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Abstract— In this paper, we employ partial order techniques
to develop linear complexity algorithms for guaranteed collision
avoidance between vehicles at highway and roundabout merg-
ings. These techniques can be employed by virtue of the rich
structure offered by such traffic systems, which constrain vehi-
cles to advance unidirectionally along a path. The algorithms
are safe by construction while maintaining the liveness of the
system. The proposed algorithms are on-line implemented in a
decentralized fashion on an experimental testbed composed of
two in-scale communicating vehicles continuously running on
an autonomous roundabout system.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) for in-vehicle

cooperative active safety and related technologies continue

to be examined world-wide by government and industry

consortium, such as the Crash Avoidance Metrics Partnership

(CAMP) [2], the Vehicle Infrastructure Integration Consor-

tium (VIIC) [4], [3] in the U.S., the Car2Car Communica-

tions Consortium in Europe [1], the Advanced Safety Vehicle

project 3 (ASV3) in Japan, and by university research centers

such as the Virginia Tech Transportation Institute (VTTI) and

the California PATH. In the near future, ITS is expected to

become more comprehensive connecting vehicles with each

other and with the surrounding road infrastructure through

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

wireless communication. Thus, complete position and speed

information will be available to all vehicles in a given

neighborhood for cooperative active safety purposes.

In this work, we focus on the two-vehicle collision avoid-

ance problem as found, for example, in one-lane modern

roundabout systems, where conflicts involve only two vehi-

cles at the time through merging points. In order to guarantee

safety, we employ an approach based on the computation

of the capture set of an unsafe set corresponding to colli-

sion configurations (see for example [7] and the references

therein). Such an approach has been employed especially

in the context of collision avoidance in air-traffic control

and in platooning [7], [9], [5]. It produces control maps

that are guaranteed to maintain safety by construction. As

it appears from these previous works, there are however two

main difficulties in the computation of the capture set: Its

computation does not generally scale with the size of the

system and it is not guaranteed to terminate [9]. Some results
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to tackle these problems for discrete time hybrid automata

models were proposed in [6].

In this paper, we show that the rich structure offered by

automobile driving can be directly exploited to overcome the

above mentioned problems. We obtain scalable algorithms

that are guaranteed to terminate and that do not require

expensive memory storage. In particular, the structural prop-

erties that we directly exploit are the following: (i) on its

path, a vehicle can move in one direction only; (ii) for a

fixed path, the higher the control force applied to a vehicle,

the higher the longitudinal positions and speeds achieved on

the path; (iii) for a fixed path and control force applied to the

vehicle, the higher the initial speeds and positions, the higher

the speeds and positions achieved at any later time on the

path. These properties are mathematically formalized in the

paper by introducing the concept of partial order and of order

preserving dynamics. We show the real-time applicability of

the obtained control algorithms by implementing them in a

decentralized fashion on an experimental Roundabout Drill

system composed of two in-scale autonomous vehicles that

are continuously running.

This paper is organized as follows. In Section II, we model

the system as a hybrid automaton, we formalize its order

preserving properties and give the main computational results

for the computation of the capture set. In Section III, we

illustrate the experimental set up, the implementation of the

control algorithm, and the experimental results.

II. SYSTEM MODEL AND PARTIAL ORDER

CONTROL TECHNIQUE

A. Roundabout Drill

In order to solve the two-vehicle collision avoidance

problem, we consider the Roundabout Drill system as shown

in Figure 1. The blue vehicle always runs on the internal

circle, while the red vehicle always runs on the external

circle. Collisions occur if the two vehicles are both at the

same time in the shaded area around point C. The objective

is to maintain the vehicles continuously running (liveness)

while avoiding collisions through the enforcement of least

restrictive control actions (safety). For mathematically de-

scribing the system, we introduce coordinates for each of

the vehicles along their paths, given an arbitrary reference

point (denoted with 0 in Figure 1). Let p ∈ R denote the

longitudinal displacement along the vehicle path in such a

coordinate system. The longitudinal vehicle dynamics can

thus be written as p̈ = [R2/(Jw + MR2)](fw − fbrake −
ρair

2 CDAfv2 − CrrMg − Mgsin(θroad)), in which R is

the tire radius, Jw is the wheel inertia, M is the mass of
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Fig. 1. Roundabout Drill system. The position of each vehicle along its
path is denoted pi, while its longitudinal speed along the path is denoted
vi. The conflict point C is where the vehicles paths intersect.

the vehicle, fw = τwR where τw is the drive shaft output

torque, fbrake is the brake force, ρair is the air density,

CD is the drag coefficient, Af is the projected front area

of the vehicle, v is the longitudinal vehicle velocity, Crr is

the rolling resistance coefficient, g is the gravity constant,

and θroad is the road gradient. For more details on this

model, the reader is referred to [11] and to the references

therein. For automatic driving, fw and fbrake are control

inputs to the longitudinal dynamics of the vehicle. Assuming

that the road is flat and that the air drag term is negligible,

we can re-write the longitudinal dynamics as p̈ = a u + b,
in which u = fw − fbrake is the total force, which is the

control input to the vehicle, a = R2/(Jw + MR2), and

b = −R2/(Jw + MR2) CrrMg. In order to maintain

liveness, that is, to prevent a situation in which any of the

vehicles stop, we implement for each of the two vehicles a

hybrid controller that keeps the speed from decreasing below

a low speed vm and from exceeding a high speed vM (Figure

2).

B. Order preserving hybrid automaton model

Each of the vehicles on the roundabout is thus modeled

as a hybrid automaton with input H = (X,Q,U , f, R), in

which X ⊂ R
n is the set of continuous variables, Q is a

finite set of modes, U is a continuous set of inputs, f : X ×
Q×U → X is a vector field, and R : X×U → Q is the mode

reset map. The mode reset map R is defined as R(x, u) := q
if (x, u) ∈ Dom(q), in which Dom : Q → 2X×U is a

map that attaches to a mode the set of continuous states

and inputs in which the mode holds. We use the notation

t 7→ φ(t, x,u) to denote the flow (or trajectory) of H starting

at initial condition x ∈ X at initial time zero, when input

signal u is applied to H . When the initial condition and input

are clear from the context, we denote the flow by x(t).
Let U ⊆ R

n be compact and F(U) denote the set of all

piecewise continuous functions u : R → U . We establish

the partial order (F(U),≤) by defining u
a ≤ u

b provided

that u
a(t) ≤ u

b(t) for all t ∈ R, for all u
a,ub ∈ F(U).

ṗ = vM

0 < vm < ṗ < vM or

ṗ = vm

p̈ = 0

p̈ = a u + bp̈ = 0

ũ ≤ 0

ṗ = vM , ũ > 0

ũ > 0
ũ < 0

ṗ = vm, ũ < 0

ũ ≥ 0

ṗ = vm and ũ ≥ 0 or
ṗ = vM and ũ ≤ 0

Fig. 2. Hybrid automaton modeling the longitudinal dynamics of each
vehicle in the Roundabout Drill. Here ũ := a u + b. In mode 1, the
dynamics of the vehicle is given by p̈ = a u + b, while in modes 2 and 3
it is given by p̈ = 0.

Consider the partial order (Rn,≤) defined by component-

wise ordering and the partial order (F(U),≤) on the set

of all piecewise continuous functions. Given partial orders

(P,≤) and (S,≤) and a map F : P → S, we say that F
is order preserving if x1 ≤ x2 implies F (x1) ≤ F (x2) for

x1, x2 ∈ P . Let e1 = (1, 0, ..., 0) ∈ R
n.

Definition 1: We say that H = (X,Q,U , f, R) is order

preserving provided there exist constants um, uM ∈ R and

a positive constant γ such that the following hold:

(i) U = [um, uM ] ⊂ R;

(ii) The flow φ(t, x,u) is order preserving with respect to

the x variable and with respect to the u variable;

(iii) < f(x, R(x, u), u), e1 >≥ γ for all x, u ∈ X × U .

One can check that the hybrid automaton of Figure 2

modeling each vehicle in the Roundabout Drill is order

preserving. The overall Roundabout Drill system can thus be

modeled as the parallel composition of two order preserving

hybrid automata. That is, Hroundabout = H1||H2, in which

Hi are represented in Figure 2. For each Hi, we have that

xi = (pi, vi) ∈ R
2 with xi,1 := pi and xi,2 := vi, the mode

qi can be in one of the three possible modes of Figure 2, the

vector fields fi are given by fi(xi, qi, ui) = (xi,2, ai ui +bi)
for qi in mode 1 and fi(xi, qi, ui) = (xi,2, 0) for qi in modes

2 and 3.

C. Control design

We seek to determine control laws that guarantee that the

continuous state of system H = H1||H2 never enter the bad

set B := {x ∈ X | xi,1 ∈]Li, Ui[ for i = 1, 2}. A system

whose trajectories do not enter set B is said to be safe. For

the roundabout system, entering such a set B corresponds,

for suitable Li and Ui, to having both of the vehicles of

Figure 1 be at the same time in the shaded ball.

In order to avoid bad set B, we determine the set of all

initial system configurations that independently of the control

input lead to trajectories of H entering B in finite time.

This set is called the capture set and it is denoted by C. It

is mathematically characterized by C := {x ∈ X | ∀ u ∈
F(U) , ∃ t ≥ 0 s.t. φ(t, x,u) ∈ B}. A control map that

makes the system safe is one that allows all control inputs
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if the system configuration is outside of the capture set,

while it allows only safe control actions on the boundary

of the capture set. The main bottleneck in applying this

approach to nonlinear and hybrid systems is the computation

of the capture set itself. Computation usually does not

scale with the size of the system and is not guaranteed to

terminate in finite time. The structure provided by the parallel

composition of order preserving hybrid automata allows us to

overcome these difficulties. We provide scalable algorithms

to compute the capture set, which are also guaranteed to

terminate. These algorithms are obtained by virtue of the

following central result. Let x = (x1, x2) ∈ X be the

state of H1||H2 with Hi order preserving hybrid automata.

Let xi = (xi,1, ..., xi,ni
), uB := (u1,m, u2,M ), and uC :=

(u1,M , u2,m). For a constant input signal u(t) = u for all

t, define Cu = {x ∈ X | ∃t ≥ 0 s.t. φ(t, x, u) ∈ B}. This

set represents all x configurations that are taken to B by the

flow of the system when the input is constant and equals u.

The next result shows that the capture set C can be computed

by computing only the two sets CuC
and CuB

.

Theorem 1: C = CuB
∩ CuC

.

The proof of this theorem is in [10]. For the Roundabout Drill

system, this theorem implies the following. If a configuration

x (speeds and positions of both vehicles) is taken to B by

having vehicle 1 apply maximal acceleration and vehicle 2

apply maximal deceleration and it is also taken to B by

having vehicle 1 apply maximal deceleration and vehicle 2

apply maximal acceleration, then any other (non-constant)

control inputs will also take x to B. By virtue of this

result, to compute C, we can compute only the sets CuB

and CuC
. Due to the order preserving property of the flow,

sets CuB
and CuC

can be on-line computed with a linear

complexity algorithm, which is also guaranteed to terminate.

This algorithm is provided in Section III-D. The resulting

control map that renders the system safe is obtained as

g(x) :=















{uB} if x ∈ CuC
∩ ∂CuB

{uC} if x ∈ CuB
∩ ∂CuC

{uC, uB} if x ∈ ∂CuB
∩ ∂CuC

U otherwise.

(1)

It applies control actions only when the system configuration

is on the boundary of the capture set C. When the system

configuration is not on the boundary of C, any control input

is allowed.

III. EXPERIMENTS

A. Experimental setup

The testbed where the experiments are performed consists

of a 6m x 6m arena in which the vehicles are driven and a

positioning system, which serves as an in-lab version of GPS.

A local 802.11b wireless network provides access to the

vehicles from a workstation using a Secure Shell terminal.

It also allows inter-vehicle communication via UDP.

The positioning system employs a Hexamite Hx11 ul-

trasonic system configured for guidance applications. The

system uses frequencies in the band of 40 kHz ± 1 kHz.

Each vehicle has a transponder mounted on the front, and

each transponder is assigned a different delay value, which

determines its transmission frequency. There are 24 passive

units on the ceiling that act like mirrors and reflect these

transmissions back to the vehicles along with the ceiling

unit’s ID number. These units are arranged in a grid, forming

equilateral triangles with 4ft long sides. The transponder on

the vehicle returns the round trip time for each received

reflection to the CPU mounted on each vehicle. These times

are then used to determine the distance from the transponder

to the corresponding ceiling units. When three or more valid

distances are received, the vehicle’s position is calculated via

trilateration using the algorithm described in [8]

The vehicles (Figure 3) are custom built on a Tamiya TT-

01R model car chassis modified to be front-wheel drive. The

drive motor is a 7.2V DC motor. Mounted on the chassis are

the microcontroller and the main CPU. Power is supplied by

two 16.5 V batteries in parallel.

Fig. 3. Vehicles employed in the lab experiments on the Roundabout Drill.

The motor and the steering servo are controlled by an

Acroname Moto 1.0 microcontroller. The Moto 1.0 has a 40

MHz processor and 368 bytes of RAM. The software on the

Moto 1.0 is used to implement a motor map, allowing for

torque control rather than speed control. For details on the

motor map, the reader is referred to [11].

The main CPU is a VIA EPIA Mini-ITX with a 600

MHz processor, 512 MB of RAM, and a 40 GB hard drive.

All control, positioning, and communications algorithms are

written in C and run on the Mini-ITX on a Linux Fedora

Core 5 operating system. The resulting torque commands

from the control algorithms are transmitted to the Moto 1.0

via shared scratchpad memory to be applied to the motors.

The software on both the Moto 1.0 and the Mini-ITX is

asynchronously triggered every 100ms in order to provide

enough time for the Moto 1.0 code to perform the motor

map calculation and the necessary I/O to the hardware and

the scratchpad memory.

B. Vehicle longitudinal dynamics model

At full charge, the vehicles are able to reach speeds up

to 2.5 m/s. The longitudinal dynamics are modeled as a

second order model of the form p̈ = au + b, where p̈
is the vehicle acceleration and u is the torque command.

Parameters a and b for each vehicle are experimentally

determined from data by employing standard least squares
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estimation techniques. In particular, we ran each vehicle with

constant torque commands, recorded the speed profile as

it accelerated, and employed the least squares method to

fit a line to the speed profile. The slope of this line was

taken as the acceleration for that torque command. We then

fixed the value of b by measuring the deceleration with a

command of zero torque and determined the parameter a
using a least squares linear fit on the acceleration versus

torque data. The resulting models for vehicles 1 and 2 are,

respectively, p̈1 = 1.20u1 − 0.90, p̈2 = 1.26u2 − 1.15. The

torque command, u, is issued as a percentage from 0 to

100, with 100 corresponding to a torque of 0.09 N m. The

longitudinal dynamics model given by the hybrid automaton

of Figure 2 is obtained by implementing a speed limiter.

In particular, we set vM = 0.80m/s and vm = 0.25m/s.

The speeds vM and vm in modes 2 and 3 are maintained

through the employment of a proportional/derivative (PD)

speed control.

C. Path following algorithm implementation

Vehicle control has two main components: maintaining the

vehicles on the corresponding roundabout paths and applying

the appropriate control torque u to the longitudinal dynamics

to prevent collisions at point C (Figure 1). In general, the

longitudinal and lateral dynamics of a vehicle are coupled.

However, since the radii of the paths are much greater than

the length of the vehicles and the speeds are low, it is possible

to assume low coupling. This allows us to decouple the

path following task, using a steering control input, from the

longitudinal dynamics control, using the torque control input

u.

In order to make the positioning of the vehicles more

accurate and reliable and to obtain heading estimates, we

implement a state estimator, which employs the kinematic

model of the vehicle

ṡx = v cos(ζ + γ), ṡy = v sin(ζ + γ), ζ̇ = v
B

sin(γ),
(2)

where sx and sy are the vehicle’s coordinates, ζ is its

heading angle, γ is its steering angle, v is its speed, and B
is its length, as depicted in Figure 4.

In every iteration, the estimator uses local steering and

γ

sx

sy

ζ

B

v

Fig. 4. Kinematic model parameters relative to the vehicle.

speed measurements to evolve this basic bicycle model

over time. Whenever valid position data is received, the

estimator adjusts the position estimate by taking a weighted

average of the prediction and the measurement. Due

to the absence of a heading measurement, the heading

angle estimate is updated by normalizing the three most

recent estimated displacement vectors, adding them, and

taking the angle formed by the result. This is essentially

a moving average filter on the heading angle, where

normalization removes the unwanted weighting introduced

by the vector magnitudes. Let ∆T > 0 be the sampling

time (100ms). Denote by ŝ = (ŝx, ŝy) the position estimate

and by ζ̂ the heading estimate. Define sx,pred(k) :=
ŝx(k − 1) + v(k − 1) cos(ζ̂(k − 1) + γ(k − 1))∆T and

sy,pred(k) := ŝy(k−1)+v(k−1) sin(ζ̂(k−1)+γ(k−1))∆T .

Similarly, let sx,meas and sy,meas denote the measurement

obtained by the positioning system. Then, we have the

update laws ŝx(k) = (c sx,pred(k) + d sx,meas(k))/(c + d),
ŝy(k) = (c sy,pred(k)+d sy,meas(k))/(c+d) for the position

estimates and ζ̂(k) = angle
(

∑k

i=k−2

(

ŝ(i)−ŝ(i−1)
||ŝ(i)−ŝ(i−1)||2

))

+
v(k−1)

B
sin(γ(k − 1))∆T, for the heading estimates. The

weights c and d that are found to provide the best estimator

performance are 3 and 2, respectively.

The position and heading estimates feed directly into the

path following algorithm. This controller accesses an array

of position coordinates that define the desired trajectory for

the vehicle. Each vehicle has a different array, each corre-

sponding to one of the two loops of Figure 1. The control

algorithm determines the closest point in the array that the

vehicle is approaching and uses a proportional feedback to

adjust its steering such that the vehicle’s heading is adjusted

toward the target point. Letting sx,target and sy,target denote

the coordinates of the target point, we thus have ζtarget(k) =

arctan
(

sy,target(k)−ŝy(k)
sx,target(k)−ŝx(k)

)

, γ(k) = KP (ζtarget(k)− ζ̂(k)).

D. Collision avoidance algorithm implementation

Fig. 5. Vehicles running on the testbed. Their longitudinal displacements
with respect to a reference point along the corresponding paths are indicated
by p1 and p2.

In order to reference vehicle position as a displacement

along the path, we project each vehicle’s position onto its

assigned path (Figure 5). The error introduced by assuming

the vehicle is exactly on the path is minimal as long as the

steering controller and state estimator work correctly. The

resulting longitudinal dynamics of each vehicle along this

path is modeled as described in Section III-B.
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The collision avoidance algorithm implements the feed-

back map of equation (1), which establishes what torque

command, if any, is required to prevent the vehicles from

entering the capture set C. If no special torque command

is required to guarantee safety (the last case of map (1)

is verified), a cruise control algorithm comes into effect to

maintain the vehicle speeds about some set points. For the

roundabout implementation, vehicle 1 tracks a speed of 0.4

m/s, while vehicle 2 tracks a speed of 0.5 m/s. A proportional

plus derivative (PD) control law is employed for this tracking

task. Each vehicle broadcasts its current position coordinates,

heading angle, torque command, speed, steering angle, and

vehicle number to all vehicles on the local wireless network.

Each vehicle then employs the received data in addition

to its local data to determine whether the current system

configuration is going to be mapped at the next iteration in

CuB
∩ CuC

if a safe control action is not enforced. We next

provide an algorithm for the symbolic computation of the sets

CuB
and CuC

for a general hybrid automaton H = H1||H2

given by the parallel composition of two order preserving

hybrid automata.

Let ∆T > 0 denote the discretization time and x̄i :=
(xi,2, ..., xi,ni

). The discrete time version of the dynamics

of each order preserving hybrid automaton Hi is given by

x′
i,1 = xi,1 + Fi,1(x̄i, ui), x̄′

i = F̄i(x̄i, ui), where

primed variables denote updated variables, Fi,1(x̄i, ui) =
fi,1(x̄i, Ri(x̄i, ui))∆T , F̄i(x̄i, ui) and Fi,1(x̄i, ui) are order

preserving in the state and in the input, and we have assumed

that the x̄i dynamics do not depend on the xi,1 variable. Set

F̄ 0
i (x̄i, ui) := x̄i and F̄ k+1

i (x̄i, ui) := F̄i(F̄
k
i (x̄i, ui), ui) for

k = 0, 1, . . ..

Algorithm 1: For each i ∈ {1, 2} and k ∈ N,

let Lk
i (x̄i, ui) = Li −

∑k−1
j=0 Fi,1(F̄

j
i (x̄i, ui), ui),

Uk
i (x̄i, ui) = Ui −

∑k−1
j=0 Fi,1(F̄

j
i (x̄i, ui), ui).Then, Cu =

{

x ∈ X | ∃ k ≥ 0 with Lk
i (x̄i, ui) < xi,1 < Uk

i (x̄i, ui) ∀i
}

.

According to this algorithm, CuB
and CuC

are each computed

for a given pair of speeds (x̄1, x̄2) as a union of rectangles

in the position (x1,1, x2,1) plane. Checking whether a point

x is in CuB
∩ CuC

can be performed by simply comparing

(x1,1, x2,1) against the lower and upper bounds Lk
i , Uk

i

(which depend on the values of the speeds (x̄1, x̄2)) for i ∈
{1, 2} for all k. Also, the sequences {Lk

i }k≥0 and {Uk
i }k≥0

are strictly decreasing due to the increasing property of the

flow (property (iii) of Definition 1). Therefore, to check

whether xi,1 is contained in any of the intervals (Lk
i , Uk

i ),
it is enough to compute such intervals only until Uk

i < xi,1.

Hence, only a finite number of such intervals needs to be

computed and as a consequence the algorithm that checks

whether a configuration is in CuB
or CuC

terminates. Fur-

thermore, computation scales with the number of continuous

variables.

For the Roundabout Drill system, we apply Algorithm

1 with the longitudinal dynamics model from Section III-

B. According to such a model, we have that ni = 2
for i ∈ {1, 2}, x̄i = xi,2 is the speed of vehicle i,
fi,1(x̄i, Ri(x̄i, ui)) = xi,2, F̄i(x̄i, ui) = 0 if the vehicle is

in modes 2 or 3, and F̄i(x̄i, ui) = xi,2 + (ai ui + bi)∆T if

the vehicle is in mode 1. In order to take uncertainty on the

identified parameters ai, bi into account in the computation

of the set CuB
and CuC

, we add a modeling uncertainty to

the dynamics of the system in mode 1, that is, F̄i(x̄i, ui) =
xi,2 + (ai ui + bi)∆T + ∆i, with ∆i ∈ [∆i,m, ∆i,M ].
For implementing safety control, this is equivalent to having

F̄i(x̄i, ui) = xi,2 + ūi∆T , where ūi ∈ [ūi,m, ūi,M ], ūi,m =
aiui,m + bi + ∆i,m, and ūi,M = aiui,M + bi − ∆i,M .

That is, the uncertainty can be viewed as an adversary that

reduces the degree of freedom of the input. The values

of [∆i,m, ∆i,M ] for vehicles 1 and 2 were selected to be

[0.6, 19.1] and [0.85, 24.85], respectively. These values were

chosen so as to compensate for the modeling error while not

being too conservative. As a consequence, CuC
is computed

with (ū1, ū2) = (ū1,M , ū2,m) and CuB
is computed with

(ū1, ū2) = (ū1,m, ū2,M ).

Ideally, both vehicles should have access to the same data

for each iteration, thus resulting in identical computations.

Since communication delays and the asynchronous nature of

the vehicles may result in up to a three-iteration difference

in the data each vehicle is using, it is necessary that the

vehicles agree on the same view of the system configuration

so they apply the correct control. Therefore, before applying

control, the vehicles communicate to each other the case of

the control map (1) in which they think the configuration of

the system is. The instances in which there is a disagreement

are typically due to a system configuration x being in the

proximity of the tip of the capture set. Since in the proximity

of the tip of the capture set both uB and uC are allowed,

one of these two inputs is arbitrarily chosen.

E. Experimental results

Six separate experiment runs, each involving 3-4 potential

collision scenarios were performed for a total of 23 potential

collision scenarios. The vehicles configuration (in R
4) was

started at arbitrary locations (but never in the capture set) for

each run. Figure 6 shows the slices of the four dimensional

sets CuB
and CuC

in the position plane corresponding to the

current speeds of the vehicles. Note that due to the dynamics

of the vehicles, even if vehicle 1 is closer to the conflict point

than vehicle 2, the collision avoidance algorithm may decide

to let vehicle 2 accelerate to pass first depending on the

speeds of the vehicles. The trajectories in Figure 7 indicate

that the configuration comes very close to, but never enters,

the bad set. Thus the control algorithm not only maintains

safety, but it also does so without being conservative. The

experiments also show that the vehicles can usually follow

their paths without much deviation. Since we project vehicle

positions onto the paths, we are even able to maintain safety

if the vehicles are within 0.5 m of their projected positions

and are moving approximately tangent to the paths.

Among the 23 instances of collision avoidance, only one

collision occurred. This was due to a series of bad position

measurements that the estimator could not filter before the

vehicle configuration reached the capture set.
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(a) After 98.2 sec
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(b) After 99.8 sec
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(c) After 100.8 sec
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(d) After 101.2 sec
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(e) After 102.4 sec
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(f) After 104.3 sec
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(g) After 105.4 sec
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(h) After 106.5 sec

Fig. 6. Experiment data showing the trajectory in the position plane
(p1, p2) of the vehicles configuration as it approaches a potential collision
scenario. The red box is the projection of B in the position plane. In each
panel, the green set represents a slice of the four dimensional set CuB

corresponding to the current vehicles speeds. The yellow set represents a
slice of the four dimensional set CuC

corresponding to the current vehicles
speeds. The red dot indicates the current vehicles positions. Control is
applied at (d) to avoid the capture set, and the vehicles resume normal
operation after passing the bad set (in (g) and (h)). The capture set slices
are updated at every iteration on the basis of the vehicles speeds.
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Fig. 7. Roundabout system trajectories for several laps around their paths
projected on the position plane. The red box denotes the projection of set
B in position plane.

Position and speed information errors deriving from either

measurement noise or communication delays occasionally

cause the configuration of the system to enter the capture

set. Nevertheless, the vehicle configuration quickly exits

the capture set and never enters the bad set. Thus, we

can conclude that the modeling uncertainty confers enough

robustness to the algorithm with respect to these errors. This

problem could be prevented by formally accounting for these

errors by adding a set-valued estimator to keep track of the

resulting state uncertainty.

Though we only considered the two-vehicle collision

avoidance case here, we plan to expand this to involve

multiple vehicles running simultaneously. This would require

the addition of an adaptive cruise control algorithm that

maintains safety for the remainder of the trajectories, without

disrupting collision avoidance.

IV. CONCLUSIONS

In this paper, we have presented a new computation-

ally efficient control algorithm for the two-vehicle collision

avoidance problem as it occurs at mergings on highways and

roundabouts. Our algorithm guarantees safety by design and

is scalable in the number of continuous variables. We applied

the proposed algorithm to an experimental Roundabout Drill,

which is collision free and enjoys liveness properties. The

experimental results show that (a) the proposed algorithm

is well suited for fast real time computation and that (b)

the algorithm is robust to uncertainty while not being con-

servative. In the future, we plan to extend the algorithm

to incorporate set-valued state estimators that can formally

handle uncertainty deriving from measurement noise and

communication delays. Also, we will apply these collision

avoidance techniques to a roundabout test-bed with several

vehicles and to a full-scale experimental system.
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