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Abstract— As in several engineering applications, biomolecular
systems present impedance-like effects at interconnections called
retroactivity. This phenomenon presents a challenge for modular
design in synthetic biology. An insulation device is a biological
module that enables attenuation of retroactivity at interconnec-
tions. In this paper, we propose the design of an insulation
device by exploiting the naturally existing time-scale separation
of phosphotranspher systems. 1

I. Introduction to Retroactivity

Modules are reusable components designed to have a spe-
cific function in different contexts. In digital electronics, for
example, a clock module can be used to drive a counter
in one application and to synchronize a register in another
[1]. One fundamental requirement in designing modules is
the fact their behavior is not altered upon connection to
downstream clients. In digital electronics, this property, called
modularity [10], is captured by fan-out specifications, which
limit the number of clients that can be connected to the output
of a component. Modularity has been recently advocated in
systems and in synthetic biology, areas in which networks
of biomolecular interactions between DNA, RNA, proteins
and signaling molecules are studied. In the field of systems
biology, the challenge is in understanding the behavior of
naturally occurring biomolecular networks from the behavior
of the composing modules [2]–[4]. In contrast, researchers in
synthetic biology aim at constructing networks with the goal of
controlling cell behavior. Several simple biomolecular systems
have been designed, such as oscillators [5], [6] and toggles [7],
with the goal of designing biomolecular circuits with more
complex functionalities in a modular fashion [8], [9].

In order for this approach to work, these components must
have the modularity property [10]. It has been shown theoreti-
cally, however, that output connections can be affected by large
impedance-like effects that distort dramatically the dynamics
of a system when facing a downstream load [11]. This effect
has been called retroactivity to extend the notion of impedance
to biomolecular systems. Retroactivity has been modeled by
the addition of two signals to the standard input/output system:
the retroactivity to the output s and the retroactivity to the input
r, as shown in Figure 1 [11]. In this framework, achieving
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Fig. 1. System S along with its input and output signals. The
retroactivity to the output s accounts for the effect of downstream
systems in the system S dynamics upon connection. The retroactivity
to the input r accounts for the impact that S exerts on its upstream
systems when a connection to receive the information u is established.

low output impedance becomes the problem of attenuating the
retroactivity to the output.

To illustrate the effect of retroactivity in biological systems
we consider a simple transcriptional component, in which a
transcription factor X is produced at rate k(t) and decays at
rate δ [10]. Transcription factors are proteins that regulate the
expression of a gene by binding to the promoter region of a
gene. Therefore, consider X to be an input to a downstream
component through the reversible binding of X to promoter
sites p, assumed to have total concentration pTOT . The bio-

chemical reactions involved are ∅
u(t)−−⇀↽−−
δ

X and X + p
kon−−−⇀↽−−−
ko f f

C,

in which C is the complex of X bound to site p. The ordinary
differential equation model is given by

Ẋ = u(t) − δX + ko f f C − kon(pTOT −C)X

Ċ = −ko f f C + kon(pTOT −C)X, (1)

in which the retroactivity to the output is given by s(X,C) =
ko f f C − kon(pTOT − C)X. Setting pTOT = 0, and thus s = 0,
one obtains the dynamics of the system without load, given
by Ẋ = u(t) − δX. The effect of retroactivity to the output on
the dynamics is illustrated in Figure 2.

II. Phosphotransfer-based insulation device

In order to counteract the effect of retroactivity one can
employ insulation devices, biomolecular systems that are de-
signed to attenuate the retroactivity to the output and to have
low retroactivity to the input. An insulation device is placed
between the upstream system producing the signal and the
downstream system receiving the signal. In analogy to the
design of non-inverting amplifiers in electronics, an insulation
device can be obtained by employing a large amplification
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Fig. 2. Effect of the retroactivity to the output s on the transcriptional
component. When pTOT = 0, s = 0 and the system is isolated. The
addition of load (pTOT = 100) makes s � 0. The input signal is
u(t) = δ(1 + 0.8 sin (ωt)) with ω = 0.005, δ = 0.01, ko f f = 50, and
kon = 20.

gain in a negative feedback loop. Examples of two insulation
devices based on this design technique are shown in [11].

In this paper, we present a different design principle for
insulation based on separation of time scales, realized through
the phosphotransfer system of Figure 3. The system is based
on a chain of phosphorylation and dephosphorylation re-
actions [12]. Ubiquitous in prokariotic signaling pathways,
phosphotransfer systems are found to be reused as a signal
relay module in different bacterial pathways [13]. Here, we
show that the phosphotransfer system is capable of attenuating
retroactivity to the output and, therefore, can be employed to
design insulation devices. Let X be a transcription factor in
its inactive form and let X∗ be the same transcription factor
once it has been activated through phosphorylation. Let Z∗
be a phosphate donor, that is, a protein that can transfer
its phosphate group to the acceptor X. The phosphotransfer
reactions [12] can be modeled according to the two-step model

Z∗ + X
k1−⇀↽−
k2

C1
k3−⇀↽−
k4

X∗ + Z, in which C1 is the complex of Z

bound to X bound to the phosphate group. Also, protein Z
can be phosphorylated and protein X∗ dephosphorylated by
other phosphotransfer reactions, respectively. These reactions
are modeled as one step reactions, that is, Z

π1−→ Z∗ ,X∗
π2−→ X.

Protein X is assumed to be conserved in the system, that
is, X + C1 + X∗ + C = XTOT . We assume that protein Z is
produced with time-varying production rate k(t) and decays
with rate δ. The active form of the transcription factor X∗ binds
to downstream binding sites p with total concentration pTOT

through the reversible reaction p+X∗
kon−−−⇀↽−−−
ko f f

C. It is also assumed

that the total amount of p is conserved, that is, C + p = pTOT .
The ODE model is thus given by

Ż = k(t) − δZ + k3C1 − k4X∗Z − π1Z

Ċ1 = k1 (XTOT − X∗ −C1 −C) Z∗ − k3C1 − k2C1 + k4X∗Z
Ż = π1Z + k2C1 − k1 (XTOT − X∗ −C1 −C) Z∗

Ẋ∗ = k3C1 − k4X∗Z − konX∗(pTOT −C) + ko f f C − π2X∗

Ċ = konX∗(pTOT −C) − ko f f C. (2)

Fig. 3. System Σ is a phosphotransfer system. The output X* activates
transcription through the reversible binding of X* to downstream
DNA promoter sites p.

III. Retroactivity Attenuation

In order to make the multiple time scales and the structural
properties of the system explicit, we rewrite system (2) as
follows. Since phosphotransfer reactions are faster than protein
production and decay [12], define the constant G1 � 1
and write k̄1 := XTOT k1/G1, k̄2 := k2/G1, k̄3 := k3/G1,
k̄4 := XTOT k4/G1, π̄1 := π1/G1 and π̄2 := π2/G1, so that
k̄1/XTOT , k̄2, k̄3, k̄4/XTOT , π̄1, π̄2 are of the same order as k(t)
and δ. Since the process of protein binding to promoter sites
is much faster than phosphorylation [10], define the constant
G2 � 1 with G2 � G1 as G2 := ko f f /δ, kd := ko f f /kon.
Relabel the variables as u := Z, x := [ C1 Z∗ X∗ ]T and
v := C. Define also the functions g(u, t) := k(t)− δu, r(x, u) :=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

k̄3x1 − k̄4XTOT ux3

−π̄1u
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, s(x, v) := δ
kd

x3(pTOT − v) − δv and

f (u, x) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k̄1

(
1 − x3

XTOT
− x1

XTOT

)
x2 − k̄2x1

¯̄k2x1 − k̄1

(
1 − x3

XTOT
− x1

XTOT

)
x2

k̄3x1 − k̄4XTOT x3(z − x1 − x2) − π̄2x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. Define fi-

nally the matrices A := [ 1 1 0 ] and C := [ 0 0 1 ]T .
System (2) can be rewritten as

u̇ = g(u, t) +G1Ar(x, u)

ẋ = −G1r(x, u) +G1 f (u, x) −G2Cs(x, v)

v̇ = G2s(x, v). (3)

in which the retroactivity to the output is given by −G2Cs(x, v)
Since we assume G1 � 1 and G2 � G1, system (3) presents

three different time scales. The isolated system, obtained when
s(x, v) = 0 is given by

u̇ = g(u, t) +G1Ar(x, u)

ẋ = −G1r(x, u) +G1 f (u, x). (4)

Employing singular perturbation [14], we show that as G1 →
∞ and G2 → ∞, both the isolated and connected system
solutions tend to the same signals. This is only possible due
to the structural characteristics of the system and in particular
to the fact that AC = 0, which allows clear separation of the
time scales by employing linear coordinate transformations.

Let u(t, 1/G1, 1/G2), x(t, 1/G1, 1/G2), v(t, 1/G1, 1/G2) and
uis(t, 1/G1), xis(t, 1/G1) be the unique solutions for t ∈ [t0, t̄ f ]
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of the connected system (3) and the isolated system (4),
respectively. In what follows, we assume that G2/G1 → ∞
as G1 → ∞.

Definition 1: System (2) has the retroactivity to the output
attenuation property if there is a time t f > t0, constants
G∗1 > 0, G∗2 > 0 and tb ∈ (t0, t f ] such that u(t, 1/G1, 1/G2) −
uis(t, 1/G1) = O(G1/G2) and x(t, 1/G1, 1/G2) − xis(t, 1/G1) =
O(G1/G2) for all t ∈ [tb, t f ] when G1 > G∗1 and G2 > G∗2.

Let x = γx(u) be the locally unique solution to the algebraic
equation r(x, u) + f (x, u) = 0. We show the dynamics of the
input for both systems (3) and (4) approximate ū(t) which is
the unique solution of the system

˙̄u =

(
1 + A

d
dū
γx(ū)

)−1

g(ū, t) (5)

and the internal dynamics of the device for systems (3) and
(4) is well approximated by γx(ū(t)).

Proposition 1: Isolated System. There is a time t f > t0 such
that for all tb ∈ (t0, t f ], there is a G∗1 > 0 such that uis(t, 1/G1)−
ū(t) = O(1/G1) and xis(t, 1/G1)−γx(ū(t)) = O(1/G1) uniformly
for t ∈ [tb, t f ] whenever G1 > G∗1.

Proof: This proposition can be shown by writing system
(4) in the standard singular perturbation form and employing
Tikhonov theorem [14]. This can be achieved by employing
the change of coordinates z = u + Ax. Let ε = 1/G1 be the
small parameter. System (4) becomes

ż = g(z − Ax, t)

ε ẋ = −r(x, z − Ax) + f (z − Ax, x). (6)

Define f̃ (z, x) := −r(x, z − Ax) + f (z − Ax, x). Let the locally
unique solution of f̃ (z, x) = 0 be x = φx(z). Let also z̄is(t) be
the unique solution for t ∈ [t0, t f ] of the reduced system

˙̄z = g(z − Aφx(z̄), t), (7)

with initial conditions z̄(t0) = u0 + Ax0. It is possible to
show using the Routh-Hurwitz criterion that ∂

∂x f̃ (z, x)
∣∣∣
x=φx(z)

is
Hurwitz. This guarantees that the trajectories of the system (6)
are attracted to the slow manifold [14]. Then, from Tikhonov
theorem, for all tb ∈ (t0, t f ] there exists ε∗ > 0 such that if
ε < ε∗,

zis(t, ε) − z̄is(t) = O(ε) uniformly for t ∈ [t0, t f ]

xis(t, ε) − φx(z̄is(t)) = O(ε) uniformly for t ∈ [tb, t f ]. (8)

Define the coordinate transformation ūis = z̄is − Aφx(z̄is).
Since x = φx(z) is the locally unique solution of f̃ (z, x) = 0,
we have that f̃ (z̄, φx(z̄)) = 0. But note that f̃ (z, x) = −r(x, z −
Ax) + f (z − Ax, x) and hence −r(φx(z̄is), z − Aφx(z̄is)) + f (z̄is −
Aφx(z̄is), φx(z̄is)) = 0. Note also that x = γx(u) is the locally
unique solution of −r(x, u) + f (u, x) = 0, therefore

φx(z̄is) = γx(z̄is − Aφx(z̄is)) = γx(ūis). (9)

Thus, z̄is = ūis + Aγx(ūis). Using the chain rule we obtain
that ˙̄zis = ˙̄uis

(
1 + A dγx(z̄is)

dūis

)
. Rearranging this expression and

substituting (7), we conclude that ūis(t) satisfies the differential
equation (5).

Finally, from the coordinate change, we have that uis(t, ε) =
zis(t, ε)− Axis(t, ε) and ūis(t) = z̄is − Aφx(zis). From identity (9)
and relations (8) we obtain the desired result.

Proposition 2: Connected System. There is a time t f > t0
such that for all tb ∈ (t0, t f ], there are G∗1 > 0, G∗2 > 0 such that
x(t, 1/G1, 1/G2) − γx(ū(t)) = O(G1/G2) and u(t, 1/G1, 1/G2) −
ū(t) = O(G1/G2) uniformly for t ∈ [tb, t̄ f ] when G1 > G∗1 and
G2 > G∗2.

Proof: The connected system (3) presents three different
time scales. We proceed by employing nested applications of
the Tikhonov theorem [15]. Employ the change of coordinates
z = u+Ax and y = x+Cv, which brings (3) to standard singular
perturbation form

ż = g(z − A(y −Cv), t)

εẏ = −r(y −Cv, z − A(y −Cv)) + f (z − A(y −Cv), y −Cv)

εμv̇ = s(y −Cv, v). (10)

Define f̄ (z, y, v) := −r(y − Cv, z − A(y − Cv)) + f (z − A(y −
Cv), y−Cv). Let the locally unique solution of s(y−Cv, v) = 0
be v = φ1(y). Let also z̄(t, ε) and ȳ(t, ε) be the unique solution
for t ∈ (tb, t f ] of the reduced system obtained setting μ = 0,

ż = g(z − A(y −Cφ1(y)), t)

εẏ = f̄ (z, y, φ1(y)). (11)

It is possible to show that ∂
∂v s(y−Cv, v)

∣∣∣
v=φ1(y)

is Hurwitz. This
guarantees that the trajectories of system (10) are attracted
to the slow manifold. Then, from Tikhonov theorem, for all
tb ∈ (t0, t f ], there exists μ∗ such that if μ < μ∗,

z(t, ε, μ) − z̄(t, ε) = O(μ) uniformly for t ∈ [t0, t f ]

y(t, ε, μ) − ȳ(t, ε) = O(μ) uniformly for t ∈ [t0, t f ]

v(t, ε, μ) − φ1(y) = O(μ) uniformly for t ∈ [tb, t f ]. (12)

System (11) is also in standard singular perturbation form
with small parameter ε. Let then y = φ2(z) be the locally
unique solution of f̄ (z, y, φ1(y)) = 0. Let also z̃(t) be the
solution for t ∈ [t0, t f ] of the reduced system obtained setting
ε = 0,

˙̃z = g(z̃ − A(φ2(z̃) −Cφ1 ◦ φ2(z̃)), t), (13)

It is possible to show, with the Routh-Hurwitz criterion,

that ∂
∂y f̄ (z, y, φ1(y))

∣∣∣∣∣
y=φ2(z)

is Hurwitz. This guarantees that

the trajectories of the system (11) are attracted to the slow
manifold. Then, from the application of Tikhonov theorem on
system (11), for all tb ∈ (t0, t f ], there exists ε∗ > 0 such that
if ε < ε∗,

z̄(t, ε) − z̃(t) = O(ε) uniformly for t ∈ [t0, t f ]

ȳ(t, ε) − φ2(z̃(t)) = O(ε) uniformly for t ∈ [tb, t f ]. (14)

By combining results (12) and (14), we have that for all tb ∈
(t0, t f ], and all ε < ε∗ and μ < μ∗

z(t, ε, μ) − z̃(t) = O(ε) + O(μ)

y(t, ε, μ) − φ2(z̃(t)) = O(ε) + O(μ)

v(t, ε, μ) − φ1 ◦ φ2(z̃(t)) = O(ε) + O(μ), (15)
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uniformly in t ∈ [tb, t f ], in which we use φ1(φ2(z) + O(ε)) =
φ1 ◦ φ2(z) + O(ε) due to continuity of φ1.

Define the coordinate transformation ū = z̃ − A(φ2(z̃) −
Cφ1 ◦ φ2(z̃)). Since y = φ2(z) is the locally unique solution
of f̄ (z, y, φ1(y)) = 0, we have that f̄ (z̃, φ1(z̃), φ1 ◦ φ2(z̃)) =
0. But from the definition of f̄ (z, y, v) one concludes that
−r(φ1(z̃) − Cφ1 ◦ φ2(z̃), ū) + f (ū, φ1(z̃) − Cφ1 ◦ φ2(z̃)) = 0.
Note also that x = γx(u) is the locally unique solution of
−r(x, u) + f (x, u) = 0, therefore we can write

γ(ū) = φ1(z̃) −Cφ1 ◦ φ2(z̃). (16)

We can thus write ū = z̃ − Aγ(ū). Rearranging the terms of
the expression and using the chain rule, we obtain the time
derivative expression ˙̃z = ˙̄u

(
1 + A d

dūγx(ū)
)
. Rearranging this

expression and substituting (13), we conclude that ū(t) satisfies
the differential equation (5).

Finally, from the coordinate changes we have that x(t, ε, μ) =
y(t, ε, μ) − Cv(t, ε, μ) and u(t, ε, μ) = z(t, ε, μ) − Ax(t, ε, μ).
Applying (15), (16) and recalling ū(t) = z̃(t) − Aγx(ū), we
have that for all tb ∈ (t0, t f ], there are ε∗ > 0, μ∗ > 0 such that

u(t, ε, μ) − ū(t) = O(ε) + O(μ)

x(t, ε, μ) − γx(ū(t)) = O(ε) + O(μ), (17)

uniformly in t ∈ [tb, t f ] provided ε < ε∗ and μ < μ∗.
Proposition 3: System (2) has the retroactivity to the out-

put property.
Proof: Let t1

f > t0, G1∗
1 > 0 be constants such that

Proposition 1 holds and let t2
f > t0, G2

1 > 0, G∗2 > 0 be constants
such that Proposition 2 holds. Pick then t f = min(t1

f , t
2
f )

and G∗1 = max(G1∗
1 ,G

∗2
1 ). Then, by combining the results of

Propositions 1 and 2, the desired result is obtained.
Figure 4 shows the behavior of the system as a function

of G1 when G2 � G1. It can be seen that when G1 = 1, the
output suffers from retroactivity to the output. However, when
G1 � 1, the output dynamics of the connected and the isolated
system are close to each other.

IV. Conclusion

In this paper we propose a biomolecular device capable
of attenuating the retroactivity to the output based on natu-
rally occurring phosphotransfer systems. We show that this
insulation property is due to the special structure of the
system that allows for separation of the multiple time scales.
Furthermore, we show that this property holds even when the
output disturbance enters the system through reaction rates
much larger than the input or internal dynamic rates. As a
result, a phosphotransfer system can be used to design an
insulation device, which in its turn can be employed for
modular design in synthetic biology. Aditionally, the finding
that phosphotransfer systems attenuate retroactivity to the
output suggests that these components enforce unidirectional
signal propagation, a capability that may be linked to the
ubiquity of this signaling pattern in prokariotic pathways.
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Fig. 4. Output response of the phosphotransfer system with a step
signal k(t) = δ(1 + sin(ωt). The parameters are given by δ = 0.01,
XTOT = 1000, k̄2 = k̄3 = 0.01 = π̄1 = π̄2 = 0.01, k̄1 = k̄4 = 10−5,
kd = 1, G1 = 1 (top panel), and G1 = 100 (bottom panel), G2 = 1000.
The isolated system corresponds to pTOT = 0 while the connected
system corresponds to pTOT = 100.
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