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Abstract

Synthetic biology is the application of engineering principles to the fundamental components
of biology, with the aim of creating systems with novel functionalities that can be used for energy,
environment, and medical applications. While the potential impact of this new technology is
enormous, there are challenges that we need to overcome before the impact of synthetic biology
can be fully realized. A large number of these challenges fall beyond the scope of molecular
biology and are indeed “system-level” problems, where very little research is being performed.
This paper identifies pressing challenges in synthetic biology that can be formulated as systems
and control theoretic problems and outlines potentially new systems and control theory/tools
that are required to tackle such problems. The aim is to attract more systems and control
theorists to synthetic biology to help it reach its promises. At the same time, engaging the
systems and control community more broadly into the rich research opportunities and life-
changing applications of synthetic biology may provide added visibility to the field of systems
and controls.

1 Introduction

Synthetic biology is an emergent interdisciplinary field of research, whose aim is to engineer biological
systems to achieve useful functionalities. Synthetic biology provides powerful tools to address many
pressing societal needs. For example, in the past decade, researchers in synthetic biology have
created engineered bacteria that can produce biofuel [I] and sense heavy metals [2]; genetic circuits
that can reprogram cell identity to become beta cells to treat diabetes have been designed [3]; and
engineered immune cells that can track and kill cancer cells have been proposed [4]. While these
efforts, among many others, demonstrate the great impact that synthetic biology can have on society,
they also currently remain mostly at the laboratory stage. These efforts, in fact, rely on lengthy and
ad-hoc design processes that do not yet give predictable outcomes in less controlled environmental
conditions. Overall, poor robustness, lack of reliability, and the current inability to predict the
emergent behavior of many interacting genetic components are hampering progress in the field.

The origins of these problems can to some extent be traced back to molecular biology issues
relating to the way the DNA is assembled, such as relating to the reliability and orthogonality of
genetic parts, and intense research efforts are underway in this direction (see [5], for example). To
a large extent, however, issues of robustness, reliability, and predictability, are due to the complex
dynamic interactions among system components and can be classified as “system-level” problems
that fall well beyond the scope of molecular biology. Comparatively, in these problems, very little
research is being performed [6H]]. The aim of this report is to provide a perspective on future systems
and control research that can help solve a wide range of these system-level problems in synthetic
biology, with the hope to attract more systems and control engineers to the many interesting open
questions in synthetic biology that may have life-changing applications.

After a brief introduction to synthetic biology, we identify a few pressing system-level challenges
that are hampering the development of synthetic biology in Section 3] In particular, the problems of



compositionality, stochasticity and spatial heterogeneity largely limit the scalability and complexity
of synthetic biological systems that we can build today. In Section [} we highlight future research
opportunities that can potentially benefit the characterization, design, verification, implementa-
tion and re-design of synthetic biological systems, which can help this nascent field move forward.
Some problems may involve adopting existing systems and control theoretic tools to entirely new
contexts, while many others require creating novel theories and mathematical frameworks that are
complementary to existing ones.

This report is largely based on the outcome of an AFOSR~funded workshop titled “The Compo-
sitionality Problem in Synthetic Biology: New Directions for Control Theory” held on June 26-27,
2017 at MIT. The workshop was co-organized by D. Del Vecchio, R. M. Murray and E. D. Sontag
and was attended by the participants listed in the acknowledgements at the end of this report.

2 A Glimpse into Synthetic Biology

The ability of all living organisms to sense, communicate, and make decisions relies on a handful of
highly conserved core biological processes such as gene regulation and protein-protein interactions.
These, among many others, are used as functional building blocks in the de-novo creation of genetic
circuits (Figure [1)).

Brief History

The root of synthetic biology can be traced back to the Nobel winning discovery of the lac operon’s
regulation in bacteria E. coli by Jacob and Monod in the early 1960s [9]. The fact that a protein
(called a transcription factor) can bind the promoter region of the gene of another protein to regulate
(i.e., either activate or repress) its rate of synthesis allows us to view the gene expression process as a
dynamical system with input and output (Figure A), with an hope that these input/output (I/0)
systems can be composed together to build more sophisticated functionalities. The advancement of
biotechnology since the late 1960s has enabled time and cost-efficient technological tools to extract,
sequence, amplify, and insert foreign DNA elements into cells [I0]. In the year 2000, the first two
synthetic genetic circuits were constructed: an oscillator [11] and a toggle switch [12]. Although
these circuits were built with the aim to understand natural systems, they clearly demonstrated
our technological capabilities to create de novo functional dynamics through model-based design of
gene regulation. In the early 2000s, a number of small-scale synthetic genetic circuits, or functional
modules, were constructed (Figure B), including various forms of logic gates, cell-cell communi-
cation modules, cascades, feedback loops, and feedforward motifs (see [6H8] for more details). The
successful assembly of biological parts into functional modules triggered the first wave of applications
of synthetic biology, a few noticeable examples include environmental biosensors, ez vivo cell type
classifiers [13], and biofuel production pathways [I] (see more examples in [14} [15]).

In the past decade, research efforts can be roughly categorized as moving along two orthogonal
directions. In one direction, efforts concentrated on discovering, creating, and characterizing new bi-
ological parts and tools (e.g., CRISPR-based regulators [16]). In the other direction, efforts focused
on increasing the complexity of circuits by establishing general approaches to combine available parts
and modules into larger systems [17] (Figure C). This is motivated by the need for sophisticated
circuit functionalities in most emerging applications of synthetic biology such as those in the health
industry. For example, in cancer immunotherapy, T cells need to be engineered to sense, track, and
attack cancer cells while avoiding side effects to normal cells [4]; when using cell-fate reprogramming
to produce insulin-secreting beta cells, the level and timing of transcription factor production must
be tightly controlled [3]; in regenerative medicine, synthetic gene circuits need to accomplish multi-
cellular coordination to form spatial patterns [I8]; and for smart drug delivery, cells producing the
therapeutic protein need to coordinate the timing of their lysis to release drugs periodically [19].

While these applications are exciting, their success today often relies on a lengthy trial-and-
error process. In fact, when parts, modules, and systems are combined together, they work unpre-
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Figure 1: Synthetic biology as the bottom-up/layered design of biological systems. Core
biological processes are encoded in DNA (panel A). These processes can be engineered into functional
modules (panel B). Largely due to context-dependence in biological systems, composing functional
modules together to build complex systems in a single cell (panel C) and/or in multicellular systems
(panel D) is still a challenging task.

dictably [20]. Today, a designer is forced to re-characterize and re-tune the same circuit over and
over again as new components are added to the system, as the host cell changes, as the growing me-
dia is slightly varied, and as temperature changes, to name a few. We analyze in more detail in the
next several sections some of the roots of these problems, taking a systems and control engineering
angle.

The Role of Systems and Control in Synthetic Biology

Systems-level concepts and analogies have permeated the field of synthetic biology since its inter-
ception. The abstraction hierarchy envisioned for the bottom-up design of a synthetic biomolecular
system is constituted of different layers (Figure . This hierarchy starts with the lower abstraction
layer constituted by “parts”, which include DNA sequences corresponding to, for example, promot-
ers, ribosome binding sites, and terminators. At the next layer up, we have “modules”, which are
pictured as I/O dynamical systems resulting from core biological processes, such as gene expression
regulation, RNA-level regulation or protein modification, and (under certain assumptions) math-
ematical models for these processes are readily available [21} 22] (Figure A,B). Next, we have
“systems”, which are obtained as the I/O interconnection of modules assembled in the cell, which is
the circuit chassis [17], 23] (Figure C). These systems could be implemented across multiple cells
to lead to multicellular communities, tissues, and organs (Figure D).

Context-dependence, the fact that behavior of a system changes with its environment (e.g., the
chassis or the systems around it), affects all layers of the ideal abstraction hierarchy in synthetic
biology. The behavior of a core process, such as gene regulation, is affected by direct connectivity to
other processes, by resource competition with other system components, by the specific DNA layout
around the parts that encode the process itself, by interactions with the cellular chassis (i.e., cell
growth), by significant stochasticity in low molecular count regime, by spatial gradients of molecules
and resources within the cell, and by spatial differences on the signaling molecule concentration in
a cell population [0}, [} 20} 24].

For electronic systems, the ability to cope with uncertainty and noise, to maintain modularity



and enforce compositionality are largely based on systems and control conceptions. In fact, feedback
control has been critical to maintaining modularity of systems, providing simplified abstractions of
lower level layer functionalities for higher level layers. This is possible by conveniently describing
any system through a composable I/O relationship, hence allowing to essentially “forget” about the
specifics of a system’s internal physical structure [25]. An example of how feedback design has en-
abled to hide details of dynamics and uncertainty is that of Black’s feedback amplifier (1920s) [26].
The open loop amplifier device was plagued by distortion and fragility to temperature variations,
making it unusable, while the feedback amplifier had an extremely robust and reliable I/O relation-
ship independent of its context. More broadly, managing uncertainty, such as deriving from context,
is a crucial ability in engineered systems. For example, feedback allows high performance in the
presence of uncertainty by comparing actual and desired output values through accurate sensing
(i.e., repeatable performance of amplifiers with 5x component variation). The use of similar design
principles to robustify the behavior of genetic circuits and make it more modular has been consid-
ered in synthetic biology [27], but a unified design framework that makes circuits robust to all major
sources of uncertainty from context is still largely missing.

3 Challenges and Open Questions in Synthetic Biology

Here, we identify and detail three key challenges that are impeding our current ability to perform
robust and predictable design of synthetic biological systems.

3.1 Lack of Modularity and Composability

While modularity and composability are taken for granted and have enabled layered/hierarchical
design in many engineering domains, in biological networks, these are still largely open questions.
The reality is that genetic parts, functional modules, and systems are often influenced by their
context [0, 20 24]. As the complexity of genetic circuits has increased in recent years, various forms
of context-dependence have been unveiled in experiments. Examples include, but are not limited
to, loading effects resulting from direct connectivity [28H30], for which a mathematical analysis
framework was developed [31]]; competition for shared resources, which creates subtle coupling among
otherwise unconnected modules [32 [33]; loading effects on the chassis (cell), which in turn impacts
the functionality of modules and /or leads to mutations [34} [35]; and dependence of a circuit’s function
on the way DNA parts are assembled together [36].

Although a number of biophysical models have been established, they are often restricted to
one or two forms of context-dependence described above, with very limited composability. As a
consequence, no design-oriented model can effectively predict all possible interactions listed above.
In addition, there are a number of interactions that we still cannot predict with sufficient accuracy.
For instance, we cannot effectlively predict how protein-DNA interactions alter DNA structure,
how a given protein-DNA structure impacts gene expression, how supercoiling results from genetic
circuit layout, how DNA-encoded modules will perform due to possible emergence of mechanical
interactions, and how location of a gene on the genome impacts gene expression [20]. Even if one
could simulate the whole engineered cell through available software tools, the information obtained
from these simulations would be hardly usable for design and verification. In fact, a plethora
of experimental data and computational tools are available to characterize some of these effects,
independently, but a design-oriented mathematical framework to describe these effects and their
interactions is missing.

The ever-growing list of context-dependence effects that need to be considered during design leads
us to the fundamental question of how to determine a suitable mathematical framework to describe
composition among parts, functional modules, and systems. Currently, there is no consensus in
the community as to what type of model is sufficiently descriptive to capture important biological
phenomena, yet amenable to a constructive design and verification approach.

Our lack of understanding of modularity and compositionality in natural biological systems has



largely limited our ability to answer the above question. We, as engineers, are inclined to take
a reductionist approach with a hope to fit the description of biological systems within the same
convenient standards that we use for human-made systems. However, compositionality in biology
may differ from the one we observe in engineered systems. Natural biological systems are in fact
extremely robust to parameters fluctuations/uncertainty and external perturbations, such as (un-
fortunately) cancer pathways [37], which are very hard to eradicate. It is therefore important to
learn from these natural systems to achieve similar robustness in engineered systems. For example,
the fact that in biology, the behavior of a component may depend on the system around it may be
exploited as a design “degree of freedom”.

Performing reverse engineering of models from experimental data could provide a way to charac-
terize engineered systems in vivo within their context [38] [39]. However, one significant problem is
the nonunicity of solutions to the inverse problem, which may occur even with very large data sets
and in biology we typically have sparse data [§]. In general, this will make it impossible to determine
the “right” model. Feedback control has been instrumental in enabling layered design, allowing one
to “forget” the specifics of a system’s internal structure and to only focus on its I/O behavior [25].
But this requires the ability to sense, compute, and actuate precisely and accurately appropriate
signals. In biology, on the one hand, we do not have sensors for many biological processes/signals
and the available sensors are not sensitive enough (i.e., difficult to detect low numbers of molecules,
may not be able to measure quickly enough). On the other hand, biomolecular sensors, controllers,
and actuators are themselves often corrupted by disturbances, noise, and uncertainties.

Encapsulation and compartmentalization offer a way to enforce compositionality through pro-
tecting systems from interference. Biology uses this at various scales, including the cell itself, which
could be used to enforce modular construction, so that the correct emergent behavior arises at the
level of the cell population [40H43]. Yet, this concept is still underutilized in synthetic systems. This
is because we don’t know how to leverage the single agents dynamics and heterogeneity to obtain
stable and robust emergent population phenotypes, especially in a situation in which we may have
trillions of single agents (e.g., bacteria) as opposed to just a few as in current engineered systems.

3.2 Emergent Behaviors from Stochasticity

Biological systems are inherently stochastic due to the way in which the composing chemical reactions
take place [22] [44], 45]. For a reaction to occur, molecules need to collide as a result of thermal
noise, leading to a marked probabilistic behavior especially in low-molecule-count conditions [46], [47].
Stochastic effects also manifest themselves in cell populations, where gene expression is subject to
substantial variability across genetically identical cells [48] [49]. Noise propagation can deteriorate
circuit performance or even lead to complete circuit failure [50H53].

To theoretically study gene expression in the presence of intrinsic noise, biomolecular reactions
are often treated as discrete state continuous time Markovian processes and modeled by the chemical
master equations (CME) rather than ODEs [22] [64] [55]. Analytical solutions to CMEs are limited
to a small set of systems often consisting of only one or two species, and finding robust and scalable
approximations for larger systems is still an active area of research [56H58]. Existing approximation
and simulation tools (i.e., stochastic simulation algorithms (SSA)) are often plagued by significant
computational challenges and by our inability to map experimentally measured quantities to model
parameters. Hence, there appear to be a general lack of constructive tools that can be used for
verification and design. To make matters worse, another recurrent challenge is unknown biology
and, in this case, the fact that it is often unknown a priori in which domain the system operates
(i.e., high versus low molecular counts) [59], making it difficult to pick the appropriate modeling
framework (i.e., ODE versus CME) to initiate the design process.

Although the modeling of monolithic stochastic biological systems can be done through the CME
and simulated through stochastic simulation algorithms, most of the research (both experimental
and theoretical) to date focuses primarily on noise characteristics of single gene expression, and
only a very limited number of investigations on noise characteristics have been carried out on the
system level. This is partly due to the fact that (de)composition of a stochastic network into the



interconnection of 1/0 stochastic modules is still largely unexplored. Specifically, the definition of
I/0 stochastic properties for modular design is generally lacking. Previous concepts of noise-to-state
stability (reminiscent of the concept of input-to-state stability for nonlinear systems [60]) could be
leveraged, in which the covariance of the noise appears as the “input” to the system [6I} [62]. A
theory for cascaded such systems has been initiated years ago, but more general interconnections
have not been studied before.

In small scale circuits, feedback control has been demonstrated to be instrumental to attenuate
noise [63H66]. However, the controllers, being implemented by chemical reactions, are often corrupted
by noise. Specifically, the reliability of the controller performance in the low molecule count regime
remains a significant challenge [67]. This is largely different from engineered systems, in which the
“feedback” path in any controller is typically close to noise-free and highly precise/reliable.

While noise is typically regarded as a negative in engineered systems, biological systems often
exploit noise and cell-cell heterogeneity in order to achieve a robust emergent phenotype [68] [69].
Examples include cell fate decisions, such as the lysis-lysogenic switch in phage lambda [70], or the
process of cellular differentiation [62], which is extremely robust and reliable despite remarkable gene
expression differences across cells. By contrast, noise is still underutilized in synthetic biology.

3.3 Interactions between Spatially Distributed Dynamics

Within a single cell, core processes tend to spatially localize in specific regions. For example, in
bacterial cells, the DNA plasmids where genetic circuits are assembled tend to localize at the poles
of the cell, the chromosome localizes at the center of the cell, and the ribosomes localize in ribosome-
rich regions [71]. Similarly, in eukaryotic cells, the process of transeription occurs within the nucleus,
while the process of translation takes place outside the nucleus in the cytosol [T2]. In the first case,
different expression of the same gene may occur depending on whether it is on the plasmid or on
the chromosome, an example of how context-dependence may arise due to spatial dynamics. In
the second case, the resulting “compartmentalization” may lead to a simpler sequential transcrip-
tion/translation process, leading to, for example, less severe consequences of resource competition
than what happens in bacteria.

Spatial heterogeneity also underlies many biological phenomena that are spatially distributed
across different cells [73]. Examples includes cross-feeding among different bacterial species, which
can lead to more stable and resilient communities in the presence of resource limitations [74], and
morphogen gradients in early organism development that help differentiate stem cells into different
cell types [75]. Therefore, whether we are designing circuits within a cell or are concerned about
the emergent behavior of cell populations, spatial dynamics are important. However, depending on
the specific design goal, small length-scale (e.g., intracellular) spatial information may not be as
relevant /critical as longer length-scales (e.g., colonies, biofilms, tissues, and organs).

In general, current tools that consider spatial dynamics particularly for low copy number
molecules are still crude. Discretization is a common way to analyze spatial dynamics. Often times,
one discretizes neighboring interactions using voxel models or graph models [76]. Unfortunately,
this can often lead to model artifacts that are not confirmed experimentally. Capturing spatial
gradients is important and discretized models may miss these effects. The current computational
burden of simulating models that include spatial dynamics is enormous; moreover, simulation tools
are mostly unsuitable for design and verification. More generally, the theory to analyze reaction-
diffusion PDEs is largely lacking. With this respect, a modeling framework that allows the analysis
of interconnected systems of PDEs would be highly valuable [77} [7§]. In particular, it is a challenge
to connect ODE and/or CME models with PDE models in a meaningful way. In fact, agent-based
simulations are not constructive and research on “spatially distributed” chemical master equations
is still on-going [76] [79], [80]. These models would need to give rise to computable solutions and
properties that can be efficiently used for verification and design, as opposed to simulation. Sim-
ilarly, spatial context-dependence has hardly been explored. For example, cell signaling can lead
to changes in cell morphology (e.g. movement/growth/division) which, in turn, affects the spatial
domain in which the reactions take place.



Table 1: Potential systems and control research opportunities in synthetic biology

SYSTEM CHARACTERIZATION \ SYSTEM DESIGN/CONTROL

feedback control for robustness
find realization of existing algorithms
learn alternatives from nature
cope with uncertainty and noise in controllers
context-aware control design

new system ID techniques
accustomed to biological models,
inputs, and data acquisition
identification for stochastic/PDE models

novel system descriptions
I/0 description of stochastic/PDE systems
composition of stochastic/PDE systems
mixed stochastic/PDE I/O systems
set-based I/0O systems

system level considerations
search for robust circuit architectures
exploit redundancy and compartmentalization
account for mutation and biosafety

new design paradigms
evolutionary/evolutionary+modular design
bioinspired design
more accurate, responsive, and standardized measurement
exploit time scale separation
population-level characterization, design, and control

compositional modeling framework
account for uncertainty and context

Engineering sufficient and efficient channels for transferring/controlling information flow from
one cell to another is also still a largely open field of research. In fact, a particular grand challenge
application is the design of the circuitry within each individual cell so that the community reaches a
community-wide goal, an idea similar to cooperative control. Since communication among different
cells relies on each individual cell producing diffusible small molecules, the challenge is to maintain
a stable population of each cell type in order to coordinate reliable signal communication [§1].
In particular, how to especially obtain robustness of the community emergent behavior, despite
each agent (bacterium) being highly susceptible to perturbations (e.g. resource fluctuations) is
an open question. Furthermore, cell-to-cell contact leads to mechanical interconnections, which
necessitate hybrid (mechanical/biochemical) models. Hybrid mechanical-biochemical models that
are computationally tractable and can educate design are still largely lacking.

4 Systems and Control Research Opportunities

In this section we highlight some potential research opportunities for the systems and control field,
which stem from the challenges so far described. We hope that addressing these research questions
will both advance synthetic biology and demonstrate the impact of systems and control tools in
a yet largely unexplored application domain. Some highlights of these research opportunities are
summarized in Table [I

4.1 System Identification

The lack of appropriate system identification techniques is a key obstacle to solve many issues in
synthetic biology, from context-dependence, to stochastic effects, to spatial effects. In order to
carry out model-based design, there is a pressing need to establish accustomed system identification
procedures for deterministic, stochastic and spatially distributed biomolecular models. A major
hurdle is the fact that current technology only allows us to measure a few (often noisy) outputs
(e.g., fluorescence) of a nonlinear dynamical process, where linearization is not an option, with
limited time resolution. As a consequence, identifiability becomes a major issue: it is common to
have multiple sets of parameters that all fit the experimental data equally well (see [§] for a technical
review).



We therefore need to develop new system identification techniques that can (i) educate optimal
placement of a small number of sensors, compatible with physical and technological constraints, (ii)
provide rational selection criteria for candidate biological models, and (iii) exploit stochasticity in
the model and the measurements, working synergistically with existing stochastic computational
tools. For example, one opportunity is that stochasticity may provide persistency of excitation and
may lead to further restrict the set of possible models. In addition, it is important to put context-
dependence into picture to develop experimental practices that minimize contextual effects from
measurements (e.g., retroactivity). Finally, we currently have a limited capability to identify the
dynamics of spatially distributed biological systems.

4.2 Compositional Modeling Frameworks

A compositional modeling framework is critical to untangle complexity associated with design and
verification problems. Design/verification of a system in a monolithic fashion is a combinatorial
problem; in particular, for system design, lack of compositionality leads to a need for re-tuning the
behavior of each component once a new module is added to the system. To establish a compositional
modeling framework, it is important to correctly capture the boundary of a module, its I/O interfaces,
and its context. With respect to the context, one could think of restricting the dynamics of a module
to a different set of possibilities depending on the biological context so to account for the unknowns
that are associated with it.

Differential inclusion models may be a possible framework to capture all the uncertainty that we
have about such systems [82]. However, it is often the case that we do not even know how many
states we have. Developing constructive observability and controllability tools for such models would
be helpful to determine what can be designed/verified with the given level of uncertainty that we
have to cope with. Another open question is whether differential inclusion models are useful for
producing constructive tools for design and verification. In addition, time-scale separation is key in
all these processes and could be leveraged for analysis and design and also to simplify the models or
to help define the layers of abstraction [83].

One could consider hierarchical networks of dynamical systems, in which the links between nodes
obey “contracts”, which can be framed in logical (AND/OR) or modal (“before”) properties of inputs
and outputs, and use ideas from contract-based design [84]. The contracts can be composed according
to the interconnection scheme of the components or reverse-engineered through interrogation and
observation. For example, within a Markov decision process framework, it is possible to learn
the cost functions of individual agents that collectively reach a steady state. Specifically, the cost
functions used by metabolic systems can be inferred from data about metabolite fluxes [85]. It is
less clear, however, how such approaches could be used for other kinds of cellular processes in which
information, rather than matter, is being processed.

We may need to create new mathematical systems descriptions along with the compositional rules
for /O systems, accounting for how nature has composed systems through the course of evolution,
perhaps reasoning about I/O sets. The context needs to be accounted for as a mechanism to reduce
uncertainty when more information from experimentalists is available. This framework should be
constructive, that is, it should enable explicit design and verification procedures. The notion of weak
requlatory linkage [86], which enables variation and selection in the course of evolution, may provide
a new way of describing composition in engineered biological systems. These linkages reconfigure
the interfaces between conserved core processes as opposed to enforcing agreed interfaces between
varied components. However, no existing mathematical framework exists that captures this notion
rigorously, especially because establishing such framework would require cross-fertilization between
different communities, i.e., biologists who provide plenty of domain knowledge about the context
and engineers who can create such design-oriented frameworks.

Additional traditional approaches that could be considered include computer science approaches
to analyze multi-agent and distributed systems [87], the concept of reconfiguration (allow a system
to re-wire itself under stress) [88], and stochastic safety verification tools [89], but these tools may
not be constructive without leveraging domain-specific structure. Boolean networks capture the



ON/OFF of gene expression and provide a coarse model that is appropriate when a lot of the
knowledge is missing [90} [O1].

4.3 Stochastic and Spatially Distributed Systems

While there remains a strong need to improve analytical understanding and computational efficiency
of standard stochastic models (in particular, CME and SSA), these standard tools can be expanded
by a number of existing theoretical/computational tools developed in other engineering contexts,
which may decrease model complexity and increase computational efficiency in certain situations.
These include stochastic hybrid systems [92], interval-based methods (i.e., interval arithmetic) to
capture uncertainty, especially in the parameters [93]; viability theory, leading to set-based ap-
proaches to verification and design [82]; and queuing theory [94]. However, an underlying challenge
in these existing approaches is that explicit computation, which is often critical for design, is not pos-
sible. Hence, there appear to be a general lack of constructive tools that can be used for verification
and design.

Mathematical frameworks for I/O composition of stochastic system descriptions is an interest-
ing and challenging research avenue, which may require the development of new representations of
systems and new rules of composition. New theory will need to be developed for producing con-
structive/compositional approaches to verification and design. Existing tools such as noise-to-state
stability [61, [62] may be adopted towards this goal. However, this would first require a deeper
understanding of the stochastic properties of biological systems, especially in the low molecular
count regime. This understanding will also allow us to determine fundamental limitations that are
likely to exist in the design of closed loop architectures, thus uncovering potential tradeoffs between
stochasticity and sharp control.

A similar I/O compositional framework of PDE models along with constructive design and veri-
fication tools would be helpful to account for many of the spatial effects that today we cannot yet
handle in design and verification [78], [95]. To this end, there is a need to establish input-to-state
stability notions in PDE models in order to analyze robustness to disturbances (mechanical, thermal,
chemical, biological), uncertain parameters, and unmodeled dynamics. Furthermore, a constructive
and compositional mathematical framework that provides mized CME/PDE descriptions is highly
desirable to capture both effects efficiently and simultaneously.

4.4 Feedback Controller Design for Robustness and Modularity

Context-dependence and general lack of robustness of engineered biological circuits remain a major
motivation for feedback control design in synthetic biology (see [6H8] for a more technical review).
Robustness to perturbations (i.e., noise, parameter uncertainty, and environmental changes) is a
remarkable property of virtually all living systems, yet current synthetic biology circuits are highly
fragile to perturbations, poorly reliable, and often result in unpredictable behavior. Feedback control
has been instrumental in achieving robustness and reliability since the onset of electrical circuit
design.

However, feedback design in biomolecular systems faces a number of difficulties unique to biology,
most noticeably: (1) there is often no clear and established realization of existing control algorithms
through available biomolecular reactions and (2) like the process that needs to be controlled, the
feedback path is often equally plagued by disturbance, uncertainty and noise, and there is a lack of
fundamental understanding on how these deteriorate control performance. Therefore, it is unclear
whether mapping our classical closed loop feedback diagram [25] directly to biological circuits is the
most appropriate approach to take to handle robustness problems.

While it is definitely tempting to mimic classical engineering designs, the field of synthetic biology
may be held back by pushing too far the analogy with existing engineered systems. Although recent
studies have developed a small set of biomolecular tools to mimic essential mathematics operations
used in classical feedback control, such as signal subtraction and integration [67), [96HI§], it is possible
that natural systems perform feedback in a more efficient way that is different from what we are used



to think. In addition to the lack of basic modules required for signal measurement and computation,
control design in synthetic biology is further complicated by much larger parametric uncertainty
(more than 10x) and noise than typically experienced in traditional engineering applications.

Strategies that relax the requirement for a precise feedback path in a closed loop design would be
highly valuable since every path is subject to large parametric uncertainty and noise. More generally,
a mathematical framework to achieve a robust emergent behavior by appropriately connecting highly
uncertain components would be highly valuable. Components are subject to 10-100x variation and
elaborate circuit design strategies to obtain a sharp emergent behavior are needed. Addressing
these robustness questions may also require to move beyond traditional core processes in synthetic
biology, such as gene expression and gene regulation, and move to other types of processes, such as
protein-protein interactions and CRISPR/Cas-based systems. These biological tools are currently
underutilized, yet they may allow faster responses and an easier tuning procedure. However, how to
perform circuit design using these core precesses to achieve a desired functionality remains a largely
unexplored research avenue.

Finally, biomolecular controllers, just like the process they are aimed to control, are context-
dependent. Therefore, controller design must be carried out with the additional constraint that it
should not, for example, impose heavy burden on the host cell and/or incur unexpected interactions
when connected with the plant. On the one hand, this requires control engineers to be very familiar
with the (context-dependent) characteristics of the available biological tools. For example, two
genetic circuits realizing the same ODE model may result in completely different resource demands.
On the other hand, context-aware control design principles still needs to be explored.

4.5 System-Level Considerations for Robustness

A different approach to increase circuits’ robustness to uncertainty is to search for circuit architec-
tures that are better suited to handle poor characterization and thus result in a robust emergent
system behavior despite highly uncertain components [99]. On the one hand, systems and control
theory can help identify subsystem properties and interconnection rules required to maintain robust
system-level behaviors [I00]. On the other hand, a bio-inspired approach, where we learn from
biology how notions of modularity are used, how composition and wiring is performed, and how
robustness is achieved may be promising.

Exploiting redundancy and crosstalk in the design of circuits may be an additional approach to
reach robustness and resiliency. These are aspects of natural systems, in which multiple paths exists
to transmit the same signal and signaling pathways often share components [101], which lead to
significant cross-talk (lack of modularity). This may be a mechanism for robustness that engineered
systems could also exploit. In this sense, less modularity may lead to increased robustness.

Encapsulation and compartmentalization offer a way to enforce compositionality through pro-
tecting systems from interference. In this respect, cells themselves could be used to enforce modular
and robust construction, so that the correct emergent behavior arises at the level of the cell pop-
ulation without the need to worry about context-dependence at the single cell level. While this
idea of “distributed computation” has been realized by synthetically producing small molecules that
can diffuse through cell membranes [40H42], theoretical studies are largely missing. This results in
limited system-level guidance available for implementation and therefore in solutions that are not
generalizable beyond the specific experimental systems and conditions considered. Cell-cell variabil-
ity, spatial heterogeneity, communication (diffusion) delay, the large number of agents (billions to
trillions), and most importantly, the need to create stable cell populations are major hurdles where
control engineers could substantially contribute.

The problem of mutations is unique to engineering biology. Mutations are the result of selective
pressure against the mutated components and could be theoretically captured by formulating a
cost function that the cell is trying to optimize. Investigation of design approaches to make an
engineered cell population robust to mutations could be very valuable. Specifically, some genetic
circuit architectures are more robust to mutations than others because they evaluate to a better
cost. How to determine such architectures is an interesting and challenging research question that
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will most of all require a deeply intertwined theoretical (e.g., from optimal control and learning
systems) and experimental approach.

Finally, biosafety is especially critical to move lab designs into real-world applications [102].
There is a need to learn from safety-critical system design and verification practices in traditional
engineering systems and adopt them to the biological context.

4.6 New Circuit Design Paradigms

Model-based design may not be the only approach for biological systems. In fact, we can perform
combinatorial search through a large set of circuit architectures with high-throughput experiments
where the appropriate selective pressure is applied to cells. Directed evolution [103, [104] is an
example of how this can be performed and is very effective for design space exploration. Engineering
methods that synergistically combine modular/layered design approaches with evolutionary design
techniques could be particularly promising and may lead to design/verification methodologies that
are constructive and also in-line with how nature designs its systems. This may require establishing
a new research direction, for example in optimal control, in which the cost function is implemented
through a selective pressure applied to the engineered cells so that they reconfigure themselves,
leading to the optimal desired design.

With this respect, an interesting research approach could be to merge model-based design tech-
niques, which require a reasonable characterization of the physical process, with machine learning-
based design techniques, which are mostly data-driven. Specifically, system identification and sensing
techniques may be developed to better characterize biological systems used in synthetic biology, and
machine learning techniques along with domain-specific knowledge may be used to reduce the un-
certainty on the context.

4.7 Population-Level Design

Population-based computation, in which cells compute and coordinate among each other to obtain
an emergent ecosystem is highly desirable for many applications of synthetic biology, from pro-
grammable probiotics to regenerative medicine [73]. However, while co-existence of cell communities
is ubiquitous in natural systems, engineering such an eco-system where multiple cell populations
stably co-exist in an equilibrium that is robust to extraneous species is a formidable challenge [105-
109]. Attractors exist for these systems that are far more complicated than simple equilibria. The
whole population may be “stable” according to some relaxed notion of stability, but each of the
composing cells may not be and may, instead, dynamically changing its state under the laws of
physics or simply due to noise. This could be a mechanism for resilience such that the whole sys-
tem equilibrium is robust to external interference but its composing agents are highly susceptible
to perturbation and continuously evolving. This begs the question of what mathematics may be
appropriate to describe and analyze such systems. These communities have trillions of cells (i.e., in
our guts we have about 100 trillion bacteria), therefore a multi-agent approach to the problem will
likely be inapplicable. Perhaps a PDE-based approach may be more promising, but current PDE
tools are most likely insufficient to describe and analyze the important properties of these systems.
New formalisms and analysis/design tools are most likely needed to reason about these questions.

The theoretical foundations to perform “cooperative control” of trillion agents to obtain resilient
behavior at the population level is an intriguing research direction. Each agent may implement a
different component of a circuit so that the circuit becomes distributed across a number of different
cellular communities [40H42], allowing to defeat several sources of context-dependence at the single
cell level (e.g. resource limitation). This requires new compositional/descriptive frameworks that
allow for efficient verification and design, despite the large size of the systems considered and a
significant amount of communication delay due to slow molecular diffusion.
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4.8 Exploiting Time Scale Separation

Time scale separation is a ubiquitous property of biological processes. Different core processes
occur on very different time scales, ranging from subseconds for protein-DNA or protein-protein
interactions, to minutes for enzymatic reactions, to hours for gene expression, to days for cell fate
decisions, to weeks for tissue formation [2I]. The dynamics at the different layers of the design
abstraction hierarchy of synthetic biology also occur at well separated time scales, with dynamics
of subseconds to seconds for DNA conformation changes to dynamics of days for cell population
dynamics. Stochastic processes are also widely distributed on the temporal axis, especially depending
on the regime (low versus high molecular counts), with molecular interactions occurring in the
subsecond time scale and average noise affecting gene expression in the high-molecular counts in
minutes to hours time scale. Finally, spatial dynamics are characterized by time scale separation
as well, with diffusion of mRNA molecules within the cell occurring much faster than that of larger
molecules (e.g., ribosomes). Spatial dynamics also occur on different length-scales, from sub-micron
length for diffusion of molecules within bacteria, to tens of microns for diffusion of molecules in
mammalian cells, to hundreds of microns for diffusion of molecules among cells in a population.
On the one hand, system identification, analysis and simulation are challenged by such a wide
scale at which the phenomena of interest occur. How to remove dynamics that are tangential
to the system of interest to simplify analysis and design remains an open question, especially for
stochastic and spatially distributed systems [I10,[ITI]. On the other hand, time scale separation may
enable simplifying models and also reaching some level of “insulation” between processes that occur
at different time scales. This property has been exploited to obtain modular synthetic systems
(e.g., mitigate retroactivity [27, [112]) and to facilitate control design (e.g., approximate integral
control [98]). More research in this direction should be explored to support synthetic biology design.

4.9 Instrumentation and Standardization

A fundamental issue impeding our ability to carry out high fidelity system identification and control
design is the lack of accurate and reliable sensors that could enable better characterization of pro-
cesses, parts, and interactions (i.e., stochastic, spatial, structural/mechanical). Unfortunately, we
do not have a sufficient number of accurate sensors to monitor conformational DNA interactions,
single molecules within a cell, cell growth, and stochastic fluctuations that may occur at faster time
scales. Creation of more sensitive and responsive biosensors with minimal context-dependence (e.g.,
retroactivity and resource demand), as well as lab measurement techniques for single cell dynamics
will be beneficial in this respect. Furthermore, there is still no agreement in the community on
the standard units that should be used to measure biological signals, and therefore quantitative
measurements are often lab-dependent and host/environment-dependent [I13], preventing better
cross-fertilization among different labs. Similarly, a high fidelity mapping from experimental mea-
surement to parameters in stochastic/spatial models is still largely absent.

4.10 Simulation and Cell-Free Test-Beds

For most of the biological phenomena discussed, mechanistic simulation tools exist. For example,
these include whole cell simulation models for bacterial cells, which incorporate cellular context [114];
the stochastic simulation algorithm to capture noise effects at all molecular counts [I15]; agent-
based simulation tools that can account for spatial and cell-cell dynamics [I16]; and molecular
simulation algorithms that account for forces and mechanical interactions involving DNAs [I17].
However, existing mechanistic simulation tools are often not suitable for design and verification since
they simulate the system as a monolithic entity and do not allow composition of simpler systems
to create/verify the final system of interest. Therefore, a design/verification problem remains a
combinatorial problem. Furthermore, simulation depends on the specific choice of parameters, thus
providing little insight for design and verification, where closed-form analytical expressions, even if
approximate, are much more useful.
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Cell-free systems could be a promising middle ground to test design ideas and even a potential
medium to implement circuits in case these do not need a living cell [IT§]. Cell-free systems provide
a means for “running” a circuit of interest without being susceptible to any unknown interaction
with the host cell [I19, 120]. However, there are still problems of standardization of cell extracts for
meaningful quantitative analysis and comparison with in vivo circuits [I19-H122], in addition to the
issue of resource depletion, which substantially shortens the life span of the circuit of interest.

5 Summary and Outlook

In this paper, we articulated a number of potential research opportunities for systems and control
motivated from pressing problems in synthetic biology. These opportunities entail new theory that
can have unprecedented impact by enabling ground-breaking applications of synthetic biology to
health, energy, and environment. While the field of synthetic biology started with model-based
design [11] [12], the field has progressively moved away from theory-based design. Modeling and
analysis should be a precursor as opposed to an after-thought to the experiments, yet this is rarely
the case nowadays as theory is lagging behind the quick progress in molecular biology and genetic
engineering.

The contribution from the systems and control community to synthetic biology is conditioned
on reaching out to experimentalists and opening a conversation that will provide control theorists
the appropriate domain-specific knowledge to tackle relevant engineering problems. For example,
the ability of designing dynamics has largely relied on systems and control theory, where a plant of
interest that is intrinsically unstable (i.e., highly agile aircrafts) or underperforming can be made
stable and robust to perturbations by suitable “closed loop” design. This ability is highly needed
in synthetic biology, but the control theorist will have to learn how to go from design of a closed
loop system on paper to concrete biological parts and to their reliable interconnection. A strong
synergy is therefore required between control theorists and synthetic biologists for these research
opportunities to unfold.
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