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Abstract— In this paper, the safety control problem for a
class of hybrid systems with disturbance inputs and imper-
fect continuous state information is considered. Under the
assumption that the system has order preserving dynamics, we
provide an algorithmic procedure for computing the control
map, which has linear complexity in the number of continuous
variables. The structure of the control map with imperfect
state information is the same as the one with perfect state
information, implying separation between state estimation and
control. We illustrate the proposed algorithm on a class of
applications characterized by order preserving dynamics.

I. Introduction

In this paper, we consider the safety control problem for

hybrid systems affected by disturbance inputs and imperfect

continuous state information. There is a wealth of literature

on safety control for hybrid automata assuming perfect

state information [8, 10, 13, 15–17]. This control problem is

addressed by computing the set of states that lead to an

unsafe configuration independently of an input choice, called

here the capture set. Then, a static feedback is computed

that guarantees that the state never enters the capture set.

As it appears in these previous works, the algorithms do

not scale with the size of the system and are limited to

state spaces with small dimension. Furthermore, the proposed

algorithms are not guaranteed to terminate [15]. To reduce

the computational load, approximate algorithms have been

proposed to compute over-approximations of the capture set

[9, 17].

These works are only concerned with state feedback, that

is, the state of the system is assumed to be available to the

controller. In the literature of hybrid systems, dynamic feed-

back is scarcely addressed. Some works on this problem have

recently appeared [5–7, 20]. In particular, [20] proposes a so-

lution to the control problem for rectangular hybrid automata

that admit a finite-state abstraction. Dynamic feedback in a

special class of hybrid systems with imperfect discrete state

information is presented in [5], however safety invariance is

not considered. Dynamic control of block triangular order

preserving hybrid automata under imperfect continuous state

information is considered in [6] for discrete time systems.

In [7], these results are extended to continuous time hybrid

systems on a partial order and a formal separation principle

is stated. However, these results are not applicable when the

hybrid system is affected by disturbance inputs.
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In this paper, we extend the results of [7] to hybrid systems

with disturbance inputs. In particular, we exploit the order

preserving structure of the system dynamics to show that the

capture set (with perfect or imperfect state information) can

be determined from two sets. These two sets can in turn be

computed with linear complexity algorithms. The dynamic or

static control map is then directly constructed from these two

sets. The resulting structure of the dynamic control map is

the same as the structure of the static control map, in which

the state is replaced by its estimate. This implies separation

between state estimation and control design for the class

of order preserving hybrid systems considered. We apply

the developed control algorithm on a collision avoidance

problem between two vehicles at a traffic intersection.

This paper is organized as follows. In Section II, we

introduce basic definitions and the class of hybrid systems we

consider. In Section III, we provide a mathematical statement

of the safety control problem. In Section IV, we give the

main result of the paper, namely the dynamic feedback

control map and separation principle. In Section V, we

present a discrete time algorithm for computing the dynamic

feedback. In Section VI, we present an example application

involving the safety control of two vehicles at an intersection.

II. Preliminaries

A. Notation and Basic Definitions

For the element x ∈ Rn and set A ⊂ Rn, denote the distance

from x to A d(x, A) := infy∈A ||x − y||. For A, B ∈ Rn, let

d(A, B) := infy∈A d(y, B). For the set A ⊂ Rn, let B(A, ǫ) :=

{z ∈ Rn | d(z, A) < ǫ}. Denote the canonical projection τi :

R
n → R defined by τi(x) = xi, which naturally extends to

sets. Denote the unit sphere Sn and unit disk Dn, where Sn :=

{x ∈ Rn+1 | ||x|| = 1} and Dn := {x ∈ Rn+1 | ||x|| ≤ 1}. For

sets A, B ⊆ Rn we define the relation A - B if τ1(A) ∩ τ1(B)

is non-empty and for all x ∈ A and y ∈ B such that x1 = y1,

we have x2 < y2.

We denote the space of piecewise continuous functions

from R+ to A ⊂ R as S (A). We use the notation F : A ⇉

B to denote a set-valued map from A into B. Denote the

unit interval I := [0, 1]. We define the Cone at vertex x ∈

R
n with respect to a1, a2, . . . , ak ∈ R

n as Cone{a1,a2,...,ak}x :=

{y ∈ Rn | 〈y − x |ai 〉 ≥ 0 ∀ i ∈ {1, 2, . . . , k}} . For x ∈ R2, we

use the shorthand notation Cone+(x) := Cone{ê1,ê2}(x) ⊂ R2

and Cone−(x) := Cone{−ê1,−ê2}(x) ⊂ R2.

Definition 1: A path γ ∈ C0(I,R2) is said to be order

preserving connected (o.p.c.) if it is simple [14], and for all

x ∈ R2 Cone+(x) ∩ γ(I) , ∅ implies that Cone+(x) ∩ γ(I) is

path connected. A set D ⊆ R2 is said o.p.c. if for all x, y ∈ D,
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Fig. 1. A is an o.p.c. set while B is not an o.p.c. set.

there exists a γ ∈ C0(I,D) such that γ(0) = x, γ(1) = y and

γ is o.p.c. (Figure 1).

A partial order is a set P with a relation ”≤”, which we

denote by the pair (P,≤) [4]. Define the partial order (Rn,≤)

for w, z ∈ Rn as w ≤ z if and only if wi ≤ zi for all i ∈

{1, 2, . . . , n}. For U ⊆ R, we define the partial order (S (U),≤)

for w, z ∈ S (U) as w ≤ z provided w(t) ≤ z(t) for all t ∈ R+.

Suppose (P,≤P) and (Q,≤Q) are two partially ordered sets. A

map f : P→ Q is an order preserving map provided x ≤P y

implies f (x) ≤Q f (y).

B. Class of Systems Considered

We consider piecewise continuous systems, with imperfect

state information. This includes the set of hybrid systems

with no continuous state reset and no discrete state dynamics.

Definition 2: A piecewise continuous system Σ with im-

perfect state information is a collection Σ = (X,U,O, f , h),

in which (i) X ⊆ Rn is a set of continuous variables; (ii) U

is a set of continuous inputs; (iii) O is a continuous set of

outputs; (iv) f : X×U → X is a piecewise continuous vector

field; (v) h : O⇉ X is an output map.

For an output measurement z ∈ O, the function h(z) returns

the set of all states compatible with the current output. We

let φ(t, x,u) denote the flow of Σ at time t ∈ R+, with

initial condition x ∈ X and input u ∈ S (U). Denote the

ith component of the flow by φi(t, x,u). We assume uniform

continuity of the flow with respect to time.

We restrict our class of systems Σ = (X,U,O, f , h) to order

preserving systems. These systems are defined on the partial

orders (Rn,≤) and (S (U),≤). Order preserving systems are

a subclass of Monotone Control systems, see [1].

Definition 3: We say that Σ is order preserving provided

there exist constants uL, uH ∈ R and a constant ξ > 0 such

that (i) U = [uL, uH] ⊂ R; (ii) The flow φ(t, x,u) is order

preserving with respect to input and initial condition; (iii)

f1(x, u) ≥ ξ for all (x, u) ∈ X × U; (iv) For all z ∈ O, h(z) =

[inf h(z), sup h(z)] ⊆ Rn.

Definition 4: For Σ1
= (X1,U1,O1, f 1, h1) and Σ2

=

(X2,U2,O2, f 2, h2), we define the parallel composition Σ =

Σ
1||Σ2 := (X,U,O, f , h), in which X := X1 × X2, U :=

U1 × U2, O := O1 × O2, f := ( f 1, f 2) and h := (h1, h2).

For x = (x1, x2) ∈ X1 × X2 and u = (u1,u2) ∈ S (U1) ×

S (U2), we denote the flow of the parallel composition

Σ
1||Σ2 as φ(t, x, (u1,u2)) = (φ1(t, x, (u1,u2)), φ2(t, x, (u1,u2)))

in which φ1(t, x, (u1,u2)) ∈ X1 and φ2(t, x, (u1,u2)) ∈ X2.

When referring to a component of φ(t, x, (u1,u2)), we denote

φ
1,2
j

(t, x, (u1,u2)) := (φ1
j
(t, x, (u1,u2)), φ2

j
(t, x, (u1,u2))).

III. Problem formulation

Given the parallel composition Σ = (X,U,O, f , h) of two

systems (referred to as agents) Σ1,Σ2, and a bad set of states

B ⊆ X, consider the problem of designing a controller that,

based on perfect state measurements, prevents the continuous

flow from entering B.

We assume that system Σ1 can be controlled, that is u1 ∈

S (U1) can be chosen, while system Σ2 cannot be controlled,

namely, u2 ∈ S (U2) is a disturbance. In the sequel, we denote

δ := u2 and ∆ := U2 so that δ ∈ S (∆). With abuse of

notation, denote u := u1 and U := U1 so that u ∈ S (U). We

thus denote the flow of Σ by φ(t, x, (u, δ)) with x ∈ X and

(u, δ) ∈ S (U) × S (∆).

First, consider the problem of keeping the flow outside

B using static feedback, that is, we assume perfect state

information.

Problem 1: (Static Feedback Safety Control Problem)

Given a system Σ1||Σ2 with O = X and h = id, determine

W :=

{

x ∈ X | ∃ u ∈ S (U) s.t. ∀ δ ∈ S (∆),

we have φ(t, x, (u, δ)) < B ∀ t ∈ R+

}

,

and a set-valued map g : X ⇉ U such that for initial

conditions x ∈ W, we have φ(t, x, (u, δ)) < B for all δ ∈ S (∆)

and t ∈ R+ when we choose u(τ) ∈ g(φ(τ, x, (u, δ))), for all

τ ∈ R+.

This problem can be interpreted as one of determining a

winning strategy for the controlled agent Σ1, while ensuring

that any input chosen by agent Σ2 does not lead the state

into B.

The second problem considered is the dynamic feedback

problem. We now assume imperfect information about the

state. Let x̂(t, x̂0,u, z) denote the set of all possible states at

time t given a set of initial conditions x̂0 ⊂ X and measurable

signals u and z. More formally,

x̂(t, x̂0,u, z) := {x ∈ X | ∃ x0 ∈ x̂0 and δ ∈ S (∆) s.t.

φ(t, x0, (u, δ)) = x and φ(τ, x0, (u, δ)) ∈ h(z(τ)) ∀ τ ∈ [0, t]}.

The set x̂(t, x̂0,u, z) is called the non-deterministic infor-

mation state [11] and we will denote it by x̂(t) when x̂0, u

and z are clear.

Problem 2: (Dynamic Feedback Safety Control Problem)

Given a system Σ1||Σ2, determine

W̄ :=

{

A ⊂ X | ∃ u ∈ S (U) s.t. ∀ z ∈ S (O)

we have x̂(t, A,u, z) ∩ B = ∅ ∀ t ∈ R+

}

,

and a set-valued feedback map G : 2X ⇉ U such that for

initial convex sets A ⊂ W̄, we have x̂(t, A,u, z)∩B = ∅ for all

t ∈ R+ and z ∈ S (O) when we choose u(τ) ∈ G(x̂(τ, A,u, , z)),

for all τ ∈ R+.

IV. Problem Solution

Let B ⊂ R2 be a bounded open o.p.c. set and define

B := {x ∈ R2n | (x1
1, x

2
1) ∈ B}. (1)

This choice is motivated by systems in which x1
1

and x2
1

represent displacement and B represents a set of collision
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configurations. For systems evolving on partial orders, o.p.c.

sets provide a natural geometry for capturing the flow.

Rather than directly computing W, we compute the capture

set, defined as C := X\W. Mathematically, it is defined as

C =

{

x ∈ X | ∀ u ∈ S (U),∃ δ ∈ S (∆),

s.t. φ(R+, x, (u, δ)) ∩ B , ∅

}

.

In this paper, we develop a novel way of computing the

capture set through the computation of simpler sets. For a

given input ū ∈ S (U), we define the restricted capture set to

be the capture set when the input signal is restricted to ū.

Mathematically, this is expressed as

Cū = {x ∈ X | ∃ δ ∈ S (∆) s.t. φ(R+, x, (ū, δ)) ∩ B , ∅} .

Since Σ1 and Σ2 are order preserving, we have that U =

[uL, uH] and ∆ = [δL, δH]. We define the signals uL(t) := uL,

uH(t) := uH , δL(t) := δL and δH(t) := δH , which each hold

for all t ∈ R+. We state the first main result of this paper, a

necessary and sufficient condition on convex sets A leading

to non-empty intersection of the flow φ(R+, A, (u, δ)) with B

for every control input u.

Theorem 1: Consider Σ1||Σ2 and a convex set A ⊂ X. Then

A∩CuL
, ∅ and A∩CuH

, ∅ holds if and only if for all u ∈

S (U), there exists δ ∈ S (∆) such that φ(R+, A, (u, δ))∩B , ∅.

Before giving the proof, we introduce the following inter-

mediate result, whose proof can be found in the appendix.

We assume continuity of the flow with respect to initial

conditions.

Lemma 1: Consider Σ1||Σ2 and a convex set A ⊂ X,u ∈

S (U) and γ ∈ C0(I,R2) o.p.c. with inf τ1(A) < max τ1(γ(I)).

Then φ
1,2
1

(R+, A, (u, S (∆))) ∩ γ(I) = ∅ if and only if

φ
1,2
1

(R+, A, (u, δL)) % γ(I) or φ1,2
1

(R+, A, (u, δH)) - γ(I).

Lemma 1 states that the flow φ generated from initial

conditions A and input u can avoid an o.p.c. path γ in the

(x1
1
, x2

1
) subspace if and only if the disturbance δL takes the

trajectory of φ1,2
1

above γ or the disturbance δH takes the

trajectory of φ1,2
1

below γ.

Proof: (Theorem 1). (⇐) Follows by choosing the

constant input uL or uH .

(⇒ Construction) Consider an arbitrary u ∈ S (U).

Since A ∩ CuL
, ∅ and A ∩ CuH

, ∅, the definition

of the restricted capture set implies that there are x, y ∈

A, δ1, δ2 ∈ S (∆) and t1, t2 ∈ R+ such that φ(t1, x, (uL, δ1)) ∈

B and φ(t2, y, (uH , δ2)) ∈ B. Let µ, ν ∈ B where µ =

φ
1,2
1

(t1, x, (uL, δ1)) and ν = φ1,2
1

(t2, y, (uH , δ2)). From equation

(1), we have that µ, ν ∈ B. Since B is an o.p.c. set, there

exists an o.p.c. path γ ∈ C0(I, B) with γ(0) = µ and γ(1) = ν.

Condition (ii) of Definition 3 and the decoupling of the

dynamics imply φ1
1
(t1, x, (u, δL)) ≥ µ1 and φ2

1
(t1, x, (u, δL)) ≤

µ2. Condition (iii) of Definition 3 and the uniform continuity

of the flow with respect to time imply there must be a time t̄ ∈

[0, t1] such that φ1
1
(t̄, x, (u, δL)) = µ1. At this time t̄, condition

(ii) of Definition 3 and the decoupling of the dynamics imply

φ2
1
(t̄, x, (u, δL)) ≤ φ2

1
(t1, x, (u, δL)) ≤ µ2. Since µ ∈ γ(I), we

thus have that

φ
1,2
1

(R+, A, (u, δL)) � γ(I). (2)

Similarly, condition (ii) of Definition 3 and the decou-

pling of the dynamics imply φ1
1
(t2, y, (u, δH)) ≤ ν1 and

φ2
1
(t2, y, (u, δH)) ≥ ν2. Condition (iii) of Definition 3 and the

uniform continuity of the flow with respect to time imply

there must be a time t̄ ≥ t2 such that φ1
1
(t̄, y, (u, δH)) = ν1. At

this time t̄, condition (ii) of Definition 3 and the decoupling

of the dynamics imply φ2
1
(t̄, y, (u, δH)) ≥ φ2

1
(t2, y, (u, δH)) ≥

ν2. Since ν ∈ γ(I), we thus have that

φ
1,2
1

(R+, A, (u, δH)) � γ(I). (3)

Note that φ1
1
(0, x, (u, δ)) < µ1 from condition (iii) of

Definition 3, implying inf τ1(A) < max τ1(γ(I)). There-

fore, (2) and (3) allow us to invoke Lemma 1, giving

φ
1,2
1

(R+, A, (u, S (∆))) ∩ γ(I) , ∅. This implies there is z ∈

A and δ̄ ∈ S (∆) such that φ1,2
1

(R+, z, (u, δ̄)) ∩ B , ∅, which

leads to φ(R+, z, (u, δ̄))∩B , ∅. Since this holds for arbitrary

u ∈ S (U), we have completed the proof.

Corollary 1: C = CuL
∩CuH

.

Proof: Follows by applying Theorem 1 to A = {x}.

For the above Corollary, it can be shown that it is not

necessary to require continuity of the flow with respect to

the initial condition.

A. The control map

Define the set-valued map G : 2X ⇉ U as

G(Z) :=



























































uL if Z ∩CuH
, ∅ and Z ∩ ∂CuL

, ∅

and Z ∩CuL
= ∅

uH if Z ∩CuL
, ∅ and Z ∩ ∂CuH

, ∅

and Z ∩CuH
= ∅

{uH , uL} if Z ∩ ∂CuH
, ∅, Z ∩ ∂CuL

, ∅

and Z ∩ (CuL
∪CuH

) = ∅

U otherwise.

(4)

We define the closed-loop flow generated with the set-

valued map G starting from A ⊂ X as follows.

Definition 5: For A ⊂ X compact, let ΦA(t,u) :=

{φ(t, x, (u, δ)) | x ∈ A and δ ∈ S (∆)}. The closed-loop flow

generated by G starting in A is the set-valued map Φcl
A

: R+ ⇉

X defined as Φcl
A

(t) := {ΦA(t,u) | u(τ) ∈ G(ΦA(τ,u)) ∀τ ∈

R+}.

We next show that the feedback map (4) guarantees that

the closed-loop flow Φcl
A

(t) never intersects B whenever A ∩

CuL
= ∅ or A ∩CuH

= ∅.

Theorem 2: Let A ⊂ X be compact and convex. If A ∩

CuL
= ∅ or A ∩ CuH

= ∅ holds, then Φcl
A

(t) ∩ B = ∅ for all

t ∈ R+.

Proof: Observe that if Φcl
A

(t) ∩ Cu = ∅ for some u ∈

S (U), then necessarily Φcl
A

(t)∩B = ∅. This follows from the

fact that B ⊂ Cu for all u ∈ S (U). Thus, we show that if the

hypothesis is satisfied, necessarily Φcl
A

(t)∩CuL
= ∅ or Φcl

A
(t)∩

CuH
= ∅ for all t ∈ R+.

We proceed by contradiction. Suppose there exists a t2 > 0

such that ΦA(t2)cl ∩CuL
, ∅ and Φcl

A
(t2)∩CuH

, ∅. The con-

tinuity of the flow with respect to initial conditions and time

implies that Φcl
A

(t) is both upper and lower hemi-continuous,

and thus continuous [2]. This, along with Φcl
A

(0)∩CuH
= ∅ or
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Φ
cl
A

(0)∩CuL
= ∅, implies there exists an interval [t1, t2] ⊂ R+

such that one of the following cases occur:

Case(I): Φcl
A

(t)∩CuH
, ∅ for all t ∈ [t1, t2], while Φcl

A
(t1)∩

CuL
= ∅ and Φcl

A
(t2) ∩CuL

, ∅;

Case(II): Φcl
A

(t)∩CuL
, ∅ for all t ∈ [t1, t2], while Φcl

A
(t1)∩

CuH
= ∅ and Φcl

A
(t2) ∩CuH

, ∅;

Case(III): Φcl
A

(t1) ∩ CuH
= ∅ and Φcl

A
(t2) ∩ CuL

= ∅ while

Φ
cl
A

(t) ∩CuH
, ∅ and Φcl

A
(t) ∩CuL

, ∅ for all t ∈ (t1, t2].

Case(I). If the flow is continuous with respect to initial

conditions, we can use Theorem 1.4.16 (Maximum Theorem)

from [2] to show that dist(t) := supx∈Φcl
A

(t) d(x,∼ CuL
) is a

continuous function. Since Φcl
A

(t) and ∼ CuL
are closed for

all t, dist(t) = 0 if and only if Φcl
A

(t) ⊂ (∼ CuL
), implying

dist(t2) > 0 and dist(t1) = 0.

This along with the continuity of dist(t) implies there is a

t̄ ∈ [t1, t2] such that

t̄ = max{t ∈ [t1, t2) | dist(t) = 0}, (5)

because the preimage of a closed set must be closed under

a continuous function. By the continuity of Φcl
A

(t), it follows

that Φcl
A

(t̄) ∩ ∂CuL
, ∅.

At time t̄ we also have that Φcl
A

(t̄) ∩CuH
, ∅ and Φcl

A
(t̄) ∩

CuL
= ∅, implying from the definition of G in (4) that

G(Φcl
A (t̄)) = uL. (6)

From (5), we have dist(t) , 0 for all t ∈ (t̄, t2], implying that

Φ
cl
A

(t)∩CuL
, ∅ for all t ∈ (t̄, t2]. Since Φcl

A
(t)∩CuH

, ∅ also

holds for all t ∈ (t̄, t2], G(Φcl
A

(t)) = U for all t ∈ (t̄, t2]. Thus,

uL ∈ G(Φcl
A

(t)) for all t ∈ (t̄, t2]. Now let y ∈ Φcl
A

(t2)∩CuL
and

choose z ∈ Φcl
A

(t̄) such that φ(t2 − t̄, z, (uL, δ)) = y, for some

δ ∈ S (∆). Since y ∈ CuL
and uL = uL for all t ∈ [t̄, t2], we

must have that z ∈ CuL
by the definition of CuL

. This leads

to a contradiction, since we assume Φcl
A

(t̄) ∩ CuL
= ∅. As a

consequence, such an interval [t1, t2] for which Case(I) holds

cannot exit.

For Case(II) and Case (III), a similar argument holds.

Therefore Φcl
A

(t) ∩ CuL
= ∅ or Φcl

A
(t) ∩ CuH

= ∅ must always

hold under G for all t ∈ R+. Thus, implying that Φcl
A

(t)∩B = ∅

for all t ∈ R+.

We summarize the solutions to Problem 1 and Problem 2

in the two following theorems, respectively.

Theorem 3: (Solution to Problem 1) The set W of Problem

1 is given by W = X\(CuL
∩CuH

). A feedback map g : X ⇉ U

is given by

g(x) :=































uL if x ∈ CuH
and x ∈ ∂CuL

uH if x ∈ CuL
and x ∈ ∂CuH

{uL, uH} if x ∈ ∂CuL
and x ∈ ∂CuH

U otherwise.

Proof: Direct consequence of Corollary 1 and Theorem

2, in which A is a singleton.

Theorem 4: (Solution to Problem 2) A convex set x̂0 ⊂

X is in W̄ if and only if x̂0 ∩ CuL
= ∅ or x̂0 ∩ CuH

= ∅.

Furthermore, if x̂0 ⊂ W̄ is also compact, then a dynamic

feedback map G : 2X ⇉ U is given by (4).

Proof: By Theorem 1, there exists a u ∈ S (U) such

that φ(t, A, (u, δ)) ∩ B = ∅ for all δ ∈ S (∆) and t ∈ R+

if and only if A ∩ CuL
= ∅ or A ∩ CuH

= ∅. Letting A =

x̂0 and assuming z is the worst-case observation signal that

does not restrict the flow φ(t, A, (u, δ)) further, we have that

x̂(t, x̂0,u, z) = φ(t, A, (u, δ)) for all t ∈ R+. Therefore, there

is an input u ∈ S (U) such that x̂(R+, x̂0,u, z) ∩ B = ∅ for

all δ ∈ S (∆) and t ∈ R+ if and only if x̂0 ∩ CuL
= ∅ or

x̂0 ∩CuH
= ∅. Theorem 2 shows that feedback map G given

by (4) maintains Φcl
x̂0

(t) not intersecting B for all t ∈ R+ and

thus x̂(t, x̂0,u, z) with u(τ) ∈ G(x̂(τ, x̂0,uz)) ∀τ ∈ R+ does

not intersect B for all t ∈ R+.

Since the static feedback map g is equivalent to the

dynamic feedback map G with set inclusion replaced by

membership, a separation principle holds for Σ1||Σ2 between

state estimation and control.

V. Algorithms Implementation

By virtue of Theorems 3 and 4, the static and dynamic

control Problems 1 and 2 can be solved by computing the

sets CuL
and CuH

. These sets can be in turn computed

by linear complexity algorithms. With the idea of digital

implementation, we illustrate our algorithm in discrete time.

We assume that f i
1

does not depend on xi
1

for i ∈ {1, 2}.

This structure is found, for example, in systems consisting

of chains of integrators. These can be in turn be realized

after the feedback linearization of a nonlinear system (when

such a transformation exists).

Let x̄i := (xi
2
, . . . , xi

n), f̄ i := ( f i
1
, . . . , xi

n) and define the

discretized system (using the forward Euler approximation)

with step size ∆T > 0 and index n

xi
1[n + 1] = xi

1[n] + F i
1(x̄i[n],ui[n]),

x̄i[n + 1] = x̄i[n] + F̄ i(x̄i[n],ui[n]),

in which F i
1
(x̄i[n],ui[n]) := ∆T f i

1
(x̄i[n],ui[n]) and

F̄ i(x̄i[n],ui[n]) := ∆T f̄ i(x̄i[n],ui[n]) are order preserving

in both arguments. For a given bad set B with τ1,n+1(B)

bounded, we construct an over-approximation of B using

intervals. Let L1
= inf τ1(B), U1

= sup τ1(B), L2
=

inf τn+1(B), and U2
= sup τn+1(B). Thus we must have

B ⊂ [L1,U1] × [L2,U2]. Thus, we have B ⊂ B̃ := [L1,U1] ×

R
n−1 × [L2,U2] × Rn−1. Note that if B is a box, then B = B̃

and our computation exactly determines the restricted capture

sets CuL
and CuH

.

We next propose the algorithm used to compute

the restricted capture sets. Set F̄ i,0(x̄i[n],ui[n]) := 0,

F̄ i,1(x̄i[n],ui[n]) := x̄i[n],ui[n] and recursively define

F̄ i,k+1(x̄i[n],ui[n]) := F̄ i(F̄ i,k(x̄i[n],ui[n]),ui[n]) for k ∈ N.

With the goal of computing CuL
and CuH

, we consider the

initial conditions x̄1, x̄2 ∈ Rn−1, and define

L1,k(x̄1[n], u) := L1 −
∑k−1

j=0 F1
1
(x̄1[n] + F̄1, j(x̄1[n], u), u)

U1,k(x̄1[n], u) := U1 −
∑k−1

j=0 F1
1
(x̄1[n] + F̄1, j(x̄1[n], u), u),

L2,k(x̄2[n], u) := L1 −
∑k−1

j=0 F2
1
(x̄2[n] + F̄2, j(x̄2[n], δH), δH)

U2,k(x̄2[n], u) := U2 −
∑k−1

j=0 F2
1
(x̄2[n] + F̄2, j(x̄2[n], δL), δL).

For u(t) = u ∈ U for all t ∈ R+, one can check that

Cu =

{

x ∈ X | ∃k ≥ 0 such that

Li,k(x̄i, u) < xi
1
< U i,k(x̄i, u) ∀ i ∈ {1, 2}

}

.
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Since the dynamics of the system are order preserving with

respect to the state, we construct a state estimator that keeps

track of only the lower and upper bounds of the information

state. Let ∨x̂i := sup x̂i and ∧x̂i := inf x̂i denote the upper and

lower bounds respectively of the set of possible current states

x̂i. Let zi be an output measurement of for the ith agent, let

hi(zi[n]) = [inf hi(zi[n]), sup hi(zi[n])] and let zi
+

:= zi[n + 1].

Then a state estimator that updates ∨x̂ and ∧x̂ is given by

∨x̂1[n + 1] = ∨x̂1[n] + inf{F1
1(∨x̂1[n],u[n]), sup h1(z1

+
)},

∧x̂1[n + 1] = ∧x̂1[n] + sup{F1
1(∧x̂1[n],u[n]), inf h1(z1

+
)},

∨x̂2[n + 1] = ∨x̂2[n] + inf{F2
1(∨x̂2[n], δL), sup h2(z2

+
)},

∧x̂2[n + 1] = ∧x̂2[n] + sup{F2
1(∧x̂2[n], δH), inf h2(z2

+
)}.

At every time step n, one needs to check whether

[∨x̂[n],∧x̂[n]] intersects CuL
or CuH

. From assumption

(ii) in Definition 3, we know that F̄ i(x̄i[n], ui) is or-

der preserving in the argument x̄i[n], thus the func-

tions L1,k(x̄1[n], u) are order reversing in the argument

x̄1. Let Lk(x̂[n], uL) := (L1,k(x̂1[n], uL), L2,k(x̂2[n], uL)) and

Uk(x̂[n], uL) := (U1,k(x̂1[n], uL),U2,k(x̂2[n], uL)). Therefore, a

sufficient condition guaranteeing that for some i ∈ {1, 2}, we

have [∨x[n],∧x[n]] ∩ (
⋃

k[Lk(x̂[n], uL),Uk(x̂[n], uL)]) = ∅, is

that for all k ∈ N, there exists i ∈ {1, 2} such that

[∨xi[n],∧xi[n]] ∩ [Li,k(∨x̂i[n], uL),U i,k(∧x̂i[n], uL)] = ∅. (7)

Condition (ii) of Definition 3 implies that the sequences

{Li,k(x̂i[n], u)}k∈N and {U i,k(x̂i[n], u)}k∈N are strictly monoton-

ically decreasing to −∞. Therefore, condition (7) need only

be checked for all k ∈ N such that ∧x̂ ≥ Uk(x̂i[n], u).

This guarantees termination of the dynamic algorithm that

computes the control map.

VI. Simulation Results

We illustrate the application of the algorithms outlined in

Section V on a system that is naturally order preserving. We

consider the problem of maintaining a safety specification

for two vehicles merging at a traffic intersection (Figure

3). The controlled agent has imperfect knowledge of the

entire state, a condition present when sensors are assumed

to only provide information subject to bounded error (due

to GPS measurements, for example). For practical reasons,

both agents are forced to maintain a strictly positive bounded

forward velocity, which is accomplished by modifying the

second order model from [18] to include a fixed invariant,

yielding the piecewise continuous system depicted in Figure

2.

Fig. 2. Hybrid system modeling the dynamics of each agent. In
the diagram, we denote α := au + b + cx2

2.

One can verify that each agent satisfies all conditions of

Definition 3. We implement the algorithms of Section V

Fig. 3. Example of vehicles converging at an intersection. The bad set B

represents all configurations where the vehicles overlap at the intersection.
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Fig. 4. The above plots depict snapshots of the dynamic evolution of
the closed-loop system. The system considered has ai

= 1, bi
= −.5 and

ci
= −.1 for i ∈ {1, 2}, with vmin = .25 m/sec and vmax = 2 m/sec. We choose
∆T = .1 sec, B = [4, 6] × R × [5, 8] × R, U = ∆ = I, x0 = (−20, .5,−30, .5),
x̂0 = [−22,−18] × [.3, .7] × [−32,−28] × [.3, .7]. The measurements z are
generated randomly with a uniform probability distribution in the interval
[x(t) − (5, .5, 5, .5), x(t) + (5, .5, 5, .5)] so that h(z) = [z − (5, .5, 5, .5), z +
(5, .5, 5, .5)]. The black box represents the projection of x̂(t) onto the (x1

1
, x2

1
)

plane. The red box represents the projection of B onto the (x1
1
, x2

1
) plane,

the slice of CuL
corresponding to the current velocities is shown in light

grey with a solid outline and the slice of CuH
corresponding to the current

velocities is shown in dark grey with a dashed outline.

symbolically to compute the restricted capture sets CuL
and

CuH
. Figure 4 shows the execution of the closed-loop system.

VII. Conclusion and FutureWork

In this paper, we have considered the problem of safety

control for a class of hybrid systems with imperfect state

information, disturbances, and order preserving dynamics.

By exploiting the order preserving dynamics, we provided

static and dynamic feedback maps that can be computed

by linear complexity algorithms. The resulting control maps
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Fig. 5. Three Cases.

for the static and dynamic control problem have the same

structure. This highlights a separation principle between state

estimation and control for the class of systems studied in this

work.

Future work includes extending the algorithms to more

general hybrid systems with continuous state reset and dis-

crete state dynamics [19].

VIII. Appendix: Proof of Lemma 1

Before giving the proof of Lemma 1, we need the follow-

ing intermediate results.

Proposition 1: Consider Σ1||Σ2, x = (x1, x2) ∈ X,u ∈

S (U), δ ∈ S (∆) and γ ∈ C0(I,R2) o.p.c. where x1
1
≤

max τ1(γ(I)). Then, we have that φ1,2
1

(R+, x, (u, δ)) % γ(I)

or φ1,2
1

(R+, x, (u, δ)) - γ(I) if and only if φ1,2
1

(R+, x, (u, δ)) ∩

γ(I) = ∅.

Proof: (⇒) Follows from the definition of the -

relation.

(⇐) Suppose {φ
1,2
1

(R+, x, (u, δ)) % γ(I) or

φ
1,2
1

(R+, x, (u, δ)) - γ(I)} does not hold. The hypothesis

φ1
1
(0, x, (u, δ)) ≤ sup τ1(γ(I)) and condition (iii) of Definition

3 imply that there exist α1, α2 ∈ I and t1, t2 ∈ R+ such

that φ1,2
1

(t1, x, (u, δ)) - γ(α1) and φ
1,2
1

(t2, x, (u, δ)) % γ(α2).

For simplifying notation, let ϕ(t) := φ
1,2
1

(t, x, (u, δ)).

Without loss of generality, assume α1 ≤ α2, define

χ := (min
{

γ1(α1), γ1(α2)
}

,min
{

φ2
1
(t1, x,u, δ), γ2(α2)

}

), and

Γ12 := γ([α1, α2]). By the construction of χ, we have that

γ(α1), γ(α2) ∈ Cone+(χ), which implies that Γ12 ⊂ Cone+(χ)

by the definition of o.p.c.

We now consider the three possible cases: (Case I) t1 = t2,

(Case II) t1 < t2, and (Case III) t1 > t2.

(Case II) Suppose t1 < t2. This along with condition (ii)

of Definition 3 implies that γ1(α1) < γ1(α2). We assume

that ϕ(t1) - γ(I) and ϕ(t2) % γ(I), otherwise we would be

back to (Case I). Define the sets S 1 := Cone{ê1,−ê2}(γ(α2))

and S 2 := Cone+(χ). Define A := S̊ 1 ∪ (∼ S 2) and Ã :=

A ∪ γ(α1) ∪ γ(α2). Since γ is an o.p.c. path, Γ12 ⊂ Cone+(χ)

and Γ12 ∩ S 1 = ∅, we must have that Γ12 ∩ A = ∅.

The set Ã is path connected, implying the existence of

γ̄ ∈ C0(I, Ã) with γ̄(0) = γ(α1), γ̄(1) = γ(α2) and γ̄ simple.

Since A ∩ Γ12 = ∅, γ̄(I) ∪ Γ12 can be re-parameterized

with a simple closed curve (see Figure 5). This curve,

by the Jordan Curve Theorem, forms a bounded set D,

where ϕ(t1) ∈ D by construction. Condition (ii) and (iii)

of Definition 3 along with the decoupling of the dynamics

imply that ϕ([t1,∞]) ∩ A = ∅ and ϕ([t1,∞]) ∩ ∂D , ∅.

Since γ̄ ⊂ A, we have that ϕ([t1,∞]) ∩ Γ12 , ∅. Therefore,

φ
1,2
1

(R+, x, (u, δ)) ∩ γ(I) , ∅.

Fig. 6. Geometry of φ1
1
(t, x, (u, δL)) and φ1

1
(t, y, (u, δL)).

The arguments for Case I and Case III follow in a similar

manner, see Figure 5.

Therefore, we have shown for each case φ1,2
1

(R+, x, (u, δ))∩

γ(I) , ∅, completing the proof.

Proposition 1 states that the flow φ generated from the

initial condition x and input u and disturbance δ can avoid

an o.p.c. path γ in the (x1
1
, x2

1
) subspace if and only if the

trajectory of φ1,2
1

lies above γ or if the trajectory of φ1,2
1

lies

below γ. Another intermediate result is needed before stating

the proof of Lemma 1.

Proposition 2: Consider Σ
1||Σ2, x = (x1, x2) ∈

X,u ∈ S (U) and γ ∈ C0(I,R2) o.p.c. with x1
1
≤

max τ1(γ(I)). If φ1,2
1

(R+, x, (u, S (∆))) ∩ γ(I) = ∅, then either

φ
1,2
1

(R+, x, (u, δL)) % γ(I) or φ1,2
1

(R+, x, (u, δH)) - γ(I).

Proof: Follows directly from the order preserving

property with respect to input and the decoupling of the

dynamics.

Proposition 2 states that the flow φ generated from the

initial condition x and input u can avoid an o.p.c. path γ in

the (x1
1
, x2

1
) subspace if and only if the trajectory of φ1,2

1
lies

above γ or if the trajectory of φ1,2
1

lies below γ.

Proof: (Lemma 1) (⇐) Follows from the definition of

the - relation.

(⇒) Suppose {φ1(R+, A, (u, δL)) % γ(I) or

φ
1,2
1

(R+, A, (u, δH)) - γ(I)} does not hold. Then there

must exist x, y ∈ A, α1, α2 ∈ I, and t1, t2 > 0 such that

φ
1,2
1

(t1, x, (u, δL)) - γ(α1) and φ
1,2
1

(t2, y, (u, δH)) % γ(α2). We

assume that φ1,2
1

(R+, x, (u, δL)) - γ(I), otherwise Proposition

1 implies that φ1,2
1

(R+, x, (u, δL)) ∩ γ(I) , ∅. Likewise, we

assume that φ1,2
1

(R+, y, (u, δL)) % γ(I). Figure 6 shows the

resulting geometry of the flow. Let ᾱ ∈ I be such that

τ1(γ(I)) ≤ τ1(γ(ᾱ)). Condition (iii) of Definition 3 along

with (a) leads to φ1
1
(0, x, (u, δL)) < φ1

1
(t1, x, (u, δL)) ≤ γ1(ᾱ)

and φ1
1
(0, y, (u, δL)) < φ1

1
(t2, y, (u, δL)) ≤ γ1(ᾱ). Consider

H := co({x, y}) ⊂ A, since convexity is preserved under

projection [3], condition (iii) of Definition 3 implies there

is T > 0 such that

φ1
1(0,H, (u, δL)) < {γ1(ᾱ)} < φ1

1(T,H, (u, δL)). (8)

We seek to show that γ(ᾱ) ∈ φ1([0,T ],H, (u, δL)). Define

K := [0,T ] × H ⊂ R+ × R
2n and let Θ : K → R2 be the

map defined by Θ(t, z) := φ1,2
1

(t, z, (u, δL)) for (t, z) ∈ K. We

proceed by breaking this proof into three steps: (i) Construct
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Fig. 7. The Mapping ψ.

(a) Commuting Diagram (b) Four Quadrants

Fig. 8. Tools used to find deg ψ.

from Θ a map ψ : S1 → S1; (ii) Show that the degree of

ψ is nonzero; (iii) Show that the degree of ψ being nonzero

implies that γ(ᾱ) ∈ Θ(K).

(i) Denote the four corners of ∂K : h1 = (0, x), h2 =

(T, x), h3 = (T, y), h4 = (0, y). Define the sets A1 :=

co({h1, h2})∪co({h2, h3}) and A2 := co({h3, h4})∪co({h4, h1}).

Consider the standard covering map of S1 p : R → S1, in

which p(z) := (cos(2πz), sin(2πz)). Define the homeomor-

phism f : D1 → K, such that f (p(0)) = h1, f (p(.25)) =

h2, f (p(.5)) = h3, and f (p(.75)) = h4. Since Θ is a

continuous function, we have that Θ(∂K) defines a closed

curve. Assume that γ(ᾱ) < Θ(∂K) and let g : R2\γ(ᾱ) → S1

be the continuous map defined by

g(z) :=
z − γ(ᾱ)

‖z − γ(ᾱ)‖
, ∀z ∈ R2\γ(ᾱ). (9)

Define ψ ∈ C0(S1,S1) as ψ(x) := (g ◦Φ ◦ f )(x) for all x ∈ S1

(see Figure 7).

(ii) To compute the degree of ψ, we consider the lift ψ̃ :

I → R where p◦ψ̃ = ψ◦ p (see Figure 8(a)). The degree of ψ

is defined as deg ψ := ψ̃(1) − ψ̃(0) (see [12] for details). We

introduce the sets S1
I

:= p([0, .25]),S1
II

:= p([.25, .5]),S1
III

:=

p([.5, .75]),S1
IV

:= p([.75, 1]) (see Figure 8(b)). Let µ1 :=

ψ̃(0) and note that p(µ1) = ψ(p(0)) = g(Θ(h1)), which must

be in S1
III
, since Θ(h1) < γ(ᾱ). Let µ2 = ψ̃(.5) and note that

p(µ2) = ψ(p(.5)) = g(Θ(h3)). From (8) and condition (iii)

of Definition 3, we have that γ(ᾱ) < Θ(h3). This inequality

along with the definition of g imply that g(Θ(h3)) ∈ S1
I
. As

a consequence, we have p(µ2) ∈ S1
I
, implying that µ1 , µ2.

Finally, let ψ̃(1) = µ3. We can show without much

difficulty that µ1 < µ2 < µ3. As a consequence, deg ψ =

ψ̃(1) − ψ̃(0) = µ3 − µ1 , 0.

(iii) Now suppose we extend the map ψ to ψ̄ ∈ C0(D1,S1),

where ψ̄(x) := (g ◦ Θ ◦ f )(x) for all x ∈ D1. By Lemma

3.5.7 in [12], if a continuous function h : S1 → S
1

extends to a continuous function H : D1 → S1, then deg

h must be zero. However, we found the degree of ψ to

be non-zero, implying that ψ cannot extend to ψ̄. Since

Θ( f (D1)) is well defined, we must have that g(Θ( f (D1)))

is undefined. Since g(z) is defined for all z ∈ R2\γ(ᾱ),

we must have that γ(ᾱ) ∈ Θ( f (D)). This implies that

γ(ᾱ) ∈ Θ(K) = φ1([0,T ],H, (u, δL)) ⊂ φ1,2
1

(R+, A, (u, S (∆))).

Therefore, φ1,2
1

(R+, A, (u, S (∆))) ∩ γ(I) , ∅
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