
Supervisory Control for Intersection Collision Avoidance in the
Presence of Uncontrolled Vehicles*

Heejin Ahn, Alessandro Colombo, and Domitilla Del Vecchio

Abstract— This paper describes the design of a supervisory
controller (supervisor) that manages controlled vehicles to avoid
intersection collisions in the presence of uncontrolled vehicles.
Two main problems are addressed: verification of the safety of
all vehicles at intersections, and management of the inputs of
controlled vehicles. As for the verification, we apply an inserted
idle-time scheduling approach [1] where the term “inserted
idle-time” represents the time interval when an intersection is
deliberately held idle for uncontrolled vehicles to safely cross
the intersection. As for the management, the supervisor is
least restrictive in the sense that it overrides all controlled
vehicles when an safety violation becomes imminent. In a
centralized control system, a computational complexity issue
arises. We address this with an efficient version of scheduling
using an inflated intersection. The solutions assure the safety
of uncontrolled as well as controlled vehicles. It also offers the
advantages of increasing traffic flow and energy efficiency.

I. INTRODUCTION

In the United States, the most critical and frequent vehicle
collisions happens at intersections according to the National
Motor Vehicle Crash Causation Survey (NMVCCS) [2].
The research on intersection collision avoidance requires
understanding of dynamics of vehicles, information analysis
of traffic, and responses of human operators. Since 2010, the
U.S. Department of Transportation has been developing the
Intelligent Transportation Systems (ITS), which aims to en-
able wireless connectivity among vehicles, infrastructure, and
portable devices [3]. The networked transportation systems
stimulate studies on intersection collision avoidance. Hafner
et al. studied a safety for two-vehicle systems, one of which
is uncontrolled, with imperfect state information [4]. Using
scheduling approach with all controlled vehicles, Colombo
et al. studied rear-end collisions [5] and Bruni et al. took
uncertainties of measurement and process into account [6].

This paper describes the design of a centralized controller
to prevent intersection collisions in the presence of mul-
tiple uncontrolled vehicles. In centralized control systems,
all decisions are made by a single agent to achieve an
objective of the systems. The single agent is designed to
be least restrictive in the sense that it never intervenes
unless constraint violation becomes imminent [7]. We call
the single agent a supervisor, which is assumed to be able
to measure the dynamic states of all vehicles and give

*This work was supported by ...
Heejin Ahn and Domitilla Del Vecchio are with the Department of

Mechanical Engineering, Massachusetts Institute of Technology, 77 Mas-
sachusetts Avenue, Cambridge, USA. Email: hjahn@mit.edu and
ddv@mit.edu

Alessandro Colombo is with the Dipartimento di Elettronica Infor-
mazione e Bioingegneria, Politecnico di Milano, Milano, Italy. Email:
alessandro.colombo@polimi.it

commands to controlled vehicles without uncertainties. The
controlled vehicles are those equipped with driver assistance
systems that enable the supervisor communicate and override
the systems, while the others, uncontrolled vehicles, are not
so equipped. An inserted idle-time (IIT) scheduling approach
[1] is applied to detect upcoming collisions in the presence of
uncontrolled vehicles. Depending on the verification of the
scheduling, the supervisor intervenes if necessary. In general,
computational complexity is a major concern in centralized
control systems [8]; the IIT scheduling used in this paper
is known to be NP-hard [9]. This problem is addressed
based on an efficient version of scheduling using an inflated
intersection.

This paper is organized as follows. In Section II, we review
the mathematical frameworks of scheduling problem and
define the system. Section III presents two main problems,
Verification and Supervisory, and Section IV provides the
solutions for the problems. To address the complexity of
the solutions, an efficient approach is given in Section V.
Simulations for 8 vehicles are given in Section VI. In Section
VII, the summary of main achievement and some future
works are presented.

II. PROBLEM FOUNDATIONS

A. Mathematical Frameworks

Scheduling problems are described by jobs, machines, and
processing characteristics [10]. Jobs represent tasks which
have to be executed; machines represent scarce resources
such as facilities where jobs are performed; and processing
characteristics used in this paper are release time ri, process
time pi, and due date di. A schedule is a vector of starting
times for all jobs that all constraints in a scheduling problem
are satisfied. While most of scheduling literature focuses on
non-delay schedules, we consider a more general class of
schedules which is an inserted idle-time (IIT) schedule. This
schedule is created with considering an IIT, which are an
open time interval when a machine is deliberately held idle
while at least one job is waiting to be processed [1]. If we say
(r̄γ , p̄γ) is an IIT, a necessary condition for an IIT schedule
ti to be feasible is (ti, ti + pi) ∩ (r̄γ , p̄γ) = ∅.

In this paper, the scheduling problem 1|ri|Lmax, which
aims to find a schedule that minimizes lateness, is considered.
To prove that the scheduling problem is equivalent to the
control problem that we describe in Section III, we consider
the decision version of the scheduling problem, which returns
a binary answer yes or no. Define the decision problem
DEC(1|ri|Lmax,0) as the question “does a given problem

1|ri|Lmax have a schedule to make Lmax smaller than or
equal to 0?”. This is stated in a formal manner as follows.

Definition 1 (DEC(1|ri|Lmax,0)): Given a set of n jobs
which have a release time ri, a process time pi, and a due
date di over one machine and given a set of m inserted
idle-times (r̄γ , p̄γ), determine whether there exists a schedule
T = {t1, . . . , tn} such that for all i ∈ {1, . . . , n},

ri ≤ ti ≤ di − pi,

for all i 6= j ∈ {1, . . . , n}

ti ≤ tj ⇒ ti + pi ≤ tj ,

and for all γ ∈ {1, . . . ,m}

ti ≤ r̄γ ⇒ ti + pi ≤ r̄γ
ti ≥ r̄γ ⇒ ti ≥ p̄γ

Notice that if such a schedule exists, (ti, ti + pi) ∩
(r̄γ , p̄γ) = ∅ because for all t∗ ∈ (ti, ti + pi), the last
two constraints imply t∗ < r̄γ or t∗ > p̄γ . Also the
lateness Lmax = ti + pi − di of the schedule becomes non-
positive, and DEC(1|ri|Lmax,0) returns yes. The problem
DEC(1|ri, pi = 1|Lmax,0) describes the same constraints as
Definition 1 except with the addition of constraint pi = 1. It
has been shown that a problem with arbitrary process times
such as DEC(1|ri|Lmax,0) is NP-hard, while a problem with
unit process times such as DEC(1|ri, pi = 1|Lmax,0) is
tractable [11]. The problem DEC(1|ri, pi = 1|Lmax,0) is
used to address a complexity issue in Section V.

To determine the complexity of a different sort of problems
and to solve a problem in the presence of a solution of
another problem, concepts of “reduciblity” and “equiva-
lence” [12] are introduced. In general, an instance of a
problem is the information required to compute a solution
to the problem, while satisfying all given constraints [13].
A problem P1 is reducible to a problem P2 if an instance
I2 of P2 can be constructed in polynomial-bounded time
for any instance I1 of P1 and solving the instance I2 of
P2 also solves the instance I1 of P1. We write P1 ∝ P2 if
P1 is reducible to P2. If P2 ∝ P1 and P1 ∝ P2, they are
equivalent.

B. System Definition

We consider n vehicles moving along unidirectional paths
intersecting at one point. We assume that a subset of these
vehicles can be controlled while the remaining vehicles
cannot be controlled. Consider all vehicles identified with
a natural number from 1 to n. To distinguish controlled
and uncontrolled vehicles, construct a controlled set C and
an uncontrolled set C̄, which contain nc and nc̄ elements,
respectively, as follows.

C := {i ∈ {1, . . . , n} : vehicle i is controlled}

C̄ := {γ ∈ {1, . . . , n} : vehicle γ is uncontrolled}.

In this paper, i usually denotes a controlled vehicle while γ
is used for indicating an uncontrolled vehicle.

Fig. 1. An example of 3 vehicles approaching an intersection

Let xi represent the dynamic state of vehicle i with yi ∈
R the position on its path. For i ∈ C and γ ∈ C̄, let ui
indicate the input to vehicle i and dγ a disturbance, that is,
an unknown input of vehicle γ. Each controlled vehicle is
modelled by the system

ẋi = f(xi, ui) yi = h(xi), (1)

while each uncontrolled vehicle by

ẋγ = f(xγ , dγ) yγ = h(xγ). (2)

where xi ∈ Xi ⊆ Rr, ui ∈ Ui ⊂ Rs, yi ∈ Yi ⊆ R,
xγ ∈ Xγ ⊆ Rr, dγ ∈ Dγ ⊂ Rs, and yγ ∈ Yγ ⊆ R.
The functional spaces of the piecewise continuous signals
ui(t) and dγ(t) for t ∈ [0,∞) are Ui and Dγ , respectively.
The notations x,u,d,y denote aggregate vectors for these
states, inputs, disturbances, and outputs, for instance x =
{x1, . . . , xn}. The sets containing these vectors are denoted
X,Y, U,D,U ,D. Notice that X ⊆ (Rr)n and Y ⊆ Rn while
U ⊂ (Rs)nc and D ⊂ (Rs)nc̄ . Moreover, the output function
h(xi) and h(xγ) are continuous and the derivative of the
output is bounded, ẏi ∈ [ẏi,m, ẏi,M] with ẏi,m > 0. The
ordered sets Ui and Dγ are compact, that is, ui ∈ [ui,m, ui,M]
and dγ ∈ [dγ,m, dγ,M].

The parallel composition of equation (1) and (2) for all n
vehicles describes the system dynamics.

ẋ = f(x,u,d) y = h(x) (3)

Assume that this system has a unique solution which contin-
uously depends on the input and the disturbance. The state
and output of vehicle i at time t starting from xi(t0) with
input ui are denoted xi(t, ui, xi(t0)) and yi(t, ui, xi(t0)),
respectively. The corresponding aggregate state is denoted
by x(t,u,d,x(t0)) and the output by y(t,u,d,x(t0)). For
notational brevity, we omit an initial condition when t0 =
0 and omit an input when it is not important. We say
maps of ordered sets Ui → Xi and Dγ → Xγ are order
preserving as defined in [14], that is, if ui ≤ u′i ∈ Ui for
i ∈ C and dγ ≤ d′γ ∈ Dγ for γ ∈ C̄, then, respectively,
xi(t, ui) ≤ xi(t, u

′
i) and xγ(t, dγ) ≤ xγ(t, d′γ). Also a map

from an ordered set of initial states to an ordered set of

outputs, Xi → Yi is order preserving: if xi(0) ≤ x′i(0), then
yi(t, ui, xi(0)) ≤ yi(t, ui, x′i(0)).

III. PROBLEM STATEMENT

In this paper, two main problems are addressed: verifica-
tion of the safety of all vehicles at intersections, Verifica-
tion Problem, and management of the inputs of controlled
vehicles, Supervisory Problem. The Verification Problem
determines whether the current inputs of drivers lead to an
intersection collision. If it is true, the Supervisory Problem
overrides all controlled vehicles with safe input profiles,
which are generated in the previous step.

A. Verification Problem

As seen in figure 1, an interval (αi, βi) is assigned to
vehicle i for all i ∈ C ∪ C̄, and let α := {α1, . . . , αn} and
β := {β1, . . . , βn}. If two or more vehicles are inside the
intersection at the same time, we consider a collision occurs.
This subset of the output space Y is called the bad set B
and defined as follows.

B := {y ∈ Y : yi ∈ (αi, βi) and yj ∈ (αj , βj)

for some i 6= j such that i ∈ C and j ∈ C ∪ C̄ for any d}.

Throughout this paper, we focus on two kinds of colli-
sions: between controlled vehicles and between controlled
and uncontrolled ones. Now we can formalize the Verifica-
tion Problem.

Problem 1 (Verification Problem): Given an initial condi-
tion x(0), determine if there exists an input signal u(t) ∈ U
which guarantees that y(t,u,d) /∈ B for all d(t) ∈ D for
all t ≥ 0.

Input u(t) ∈ C ensures safety if and only if y(t,u,d) /∈ B
“for all” d(t) ∈ D for all t ≥ 0. An instance of Problem 1
is described by the initial condition x(0) and the parameters
Θ = {f, h,X, Y, U,D,U ,D, α, β}. Thus, if there exists u(t)
which ensures safety for a given instance {x(0),Θ}, then
we say {x(0),Θ} ∈ Problem 1.

To solve Problem 1, we adapt the IIT scheduling problem
DEC(1|ri|Lmax, 0) in Definition 1. We prove the equiva-
lence of both problems as defined in Section II: the intersec-
tion plays the role of the machine, and the nc vehicles are
the jobs. Processing characteristics are defined as follows.

Definition 2: For all i ∈ C where yi(0) < αi, let

Ri := min
ui∈Ui

{t ≥ 0 : yi(t, ui) = αi}

Di := max
ui∈Ui

{t ≥ 0 : yi(t, ui) = αi}.

Given a real number Ti, let

Pi(Ti) := min
ui∈Ui

{t ≥ 0 : yi(t, ui) = βi

with a constraint yi(Ti, ui) = αi}.

For all γ ∈ C̄ where yγ(0) < αγ , let

R̄γ := min
dγ∈Dγ

{t ≥ 0 : yγ(t, dγ) = αγ}

P̄γ := max
dγ∈Dγ

{t ≥ 0 : yγ(t, dγ) = βγ}.

We call R̄γ and P̄γ the idle-time variables. For i ∈ C, if
yi(0) ≥ βi, then set Ri = 0, Di = 0, and Pi(Ti) = 0.
If yi(0) ≥ αi, then Ri = 0, Di = 0, and Pi(Ti) =
minui∈Ui{t : yi(t, ui) = βi}. If the constraint is not satisfied,
set Pi(Ti) =∞. For γ ∈ C̄, if yγ(0) ≥ βγ , set R̄γ = 0 and
P̄γ = 0. If yγ(0) ≥ αγ , set R̄γ = 0 and P̄γ = maxdγ∈Dγ{t :
yγ(t, dγ) = βγ}.

These variables are well-defined since it is assumed that
the system (3) has a unique solution and ẏi > 0. Notice that
Ri, Di, R̄γ , P̄γ for all i ∈ C and γ ∈ C̄ are fixed once an
initial condition is provided. We consider (R̄γ , P̄γ) for γ ∈ C̄
to be an IIT because the intersection is kept empty as long
as an uncontrolled vehicle stays inside the intersection for
all dγ . A schedule Ti and a process time Pi(Ti) are chosen
to satisfy following conditions.

Problem 2 (IIT Scheduling Problem): Given an initial
condition x(0), determine whether there exists a schedule
T = {Ti : i ∈ C} ∈ Rnc+ such that for all i ∈ C,

Ri ≤ Ti ≤ Di (4)

for all i 6= j ∈ C,

Ti ≤ Tj ⇒ Pi(Ti) ≤ Tj (5)

for all i ∈ C and γ ∈ C̄,

Ti ≤ R̄γ ⇒ Pi(Ti) ≤ R̄γ (6)
Ti ≥ R̄γ ⇒ Ti ≥ P̄γ (7)

This problem is also described by an instance I = {x(0),Θ}.
A feasible schedule for Problem 2 ensures (Ti, Pi(Ti)) ∩
(R̄γ , P̄γ) = 0 by (6) and (7). The IIT scheduling determines
the safety of all vehicles by sequencing controlled vehicles
to cross an intersection before or after IIT. We prove that
Problem 2 is equivalent to Problem 1.

Theorem 1: Problem 1 and Problem 2 are equivalent.
Proof: We prove that an instance I = {x(0),Θ}

belongs to the Verification Problem (Problem 1) if and only
if it belongs to the IIT Scheduling Problem (Problem 2).

I ∈ Verification Problem⇔ I ∈ Scheduling Problem

(⇒) Given an initial condition x(0), there is an input ũ which
ensures safety, that is, y(t, ũ,d) /∈ B for all d for all t ≥ 0.

For yi(0) < αi for i ∈ C, define Ti as the time t
when yi(t, ũi) = αi. Also define P̃i(Ti) as the time when
yi(t, ũi) = βi with constraints that yi(Ti, ũi) = αi. If
yi(0) ≥ αi, set Ti = 0. Set P̃i(Ti) = 0 if yi(0) ≥ βi.
By the definitions of Ri and Di, Ri ≤ Ti ≤ Di (Condition
(4)). Suppose Ti ≤ Tj for some i 6= j ∈ C. Since ũi and ũj
prevent an intersection collision between vehicles i and j,
when yj(t, ũj) = αj , yi(t, ũi) ≥ βi. Thus, P̃i(Ti) ≤ Tj . By
the definition of Pi(Ti), Pi(Ti) ≤ P̃i(Ti) ≤ Tj (Condition
(5)). Also, with the assumption that the input ũ ensures
safety for all d, if Ti ≤ R̄γ for i ∈ C, γ ∈ C̄, when
maxdγ yγ(t, dγ) = αγ , it must be true that yi(t, ũi) ≥ βi.
Since yγ(t) is increasing with time, {t : maxdγ yγ(t, dγ) =
αγ} becomes mindγ{t : yγ(t, dγ) = αγ} which is R̄γ
by definition. Combining this with the definition of Pi(Ti),

Pi(Ti) ≤ P̃i(Ti) ≤ R̄γ (Condition (6)). If Ti ≥ R̄γ ,
when yi(t, ũi) = αi, the vehicle γ must stay away from
the intersection, i.e., mindγ yγ(t, dγ) ≥ βγ . Because of the
increasing property of the output with respect to t, Ti ≥ P̄γ
(Condition (7)).

(⇐) Given the same initial condition x(0), there exists a
schedule T ∈ Rnc that satisfies all conditions of Problem 2.

We start assuming that yi(0) < αi for all i ∈ C ∪ C̄,
which does not break generality since vehicles after the
intersection are not of interest. According to Lemma 5.1
in [15], with the assumptions that Ui is path connected for
i ∈ C, that the system (3) has a unique solution dependent
continuously on an input, and that the output is continuous,
if Ti ∈ [Ri, Di] for yi < αi, there exists an input ui ∈ Ui
such that yi(Ti, ui) = αi. If these assumptions hold, we are
able to construct ui ∈ Ui such that yi(Ti, ui) = αi for all
i ∈ C.

Now, we show this input ui ∈ u such that u ensures
safety, if Ti satisfies condition (4)-(7). When Ti ≤ Tj for
i 6= j ∈ C, condition (5) indicates Pi(Ti) ≤ Tj , which
implies when yi(t, ui) = βi, we have yj(t, uj) ≤ αj so that
ui and uj prevent collisions between controlled vehicles.
In condition (6), when Ti ≤ R̄γ for i ∈ C, γ ∈ C̄,
Pi(Ti) ≤ R̄γ . This implies that when maxdγ yγ(t, dγ) = αγ ,
we have yi(t, ui) ≥ βi: in other words, yγ(t, dγ) ≤ αγ and
yi(t, ui) ≥ βi. If Ti ≥ R̄γ , the condition (7) indicates when
yi(t, ui) = αi, we have mindγ yγ(t, dγ) ≥ βγ . Thus when
yi(t, ui) ≤ αi, it is true for all dγ that yγ(t, dγ) ≥ βγ . From
these conditions (6) and (7), it is shown that ui prevents
collision between controlled and uncontrolled vehicles for
all dγ .

B. Supervisory Problem
We now design a supervisor operating in discrete time. At

each step kτ , the current state x(kτ) ∈ X and the desired
input ak ∈ U are given, where a desired input represents the
input applied by a driver. Then, the supervisor returns uk,out
depending on the state prediction for the next step, which is
defined as follows.

xk+1(ak) :=

{
xi(τ, ai,k, xi(kτ)) i ∈ C
xγ(kτ) γ ∈ C̄

(8)

where ak = {ai,k ∈ Ui : i ∈ C}. Notice that the
current disturbance dk ∈ D does not contribute to the state
prediction since uncontrolled vehicles are not equipped with
driver assistance systems that can monitor the input of the
drivers.

Because a supervisor interacts with human operators, it
has to be least restrictive in the sense that it intervenes if any
future collision is detected. To describe future events, define
a continuous input profile u∞k (t) defined on t ∈ [kτ,∞); let
uk(t) be u∞k (t) restricted to t ∈ [kτ, (k + 1)τ]. During this
time period, let uk(t) = ak, where ak is a desired input by
drivers at t = kτ and is constant on [kτ, (k+1)τ]. Similarly,
let u∞k,safe(t) be a safe input defined on t ∈ [kτ,∞); let
uk,safe(t) be u∞k,safe(t) restricted to t ∈ [kτ, (k + 1)τ]. We
now formalize the Supervisory Problem.

Problem 3 (Supervisory Problem): Design a supervisor
s(x(kτ),ak) at time step kτ such that

s(x(kτ),ak) =


uk if ∃u∞k : y(t,u∞k ,d) /∈ B

for all d ∈ D for t ≥ kτ
uk,safe otherwise

and such that it is non-blocking: if s(x(kτ),ak) 6= ∅, then
for any ak+1, s(x((k + 1)τ),ak+1) 6= ∅.
The non-blocking property assures that the supervisor is least
restrictive because it enables the supervisor accept the inputs
of drivers immediately after intervention on [kτ, (k + 1)τ].

IV. PROBLEM SOLUTIONS

A. Solution of Problem 1

Assume, without loss of generality, that for m controlled
vehicles, yi ≥ αi. Let P be all permutations of i ∈ C such
that yi < αi, and then each element of P becomes (nc−m)-
tuple, which is denoted by π. Set π̄ a nc̄-tuple composed
of all γ ∈ C̄ in an increasing order of R̄γ . The notation
πi denotes i-th index of π and π̄i denotes i-th index of π̄.
For the moment, set δ = 0; its usage and parametric values
become clear in Section IV-B.

Algorithm 1 Verification of the safety of all vehicles
procedure EXACTSOLUTION(x(0), δ)

if y(0) ∈ B then return {0, no}
for all i ∈ C and γ ∈ C̄ do

given xi(0) calculate Ri, Di

given xγ(0) calculate R̄γ , P̄γ
R̄γ ← max(R̄γ − δ, 0)
P̄γ ← max(P̄γ − δ, 0)

for i ∈ C such that yi(0) ≥ αi do
Ti ← 0
calculate Pi(Ti) and Pmax ← maxi Pi(Ti)

for all π ∈ P do
for j ← 1 to nc −m do

Tπ1
← max(Rπ1

, Pmax) for j = 1
Tπj ← max(Rπj , Pπj−1(Tπj−1))
given Tπj calculate Pπj
for i← 1 to nc̄ do

if Tπj ≥ R̄π̄i then
Tπj ← max(Tπj , P̄π̄i)
given Tπj calculate Pπj

else if Pπj > R̄π̄i then
Tπj ← P̄π̄i
given Tπj calculate Pπj

if Ti ≤ Di for all i ∈ C then
return {T, yes}

Notice that given an initial condition x(0) with δ = 0,
Algorithm 1 becomes the solution for Problem 2 and for
Problem 1 by Theorem 1. Also notice that computational
complexity increases in a factorial manner since the algo-
rithm operates all permutations in P to return no. Therefore,

the algorithm is intractable if n is large; in other words, the
solution for Problem 1 is NP hard.

Example 1: Suppose we have C = {1, 3, 4} and C̄ =
{2, 5} that are modelled for simplicity as f(xi, ui) =
ui, h(xi) = xi for i ∈ C, and f(xγ , dγ) = dγ , h(xγ) =
xγ for γ ∈ C̄. A given initial condition is x(0) =
{44, 26, 20, 5, 2} with δ = 0 with parameters um = 3, uM =
15, dm = 6, dM = 12 and (αi, βi) = (50, 53). The
processing characteristics become [R1, R3, R4] = [2

5 , 2, 3],
[D1, D3, D4] = [2, 10, 15], [R̄2, R̄5] = [2, 4], and [P̄2, P̄5] =
[4 1

2 , 8
1
2]. Consider π = [1, 3, 4] and π̄ = [2, 5]. For j = 1 and

π1 = 1, we have T1 = R1 = 2
5 , and P1 = T1 + β1−α1

uM
= 3

5 .
Since T1 < R̄2 < R̄5 and P1 < R̄2 < R̄5, it is determined
that T1 = 2

5 and P1 = 2
5 . For j = 2 and then π2 = 3,

we have T3 = max(R3, P1) = 2 and P3 = 2 1
5 . However

for i = 1 thus π̄1 = 2, we have T3 ≥ R̄2 and thus
T3 = max(T3, P̄2) = 4 1

2 . This schedule leads to P3 = 4 7
10 .

For i = 2 then π̄2 = 5, although T3 < R̄5, we have P3 > R̄5

so that T3 = P̄5 = 8 1
2 and P3 = 8 7

10 . Finally for j = 3 thus
π3 = 4, we have T4 = max(R4, P3) = 8 7

10 and P4 = 8 9
10 .

Even though for i = 1 we have T4 ≥ R̄2, notice that T4

does not change because max(T4, R̄2) = T4. This is same
for i = 2. Since Ti ≤ Di for all i ∈ {1, 3, 4}, we have
found a set of schedule T = { 2

5 , 8
1
2 , 8

7
10}. If there was no

feasible schedule for this π, Algorithm 1 would try the other
permutations such as π = [1, 4, 3].

B. Solution of Problem 3

A supervisor is designed to override controlled vehicles
with a safe input if a desired input, which represents a
driver’s input, leads to an intersection collision at some future
time. To achieve this goal, we define an input operator for
yi(0) < αi for i ∈ C as follows.

σi(xi(0), Ti) := arg inf
ui∈Ui

{t ≥ 0 : yi(t, ui) = βi for i ∈ C

with constraint yi(Ti, ui) = αi.} (9)

This operator returns an input ui ∈ Ui for i ∈ C
such that yi(t, ui) reaches αi at Ti and βi at Pi(Ti). Set
σi(xi(0), Ti) = ui,M if yi(0) ≥ αi. If yi(0) ≥ βi or if
the constraint cannot be satisfied, set σi(xi(0), Ti) = ∅. Let
σ(x(0),T) be a parallel composition of Equation (9) for all
i ∈ C.

At each time step, Problem 1 determines whether a
predicted state from a given input leads to an intersection
collision using Algorithm 1. However, in the state prediction
xk+1(ak), we do not predict the states for uncontrolled
vehicles because dk is not measured. Thus, a time delay
δ occurs for vehicle γ for γ ∈ C̄. Let (R̄kγ , P̄

k
γ) denote an

IIT for a given initial condition xγ(kτ). Then a predicted
idle-time (R̄k+1

γ , P̄ k+1
γ) has to preserve the IIT except the

passed time step τ . Thus,

(R̄k+1
γ , P̄ k+1

γ) = (R̄kγ − τ, P̄ kγ − τ). (10)

Notice that the time delay δ is the parameters of either 0 or
τ . When Algorithm 1 accepts the state prediction, δ = τ ;
otherwise, set δ = 0.

Algorithm 2 Solution of Problem 3
procedure SUPERVISOR(x(kτ),ak)

uk(t)← ak ∀t ∈ [kτ, (k + 1)τ]
{T, answer} ← EXACTSOLUTION(xk+1(uk), τ)
if answer = yes then

u∞k+1,safe ← σ(xk+1(uk),T)
uk+1,safe ← u∞k+1,saferestricted to[kτ, (k+1)τ]
return uk

else
{T, answer}

← EXACTSOLUTION(xk+1(uk,safe), τ)
u∞k+1,safe ← σ(xk+1(uk,safe),T)
uk+1,safe ← u∞k+1,saferestricted to[kτ, (k+1)τ]
return uk,safe

Lemma 1: If EXACTSOLUTION(x(kτ), 0) = {T, yes},
then u := σ(x(kτ),T) exists. Moreover, the state predic-
tion (8) from uk which restricts u to [kτ, (k + 1)τ] leads
to EXACTSOLUTION(xk+1(uk), τ) = {T, yes}. Moreover,
σ(xk+1(ak),T) 6= ∅.

Proof: Given an initial condition x(kτ), if a schedule
T exists, then {x(kτ),Θ} ∈ Problem 1 by Theorem 1,
indicating that there exists an input u ∈ U ensuring safety on
t ∈ [kτ,∞) for all d ∈ D. Thus, σ(x(kτ),T) 6= ∅. Notice
that y(t,u,d,x(kτ)) /∈ B is equivalent to the conditions that
Ti ∈ [Ri, Di], that (Ti, Pi(Ti)) does not intersect each other
for all i ∈ C, and that (Ti, Pi(Ti)) ∩ (R̄kγ , P̄

k
γ) = ∅ for all

γ ∈ C̄ by Theorem 1. Let ũ be u restricted to [(k+1)τ,∞).
If we say xk+1(uk) has a schedule T ′i for all i ∈ C, then
T ′i = Ti − τ and P ′i (T

′
i) = Pi(Ti) − τ since u = uk ∪ ũ.

Consequently, intervals (T ′i , P
′
i (T
′
i)) never overlap for all

i ∈ C and (T ′i , P
′
i (T
′
i))∩(R̄k+1

γ , P̄ k+1
γ) = ∅ for all γ ∈ C̄ due

to (10). Therefore, EXACTSOLUTION(xk+1(uk), τ) returns
yes.

Lemma 2: If EXACTSOLUTION(xk+1(ak), τ) =
{T, yes}, then σ(xk+1(ak),T) 6= ∅.

Proof: Define x̃k+1(ak) as xγ(t, dγ,k, xγ(kτ)) for any
dγ ∈ Dγ for all γ ∈ C̄, and as the same as xk+1(ak) for
all i ∈ C. Let (R̃k+1

γ , P̃ k+1
γ) denote the corresponding idle-

time to xγ(t, dγ,k, xγ(kτ)). Notice that (R̃k+1
γ , P̃ k+1

γ) ⊆
(R̄k+1

γ , P̄ k+1
γ) because the latter considers all possible idle-

times for all dγ as can be seen from (10). If EXACTSOLU-
TION(xk+1(ak), τ) returns yes, a schedule T satisfies that
Ti ∈ [Ri, Di], that (Ti, Pi(Ti)) does not intersect each other
for all i ∈ C, and that (Ti, Pi(Ti)) ∩ (R̄k+1

γ , P̄ k+1
γ) = ∅

for all γ ∈ C̄. From the last condition, we also have
(Ti, Pi(Ti)) ∩ (R̃k+1

γ , P̃ k+1
γ) = ∅. Therefore, this schedule

T makes EXACTSOLUTION(x̃k+1(ak), 0) return yes. From
the first part of Lemma 1, σ(x̃k+1(ak),T) 6= ∅. Since
σ(xk+1(ak),T) is composed of σi for all i ∈ C, and
x̃k+1(ak) is equivalent to xk+1(ak) for all i ∈ C, we prove
that σ(xk+1(ak),T) 6= ∅.

Theorem 2: The supervisor s(x(kτ),ak) defined in Algo-
rithm 2 solves Problem 3.

Proof: If EXACTSOLUTION(xk+1(ak), τ) returns yes,

by Lemma 2 there exists σ(xk+1(ak),T) that ensures safety;
thus, Algorithm 2 returns uk which is identical to ak.
If EXACTSOLUTION(xk+1(ak), τ) returns no, Algorithm 2
returns uk,safe. Thus, the supervisor in the Algorithm 2 is
designed to solve the Problem 3.

The key proof is to show its non-blocking property. We use
mathematical induction to prove this. Assume that u0,out 6=
∅. Suppose at t = kτ , s(x(kτ),ak) = uk,out and uk,out 6= ∅.
Then we must prove that s(xk+1(uk,out),ak+1) 6= ∅ no
matter what ak+1 is applied. Notice that this is possible
when u∞k+1,safe = σ(xk+1(uk,out),T)) exists. As seen in
the Algorithm 2, uk,out is either uk or uk,safe. In the
former case, EXACTSOLUTION(xk+1(uk), τ) = {T, yes},
and by Lemma 2, σ(xk+1(uk),T) is non-empty. In the latter
case, because we assume by induction that u∞k,safe exists, by
Lemma 1, EXACTSOLUTION(xk+1(uk,safe), τ) returns yes.
In turn, Lemma 2 says u∞k+1,safe is defined. Therefore, the
supervisor is non-blocking.

Throughout this paper, we assume that EXACTSOLU-
TION(x(0), 0) = {T, yes}. If this assumption does not hold,
the whole processes in Algorithm 2 does not work.

V. EFFICIENT APPROACH

As seen from Algorithm 1, the control problem in Section
III may not be solved with large n. Therefore, we propose an
efficient but approximate version of Problem 2, and design
the corresponding supervisor.

A. Efficient Scheduling Problem and Solution

Garey et al. [9] proposed an efficient algorithm to solve
DEC(1|ri, pi = 1|Lmax,0), in which all jobs have a unit
process time, and other constraints are the same as Definition
1. To design the algorithm, they introduce the concept of
a forbidden region F, a time interval when no task is
allowed to start to have a feasible schedule. This is reported
in Algorithm 3. The difference between Algorithm 3 and
Algorithm A in [9] is that the latter initially declares F an
empty set at the beginning. Let Fk ⊂ R indicate the kth
interval in F.

We give a simple example to understand this algorithm.
Example 2: Consider 3 jobs on a machine with r =

[7, 7, 8], d = [12, 12, 10], and unit process time. An initially
declared forbidden region is F = {(8 1

2 , 10 1
2)}. The increas-

ing order of r is [1,2,3], so the Algorithm 3 starts from
i = 3. For d1, d2, d3 ≥ d3, since d1 − 1 = d2 − 1 /∈ F, we
have c1 = 11, c2 = 11 while c3 = inf(F1) = 8 1

2 because
d3 − 1 ∈ F1. Since r2 < r3, we find c = 8 1

2 which is
inside [r3, r3 + 1), and thus F = {(7 1

2 , 8), (8 1
2 , 10 1

2)}. For
i = 2, we have d1, d2 ≥ d2 and c1 = c2 = 8 1

2 , and neither
i 6= 1 nor r1 < r2. For i = 1, since c1 = c2 = 7 1

2 , it is
determined that F = {(6 1

2 , 7), (7 1
2 , 8), (8 1

2 , 10 1
2)}. Then the

next step allocates a schedule to each job. For i = 1, s = 7
and t1 = 7. For i = 2, we have that j = 3 since d3 is the
least due date and r3 ≤ s; then t3 = 8. For i = 3, s ∈ F3

so that s becomes 10 1
2 ; thus t2 = 10 1

2 .
The problem of computational complexity generally arises

from a centralized control in multi-vehicle systems. However,

Algorithm 3 Solution for DEC(1|ri, pi = 1|Lmax,0)
procedure POLYNOMIAL(F, r,d)

Sort r,d into an increasing order of r
for i← n to 1 do

for all j such that dj ≥ di do
if cj = ∅ then cj ← dj − 1
else cj ← cj − 1

if cj ∈ Fk for some k then
cj ← inf(Fk)

if i = 1 or ri−1 < ri then
c← minj{cj}
if c < ri then

return {∅, no}
else if ri ≤ c < ri + 1 then

F← F ∪ (c− 1, ri)

for all i← 1 to n do
if @ri such that ri ≤ s then

s← min{ri : ti is empty.}
while s ∈ Fk for some k do s← sup(Fk)

for j such that dj = mink(dk) where rk ≤ s do
tj ← s and set s← s+ 1

Sort T = {t1, . . . , tn} in the original order
return {T, yes}

notice that Algorithm 3 runs in a polynomial scale with
respect to the number of jobs n. We adapt Problem 2 to
DEC(1|ri, pi = 1|Lmax, 0) in order to address the com-
plexity problem. To make the constraint pi = 1, we define
the maximum process time and normalize the other problem
variables in Definition 2. Let

θmax := max
i∈C

max
xi(0)∈Xi
:yi(0)=αi

{t : yi(t, ui,M) = βi} (11)

which calculates the worst case of the time to cross an inter-
section (αi, βi) among all controlled vehicles. Considering
this as the constant process time, revisit Problem 2.

Problem 4 (Efficient Version of Problem 2): Given an
initial condition x(0), determine whether there exists a
schedule T ∈ Rnc+ such that for all i ∈ C,

Ri ≤ Ti ≤ Di (12)

for all i 6= j ∈ C and γ ∈ C̄ if Ti > 0,

Ti ≤ Tj ⇒ Ti + θmax ≤ Tj (13)
Ti ≤ R̄γ ⇒ Ti + θmax ≤ R̄γ (14)
Ti ≥ R̄γ ⇒ Ti ≥ P̄γ (15)

if Ti = 0, the conditions (5) and (6) need to be satisfied
instead of the conditions (13) and (14).

Notice that (14) and (15) imply that Ti for any i ∈ C
cannot start during (R̄γ − θmax, P̄γ) for all γ ∈ C̄. Thus, we
declare these time intervals as forbidden region F from the
beginning of Algorithm 3. To simplify notation, we assume,
without loss of generality, C = {1, . . . , nc} and C̄ = {nc +

1, . . . , n}. Also assume that yi(0) ≥ αi for i ∈ {1, . . . ,m}
and yi(0) < αi for i ∈ {m+ 1, . . . , nc}.

Algorithm 4 Efficient verification of the safety of all vehicles
procedure APPROXSOLUTION(x(0), δ)

if y(0) ∈ B then
return {0, no}

for all i ∈ C and γ ∈ C̄ do
given xi(0) calculate Ri, Di, θmax
given xγ(0) calculate R̄γ , P̄γ
R̄γ ← max(R̄γ − δ, 0)
P̄γ ← max(P̄γ − δ, 0)

for all γ ∈ C̄ do
F← F ∪ (R̄γ/θmax − 1, P̄γ/θmax)

for i← 1 to m do
Ti ← 0
calculate Pi(Ti) and Pmax ← maxi Pi(Ti)

for i← m+ 1 to nc do
Ri ← max(Ri, Pmax)

r← (Rm+1/θmax, . . . , Rnc/θmax)
d← (Dm+1/θmax + 1, . . . , Dnc/θmax + 1)
[tm+1, . . . , tnc , answer]← POLYNOMIAL(F, r,d)
for i← m+ 1 to nc do Ti ← θmaxti
return {T, answer}

Algorithm 4 is the solution for Problem 4 when δ = 0.
Since this algorithm may return no even when the solution
for Problem 2 exists, we quantify how conservative it is.

Lemma 3: Given Ti and Tj for some i, j ∈ C with yi(0) <
αi and yj(0) < αj and given ui and uj such that yi(Ti, ui) =
αi and yj(Tj , uj) = αj , if Ti > Tj and Ti − Tj < θmax or
if (Ti, Ti+θmax)∩ (R̄γ , P̄γ) 6= ∅ for some γ ∈ C̄, then there
exists t∗ ∈ [Ti, Ti + θmax] such that yj(t∗, uj) ∈ (αj , αj +
θmaxẏj,M) or yγ(t∗, dγ) ∈ (αγ , βγ), respectively.

Proof: The first condition Ti − Tj < θmax implies a
violation of (13), which imply collisions between controlled
vehicles i and j. To prove this, let t∗ = Ti. Since Tj < Ti,
we have yj(t∗, uj) > αj . Also, the assumptions that Ti <
Tj+θmax and ẏj ≤ ẏj,M imply yj(t∗, uj) < αj+θmaxẏj,M .
Thus, t∗ satisfies yj(t

∗, uj) ∈ (αj , αj + θmaxẏj,M). The
second condition does not satisfy (14) and (15), that is,
collisions between controlled and uncontrolled vehicles. For
an uncontrolled vehicle γ, there is t∗ such that t∗ ∈
(Ti, Ti + θmax) ∩ (R̄γ , P̄γ). Since the output is monotone
with respect to time, for t∗ > R̄γ and dγ ≥ dγ,m, we have
yγ(t∗, dγ) > αγ ; for t∗ < P̄γ and dγ ≤ dγ,M , we have
yγ(t∗, dγ) < βγ . Therefore, for some dγ ∈ Dγ , it is shown
that yγ(t∗, dγ) ∈ (αγ , βγ).

Taking this lemma into account, we inflate an intersection
with β̂i := αi+θmaxẏi,M for i ∈ C and β̂γ := βγ for γ ∈ C̄.
Then, an inflated bad set is defined as follows.

B̂ := {y(t,u,d) ∈ Y : yi ∈ (αi, β̂i) and yj ∈ (αj , β̂j)

for some i 6= j such that i ∈ C and j ∈ C ∪ C̄ for all d}.
(16)

The inflated bad set concerns the worst case of the time to
cross an intersection.

Theorem 3: Given initial condition x(0), if APPROXSO-
LUTION(x(0), 0) returns “no”, then there is no input u such
that y(t,u,d) /∈ B̂ for all d for all t ≥ 0.

Proof: Lemma 3 indicates that if APPROXSOLU-
TION(x(0), 0) returns no, y(t,u,d) ∈ B̂ for any u for all
d. Therefore, this theorem is proven by Lemma 3.

We modify Problem 1 by substituting the inflated bad set
B̂ for the bad set B, that is, the modified verification problem
determines whether there exists u such that y(t,u,d) /∈ B̂
for all d ∈ D for all t ≥ 0. Theorem 3 indicates that the mod-
ified verification problem and Problem 4 are not equivalent:
the necessary condition for the modified verification problem
to have such an input u is that APPROXSOLUTION(x(0), 0)
returns yes.

B. Efficient Supervisor

We now define an efficient supervisor ŝ by applying B̂ as a
bad set instead of B in Problem 3. Also, set an input operator
σ̂ such that arg infui∈Ui{t ≥ 0 : yi(t, ui) = β̂i} for i ∈ C
with the same constraint in (9). Moreover, define sapprox
by substituting APPROXSOLUTION for EXACTSOLUTION in
Algorithm 2. The supervisor sapprox is not equivalent to
ŝ in the same sense of Theorem 3. Thus we provide that
sapprox is less conservative than or equally conservative to
ŝ. To prove this, we first investigate the relation between
APPROXSOLUTION and EXACTSOLUTION. Then, we verify
the non-blocking property of sapprox.

Lemma 4: Given a measured state x(kτ), if AP-
PROXSOLUTION(x(kτ), 0) returns yes, then EXACTSOLU-
TION(x(kτ), 0) also returns yes.

Proof: Notice that condition (12) and (15) are identical
to condition (4) and (7), respectively. From the definition of
θmax in (11), for any i ∈ C for any Ti, Ti + θmax ≥ Pi(Ti).
Thus, condition (13) and (14) become Pi(Ti) ≤ Ti+θmax ≤
Tj and Pi(Ti) ≤ Ti + θmax ≤ R̄γ , satisfying condition (5)
and (6).

Lemma 5: If APPROXSOLUTION(x(kτ), 0) = {T, yes},
then u := σ̂(x(kτ),T) 6= ∅, then for uk which restricts
u to [kτ, (k + 1)τ], APPROXSOLUTION(xk+1(uk), τ) =
{T, yes}.

Proof: From Lemma 4, the assumption that AP-
PROXSOLUTION(x(kτ), 0) returns yes implies EXACTSO-
LUTION(x(kτ), 0) returns yes. Then, by the first part of
Lemma 1, σ(x(kτ),T) exists so that σ̂(x(kτ),T) is non-
empty. Let C = {1, . . . , nc} and C̄ = {nc + 1, . . . , n}.
For the same notation in Algorithm 4, suppose yi(0) ≥ αi
for i ∈ {1, . . . ,m}. For x(kτ), there exists a feasible
schedule {Tm+1, . . . , Tnc} satisfying |Ti − Tj | ≥ θmax and
Ti /∈ Fkθmax for all i, j ∈ {m + 1, . . . , nc}. In order
for APPROXSOLUTION(xk+1(uk), τ) to return yes, POLY-
NOMIAL(Fk+1, rk+1,dk+1) must admit a feasible schedule
where Fk+1, rk+1,dk+1 represent an idle-time, release time,
and due date at time t = (k + 1)τ . Let ũ restrict u to
[(k+ 1)τ,∞). Since u = ũ∪uk, xk+1(uk) have a schedule
T ′i such that T ′i = Ti − τ ∈ [R′i, D

′
i] by construction.

This schedule satisfies both |T ′i − T ′j | ≥ θmax and T ′i /∈
Fk+1θmax resulting from the time delay δ = τ so that
Fk+1θmax = Fkθmax − τ . Therefore a feasible schedule
in terms of xk+1(uk) exists.

Lemma 6: If APPROXSOLUTION(xk+1(ak), τ) =
{T, yes}, then σ̂(xk+1(ak),T) 6= ∅.

Proof: As in the proof of Lemma 2, set x̃k+1(ak)
for any dk. The corresponding forbidden region is denoted
by F̃k+1. Since Fk+1, defined from xk+1(ak), considers
all possible idle-times, we have F̃k+1θmax ⊆ Fk+1θmax.
The schedule T = {Tm+1, . . . , Tnc} for APPROXSOLU-
TION(xk+1(ak), τ) satisfies Ti ∈ [Ri, Di],|Ti − Tj | ≥ θmax
and Ti /∈ Fk+1θmax. This schedule also satisfies Ti /∈
F̃k+1θmax; thus, APPROXSOLUTION(x̃k+1(ak), 0) returns
yes. From the first part of Lemma 5, we have a non-empty
σ̂(x̃k+1(ak),T). Since σ̂ is the composition of σ̂i for i ∈ C,
and x̃k+1(ak) is equivalent to xk+1(ak) for i ∈ C, we
conclude σ(xk+1(ak),T) 6= ∅.

Theorem 4: The supervisor sapprox(x(kτ),ak) is no
more restrictive than ŝ(x(kτ),ak) and non-blocking in the
sense described in Problem 3.

Proof: Theorem 3 implies that APPROXSOLUTION
returns yes as long as an input profile exists to keep away
from B̂. Therefore, sapprox(x(kτ),ak) is less restrictive
than ŝ(x(kτ),ak). The non-blocking property follows from
Lemma 5 and 6 with the same argument in the proof of
Theorem 2.

VI. NUMERICAL SIMULATIONS

We test the supervisory algorithm in Section IV and V.
Consider 6 controlled and 2 uncontrolled vehicles whose
dynamical state is xi = [pi; vi]. With an input ui and a
disturbance dγ for i ∈ C and γ ∈ C̄, each set of vehicles is
modelled as follows.

ṗi = vi v̇i = ui

ṗγ = vγ v̇γ = dγ .

VII. CONCLUSIONS

In this paper, we have designed a supervisor that prevents
an intersection collision among all vehicles in the presence
of uncontrolled vehicles. The design of a supervisor is
based on two main problems: verification of the safety of
all vehicles, and management of the inputs of controlled
vehicles. An inserted idle-time (IIT) scheduling is applied
to determine future safety even though there are vehicles
uncontrolled. We have proved that the supervisor has a non-
blocking algorithm so that it is least restrictive, that is, it
intervenes in a situation only if necessary. Since the problem
of computational complexity arises in a centralized control
like a supervisor, we use an efficient version of scheduling
so that address the problem from an inflated bad set.

The assumption that zero speed is not considered in the
design of the supervisor increases traffic flow and energy
efficiency. While the presence of uncontrolled vehicles is in
the context of practical situations, several real-world issues
still exist. For future work, the case that vehicles have

multi-directional paths should be considered. As noted, the
uncertainties of measurement and process are considered in
[6], and rear-end collisions are considered in [5].

REFERENCES

[1] J. J. Kanet and V. Sridharan, “Scheduling with inserted idle time: Prob-
lem taxonomy and literature review,” Operations Research, vol. 48,
no. 1, pp. 99–110, Jan. 2000.

[2] “National motor vehicle crash causation survey, u.s. department of
transportation,” http://www-nrd.nhtsa.dot.gov/Pubs/811059.pdf.

[3] “U.s. department of transportation,its strategic research plan 2010-
2014,” http://www.its.dot.gov/strategic plan2010 2014/, 2008.

[4] M. R. Hafner and D. Del Vecchio, “Computational tools for the safety
control of a class of piecewise continuous systems with imperfect
information on a partial order,” SIAM Journal on Control and Opti-
mization, vol. 49, no. 6, pp. 2463–2493, Jan. 2011.

[5] A. Colombo and D. Del Vecchio, “Cooperative conflict resolution:a
scheduling approach,” IEEE Transactions on Automatic Control.

[6] L. Bruni, A. Colombo, and D. Del Vecchio, “Robust multi-agent
collision avoidance through scheduling.” IEEE Conference on
Decision and Control.

[7] M. Heymann, F. Lin, and G. Meyer, “Control synthesis for a class
of hybrid systems subject to configuration-based safety constraints,”
in Hybrid and Real-Time Systems, ser. Lecture Notes in Computer
Science, O. Maler, Ed. Springer Berlin Heidelberg, Jan. 1997, no.
1201, pp. 376–390.

[8] L. Bakule, “Decentralized control: An overview,” Annual Reviews in
Control, vol. 32, no. 1, pp. 87–98, Apr. 2008.

[9] M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tarjan, “Schedul-
ing UnitTime tasks with arbitrary release times and deadlines,” SIAM
Journal on Computing, vol. 10, no. 2, pp. 256–269, May 1981.

[10] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Schedul-
ing. Courier Dover Publications, 2003.

[11] B. Simons, “A fast algorithm for single processor scheduling,” in ,
19th Annual Symposium on Foundations of Computer Science, 1978,
1978, pp. 246–252.

[12] J. Lenstra, A. Rinnooy Kan, and P. Brucker, “Complexity of machine
scheduling problems,” in Annals of Discrete Mathematics, E. J.
P.L. Hammer, Ed. Elsevier, 1977, vol. Volume 1, pp. 343–362.

[13] T. H. Cormen, Introduction To Algorithms. MIT Press, 2001.
[14] B. A. Davey, Introduction to lattices and order. Cambridge university

press, 2002.
[15] A. Colombo and D. Del Vecchio, “Efficient algorithms for collision

avoidance at intersections,” in Proceedings of the 15th ACM interna-
tional conference on Hybrid Systems: Computation and Control, ser.
HSCC ’12. New York, NY, USA: ACM, 2012, p. 145154.

