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Abstract: Using tools from dynamical systems theory and systems identification theory we
develop the study of primitives for human motion which we refer to as movemes. We
introduce basic definitions of dynamical independence of linear time-invariant dynamical
systems (LTI) and segmentability of signals and we develop classification and segmentation
algorithms for two dimensional motions. We test our ideas on data sampled from four
human subjects who were engaged in a simple real-life activity including two movemes. Our
experiments show that we are able to distinguish between the two movemes and recognize
them even when they take place in an activity containing more than one moveme.
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1. INTRODUCTION

Building systems that can detect and recognize hu-
man actions and activities is an important goal of
modern engineering. Applications range from human-
machine interfaces, to security to entertainment. The
first fundamental problem in achieving this goal is
one of representation. Our point of view is that hu-
man activity should be decomposed into its building
blocks which belong to an “alphabet” of elementary
actions that the machine knows. We refer to these
primitives of motion asmovemes. This word first came
up in the work by (Bregler and Malik, 1997). Their
approach does not include an input and therefore is
only applicable to periodic or stereotypical motions,
such as walking or running where the motion is al-
ways the same. (Goncalves et al., 1998) also proposed
to divide human motion into elementary trajectories
called movemes. They dealt with the problem in a
phenomenological and non-causal way: each moveme
was parameterized by goal and style parameters. We
attempt here to define movemes in terms of causal dy-
namical systems; this way a moveme could be param-
eterized by a small set of dynamical parameters and

by an input which drives the overall dynamics. Our
aim is to build an “alphabet of movemes” which one
can compose to represent and describe human motion
similar to the way phonemes are used in speech. Two
more problems we address are the ones of segmenta-
tion and classification: can a continuous trajectory of
the human body be decomposed automatically into its
component movemes?
We validate our ideas by analyzing the mouse tra-
jectories generated by computer users as they “point-
and-click” (we call this the reach moveme) and trace
straight lines (we call this the draw moveme).

2. AXIOMATIC PERSPECTIVE ON MOVEMES

This section is concerned with the theoretical ap-
proach to the study of movemes: we give a few ba-
sic definitions and set up the requisite mathematical
framework. Let M = M(θ) denote a LTI systems
class parameterized by θ ∈ Rp and let U denote a class
of inputs. Let y(t) = Y (M(θ)|u,x0)(t) denote the out-
put ofM(θ) once parameter θ ∈ Rp, input u ∈ U and



initial condition x0 ∈ Rn have been chosen. To sem-
plify notation we will write y(t) = Y (M(θ)|u,x0).

Definition 1. Let MR(θ) = {M(θ)|θ ∈ CR} and
MD(θ) = {M(θ)|θ ∈ CD} denote two subsets of
models in the class M with Cj ⊂ Rp, for j =
R,D. The two sets MR(θ) and MD(θ) are said to
be dynamically independent if:

(i) the class M and the class of inputs U are such
that Y (M(θ1)|u1,x0) = Y (M(θ2)|u2,x0) iff
(θ1, u1) = (θ2, u2) for u1 ∈ U and u2 ∈ U ;

(ii) the sets CR and CD are non-empty, bounded and
linearly separable.

A set M = {M1, ....,M l}, where M i(θ) =
{M(θ)|θ ∈ Ci} is said to be a set of mutually dynami-
cally independentmodel sets if all the pairs {M i,M j}
are dynamically independent for i #= j ∈ [1, l].

The linear separability requirement for the sets CR and
CD can be relaxed, in a more general framework, just
to separability.
Each of the elements of the set M of mutually dy-
namically independent model sets is called a moveme.
Let M j ∈ M be a moveme. We let yj(t) =
Y (M j(θ)|u,x0) = Y (M(θ)|u,x0) denote the moveme
output for M j once the parameters θ ∈ Cj , input
u ∈ U and initial conditions x0 ∈ Rn are determined.
Given a signal y(t), t ∈ [t0, T ], let s1(t) and s2(t) be
the two signals defined as

s1(t) = y(t), t ∈ [t0, τ ]
s2(t) = y(t), t ∈ [τ, T ] , (1)

where τ ∈ (t0, T ]. We let (s1(t), s2(t))τ denote the
segmentation of y(t) at time τ .

Definition 2. A signal y(t) is said to be segmentable
if there exists τ∗ ∈ (t0, T ) such that the segmentation
at time τ∗, (s1(t), s2(t))τ∗ , satisfies

s1(t) = Y (M(θ1)|u1,xt0
), t ∈ [t0, τ∗] (2)

s2(t) = Y (M(θ2)|u2,xτ∗ ), t ∈ [τ∗, T ]

for some u1, u2, , xt0 , xτ∗ , θ1, θ2 with (θ1, u1) #=
(θ2, u2). The couple (s1(t), s2(t))τ∗ defined here is
referred to as the actual segmentation.

Proposition 3. A moveme output yi(t) =
Y (M i(θ∗)|u∗,xt0

), t ∈ [t0, T ], is not segmentable.
Proof. Let (s1(t), s2(t))τ be the segmentation of yi(t)
for any τ ∈ (t0, T ). Suppose for t ∈ [t0, T ] s1(t) =
Y (M(θ1)|u1,xt0

) and s2(t) = Y (M(θ2)|u2,xτ ), t ∈
[τ, T ]. Also s1(t) = Y (M i(θ∗)|u∗,xt0

), t ∈ [t0, τ ]
and s2(t) = Y (M i(θ∗)|u∗,xτ ),t ∈ [τ, t0]. Therefore
Y (M(θ1)|u1,x0)= Y (M(θ∗)|u∗,x0), Y (M(θ2)|u2,xτ ) =
Y (M(θ∗)|u∗,xτ ) which by (i) of Definition 1 imply
(θ1, u1) = (θ∗, u∗), (θ2, u2) = (θ∗, u∗) which in turn

imply (θ1, u1) = (θ2, u2) that contradicts Definition
2. !

Proposition 4. If y(t), t ∈ [t0, T ], is segmentable,
then the actual segmentation is unique.
Proof. Let (s1(t), s2(t))τ∗ as defined in (2) be the
actual segmentation of y(t). Suppose there is a τ < τ∗

such that (s̃1(t), s̃2(t))τ is an actual segmentation,
then since τ < τ∗ we have s̃1(t) = Y (M(θ1)|u1,xt0

),
t ∈ [t0, τ ], and s̃a

2(t) = Y (M(θ1)|u1,xτ ) for t ∈
[τ, τ∗]while s̃b

2(t) = Y (M(θ2)|u2,xτ∗ ) for t ∈ [τ∗, T ]
which means by Definition 2 that s̃2(t) is segmentable.
Therefore (s̃1(t), s̃2(t))τ is not an actual segmentation
according to Definition 2 since s̃2(t) is not a moveme
output. The same argument holds for τ > τ∗. !

More generally a signal y(t), t ∈ [t0, T ], is said to be
m-segmentable if there exists a sequence t0 < t1, ... <
tm = T , m > 1 such that y(t), t ∈ [tj−1, tj+1],
j = 1, ...,m − 1, is segmentable according to Defi-
nition 2 with τ∗ = tj .

For the sake of simplicity, we restrict the choice of
the model class M to second order linear systems
described by

ÿ(t) = θT ϕ(t) , (3)
where θ ∈ R3 and ϕT (t) = (−ẏ(t),−y(t), u(t)),
with unit step input u(t) = 1(t) ∈ R. Given any
signal ỹ(t), t ∈ [t0, T ], we can determine the best
representative of ỹ(t) in the class M by minimizing∫ T

t0
(¨̃y(t) − θT ϕ̃(t))2dt with respect to θ, so that

θ̂ = arg min
∫ T

t0

(¨̃y(t) − θT ϕ̃(t))2dt (4)

to get
¨̂y(t) = θ̂T ϕ̂(t) , ϕ̂(t0) = ϕ̃(t0) , (5)

where ϕ̂(t) = (− ˙̂y(t),−ŷ(t), 1(t))T and ϕ̃(t) =
(− ˙̃y(t),−ỹ(t), 1(t))T . We verify that the class (3)
satisfies property (i) of Definition 1 by using the
following lemmas.

Lemma 5. For any C2 time signal y(t) given by




ẋ =

(
0 1

−θ2 −θ1

)
x +

(
0
θ3

)
+

(
0

d(t)

)

y = (1, 0)x
(6)

with d(t) white noise or d(t) = 0, let λ1, λ2 denote
the eigenvalues of the matrix in system (6), E =
{(v1, v2)T ∈ R2 : v2 = λ(v1− θ3

θ2
), λ = λ1, λ2} and

ϕ(t)T = (−ẏ(t),−y(t), 1(t)). If x(t0) /∈ E, then the
matrix

∫ t1
t0

ϕ(t)ϕ(t)T dt with t1 > t0 is nonsingular.
Proof (sketch). Suppose the assumptions hold and
suppose

∫ t1
t0

ϕ(t)ϕ(t)T dt is singular. This implies that
ẏ = −ay + b for some a and b. This equation together
with system (6) imply,with d(t) = 0, that x(t0) ∈ E
and with d(t) #= 0 that d(t) satisfies a first order
differential equation, leading to contradiction. !



We will assume in what follows that assumptions of
Lemma 5 are satisfied.

Lemma 6. Given the two dynamical systems ÿ1(t) =
θT
1 ϕ1(t) and ÿ2(t) = θT

2 ϕ2(t), t ∈ [t0, T ], assume
ϕ1(t0) = ϕ2(t0), then y1(t) = y2(t) ∀t ∈ [t0, T ] iff
θ1 = θ2.
Proof (sketch). (⇐) if θ1 = θ2 and ϕ1(t0) = ϕ2(t0),
by the uniqueness of solutions we have y1(t) = y2(t).
(⇒) we prove that if θ1 #= θ2, then y1(t) #= y2(t).
Suppose instead that y1(t) = y2(t) ∀t ∈ [t0, T ], show
this leads to contradiction of Lemma 5. !

We will focus on the caseM = {MR,MD}. Recall-
ing Definition 1 let θj,k denote an element of Cj , then
we define the centers of the two sets CR and CD to be:

cR =
1

|CR|

|CR|∑

k=1

θR,k

cD =
1

|CD|

|CD|∑

k=1

θD,k ,

where |Cj | is the cardinality of the set Cj . From
here on we assume that CR and CD are two balls
in R3 centered in cR and cD with radii rR and rD

respectively, i.e.,

CR = BrR(cR) , CD = BrD (cD) . (7)

In this section we have proposed a definition for a
moveme, and on the basis of such a definition we
showed the main properties that hold for moveme
outputs. We have defined the particular model class
M chosen, the set M of movemes and the sets CR

and CD which parameterize the movemes.

3. SEGMENTATION PROBLEM

Given any signal y(t), t ∈ [t0, T ] which can be either
non-segmentable or segmentable, we would like to
consider the problem of finding its actual segmenta-
tion (s1(t), s2(t))τ∗ , in which τ∗ = T for the non-
segmentable case. We start by looking at the simplest
case in which y(t) is generated by a nominal system
and then we extend the result to the case of a perturbed
system. Given any signal y(t) let (s1(t), s2(t))τ be
the current segmentation at time τ ∈ (t0, T ]. Then we
define the approximation error, ea, as

ea(τ) =
1

τ − t0

∫ τ

t0

(s1(t) − ŝ1(t))2

+
1

T − τ

∫ T

τ
(s2(t) − ŝ2(t))2 , τ ∈ (t0, T ) (8)

and ea(T ) = 1
T−t0

∫ T
t0

(s1(t) − ŝ1(t))2 where ŝ1(t)
and ŝ2(t) are the best representatives in the class M
of s1(t) and s2(t) according to (4) and (5). Similarly,
we define the parametric error, ep, as

ep(τ) = ‖θ̂1 − cj‖ + ‖θ̂2 − ci‖ , τ ∈ (t0, T ) (9)

and ep(T ) = ‖θ̂1 − cj‖, where j = R if θ̂1 ∈ CR or
j = D if θ̂1 ∈ CD, and analogously for i.

3.1 Nominal case

Consider the segmentation problem, with i ∈ {R,D}
and j ∈ {R,D}, for the nominal system

ÿ0(t) =

{
cT
i ϕ0(t) t ∈ [t0, τ∗]

cT
j ϕ0(t) t ∈ [τ∗, T ]

cT
i ϕ0(τ∗) = cT

j ϕ0(τ∗) . (10)

Letting (s0
1(t), s0

2(t))τ be the segmentation at time τ
of y0(t), the output of system (10), we show that the
quantities e0

a(τ) and e0
p(τ), computed as in (8) and (9)

satisfy the following lemmas.

Lemma 7. Let e0
a(τ) and e0

p(τ) be defined as in (8)
and (9) for system (10). Then e0

a(τ) = 0 iff τ = τ∗

and e0
p(τ) = 0 iff τ = τ∗.

Proof. See (DelVecchio et al., 2001).

Lemma 8. Let e0
a(τ) and e0

p(τ) be defined as in (8)
and (9) for system (10), then de0

a(τ)
dτ |τ=τ∗ = 0 and

de0
p(τ)

dτ |τ=τ∗ = 0; moreover there exists an interval I0,
τ∗ ∈ I0, in which e0

a(τ) and e0
p(τ) are C1 functions.

Proof. See (DelVecchio et al., 2001).

The functions e0
a(τ) and e0

p(τ) are C1 in I0, both their
derivatives are zero at τ = τ∗ and at such a point they
have their global minimizer. It follows that they are
locally convex and therefore they satisfy at τ = τ∗

first and second order necessary conditions for a mini-
mizer. The problem of finding the actual segmentation
point is then a locally convex minimization problem.

3.2 Perturbed case

We want to solve the segmentation problem for a
signal y(t), t ∈ [t0, T ], which has been generated by a
perturbed version of (10), namely by

ÿ(t) =

{
(ci + δv1)T ϕ(t) + d(t) t ∈ [t0, τ∗]
(cj + δv2)T ϕ(t) + d(t) t ∈ [τ∗, T ]

(11)
where δ ∈ [0, δ̄], v1 and v2 are unit vectors, d(t) ∈
[−d̄, d̄] ∀t ∈ [t0, T ] is a realization of white noise.
With structure (11) we are not guaranteed anymore
that ea(τ) and ep(τ) have a minimizer at τ = τ∗

and the obtained estimates θ̂1 and θ̂2 are moved away
from ci and cj by the presence of disturbance d(t) and
parameter uncertainty δ. In order to let θ̂1 ∈ Ci and
θ̂2 ∈ Cj lie in the sets Bδ(ci) and Bδ(cj) in which
ci + δv1 and cj + δv2 lie, we can either constrain θ̂1

and θ̂2 to lie into balls of radii δ around the centers



ci and cj , or minimize ep(τ) while also minimizing
ea(τ). Since we do not know a priori what i and j are,
we choose the second option and reformulate the prob-
lem of segmentation as an unconstrained optimization
problem. To minimize two competitive quantities we
minimize ea(τ)ep(τ).

Lemma 9. Let f0(y) and g0(y), y ∈ [y0, yM ] be
C1 non negative functions which admit their global
minimum at y∗ with f0(y∗) = g0(y∗) = 0. Let I
denote the smallest of the convexity intervals of f0(y)
and g0(y) around y∗. Let f(y) and g(y) be perturbed
versions such that:

f0(y) − ε ≤ f(y) ≤ f0(y) + ε
g0(y) − ∆ ≤ g(y) ≤ g0(y) + ∆ (12)

for all y ∈ I0 ⊂ I and y∗ ∈ I0. Then the minimizer
ȳ ∈ I0 of f(y)g(y) is such that

(ȳ − y∗)2 <
(εb + ∆a) +

√
(εb + ∆a)2 + 8ε∆b̄ā

2b̄ā
(13)

for suitable positive constants a, b, ā, b̄.
Proof. See (DelVecchio et al., 2001).

By proceeding with the perturbation analysis we quan-
tify how θ̂1 and θ̂2 vary with respect to θ̂0

1 and θ̂0
2 , and

how the signals s1(t), s2(t) and their estimates ŝ1(t),
ŝ2(t) vary with respect to the nominal signals s0

1(t),
s0
2(t), ŝ0

1(t), ŝ0
2(t). Then we compute ea(τ) and ep(τ)

to finally get that, for any τ ∈ I0 with τ∗ ∈ I0 and
I0 given in Lemma 8, there exist functions δ̄(rD, rR)
and d̄(rD, rR) such that, if δ̄ < δ̄(rD, rR) and d̄ <
d̄(rD, rR) we have e0

p(τ) − ∆ ≤ ep(τ) ≤ e0
p(τ) + ∆,

with∆ = k∆,1(d̄+ d̄2 + d̄4)+k∆,2(δ̄+ δ̄2 + δ̄3), k∆,1

and k∆,2 suitable positive constants, rR and rD given
in (7). As far as ea(τ) is concerned we obtain a similar
result, that is e0

a(τ) − ε ≤ ea(τ) ≤ e0
a(τ) + ε, with

ε = kε,1(d̄+d̄2+d̄4+d̄8)+kε,2(δ̄+δ̄2+δ̄3+δ̄4+δ̄6),
for kε,1 and kε,2 appropriate positive constants. We
can then combine all these results to give the following
theorem.

Theorem 10. Given system (11), there exist constants
δ̄(rR, rD) and d̄(rR, rD) such that if δ̄ < δ̄(rR, rD)
and d̄ < d̄(rR, rD) then the solution of the segmen-
tation problem for y(t) found by minimizing over
τ ∈ I0 the product ea(τ)ep(τ) is a real τ̄ which
satisfies

(τ̄ − τ∗)2 ≤ (εb + ∆a) +
√

(εb + ∆a)2 + 8ε∆b̄ā

2b̄ā
(14)

with∆ = k∆,1(d̄ + d̄2 + d̄4) + k∆,2(δ̄ + δ̄2 + δ̄3) and
ε = kε,1(d̄+d̄2+d̄4+d̄8)+kε,2(δ̄+δ̄2+δ̄3+δ̄4+δ̄6),
a, b, ā, b̄ positive constants, rD and rR defined in (7).

For the complete perturbation analysis see (DelVecchio
et al., 2001).
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Fig. 1. Discontinuity terms

4. THE SEGMENTATION ALGORITHM

The actual segmentation algorithm, implemented in
MATLAB 6.0 and then run on real data, minimizes
the function E(τ) = ep(τ)ea(τ)(α + ed(τ)) in which
we introduced the additional term ed(τ) defined as
ed(τ) = |ŝ1(τ)− ŝ2(τ)|+ |ŝ2(T )− y(T )|. This term
accounts for the discontinuity of the estimate at t = τ
and the discontinuity at t = T ; both terms are shown
in figure 1. The constant α is arbitrary positive. The
general structure of the minimization algorithm is

- specify a guess of solution τ0

- while dE(τ)
dτ < 0

τk+1 = τk + ∆τk

- stop

Typically one would choose ∆τk = −dE(τ)
dτ |τkηk,

with ηk chosen according to the backtracking tech-
nique for example (see (Nash and Sofer, 1996)). It is
verifiable in a few steps that dE(τ)

dτ < 0 is equivalent to
e′

p(τ)

ep(τ)+β + e′
a(τ)

ea(τ)+γ + e′
d(τ)

α+ed(τ) < 0, where β and γ have
been introduced to avoid having zero denominators
and they are positive arbitrary constants. This form
gives evidence that in the minimization process we are
looking at each step for a global percentage decrease
of the functions ea(τ), ep(τ) and ed(τ). Since in prac-
tice we have a sampled version of the functions ea(τ),
ep(τ) and ed(τ), we let τ = nTs where n ∈ N and Ts

is the sampling time, so that by replacing derivatives
by finite differences it can be shown that the structure
of the minimization algorithm transforms to

- let no be the initial guess of the minimizer
- for n=1,2,3,... check if no is not the optimum, i.e.
if

ep(n) − ep(no)
ep(n)+ep(no)

2 + β
+

ea(n) − ea(no)
ea(n)+ea(no)

2 + γ

+
ed(n) − ed(no)
α + ed(n)+ed(no)

2

< 0
(15)

update the new minimizer no to n
- set n̄ to no.



Definition 2 clearly establishes that the output gener-
ated by system (10) is segmentable. The same defini-
tion does not apply to the output of system (11). Then
let y(t), t ∈ [t0, T ], be the output of system (11), we
establish that y(t) is segmentable if

ep(T ) > 0.5ep(τ̄) , (16)

where τ̄ = Tsn̄ is the minimizer found with the pro-
cess described above. Since we have also a sampled
version of the signal y(t) instead of representation
(3), we use a discrete time LTI representation, see
(Ljung, 1999),

y(t) = θT ϕ(t),
ϕ(t)T = (−y(t − 1),−y(t − 2), 1(t − 1)) ,

(17)

so that we avoid measuring the acceleration and we
just measure the output y(t) itself.

5. EXPERIMENTS

We describe here the basic experiments. A more de-
tailed description of the experimental setup and pro-
cedure is given in (DelVecchio et al., 2001).

5.1 Dataset

We carried out our experiments on trajectories cap-
tured on four human subjects. Two simple video
games were implemented in Matlab for this purpose
on a commercial PC runningWindows NT. The screen
of the PC measured 1600 × 1200 pixels2 and the
working window was 800× 600 pixels2. The position
of the mouse cursor was tracked from Matlab using
the function “get(gca,’Current Point’)” which sampled
the data at approximatively 100Hz if the mouse in
the working area was moving. In the first “point-and-
click” game a “sequence” was initiated when three
boxes about 20 × 20 pixel appeared at random posi-
tions in the working window. The user, starting from
a base location, had to point and click inside each of
the boxes and then click inside a box indicating the
base to terminate the sequence. In the second “point-
and-draw” game a “sequence” was initiated when a
line with a marked endpoint appeared at random po-
sitions and inclinations in the working window. The
user starting again from a base location had to point
the marked endpoint of the line and then trace a new
overlapping line, then click inside a box indicating
the base to terminate the sequence. This second game
had another option in which two connected lines with
random inclinations and positions were appearing in-
stead of one. The users were allowed to practice for
approximatively 3 sequences for each game so to carry
out each task in a natural way. In total about 70 se-
quences for each task were captured for each of the
four subjects. The average length of a point-and-click
sequence was 157 points and for a point-and-draw
sequence was 182 points.
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5.2 Classification Problem

For each reach sample and for each draw sample we
used (17) to model the dynamics on y and x axis and
(4) (with the mentioned modifications for the discrete
case) to estimate the reach and draw parameters θR =
((θx

R)T , (θy
R)T ))T and θD = ((θx

D)T , (θy
D)T ))T ,

where the superscript denotes the axis (y or x) whose
dynamics was considered for the parameter estima-
tion. The first problem we deal with is the one of
correctly classifying a new reach or draw sample as
reach or draw based on the dynamical parameters es-
timated for a training set of reach and draw samples.
Then given a training set of reach/draw parameters,
which we call Θ̃R = {θR,k} and Θ̃D = {θD,k} re-
spectively, we train a classifier to distinguish between
the two sets of parameters. We use the Fisher classifier
(see (Bishop, 1995)) for x and y parameters sepa-
rately which projects the parameters along the first
two Fisher linear discriminants; in other words we find
two linear transformations which transform x and y
parameters in two 2D basis with respect to which the
data are maximally separable. Then the training sets
are mapped into two sets which we call C̃R and C̃D .
The distribution of x reach and draw parameters for a
typical user is shown in Fig. 2 and it is clear that there
are two distinct subsets. Then we train a linear neural
network with signum activating function to classify
the reach and draw sets both for y and x directions.
We chose the data of different subjects for training
and testing since in general it is likely that we have to
classify the actions of people who never participated
in previous experiments. Letting the above defined
sets denote the x and y training sets, we obtained a
training error of 6/116 (5.17%) and test error of 5/76
(6.5%) for the x parameters, while a training error of
4/116 (3.4%) and a test error of 4/76 (5.26%) for the
y parameters suggesting minimal or no overfitting and
excellent cross-subject generalization
Excluding from the sets C̃R and C̃D the parameters
that were misclassified in this process we obtain the
sets CR and CD which are linearly separable and then
satisfy Definition 1. These sets parameterize two sets
of LTI dynamical systems MR ⊂ M and MD ⊂ M
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which according to Definition 1 are dynamical in-
dependent sets of models. Then we have found two
movemes, the reach and draw movemes, whose output
is the synthetic reproduction of the time sequence of a
reach action and a draw action.

6. SEGMENTATION ALGORITHM RESULTS

Table 1: Confusion Matrix

Predicted
Actual R D R/D R/R D/D D/R
R 94 2 4 11 0 4
D 0 71 1 0 5 0
R/D 3 0 99 0 0 0
R/R 22 0 13 75 0 5
D/D 0 18 0 0 71 1
D/R 1 2 0 1 5 91

We ran the segmentation algorithm with check (15)
and segmentability check (16) on the data. The classi-
fication algorithm is a subroutine of the segmentation
algorithm and it is necessary to compute the proper
parametric errors (9); the outputs of the segmentation
algorithm are the estimated segmentation point n̄ and
the classification of the movemes found. Therefore
the answer of the algorithm is correct if it has pro-
vided not only the right segmentation point, but also
the right classification. In the code the possibility of
recognizing when the hand is not moving has been
included: the periods in which nothing happens can
be identified as a pause in the resulting segmentation
when it produces smaller values of the cost E. In
the segmentation process we compute the quantities
ex
a(n), ey

a(n), ex
p(n), ey

p(n) separately for x and y
channels and then ea(n) = ex

a(n)+ey
a(n) and ep(n) =

ex
p(n)+ey

p(n). The resulting errors (mis-segmentation
or correct segmentation but wrong classification) are
reported in the confusion matrix. The best results are
obtained for R/D and D/R sequences for which in Fig.
3 we report an example, while the worst are for R/R
and D/D sequences. The reason is that some of the
R/R or D/D sequences really looked like just one R or
D movement: in some cases the D/D sequence was

performed with two lines that were almost aligned
and the R/R sequence was performed reaching points
which were very close to each others. In these cases
the algorithm improperly classify the results.

7. CONCLUSIONS

We have proposed a dynamical formulation of movemes.
We restricted our attention to two dimensional move-
ments and showed that there exist two movemes that
have dynamical characteristics which are sufficient
to distinguish between them. The experiments also
showed that the clusters in parameter space are not
subject dependent. The segmentation algorithm was
tested on about 600 samples of composed and simple
actions and it gave approximatively 90% accuracy.
Our analysis of second order LTI systems can also
be extended to more complex dynamical systems. In
the future we plan to acquire more data and look for
other primitives of motion to add to the alphabet; we
will also consider the case in which the action to be
segmented is segmentable in more than two parts and
generalize to the case of motion in 3D.
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