Experimental Testing of Semi-autonomous Multi-vehicle Control for
Collision Avoidance at Intersections

Heejin Ahn', Andrea Rizzi?, Alessandro Colombo?, and Domitilla Del Vecchio®

Abstract—This paper describes the implementation of a
multi-vehicle supervisor to prevent collisions at intersections.
The experiments are performed on an intersection testbed
consisting of three RC cars. Here, we account for uncertainty
in car dynamics and state measurement, and the presence of
an uncontrolled car, which is human-driven. The supervisor
overrides the controlled cars only when necessary to avoid a
possible future collision. From the experiments, we demonstrate
that intersection collisions are averted, that is, the cars contin-
uously and safely run on the paths without stopping 92.8% of
times.

I. INTRODUCTION

According to the National Highway Traffic Safety Admin-
istration (NHTSA), 33,561 people were killed, and 2,362,000
people were injured in road crashes reported in 2012 in the
United States. In particular, 27% of the fatalities and 51%
of the injuries occurred in crashes at or near intersections
[1]. This indicates that one important challenge to traffic
safety is to prevent intersection collisions. To reduce the
number of road crashes, the government and consortia of
automotive companies have been developing a connected
vehicle environment [2], [3], [4].

By exploiting the connected vehicle environment, char-
acterized by vehicle-to-vehicle and vehicle-to-infrastructure
communication, many researches have suggested the design
of controllers to maintain road safety. A global coordination
scheme of fully autonomous vehicles was introduced in a
model predictive control framework [5], [6] and utilizing
time-slot assignment [7]. In more practical scenarios, where
full autonomy is not an option, a controller should con-
tinuously verify the safety of the system until override is
necessary. In order to verify safety, a path-planning approach
has been used [8], [9], [10], which computes the possible
paths of a vehicle and checks whether the paths collide
with an obstacle or another vehicle. Since this approach
is mostly concerned with full vehicle dynamics, it has
computational difficulties in dealing with collisions that
involve a large number of vehicles, such as intersection
collisions. To address this problem of scalability, scheduling

This work was in part supported by NSF Award #1239182.

1Heejin Ahn and Domitilla Del Vecchio are with the Depart-
ment of Mechanical Engineering, Massachusetts Institute of Technol-
ogy, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Email:
hjahn@mit.edu and ddv@mit .edu

2Andrea Rizzi is with the Department of Biological Statistics and
Computational Biology, Cornell University, 1198 Comstock Hall, Ithaca,
NY 14853, USA. Email: ar963@cornell.edu

3 Alessandro Colombo is with the Dipartimento di Elettronica Infor-
mazione e Bioingegneria, Politecnico di Milano, via Ponzio 34/5, 20133,
Milano, Italy. Email: alessandro.colombo@polimi.it

has been studied using only the longitudinal dynamics of
vehicles [11], [12], [13]. Supervisory control theory based on
discrete event systems [14], [15] has also been used, where
system abstractions are exploited to simplify the verification
of safety [16], [17]. However, those results required heavy
computation and were applicable only to first-order dynamics
of vehicles.

In this paper, we consider a semi-autonomous controller,
called a supervisor, that employs a scheduling approach to
maintain intersection safety. When a possible future collision
is detected, the supervisor overrides cars to guarantee safety
regardless of uncertainty in the dynamic model of the cars
and state measurement. This supervisor is validated through
experiments performed on an intersection testbed composed
of three RC cars. One of the cars is human-driven and “un-
controlled” by the supervisor. The other cars are controlled
by on-board computers, which drive them at a constant
speed, until the supervisor intervenes to avoid collisions. This
work extends the studies of [18] and [19], where a collision
avoidance algorithm that is applicable only to two cars at
the time was tested. Also, this work merges the designs of
the supervisors of [12] where the presence of uncontrolled
vehicles was considered, and of [13] where modeling and
measurement uncertainty was considered. For the first time,
those results are tested in an experimental setting.

This paper is structured as follows. In Section II, we
describe an intersection testbed and the dynamic model of
RC cars. Then, the design of a supervisor is illustrated
in Section III, where three functions that constitute the
supervisor are introduced. In Section IV, experimental setups
and results are described. Then, Section V concludes the
paper with suggestions on future work.

II. SYSTEM MODEL
A. An intersection testbed

We consider the intersection testbed in Figure 1 consisting
of three RC cars. Each car runs on a different prescribed path.
The paths intersect at one conflict point, and the area around
the conflict point is an intersection, which is represented
by the shaded area in Figure la. If at least two cars are
inside the intersection at the same time, we consider that a
collision occurs. The objective of the supervisor is to make
the cars cross the intersection without any collisions without
ever stopping, while intervening only when necessary.

The supervisor overrides the controlled cars only when it
detects possible future collisions. Otherwise, the controlled
cars are programmed to maintain a constant motor input,
called a desired input. In the experiments, car 1 and car 2
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Fig. 1: (a) Three prescribed paths on which three RC cars
run. The paths are defined as a sequence of points in the
global coordinates with an origin O. The shaded area in the
middle is the intersection, represented on each path by an
interval (e, 8;) for ¢ = {1,2,3}. The small black circles
represent two controlled cars while the small grey circle
represents the uncontrolled car. (b) The intersection testbed.
The orange lines on the ground correspond to the prescribed
paths in (a).

are controllable by the supervisor, while car 3 is driven by
a human and not controllable by the supervisor.

B. Dynamic model of a RC car

The cars are programmed to adjust steering to follow
the specified path [18]. To prevent collisions, we consider
only the longitudinal dynamics of the car along its path. To
describe the longitudinal dynamics of car ¢, we introduce the
state x; = (y;,v;) where y; and v; are position and speed
along the path, respectively. Let u; denote the input to the car.
With model uncertainties dy ; and d, ;, the dynamic model
can be written as follows:

Ui = v +dy,

. (1)
U = a;iv; + by + fiui + du,

where a; and b; are model parameters, and f; is a motor
gain [20]. Here, we assume g(t) > O for all ¢ so that
the cars do not reverse or stop. Since f; > 0, the model
has the following monotonicity property. If u; < w, then
yi(t,ui,di,xi(O)) < yi(t,ug,di,xi(O)) for all ¢ > 0 where
yi(t, us, d;, x;(0)) is the output at time ¢ starting from an
initial condition x;(0) with an input u; and disturbance
di := (dy,i,dy ;). Similarly, if dy,; < d, ; and d,; < d ;,
then yi(t,ui,di7xi(0)) < yi(t,ui,d'i,xi(())) for all ¢t > 0. If
2:(0) < 2(0), then yi(t, s, di, 7:(0)) < yi(t, i, i, 7,(0))
for all ¢ > 0. The state x;(t,u;, d;, z;(0)) also follows the
same notation and satisfies the same monotonicity property.
The aggregate state is denoted by x := (1, z2,23) and the
aggregate output is y := (y1,¥2,¥3) € Y C R? where Y is
the output space.

In addition, we assume that speed is bounded, that is,
Vi € [Vimin, Vi,mag)- The input signal w; is also bounded,
that is, u;(t) € U; := [ min, Uimas| for all ¢. Similarly,
the disturbance signal d; is bounded, that is, d,;(t) €
[dy,i,minvdy,i,maw] and dv,i(t) € [dv,i,minadv,i,max] for all
t.

The state measurement is subject to measurement un-
certainty 9; := (dy,0,,). That is, the state measurement
Tim,i = (Ym,i, Um,i) is as follows:

Ym,i = Yi + Oy i, Um,i = Vi + Ou i,

where y,,, is the position measurement and v,,; is the
speed measurement. The measurement uncertainty ¢; is
bounded, that is, 0; € [0imin,0imaz)s Where O; min =
(6y,i,mina6v,i,min) and 5i,maz = (6y,i,mam75v,i,mam)~ In
Section IV-B, we will show several factors that contribute
to the uncertainties.

III. SUPERVISOR DESIGN

The supervisor is executed in discrete time 7 and has the
high level structure shown in Figure 2. Each function of the
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Fig. 2: The structure of a supervisor. At step k, the supervisor
receives a state measurement X, = (Tm.1,Tm.2,Tm.3)
and a desired input a(kt) := (ay(kT),a2(k7)) from the
controlled cars. These are used to compute a one step ahead
state prediction X**!(a(k7)). Then, the verification function
determines whether there exists a safe input signal for this
state prediction to avoid future collisions. If the answer is
“yes” with a schedule (7}, 7T%), a safe input signal u*** is
generated and stored for possible use at the following step,
and the supervisor does not override the cars. Otherwise, the
supervisor overrides the controlled cars using the safe input
u”®, which was computed and stored at the previous step.

supervisor is introduced in Section III-A, III-B, III-C, and the
formal integration of these functions is provided in Section
1I-D.

A. State estimation

The state estimation is updated through a prediction-
correction scheme as follows. Suppose that at ¢ = (k — 1)7
the state x;(t) of car ¢ is known to be in the interval
[2¢((k—1)7), 28 ((k—1)7)]. Also, suppose that an input u; (t)
is applied for ¢ € [(k — 1)7, k7). Then, the state prediction
at time k7 is a set XF(u;) C R? that is in the form of an
interval XF(u;) = [min(XF(u;)), max(XF(u;))] with the
following lower and upper bounds, for i € {1, 2},

min(Xik (u,)) =X (7'7 Wiy di mins m?(k7)>7

maX(Xik (w;)) = (T, Wi, di mag, 33?(]”))

2



The same definitions hold for the uncontrolled car 3, except
that the input can take any values between u3 ., and

U3, max-

min(X5(+)) = 23(7, u3,min, ds,min, T4 (kT)),

max(X5 () 1= 23(7, U3 mazs d3,maa, 25 (kT)).

3)

At t = k7, this state prediction is corrected using the
measurement z,, ;(k7) for all ¢ € {1,2,3}. The resulting
state estimation at time k7 is a set with lower and upper
bounds as follows:

xf (k1) = max(zp, i (kT) + 0i min, min(Xf(ui))),

b . & €]
x (k1) = min(xm, ;(k7) + 6; max, max(X; (u;))).

Ifk =0,let ZL'?(O) = Tm,i (O)+5zm1n and If(O) = $m71(0)+
8i.maz- The aggregate state prediction X*+1(a(kt)) C RS
with a desired input a(k7) is used in the verification function
(Figure 2).

B. Verification of safety

Let (v, 5;) denote the intersection on the path of car i as
shown in Figure 1a. The output configurations corresponding
to collision is called Bad set B C Y. The Bad set is
defined as B := {y € Y : y; € (a;,3)andy; €
(cvj, B;) for some i # j € {1,2,3}}.

Let x(0) € [x%(0),x°(0)]. Then, the verification problem
is as follows:

Problem 1: Given a set of initial conditions
[x%(0),x%(0)], determine if there exists an input
signal u that guarantees y(¢,u,d,x(0)) ¢ B for all

x(0) € [x?(0),x"(0)], for all d, for all ¢t > 0.

To address Problem 1, we employ an equivalent Inserted
Idle-time Scheduling problem, which is formulated and
solved in [12]. In this problem, one has to determine whether
the intersection can be crossed by at most one car at the time.
In this paper, we redefine scheduling variables to account for
uncertainty, which were not considered in [12].

Definition 1: Given a set of initial conditions
[x%(0),x%(0)], release times R;, deadlines D;, and
process times P;(7;) are defined as follows. For i € {1, 2},

R; = {t >0: yi(ta Ui, mazx, di,mawax?(o)) = Oéi},

Di = {t Z 0: yi(taui,minadi,maza1’?(0)) - ai}~
Given a real non-negative number 77,

Pi(Tl) = m1{{1 {t Z 0: yl(t,ul,diﬁmm,mf(())) = ﬁz
u, €U;
with constraint y; (75, ui, di maz, xf(O)) =}

If y?(0) > B;, then set R; = 0,D; = 0, and P;(T;) = 0.
If yi)(O) > a4, then R, = 0,D; = 0, and PZ(Tl) = {t :
Yi (Wi mazws di.min, ©3(0)) = B;}. If the constraint is not
satisfied, set P;(7;) = oo. For the uncontrolled car 3, idle-
time (Rs, P3) is defined as follows.

RS = {t >0: yS(tvu?),mazv d3,mama$g(0)) = a3}7
Py = {t >0: y3(tau3,min; d3,7rzin7xg(0)) = BB}

If y$(0) > B3, set R3 = 0 and P3 = 0. If 5(0) > as, set
R3 =0.

In this definition, the release time R; and the deadline D;
are the soonest and the latest times at which a controlled
car ¢ can enter the intersection for any d; for any z;(0) €
[22(0),22(0)], respectively. Provided that a controlled car
i enters the intersection no earlier than 7;, the process
time P;(7T;) is the soonest time at which the car can exit
the intersection. The idle-time is the time at which the
uncontrolled car 3 is possibly inside the intersection for
some ug, d3, and x3(0) € [24(0), 24(0)]. The Inserted Idle-
Time Scheduling problem with uncertainty is formulated as
follows.

Problem 2: Given a set of initial conditions
[x?(0),x"(0)], determine whether there exists a schedule
T = (T1,T») € R2 such that for all i € {1,2},

R; <T; < Dy, )
(T1, PL(T1)) N (T, P2 (T2)) = 0, (6)
(T;, P;(T3)) N (Rs, Ps) = 0. (7

In this problem, the schedule T; represents the time at
which car ¢ enters the intersection for some wu;,d; and
7;(0) € [#2(0),22(0)]. Then, each condition has an intuitive
meaning. Condition (5) comes from the fact that the input is
bounded. Condition (6) means that the times at which car 1
and car 2 are inside the intersection do not overlap, which
guarantees collision avoidance between the controlled cars.
Condition (7) implies that a controlled car ¢ and car 3 never
meet inside the intersection for any ug3 and ds. This condition
guarantees that collision between the controlled car and the
uncontrolled car is avoided. Based on these meanings, if
there exists a schedule satisfying the conditions, we can find
a safe input signal that makes the cars avoid collisions. Thus,
by solving Problem 2, we can address Problem 1.

We adopt the algorithm given in [12] to solve Problem 2
because the algorithm will be the same except for the fact that
the scheduling variables are defined as given above. We call
the algorithm SCHEDULING([x%(0),x"(0)]), whose output
is either (T,yes) or (-,no), where T € R% is a schedule
satisfying the above conditions if it exists.

C. Safe input

If the verification problem has a positive answer at t = kT,
then the supervisor generates a safe input signal and stores
it for potential use at the next step. In particular, given
a schedule T = (731,73) and a set of initial conditions
[x2(0),x(0)], a safe input signal "™ for i € {1,2}
is defined as follows:

L= o ([29(0), 22(0)], T)

€ {uz : yz(B(Tz)7 U, di,mina I?(O)) = 61
and y; (15, u;, diﬁmax,xf(O)) = q;}.

u

That is, a safe input signal uf“’oo is one of the input signals

that make the car enter the intersection no earlier than 7T; and
make it exit no later than P;(7;) for any d; for any z;(0) €
[2(0), 2%(0)]. This input signal is used at step k& + 1 to

% [iad)



override the controlled cars if necessary to avoid a collision
as described in the next section.

D. Supervisor

In this section, we combine the results of Section III-B and
II-C to provide an algorithm to implement the supervisor,
which is informally described in Figure 2.

Algorithm 1 Implementation of the supervisor

1: procedure SUPERVISOR(X;,, a(k7))
: (T, answer;) + SCHEDULING(X**!(a(k7)))

(3]

3: if answer; = yes then

4 uktlheo o o(XkH (a(kr)), T1)

5 uFtL(t) < uFtbeo(t) for t € [(k+ 1)7, (k + 2)7)
6: return a(k7)

7: else

8 (T3, answers) + SCHEDULING(X**1(u*))

9 uktleo o g(XkH (uk), Ty)

10r () e kL () for ¢ € [(k + )7, (k + 2)7)
11: return u”

At t = k7, the supervisor in Algorithm 1 receives a
state measurement Xx,,, and a desired input a(k7), which are
used to compute the state prediction X**1(a(k7)) as defined
in (2) and (3). The algorithm SCHEDULING(X**!(a(k7)))
solves the Inserted Idle-Time Scheduling problem (Problem
2) given the set of initial conditions X**!(a(k7)). The
scheduling variables in Definition 1 are computed by the
Newton-Raphson method [21].

If answery in line 2 of Algorithm 1 is “yes”, then a safe
input u*T1>° is generated based on a schedule T;. In line
5, the input u¥*1(t), which is the truncated safe input signal
uft1°° defined for t € [(k + 1)7, (k + 2)7), is stored for
potential use at the following step. In this case, the supervisor
returns a(kT), that is, it allows the controlled cars to run with
their desired inputs.

If answer; is “no”, the safe input signal u”, which was
generated at the previous step, is used to compute another
state prediction X**1(u¥). Since the input u” is a safe input,
answers in line § is always “yes”. Then, a safe input signal
ukt1:°° is generated using T and stored for potential use
at the following step. The supervisor returns the safe input
u”, which means that the supervisor overrides the controlled
cars using u”.

Thus, the supervisor is designed such that it overrides the
controlled cars only when using the desired input will lead
to an unavoidable future collision.

IV. EXPERIMENTS
A. Experimental setups

The supervisor is tested on an intersection testbed using
three RC cars as shown in Figure 1. The size of the testbed
is 6m x 6m, and the length of the RC car is 30cm. A Tamiya
scaled RC car chassis is used. The motor and the steering
servo are controlled by a microcontroller (Acroname Moto
1.0) through a power amplifier (Acroname 3A Back EMF

Fig. 3: Three RC cars that are used in the experiments. Each
car is recognized with its symbol by a vision system.

H-bridge). Motor and steering inputs are commanded by an
on-board computer (Mini ITX running Linux, Fedora Core)
mounted on the top of each RC car [20]. Both Algorithm
1 and a path following algorithm are implemented on the
on-board computer.

Two batteries (Tenergy Li-lon 14.8V 4400mAh) provide
power to the car. A power relay (Omron G5SB) is connected
to a capacitor (Aluminium Electrolytic Capacitor 12000uF
25volts) and the two batteries. The batteries are connected to
the power amplifier through a switch. Because of this power
connection, the motor input shows a first-order dynamic
behavior, which will be considered as a disturbance in
Section IV-B.

An over-head vision system is used to measure the position
and direction of all cars. The vision system consists of six
cameras on the ceiling and three computers that process the
images taken by the cameras. The position and direction
measurements are extracted from the images by recognizing
the symbols on the top of each car (see Figure 3). A
quadrature encoder mounted on the rear axle of the wheels
measures the speed.

A computer collects all the available information including
the positions and directions of all cars, which are measured
by the vision system, and the local information of each
controlled car, such as the speed, the desired input, and the
model parameters. This information is then distributed to the
controlled cars through a 802.11b wireless communication
network.

All cars follow the prescribed paths in Figure la by
implementing a feedback controller for the steering input
using information from the vision system. The supervisor
can override the motor input, but cannot change the steering
1mnput.

B. Modeling of car dynamics

The block diagram of the dynamic model (1) is shown is
Figure 4, where dy ; = dproj,: and dy ; = dpower,i +dsteer,i +
dsiopei for all 4 € {1,2,3}. In this section, we explain the
origin of the disturbances, and introduce a compensator in
order to reduce their effects.
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Fig. 4: The block diagram of the dynamic model (1). The
model disturbances are dproj,i, Apower,i, Asteer,i, ANd dgiope,is
and the measurement errors are 6, ; and Jy ;.

Fig. 5: Car ¢ does not perfectly follow the prescribed path
(thick black line), which causes the uncertainty dp,o;; =
Yi — vi.

The disturbance dp.;,; is due to the fact that the cars do
not perfectly follow the prescribed paths as shown in Figure
5. Here, v; is the longitudinal speed along the actual path
that the car follows (thin blue line) while y; is the speed
along the prescribed path (thick black line). When the vehicle
axis is not aligned with the prescribed path, ¢; # v;. The
disturbance dy,,.; (t) quantifies such a difference.

The power connection, which includes the capacitor, the
power relay, the batteries, and the power amplifier, intro-
duces additional dynamics, which we model by the time-
varying disturbance dpoyer ;. In particular, we take the form
dpower,i = gie*t/hiui, where ¢; is a gain, h; is a time
constant, and u; is the motor input. This form is justified by
the experimental data acquired when car ¢ runs in circles with
a constant input (see [22] for the data). The parameters g; and
h; are also determined using those data by finding the best
fitted values. The motor gain f; is estimated on-line using
“MIT rule”[23] because it can be time-varying depending on
the battery charge level. This on-line estimation is executed
using the speed measurement v,, ; before Algorithm 1.

The disturbance dsicer,; is due to the fact that the steering
input affects, to some extent, the speed of the four-wheeled
car [24]. The fact that the testbed is not completely flat
appears as the disturbance dgope,i;- The disturbance dgieer s+
dsiope,i 1s position-dependent because the slope of the testbed
and the steering input are about the same at the same point
of the prescribed path. This disturbance is estimated off-line
from data acquired when the car runs on the path with a
constant input.

To reduce the effect of these disturbances, we introduce a
compensating input c;(¢,y;) such that w; = u; + ¢;(t,y;)
where u) is the input that the supervisor returns. This

compensating input ¢; (¢, y;) is defined as follows:

(t ) _ _gie_t/hi + dsteer,i(yi) + dslopeﬂ'(yi)
Ci\l,Yi) = gie*t/hi —i—fl .

Thus, the dynamic model becomes

b = av; + b + fiuh + gie M (uf — 1),

in which we have assumed that the error due to the estimation
of @i, hi, fi,dsteer,i» and dsiope,i is small enough to be
negligible. With this assumption, the effective disturbance
after the compensation becomes d,, ; = gie~*/"i (u} — 1).

The design of the supervisor assumes that the disturbances
dy,i and d;, ; are bounded. However, the empirical distribu-
tion of the disturbances shows a quite long tail. We chose to
ignore the tail and take tighter bounds.

C. Experimental results

Algorithm 1 is implemented on each car. The model
parameters are a = (—0.53,—0.30,—0.43)/s, b =
(—84.68, —66.43, —49.64)cm/s?, g = (0.99,0.44,0.95),
and h = (9.17,6.84,5.95)s. These are the best fitted param-
eters for the data of each car running in circles in advance of
the implementations of the supervisor. The motor gain f;(t)
is time-varying for all 7. As a reference, the average of each
gain is f; = 9.07, f, = 7.02, and f3 = 5.93.

We find the bounds for the measurement errors by man-
vally measuring the position and comparing it with the
measurement data: 0y i min = —25¢M, Oy i mae = 25CM,
S imin = —25em/s, and 0y 4 mez = 16cm/s for all i.
The experimental disturbance bound of d,; is £30cm/s,
and that of d,, ; is £35cm/ s2. These large bounds are due
to the long tail of the disturbance distribution as mentioned
in Section I'V-B. In the experiments, we use tighter bounds,
which are chosen as d! = (=5,-3,-3)em/s, d. =

Y, min y,max
(3’ 4? 3)cm/s, d;),min, = (_4’ _27 —3)Cm/82, and d;),maz =

(2,3,2.5)cm/s%. With these tighter bounds, we still obtain
a 92.8% success rate.

The total length of the paths in Figure la is 22m for the
8-figure paths for car 1 and 2 and 14m for the O-figure path
for car 3. Because the position is reset after a car exits the
intersection, we consider the half of the length of the 8-
figure path, which is 11m. The intersection is located at
(906.5,971.5)em x (911.5,976.5)cm x (1241.2,1306.2)cm.
The speed is bounded with v, = (10.5,10.5,13)cm/s and
VUmae = (17,16.5,15)cm/s, and the motor input (PWM)
is bounded with w,,;, = (105,105,130) and wpmee =
(170,165, 150), whose maximum output is 250. The time
interval 7 is 0.1s.

In Figure 6a, the uncontrolled car (thick red line, or dotted
red circle in the pictures) approaches the intersection (shaded
area) earlier than the others with slow speed. The supervisor
overrides the controlled cars (thin black lines, or solid blue
circles) to decelerate them (~ 11s, intermittently). In the
case of Figure 6b, the supervisor overrides the controlled cars
for a shorter time. Notice that the last car’s position upper
bound enters the intersection right after the uncontrolled car’s
position lower bound has exited, indicating that the override
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Fig. 6: The results of collision avoidance. The intersection is the shaded region located at (0,65)cm. The thin black lines
represent the controlled cars, car 1 and car 2, and the thick red line represents the uncontrolled car, car 3. The dotted lines
are the lower and upper bounds of the state estimation defined in (4). They are updated using measurements every 0.1s. The
dotted vertical lines relate the graphs with the corresponding pictures of the actual experiments. In the pictures, the dotted
red circle is the uncontrolled car, and the solid blue circles are the controlled cars, where the arrows show the directions of

the cars’ speeds. The blue boxes on the x-axis represent the times when the supervisor intervenes. These demonstrate that
the cars are not inside the intersection at the same time.
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Fig. 7: Trajectories near the Bad set in the 3D output space. The red blocks are the Bad set, and the black lines are the
experimental data of crossing the intersection. The blue lines represent the trajectories in which the supervisor overrides the

controlled cars for at least one step. The three figures on the right-hand side are 2D projections, which confirm that no two
cars are ever inside the intersection (red boxes) at the same time.

was applied because deemed necessary to avoid the collision.  right-hand side are the trajectories projected on 2D planes,
In both cases, intersection collisions are averted. which confirm that no trajectory enters the Bad set (red

Figure 7 shows the trajectories of the positions of each car boxes). The 3D grap}} contalps 91 qa]ectorles that .1nclude
and the Bad set in the 3D output space. The figures on the at least one car crossing the intersection, among which 208



trajectories are overridden by the supervisor for at least one
time step.

In a small number of instances, the system is subject to
a disturbance outside of the tighter bounds, and as a conse-
quence, the state prediction becomes incorrect. If answers
in line 8 of Algorithm 1 is “no” because of the incorrect
prediction, then the controlled cars are programmed to stop.
This occurs only 7.2% of times. The results are summarized
in Table 1.

TABLE I: Summary of the experiments.

Trajectories of Trajectories where | Collision | Stop
at least one car crossing the supervisor
the intersection intervenes
591 208 0 15

V. CONCLUSIONS

We have implemented a supervisor that overrides con-
trolled cars only when future collisions would otherwise
become unavoidable. This supervisor accounts for 1) mod-
eling and measurement uncertainty, and 2) the presence of
an uncontrolled vehicle. In particular, the inclusion of these
uncertainty sources in the algorithm allows us to implement
the system on an experimental platform. The supervisor is
implemented on an intersection testbed using three RC cars.
Here, two of the cars are cooperating with each other and
execute the supervisor to actively prevent collisions. From
the experiments, we demonstrated that collisions are averted
without substantial conservatism.

While this supervisor is validated through experiments,
several theorems that support the design, such as the non-
blocking property of the supervisor, must still be provided
as in [25], [13], [12]. In addition, while the architecture
presented here prevents collisions at one conflict point, future
work will consider multiple conflict points such as found in
real traffic intersections. As the intersections are modeled
in more detail, the challenge is to overcome significantly
increasing computational complexity. Also, since the routes
of vehicles may not be known in advance, a supervisor
will have to consider all possible routes of vehicles and
progressively discard infeasible ones.
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