	Deterministic Transition Systems
	Problem Setup
	Problem Solution
	Generality of the Partial Order Approach
	Relaxations and Application to a Multi-robot Example
	Conclusions

