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SUMMARY

The safety control problem for the class of discrete time block-triangular order preserving hybrid automata
with imperfect continuous state information is addressed. A dynamic feedback law is constructed in order
to guarantee that the continuous state is always outside a bad set. The order preserving properties of the
dynamics are exploited to construct state estimation and control algorithms that have linear complexity in
the number of variables. Such algorithms adopt an interval abstraction approach, in which sets of interest
are represented and propagated only through suitable upper and lower bounds. The proposed algorithms
are applied to a collision avoidance problem arising in the context of intelligent transportation. Copyright
q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND BACKGROUND

The problem addressed in this paper is the dynamic control (state estimator plus control) of
the parallel composition of a class of discrete time hybrid automata (triangular order preserving
hybrid automata) under safety specifications. Motivating applications both for the model and for
the problem considered include multi-agent hybrid systems, in which each agent evolves along
a path or route in a network of routes and conflicts arise at routes crossings. Examples include
intelligent transportation systems and railway network control systems. In these systems, each
agent (a vehicle) can be modeled as a hybrid automaton, in which the continuous state dynamics
has triangular structure and models the physical motion of the agent along its path. The discrete
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state can model the control mode, in which the agent can be (braking, accelerating, run-out, etc.)
or it can model input and state constraints. The entire system is given as the parallel composition
of the component systems modeling the agents. In particular, one problem for which automated
solutions are sought is the collision prediction and avoidance at traffic intersections and at railway
mergings [1, 2]. In these systems, the state (speed and position, for example) is known to the
controller only within some uncertainty bounds. This uncertainty is due to measurement errors or
to missing measurements as it occurs, for example, with the position measurement obtained by
the global positioning system or by road-side sensor systems.

The control problem under safety specifications assuming that the perfect state information has
been addressed by several researchers (see [3–5], for example). General control design problems
under language specification (safety, for example) [3, 6–9] have been extensively studied for
discrete systems in the computer science literature (see [10] for an overview). A control perspective
in the context of discrete event systems was given by Ramadge and Wonham [11]. The approach
has been extended to specific classes of hybrid systems such as timed automata [12, 13] and
rectangular automata [14]. For these classes of hybrid systems, implementation results using tools
such as [15] showed that in practice the synthesis procedure is limited to control problems with
a small number of control modes. Most of the work on safety controller design for general
classes of hybrid systems has been concerned with the computation of reachable sets (see, for
example, [3, 8, 9] and the references therein). In these works, the safety control problem has been
addressed by computing the set of states that lead to an unsafe configuration, a bad set of states,
independently of the input choice. This set has been called the capture set in the differential
games literature as independently of any input sequence, the state of the system will be captured
by the bad set at some time. Then, a feedback is computed that guarantees that any state that
is outside such a set is kept outside it [3–5, 16]. We mathematically make precise the notion of
the capture set by representing a system through the transition systems formalism [17]. In such a
formalism, a system is a tuple �=(S,I,�), in which S is a set of states, I is a set of inputs, and
� : S×I→ S is a transition map. We denote a state by s∈ S and an input by u∈I. An execution
of � is an infinite sequence {sk}k∈N such that sk+1=�(sk,uk) for uk ∈I. Let B⊆ S be the set
of bad states. For all n�0, we define �n(s,{uk}0�k�n) by the following relations: �0(s,u0) :=
s for all u0∈I,�n(s,{uk}0�k�n) :=�(�n−1(s,{uk}0�k�n−1),un). The escape set is mathematically
characterized as

C={s∈ S|∀{uk}k∈N∃N such that �N (s,{uk}0�k�N )∈ B}
The safety control problem is thus the problem of designing a feedback law u=g(s) such that for
all executions {sk}k∈N starting with s /∈C , we have that sk /∈C for all k. A bottleneck in solving
this problem is complexity. For classes of hybrid automata, for which the continuous dynamics
reachable set can be computed, computational constraints usually limit the system to four or five
continuous variables and to two or three discrete states. Furthermore, the proposed algorithms are
not guaranteed to terminate [3, 4]. To reduce the computational load, approximate algorithms have
been proposed to compute an over-approximation of the capture set [8, 15, 18].

The safety control problem with imperfect or partial state information has been scarcely
addressed in the literature. Some results in this direction can be found in [19, 20], for example. In
[19], a controller that relies on a state estimator is proposed for finite state systems. The results are
then extended to control a class of rectangular hybrid automata with imperfect state information.
The approach employed by De Wulf et al. [19] is similar to the one adopted for the full state
information as it also relies on the computation of the capture set. To make this more precise, we
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illustrate the basic idea employing again the transition system formalism. Consider now a transition
system with output �=(S,I,Y,�,�), in which S is a set of states, I is a set of inputs, Y is a
set of outputs, � : S×I→ S is a transition map, and � :Y→2S is the output map, in which 2S

denotes the set of all subsets of S. If a state s∈�(y), we say that s is compatible with measure-
ment y. An output sequence is denoted by {yk}k∈N, in which yk is such that sk ∈�(yk). Since
the state is not measured, one determines the set of all current system states. We thus define the
operator �̂ :2S×I×Y→2S as follows. Let ŝ⊆ S, then �̂(ŝ,u, y) :=�(ŝ,u)∩�(y). Given an output
sequence of �, {yk}k∈N, corresponding to the execution {sk}k∈N, the set of all states at step k that
are compatible with such an output sequence up to step k and with the system transition map is
given as

ŝk+1 = �̂(ŝk,uk, yk+1)

ŝ0 = �(y0)
(1)

One can verify that sk ∈ ŝk for all k. We refer to Equations (1) as a state estimator for the transition
system �. In the differential game literature, the set ŝ is also referred to as information state
[21]. A state estimator-based control strategy is one in which the control law depends on the
state estimate ŝ, that is, u=g(ŝ). We define the notation �̂n+1

(ŝ,{uk}0�k<n+1,{yk}0�k�n+1) :=
�̂(�̂n(ŝ, {uk}0�k<n,{yk}0�k�n),un, yn+1), �̂0(ŝ,{uk}0�k<0,{yk}0�k�0) :=�(y0), to denote the set of
states, to which an initial set of states ŝ is mapped after n+1 steps with input sequence {uk}0�k<n+1
and output sequence {yk}0�k�n+1. The capture set C⊆2S is the set of all subsets of S such that
if the state estimator is initialized with one of such subsets of S, then there will be an output
sequence for which the state estimate at a later time will intersect the bad set no matter what input
sequence is applied to the system. Mathematically, this is denoted as

C = {X ∈2S|∀{uk}k∈N,∃N and {yk}0�k�N

such that �̂N (X,{uk}0�k<N ,{yk}0�k�N )∩B 	=∅} (2)

To maintain safety, a controller must thus guarantee that the state estimator (1) will never have
one of the sets in C as a state. For a general system with only discrete states, the set C can be
computed in a finite number of steps, but the complexity of the algorithm that computes it is
exponential [19]. For a system with also continuous states, the computation of C is impractical
because the sets are infinite.

In this paper, we exploit order preserving properties and a triangular structure of the system
dynamics to show

(a) that a tight over-approximation of the capture set for the perfect state information case can
be symbolically computed by an algorithm with linear complexity in the number of state
variables;

(b) that with imperfect information one does not need to re-compute C , but the same symbolic
computation obtained for the perfect information case can be employed by evaluating suitable
lower and upper bounds on the lower and upper bounds of the state estimate.

The basic idea is to propagate and represent sets by means of their upper and lower bounds in the
chosen partial order. If the dynamics of the system preserve such an order, in a way that is made
mathematically precise in the paper, one can compute the uncontrollable predecessor of an interval
just by computing its lower and upper bounds. In this way, one can compute the capture set by
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simply back propagating upper and lower bounds as opposed to back propagating entire sets. This
approach is inspired by interval abstraction techniques [22], which have been extensively employed
in the static analysis of programs. Within this approach, representing the set of current system
states as an interval is crucial for determining the control map. In fact, such a control map relies
on the comparison between suitable upper and lower bounds for exploiting the order preserving
properties of the dynamics. Thus, we employ state estimators on partial orders as developed in
[23, 24], as opposed to employing other set-valued approaches to state estimation such as the ones
proposed by Alamoa et al. [25] and by the references therein. The net result is a dynamic control
algorithm for safety specifications, which has linear complexity in the number of state variables
for systems with order preserving properties.

The contents of this paper are as follows. In Section 2, we introduce the class of systems
considered, that is, the class of triangular order preserving hybrid automata. In Section 3, we
solve the perfect information case control problem, whereas in Section 4, we solve the imperfect
information case control problem. Finally, Section 5 presents the application of the developed
techniques to collision avoidance problems in intelligent transportation systems.

2. CLASS OF SYSTEMS CONSIDERED

In this section, we introduce basic notions on partial orders and the class of systems that we
consider. A partial order [26] is a set P with a partial order relation ‘�’, and we denote it by the
pair (P,�). For all x,w∈ P , the sup{x,w}, denoted x�w, is the smallest element that is larger
than both x and w. The inf{x,w}, denoted x�w, is the largest element that is smaller than both
x and w. If S⊆ P , ∨S :=sup S and ∧S := inf S. If x�w∈ X and x�w∈ X for all x,w∈ X , then
(X,�) is a lattice. Any interval sublattice of (P,�) is given by [L ,U ]={w∈ P|L�w�U } for
L ,U ∈ P . That is, this special sublattice can be represented by only two elements. A special type
of partial ordering can be considered on Rn , and it is given by the component-wise partial ordering,
defined as follows. For all x, y∈Rn with x=(x1, . . . , xn) and y=(y1, . . . , yn), we have that x�y
if and only if xi�yi for all i ∈{1, . . . ,n}. Let (P,�) and (Q,�) be partially ordered sets. A map
f : P→Q is (i) an order preserving map if x�w
⇒ f (x)� f (w) and (ii) an order isomorphism
if x�w⇐⇒ f (x)� f (w) and it maps P onto Q.

We next specify the general class of transition systems to a class of systems that has both
continuous and discrete states. That is, we define a hybrid automaton H as a transition system
�H =(S,I,Y,�,�), in which S=Q×X , I=ID×IC , �=( f, R), with f :Q×X×IC → X ,
R :Q×X×ID→Q, and � :Y→2X ×2Q . In particular, we give the following definition, which
is analogous to the continuous time counterpart [3].
Definition 1
A discrete time hybrid automaton is a tuple H =(Q, X,I, �,Y, f,Dom, R,�), in which Q=
{q1, . . . ,qm} is a set of discrete states (or modes); X =Rn is the set of continuous states; I=
ID×IC is the set of discrete and continuous inputs, respectively; � :Q→2I is a function that
attaches to each discrete state the set of enabled inputs; Y is a set of outputs; f :Q×X×IC → X
is the continuous state update function; Dom :Q→2X is a map that for each mode establishes the
domain in X in which such a mode is enabled; R :Q×X×ID→Q is the discrete state update
map, which for any current discrete state, continuous state, and input determines the new discrete
state; and � :Y→2X is the output map.
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We denote the mode by q∈Q, the continuous state by x ∈ X , the continuous input by u∈IC ,
and the discrete input by �∈ID. We assume that the reset function is static, that is, it does
not contain memory of previous discrete states. Thus, we have q= R(x,�). We make an explicit
distinction between two types of modes: the modes q such that Dom(q)= X and the modes q
such that Dom(q) 	= X . In particular, we assume that a transition to a mode with Dom(q)= X can
occur only by a suitable choice of discrete inputs, whereas a transition to a mode with Dom(q) 	= X
can occur only autonomously and thus cannot be controlled. This is formalized by the following
structure of R:

R(x,�) :=
{
R1(�) if � 	=∅
R2(x) if �=∅ (3)

in which we define R2(x) :=q if x ∈Dom(q). One can verify that this update is deterministic if
Dom(q1)∩Dom(q2)=∅ whenever Dom(q1) 	=Rp and Dom(q2) 	=Rp. In addition, we assume that
for any mode with Dom(q)=Rp, there exists a discrete input �∈ID such that q= R(�). The
non-blocking condition can be guaranteed if

⋃
{q|Dom(q)	=Rp}Dom(q)=Rp. In the sequel, we use

the notation Q :={q∈Q|Dom(q) 	=Rp}. The general class of discrete time hybrid automata is
next restricted to the class of hybrid automata, in which the continuous state update map is order
preserving.

Definition 2
Let (Rn,�) be the partial order established according to component-wise ordering. A triangular
order preserving hybrid automaton is a hybrid automaton H =(Q, X,I, �,Y, f,Dom, R,�), in
which

(i) The update map f (q, x,u) for every q∈Q and x=(x1, . . . , xn)∈Rn has the following trian-
gular structure f (q, x,u)=( f1(x1, . . . , xn), . . . , fi (xi , . . . , xn), . . . , fn(xn,q,u)), in which
fi :Rn−(i−1) →R for i ∈{1, . . . ,n−1}, fn :R×Q×IC →R with IC =R, and Dom(q)⊆
Rn .

(ii) We assume that the set of discrete states with Dom(q)=Rn is a lattice with minimum �
and with maximum �, that is, {q∈Q|Dom(q)=Rn}=[�,�]. For all q∈Q, we assume that
�(q) is an interval in R, that is, �(q)=[uL(q),uU (q)]. In addition, the functions uL(·) and
uU (·) are order preserving in q with Dom(q)=Rn .

(iii) We assume that fi is order preserving in all of its arguments, that is, if (xai , . . . , xan )�(xbi , . . . ,
xbn ), then fi (xai , . . . , xan )� fi (xbi , . . . , x

b
n ) for i<n, and fn(xan ,q,u)� fn(xbn ,q,u). In addition,

fn :Q|{q∈Q|Dom(q)=Rn}×R×IC →R is order preserving in all of its arguments. Addition-
ally, fi is one–one and onto in xi , that is, fixed xi+1, . . . , xn,q,u, for any x ′

i there is one
and only one xi such that fi (xi , . . . , xn)= x ′

i if i<n or fi (xi ,q,u)= x ′
i if i=n. We denote

the first one by f −1
i (x ′

i , xi+1, . . . , xn) and the second one by f −1
i (x ′

i ,q,u).
(iv) The maps fi are non-decreasing: fi (xi , . . . , xn)�xi , for i<n and fn(xn,q,uU (q))>xn for

all q .
(v) For all y∈Y, the set �(y)⊆Rn is an interval in (Rn,�), that is, �(y)=[∧�(y),∨�(y)].

Example 1
A practical motivation for the structure of the dynamics in Definition 2 is given by the longitudinal
dynamics of vehicles along their lanes or paths. Let x ∈R represent the coordinate of a vehicle
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along its lane, then

ẍ= R2/(Jw+mR2)
(
fw− fbrake− �air

2
CDAfU

2−Crrmg−mg sin(	road)
)

(4)

in which Jw is the wheel inertia, m is the mass of the vehicle, R is the tire radius, fbrake is the brake
force, fw=�w/R where �w is the drive-shaft output torque, U is the longitudinal vehicle velocity,
�air is the air density, CD is the drag coefficient, Af is the projected front area of the vehicle, Crr
is the rolling resistance coefficient, R is the tire radius, and 	road is the road gradient. For more
details on this model, the reader is referred to [27] and to the references therein. For automatic
driving, fw and fbrake are control inputs to the longitudinal dynamics of the vehicle. Let the total
force F= fw− fbrake, 
= R2/(Jw+mR2)(−(�air/2)CDAfU 2−Crrmg), b= R2/(Jw+mR2), and
	road=0. Assuming that all the parameters are exactly known, then 
 is also known as the vehicle
measures on-board its own longitudinal velocity U . Thus, one can set F=(u−
)/b so that the
resulting discrete time model can be expressed as

x ′
1= x1+x2�T, x ′

2= x2+u�T (5)

in which x1= x , x2= ẋ1, and �T>0 is the discretization time. Such a model not only has a
triangular structure but also the update map is order preserving and in particular fi are invertible
with respect to the xi . In addition, condition (iv) of Definition 2 is always satisfied because the
vehicles cannot move in reverse along their lane and if u is large (F is a sufficiently large positive
force), then the vehicle will accelerate.

The parallel composition of a number of triangular order preserving hybrid automata generates
a block-triangular order preserving hybrid automaton. This is made more precise by defining the
parallel composition of hybrid automata in a way similar to that in [28].
Definition 3
Let H1=(Q1, X1,I1, �1,Y1, f1,Dom1, R1,�1) and H2=(Q2, X2,I2, �2,Y2, f2,Dom2, R2,�2) be
two hybrid automata. The parallel composition, denoted H =H1‖H2, is given by H =
(Q, X,I, �,Y, f,Dom, R,�), in which Q=Q1×Q2, X = X1×X2, I=IC ×ID with IC =
IC,1×IC,2 and ID=ID,1×ID,2; � :Q→IC is given by �=(�1, �2); Y=Y1×Y2; f :Q×X×
IC → X is given by f =( f1, f2); Dom(q)=Dom1(q1)×Dom2(q2); R(x,�)=(R1(x1,�1), R2
(x2,�2)); �=(�1,�2).

Definition 4
A block-triangular order preserving hybrid automaton is the parallel composition of N triangular
order preserving hybrid automata H1, . . . ,HN .

Let xi =(x1,i , . . . , xn,i )∈Rn , qi ∈Qi , ui ∈ �(qi ), and �i ∈ID,i represent the continuous state, the
discrete state, the continuous input, and the discrete input of the triangular hybrid automaton Hi ,
respectively. Then, in each mode q=(q1, . . . ,qN ) of the hybrid automaton H =H1‖· · ·‖HN , the
continuous state update map has the following form:

x ′
j,i = f j,i (x j,i , . . . , xn,i ), j<n, i ∈{1, . . . ,N }

x ′
n,i = fn,i (xn,i ,qi ,ui ), i ∈{1, . . . ,N }

(6)
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in which primed variables denote updated variables. In the sequel, we will use the notation

fi (qi , xi ,ui )=( f1,i (x1,i , . . . , xn,i ), . . . , fn,i (qi , xn,i ,ui ))

For system H =H1‖· · ·‖HN , we model the safety requirement by requesting that the state x never
enters the bad set:

B = {(x1,1, . . . , xn,1, . . . , x1,N , . . . , xn,N )|(x1,1, . . . , x1,N )∈ B}
B = [L1,U1]×· · ·×[LN ,UN ] with Li ,Ui ∈R

(7)

In the sequel, we denote L=(L1, . . . , LN ) and U =(U1, . . . ,UN ). This choice of the safety require-
ment to involve only the variables (x1,1, . . . , x1,N ) is motivated by applications, such as collision
avoidance, in which a collision occurs whenever the positions of the agents are too close to each
other independently of the values of their speeds, accelerations, jerks, etc.

In the following two sections, we first address the case in which the whole state is measured
(perfect information case). Then we consider the case in which the continuous state x is subject
to uncertainty (imperfect information case). In such a case, the control map is the same as the
perfect information case, but it is evaluated on the state estimates as opposed to being evaluated
on the state.

3. THE CASE OF PERFECT INFORMATION

In this section, we construct the control map by computing an approximation C̄ of the capture set C .
To explain the idea of the algorithm that computes the over-approximation C̄ of the capture set,
we first introduce a very simple example.

Example 2
Consider the system

x ′
1 = x1+u1, u1∈[um,uM ]
x ′
2 = x2+u2, u2∈[um,uM ]

(8)

with bad set B=[L ,U ]×[L ,U ], with L ,U ∈R and L<U . In this case, the exact capture set C
can be computed by employing the following very simple reasoning. The set of all (x1, x2) that
are mapped by (8) inside B for all inputs (u1,u2)∈[um,uM ]×[um,uM ] is given by {(x1, x2)|x1∈
[L−u1,U−u1] and x2∈[L−u2,U−u2] for all (u1,u2)∈[um,uM ]×[um,uM ]}, which is simply
given by B1 :={(x1, x2)|; x1∈[L−um,U−uM ] and x2∈[L−um,U−uM ]}. One can then compute
the set of all (x1, x2) that are mapped by (8) inside B1 for all inputs (u1,u2)∈[um,uM ]×[um,uM ],
to obtain [L−2um,U−2uM ]×[L−2um,U−2uM ] := B2. As a consequence, one obtains

C= ⋃
k�0

Bk, Bk =[L−kum,U−kuM ]×[L−kum,U−kuM ]

which is depicted in Figure 1. Let us denote the ends of Bk by Lk := L−kum and Uk :=U−kuM .
Once the capture set C is computed this way, the control map (u1,u2)=g(x1, x2) is simply
determined by leaving the input arbitrary if this input does not map through (8) the state (x1, x2)
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1588 D. DEL VECCHIO

Figure 1. Example of capture set C (given by the union of the intervals) for the simple system in
Equations (8). If a state (the dot) is ‘above’ the capture set C , the control (u1,u2)=(um,uM ) guarantees

that it is mapped still ‘above’ the capture set.

in C . Otherwise, set u1=um and u2=uM if x1�Lk and x2�Uk−1 for some k (that is, (x1, x2)
is ‘above’ C), or set u1=uM and u2=um if x1�Uk and x2�Uk+1 for some k (that is, (x1, x2)
is ‘below’ C). One can check that such an input map will keep any state (x1, x2) outside C still
outside C . This is pictorially shown in Figure 1.

In this example, the computation of C has been obtained by back propagating only the lower
and upper bounds of Bk , which is possible because the dynamics preserves the ordering on the
state. In addition, the exploitation of the order preserving property of the dynamics with respect
to the input allows to easily compute the control map by comparing (x1, x2) with the lower and
upper bounds of Bk .

We next generalize the reasoning of this simple example to the class of systems given in
Definition 4 in the case of perfect state information, that is, in the case in which �(y)={x}. Let
thus B be as given in Equations (7). Denote

Fi (x2,i , . . . , xn,i ,qi ,ui ) :=( f2,i (x2,i , . . . , xn,i ), . . . , fn,i (xni ,qi ,ui ))

x̄i =(x2,i , . . . , xn,i ), and

Fk
i (x̄i ,qi ,ui ) :=F(Fk−1(x̄i ,qi ,ui ),qi ,ui )

Let x̄=(x̄1, . . . , x̄N ). Then, we have that C̄={(x1,1, . . . , xn,1, . . . , x1,N , . . . , xn,N )|(x1,1, . . . ,
x1,N )∈ C̄∗(x̄)}, in which C̄∗(x̄) is given by the following algorithm.

Algorithm 1
C̄∗(x̄)=⋃k=k∗−1

k=0 [L̄k,Ū k], L̄0= L ,Ū 0=U, L̄k =(L̄k
1, . . . , L̄

k
N ),Ū k =(Ū k

1 , . . . ,Ū k
N ) with

L̄1
i (x̄i ) = f −1

1,i (L0
i , x̄i )

Ū 1
i (x̄i ) = f −1

1,i (U 0
i , x̄i )
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while for k>1, we have

Lk
i (x̄i ) = Lk,a

i (x̄i )�Lk,b
i (x̄i ) (9)

Lk,a
i (x̄i ) = ∧

qi∈Q̄i

f −1
1,i (L̄k−1

i (Fi (x̄i ,qi ,uL(qi ))), x̄i ) (10)

Lk,b
i (x̄i ) = f −1

1,i (L̄k−1
i (Fi (x̄i ,�i ,uL(�i ))), x̄i ) (11)

Uk
i (x̄i ) =Uk,a

i (x̄i )�Uk,b
i (x̄i ) (12)

Uk,a
i (x̄i ) = ∨

qi∈Q̄i

f −1
1,i (Ū k−1

i (Fi (x̄i ,qi ,uU (qi ))), x̄i ) (13)

Uk,b
i (x̄i ) = f −1

1,i (Ū k−1
i (Fi (x̄i ,�i ,uU (�i ))), x̄i ) (14)

with (removing the dependence on x̄i for shortness of notation)

L̄k
i = inf(Lk

i , L̄
k−1
i ) (15)

Ū k
i =

{
sup(Uk

i , L̄k−1
i ) if ∃ j such that Uk

j >L̄k−1
j

Uk
i if Uk

j �L̄k−1
j ∀ j

(16)

with k∗ the smallest k such that

Uk
i �L̄k−1

i ∀i and ∃ j such that Ū k
j <L̄k

j

For a fixed x̄ , the set C̄∗(x̄) is the union of k∗ intervals in RN . Expressions (9) and (12) of
the extremes of such intervals depend on the values of the variables (x2,i , . . . , xn,i ) for all i . For
computation, one can off-line symbolically compute the iterative expressions (9) and (12) and
evaluate them only when the value of (x2,i , . . . , xn,i ) becomes available on-line. The set C̄ is
obtained by computing at each iteration (n−1)N computations for evaluating f j,i for j>1 and for
i ∈[2,N ]. This procedure has thus linear complexity with the number of continuous state variables.

We next show that Algorithm 1 computes an over-approximation of C , that is, C̄⊇C , by showing
that for all x /∈ C̄ , there is always an input such that x is mapped outside C̄ . We show this in two
parts. First, we demonstrate that whenever x /∈ C̄ (and thus (x1,1, . . . , x1,N ) /∈ C̄∗(x̄)⊆RN ) there is
a two-dimensional projection of C̄∗(x̄) and of (x1,1, . . . , x1,N ) along coordinate axis (i, j) in RN ,
such that (x1,i , x1, j ) is not contained in

⋃k∗−1
k=0 [L̄k

i (x̄i ),Ū
k
i (x̄i )]×[L̄k

j (x̄ j ),Ū
k
j (x̄ j )] (Proposition 1).

From a geometric point of view, the situation, in such a plane, becomes then similar to the one in
Figure 1 obtained for the simple example. Second, we consider such two-dimensional projection
of C̄∗(x̄) and of (x1,1, . . . , x1,N ) to compute an input that maps the two-dimensional projection
of (x1,1, . . . , x1,N ) outside the two-dimensional projection of C̄∗(x̄) (Proposition 2). Let us denote
the interior of a set for a set S in a metric space by Int(S).

Proposition 1
Given Algorithm 1, the following are equivalent:

(i) (x1,1, . . . , x1,N ) /∈ Int(C̄∗(x̄));
(ii) there is a pair of coordinates (i, j) with i 	= j and a k̄<k∗ such that either x1,i�L̄k

i (x̄i ) for

k�k̄ and x1, j�Ū k
j (x̄ j ) for k>k̄ or x1,i�L̄k∗−1

i (x̄i ).
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Proof
We omit here the dependence of C̄∗, L̄k , and Ū k on x̄ . (The proof that (ii) implies (i) follows
directly by the fact that (ii) implies that (x1,1, . . . , x1,N ) is not contained in any of the intervals
composing C̄∗.) We thus prove that (i) implies (ii). If (x1,1, . . . , x1,N ) /∈ Int(C̄∗), then (x1,1, . . . , x1,N )

is not in any of the component rectangles of C̄∗, that is, (x1,1, . . . , x1,N ) /∈ Int([L̄k
1,Ū

k
1 ]×· · ·×

[L̄k
N ,Ū k

N ]) for all k. This, in turn, implies that for all k there is at least one ik such that either (a)
x1,ik�L̄k

ik
or (b) x1,ik�Ū k

ik
. Let k be the smallest integer less than k∗ such that there is a ik with

x1,ik�Ū k
ik
. If it does not exist, it means that there is ik∗−1 such that x1,ik∗−1�L̄k∗−1

ik∗−1
. If it exists,

it implies that x1,ik�Ū k
ik
and that there is a ik−1 such that x1,ik−1�L̄k−1

ik−1
. Here, we can have two

cases: (1) ik−1 	= ik and (2) ik−1= ik . In case (1), thus we have x1,ik�Ū k
ik
�Ū k+1

ik
� · · ·�Ū k∗

ik
and

x1,ik−1�L̄k−1
ik−1

�L̄k−2
ik−1

� · · ·�L̄0
ik−1

because the sequences {L̄k} and {Ū k} are non-increasing. In case

(2), we have that Ū k
ik
�x1,ik�L̄k−1

ik−1
. This in turn is possible if Ū k

ik
<L̄k−1

ik
, which by Equations (16)

is possible if Ū k
j �L̄k−1

j for all j . Then, either there is a j 	= ik such that x1, j>Ū k
j or for all

j 	= ik , we have that x1, j�Ū k
j that implies x1, j�L̄k−1

j . The relation x1, j�Ū k
j with j 	= ik and with

x1,ik�L̄k−1
ik−1

falls back into case (1). Similarly, having that x1, j�L̄k−1
j for all j 	= ik and Ū k

ik
�x1,ik

also falls back into case (1). �

Proposition 2
Let L̄k

i (x̄i ) and Ū k
i (x̄i ) be as in Algorithm 1. If x1,i�L̄k

i (x̄i ), (x1,i�Ū k
i (x̄i )), then there exists a

continuous/discrete control law such that x ′
1,i�L̄k−1

i (x̄ ′
i ) (x ′

1,i�Ū k−1
i (x̄ ′

i )). In particular, such a
control law is as follows:

if x1,i � L̄k
i (x̄i ) then

R1,i (�i ) = �i , ui =uL(�i ) if Lk,a
i (x̄i )<Lk,b

i (x̄i )

R2,i (xi ) = qi , ui =uL(qi ) if Lk,a
i (x̄i )�Lk,b

i (x̄i )

(17)

if x1,i � Ū k
i (x̄i ) then

R1,i (�i ) = �i , ui =uU (�i ) if Uk,a
i (x̄i )>Uk,b

i (x̄i )

R2,i (xi ) = qi , ui =uU (qi ) if Uk,a
i (x̄i )�Uk,b

i (x̄i )

(18)

Proof
In the case in which x1,i�L̄k

i (x̄i ), we also have by Expressions (16) that x1,i�Lk
i (x̄i ). If also

Lk,a
i (x̄i )>Lk,b

i (x̄i ), we will have that x1,i�Lk,a
i (x̄i ). Applying f1,i on both sides and taking

into account that f1,i preserves the ordering, we obtain that f1,i (x1,i , x̄i )� f1,i (L
k,a
i (x̄i ), x̄i ).

By Equation (10) and by the order isomorphism property of f1,i in its first argument,
we have that f1,i (L

k,a
i (x̄i ), x̄i )=∧

qi∈Q̄i
L̄k−1
i (Fi (x̄i ,qi ,uL(qi ))). In addition, we have that∧

qi∈Q̄i
L̄k−1
i (Fi (x̄i ,qi ,uL(qi )))�L̄k−1

i (Fi (x̄i ,qi ,uL(qi ))). As a consequence, if we choose
the control action such that qi = R2,i (xi ) and ui =uL(qi ), we obtain that Fi (x̄i ,qi ,uL(qi ))=
(x ′

2,i , . . . , x
′
n,i )= x̄ ′

i and therefore that x ′
1,i = f1,i (x1,i , x̄i )�L̄k−1

i (x̄ ′
i ). If Lk,a

i (x̄i )�Lk,b
i (x̄i ). We
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can proceed similarly to obtain that x1,i�Lk,b
i (x̄i ) implies by the order preserving property of

f1,i that f1,i (x1,i , x̄i )� f1,i (L
k,b
i (x̄i ), x̄i ). By Equation (11), we also have that f1,i (L

k,b
i (x̄i ), x̄i )=

L̄k−1
i (Fi (x̄i ,�i ,uL(�i ))), which by choosing R1,i (�i )=�i and ui =uL(�i ) is equal to L̄

k−1
i (x ′

2,i , . . . ,

x ′
n,i )= L̄k−1

i (x̄ ′
i ). As a consequence, we have again that x ′

1,i = f1,i (x1,i , x̄i )�L̄k−1
i (x ′

2,i , . . . , x
′
n,i )=

L̄k−1
i (x̄ ′

i ). If x1,i�Ū k
i (x̄i ), then it follows from expressions (16) that x1,i�Uk

i (x̄i ) and the proof
proceeds in a way similar as performed above. �

When the measurement x becomes available, the extremes L̄k
i (x̄i ) and Ū k

i (x̄i ) can be evalu-
ated. Then, one checks whether maintaining the current input will cause that (x ′

1,1, . . . , x
′
1,N ) will

enter any of the intervals [L̄k
1(x̄

′
1),Ū

k
1 (x̄ ′

1)]×· · ·×[L̄k
N (x̄ ′

N ),Ū k
N (x̄ ′

N )] for all k. If not, the input is
maintained constant. Otherwise, the input is changed according to the following algorithm.

Algorithm 2

(i) If there is a k∈[0,k∗−1] and a pair of coordinates (i, j) such that x1,i�Ū k+1
i and x1, j�L̄k

j ,
then set (Ri (xi ,�i ),ui ) as in Equation (18) with k+1 in place of k, and set (R j (x j ,� j ),u j )

as in Equation (17);
(ii) If instead (x1,1, . . . , xN ,1)�(L̄k∗−1

1 (x̄1), . . . , L̄
k∗−1
N (x̄N )), select (i, j) such that x1,i�L̄k∗−1

i

(x̄i ) and x1, j�L̄k∗−1
j (x̄ j ) with Ū k∗

j (x̄ j )<L̄k∗
j (x̄ j ). If x1, j�L̄k∗

j (x̄ j ) then (x1, j�Uk∗
j (x̄ j )),

set (R j (x j ,� j ),u j ) as in Equation (18) and set (Ri (xi ,�i ),ui ) as in Equation (17). If
x1, j�L̄k∗

1, j , set (R(x j ,� j ),u j ) as in Equation (17) and set (Ri (xi ,�i ),ui ) arbitrarily (if
Ri (xi ,�i )= R2,i (xi ), then set ui ∈ �i (qi )).

Algorithm 2 thus provides switching control laws u=gC (x,q) and �=gD(x) with q= R(x,�)

such that if x /∈ C̄ with C̄={(x1,1, . . . , xn,1, . . . , x1,N , . . . , xn,N )|(x1,1, . . . , x1,N )∈ C̄∗(x̄)} and C̄∗(x̄)
as computed by Algorithm 1, then x ′ /∈ C̄ .

4. THE CASE OF IMPERFECT INFORMATION

Consider the class of systems given in Definition 4, in which now �(y) returns a set of possible
continuous states compatible with the output measurement y. In order to proceed, we construct a
state estimator and a controller is then determined on the basis of the state estimates.

4.1. State estimator

Consider hybrid automaton H and let x̂⊆ X . A set valued state estimator for H of the type of the
one in Equation (1) can take, for example, the form

x̂ ′ = f (q̂, x̂,u)∩�(y′) with q̂= R(x̂,�) (19)

and

R(x̂,�)=
{
R1(�) if � 	=∅
R2(x̂) if �=∅
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in which R2(x̂)={q∈Q|∃x ∈ x̂, with, x ∈Dom(q)} and x̂0=�(y0). One can verify that xk ∈ x̂ k

for all k. This type of estimator is impractical for implementation because the sets x̂ are in
general infinite sets. However, since H is the parallel composition of order preserving triangular
hybrid automata Hi , the update maps fi are order preserving and �(yi )=[∧�(yi ),∨�(yi )]. As
a consequence, one can keep track of the lower and upper bounds of x̂ as follows. Let ∨x̂=
(∨x̂1, . . . ,∨x̂N ) and ∧x̂=(∧x̂1, . . . ,∧x̂N ) denote the upper and lower bounds of x̂ , respectively.
Then, we have that ∨x̂i =(∨x̂1,i , . . . ,∨x̂n,i )∈Rn and ∧x̂i =(∧x̂1,i , . . . ,∧x̂n,i )∈Rn are the lower
and the upper bounds of x̂i , respectively, in which x̂i ⊆Rn is the state estimate of the component
automaton Hi . Then, the bounds of x̂i for all i are updated according to the following equations:

if �i 	=∅,
∧x̂ ′

i = fi (∧x̂i , R1,i (�i ),ui )�∧�(y′
i )

∨x̂ ′
i = fi (∨x̂i , R1,i (�i ),ui )�∨�(y′

i )
(20)

if �i =∅,

∧x̂ ′
i = ∧

qi∈Q̂i

fi (∧x̂i ,qi ,ui )�∧�(y′
i )

∨x̂ ′
i = ∨

qi∈Q̂i

fi (∨x̂i ,qi ,ui )�∨�(y′
i )

(21)

in which y′
i is the output observation of Hi , Q̂i is the set of possible modes that are compatible

with the interval of states [∧x̂i ,∨x̂i ], that is,

Q̂i = {qi ∈Qi |∃xi ∈[∧x̂i ,∨x̂i ] such that xi ∈Domi (qi )} (22)

∧x̂0i = ∧�(y0i ), ∨x̂0i =∨�(y0i ) (23)

Proposition 3
Let {uk}k∈N be an input sequence for the block-triangular order preserving hybrid automaton H =
H1‖· · ·‖HN , and let {xk}k∈N and {yk}k∈N be the corresponding execution and output sequence.
Let {∧x̂ k}k∈N and {∨x̂ k}k∈N with ∨x̂=(∨x̂1, . . . ,∨x̂N ) and ∧x̂=(∧x̂1, . . . ,∧x̂N ) be generated by
Equations (20)–(23). Then, xk ∈[∧x̂ k,∨x̂ k] for all k.

The proof of this proposition is a consequence of the order preserving property of fi and of
the interval structure of �(yi ). For more details on these types of estimators and for convergence
conditions, the reader is referred to [23, 24].

4.2. Dynamic feedback

Once the set of all possible current states is known, we can design a control input that maps such
a set as a whole forward in such a way that it will never intersect the bad set B. Consider again
Example 2. We illustrate how in such a case it is not necessary to compute the capture set for the
imperfect information case as defined in Equation (2). Instead, the same capture set as computed
in the perfect information case is employed.

Example 3
Consider again the system in Equations (8) and consider the capture set C computed earlier and
shown in Figure 2. Now consider also a state uncertainty as given by the state estimator. This
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Figure 2. Capture set C for the system in Example 3. The state estimate is given by the interval [∧x̂,∨x̂].
A control input (u1,u2)=(um,uM ) guarantees that the state estimate is kept ‘above’ the capture set.

uncertainty is an interval x̂=[∧x̂,∨x̂] as shown in Figure 2. Since ∧x̂2>Uk and ∨x̂1<Lk−1, one
can set u1=um and u2=uM (as in the perfect information case) so that the state estimate x̂ is
mapped still outside the capture set C as shown in Figure 2. A similar reasoning would have lead
to u1=uM and u2=um if the state estimate x̂ were ‘below’ the capture set C .

This example exploits the computation of C obtained in the perfect information case and exploits
the order preserving property of the dynamics in order to determine an input that maps a set x̂ not
intersecting C to a set that still does not intersect C . This problem can be generally formulated as
follows.

Problem 1 (State estimator-based safety control problem)
Given transition system �=(S,I,Y,�,�)with bad set B⊆ S, determine the smallest set C⊆ S with
B⊆C , if it exists, and a dynamic feedback law uk =g(ŝk), with ŝk = �̂(ŝk−1,uk−1, yk), ŝ0=�(y0),
and {yk}k∈N output sequence of � such that if ŝ0∩C=∅, then ŝk∩C=∅ for all k.

Instead of computing the capture set C⊂2S as defined in Equation (2), we seek to compute a
set C⊂ S such that if the information state ŝ does not intersect it, then there is a control input that
will map such information state still outside C . This, if possible, simplifies the computation of C .
In particular, we show that a good over-approximation of such a set C for the general class of
block-triangular order preserving hybrid automata is provided by the following algorithm, which
provides a slightly augmented set with respect to the one computed by Algorithm 1. Then, we
have C̄={(x1,1, . . . , xn,1, . . . , x1,N , . . . , xn,N )|(x1,1, . . . , x1,N )∈ C̄∗(x̄)}, in which C̄∗(x̄) is given by
the following algorithm.

Algorithm 3
C̄∗(x̄)=⋃

k�0[L̄k,Ū k], L̄0= L ,Ū 0=U, L̄k =(L̄k
1, . . . , L̄

k
N ),Ū k =(Ū k

1 , . . . ,Ū k
N ) with

L̄1
i (x̄i ) = f −1

1,i (L0
i , x̄i )

Ū 1
i (x̄i ) = f −1

1,i (U 0
i , x̄i )
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while for k>1, we have

Lk
i (x̄i ) = Lk,a

i (x̄i )�Lk,b
i (x̄i ) (24)

Lk,a
i (x̄i ) = ∧

qi∈Q̄i

f −1
1,i (L̄k−1

i (Fi (x̄i ,qi ,uL(qi ))), x̄i ) (25)

Lk,b
i (x̄i ) = f −1

1,i (L̄k−1
i (Fi (x̄i ,�i ,uL(�i ))), x̄i ) (26)

Uk
i (x̄i ) =Uk,a

i (x̄i )�Uk,b
i (x̄i ) (27)

Uk,a
i (x̄i ) = ∨

qi∈Q̄i

f −1
1,i (Ū k−1

i (Fi (x̄i ,qi ,uU (qi ))), x̄i ) (28)

Uk,b
i (x̄i ) = f −1

1,i (Ū k−1
i (Fi (x̄i ,�i ,uU (�i ))), x̄i ) (29)

with (removing the dependence on x̄i for shortness of notation)

L̄k
i = inf(Lk

i , L̄
k−1
i ,Uk

i ) (30)

Ū k
i = sup(Uk

i , L̄k−1
i , L̄k

i ) (31)

The following proposition provides an easy check for establishing whether the state estimate
set [∧x̂,∨x̂] does not intersect C̄ .

Proposition 4
We have that [∧x̂,∨x̂]∩C=∅ if

[∧x̂1,1,∨x̂1,1]×· · ·×[∧x̂1,N ,∨x̂1,N ]∩ ⋃
k�0

[L k
(∨x̂),U

k
(∧x̂)]=∅

Proof

We show that if [∧x̂1,1,∨x̂1,1]×· · ·×[∧x̂1,N ,∨x̂1,N ]∩⋃
k�0[L k

(∨x̂),U
k
(∧x̂)]=∅, then [∧x̂,∨x̂]∩

C=∅. This derives directly from the fact that C={x |(x1,1, . . . , x1,N )∈C
∗
(x)}, in which C

∗
(x) is

given by Algorithm 1, and by the fact that the functions L
k
i (xi ) and U

k
i (xi ) are order reversing

functions of their arguments. �

By virtue of this proposition, if we can guarantee that [∧x̂1,1,∨x̂1,1]×· · ·×[∧x̂1,N ,∨x̂1,N ]∩⋃
k�0[L k

(∨x̂),U
k
(∧x̂)]=∅ at all time trough a suitable choice of a control map, then we also

guarantee that [∧x̂,∨x̂]∩C=∅. The following proposition provides an intermediate result (anal-
ogous to Proposition 1 for the perfect information case) that plays a central role for establishing
such a control map.

Proposition 5
The following are equivalent:

(i) [∧x̂1,1,∨x̂1,1]×· · ·×[∧x̂1,N ,∨x̂1,N ]∩⋃
k�0[L k

(∨x̂),U
k
(∧x̂)]=∅;

(ii) There is a pair of coordinates (i, j) with i 	= j and an index k̄ such that ∨x̂1, j�L̄k
j (∨ˆ̄x j )

for all k�k̄ and ∧x̂1,i�Ū k
i (∧ˆ̄xi ) for all k>k̄.
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Proof
The fact that (ii) implies (i) follows because (ii) implies that the two-dimensional projection of
the interval [∧x̂1,1,∨x̂1,1]×· · ·×[∧x̂1,N ,∨x̂1,N ] on the (i, j) plane does not intersect any of the

projections of the intervals that compose
⋃

k�0[L k
(∨x̂),U

k
(∧x̂)]. We thus focus on proving

that (i) implies (ii). This proof exploits the following properties of Algorithm 3. The sequences
{Ū k(x̄)} and {L̄k(x̄)} for a fixed x̄ are non-increasing and they tend to −∞. Furthermore, the set⋃

k�0[L k
(∨x̂),U

k
(∧x̂)] is connected for any fixed x̄ . If [∧x̂1,1,∨x̂1,1]×· · ·×[∧x̂1,N ,∨x̂1,N ]∩⋃

k�0[L k
(∨x̂),U

k
(∧x̂)]=∅, then, neglecting the dependence of L̄k and of Ū k on their arguments,

for all k there is an ik such that ∧x̂ik>Ū k
ik

or L̄k
ik
>∨x̂ik . Let k̄ be the smallest integer k such

that ∧x̂ik>Ū k
ik
. This index is finite because the sequence {Ū k(x̄)} for a fixed x̄i tends to −∞.

As a consequence, because the sequence {Ū k(x̄)} for a fixed x̄i is also non-increasing, we have

that ∧x̂ik̄>Ū k
ik̄
for all k�k̄. For k= k̄−1 we thus have that L̄ k̄−1

ik̄−1
>∨x̂ik̄−1

, and since the sequence

{L̄k(x̄)} for a fixed x̄ is non-increasing, we also have that L̄k
ik̄−1

>∨x̂ik̄−1
for all k�k̄−1. This proves

(ii) because the set
⋃

k�0[L k
(∨x̂),U

k
(∧x̂)] is a connected set. In fact, it must be that ik̄ 	= ik̄−1.

If instead ik̄ = ik̄−1, we would have that L̄ k̄−1
ik̄

�∨x̂ik̄�∧x̂ik̄>Ū k̄
ik̄
. This, in turn, would imply that

L̄ k̄−1
ik̄

>Ū k̄
ik̄
, which contradicts the connectedness of the set

⋃
k�0[L k

(∨x̂),U
k
(∧x̂)]. �

Assumption 1
We assume that

⋂
qi∈Qi

[uL(qi ),uU (qi )] 	=∅.
This assumption guarantees that if there are a number of possible current discrete states, then

there is at least an input that is enabled by all of the possible current discrete states.

Proposition 6

Let L
k
i (xi ) and U

k
i (xi ) be as in Algorithm 3 and let Assumption 1 hold. Let ∨x̂i ,∧x̂i ∈Rn and

let ∨x̂ ′
i ,∧x̂ ′

i ∈Rn be the updated values according to Equations (20) and (21). If ∨x̂1,i<L
k
i (∨x̂ i ),

(∧x̂1,i>U
k
i (∧x̂ i )) then there exists a continuous/discrete control law such that ∨x̂ ′

1,i<L
k
i (∨x̂

′
i ),

(∧x̂ ′
1,i>U

k
i (∧x̂

′
i )). In particular, such a control law is as follows:

if ∨x̂1,i < L
k
i (∨x̂ i ) then

R1,i (�i ) = �i , ui =uL(�i ) if Lk,a
i (∨x̂ i )<Lk,b

i (∨x̂ i )

ui = ∨
qi∈Q̂i

uL(qi ) if Lk,a
i (∨x̂ i )�Lk,b

i (∨x̂ i )
(32)

if ∧x̂1,i > U
k
i (∧x̂ i ) then

R1,i (�i ) = �i , ui =uU (�i ) if Uk,a
i (∧x̂ i )>Uk,b

i (∧x̂ i )

ui = ∧
qi∈Q̂i

uU (qi ) if Uk,a
i (∧x̂ i )�Uk,b

i (∧x̂ i )
(33)
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Proof

We show that if ∧x̂1,i>U
k
i (∧x̂ i ) then there exists a continuous/discrete control (�i ,ui ) such that

∧x̂ ′
1,i>U

k
i (∧x̂

′
i ) (the other case can be shown in a similar way).

If ∧x̂1,i>U
k
i (∧x̂ i ), then ∧x̂1,i>Uk

i (∧x̂ i ) and Uk,a
i <Uk,b

i , we will have that ∧x̂1,i>Uk,a
i (∧x̂ i ).

Applying f1,i on both sides and taking into account that f1,i preserves the ordering, we obtain
that f1,i (∧x̂i )> f1,i (U

k,a
i (∧x̂ i ),∧x̂ i ). By expression (13), we have that f1,i (U

k,a
i (∧x̂ i ),∧x̂ i )=∨

qi∈Qi
U

k−1
i (Fi (∧x̂ i ,qi ,uU (qi )). By the fact that Ui (·) are order reversing functions of their

arguments, we have that
∨

qi∈Qi
U

k−1
i (Fi (∧x̂ i ,qi ,uU (qi ))=U

k−1
i (

∧
qi∈Qi

Fi (∧x̂ i ,qi ,uU (qi ))).

As a consequence, if we choose ui =∧
qi∈Q̂i

uU (qi ), we obtain that ∧x̂ ′
1,i>U

k−1
i (∧x̂

′
i )

by virtue of Assumption 1. If instead Uk,a
i �U

k,b
i , we will have that x̂1,i>Uk,b

i (∧x̂ i ). Applying
f1,i on both sides and taking into account that f1,i preserves the ordering, we obtain that
f1,i (∧x̂i )> f1,i (U

k,b
i (∧x̂ i ),∧x̂ i ). By expression (13), we have that f1,i (U

k,b
i (∧x̂ i ),∧x̂ i )=

U
k−1
i (Fi (∧x̂ i ,�i ,uU (�i )). Therefore, choosing R1,i (�i )=�i and ui =uU (�i ), we obtain that

∧x̂ ′
1,i>U

k−1
i (∧x̂

′
i ). �

The idea of this proposition is that all points that have the j th coordinate larger than U
k+1
j can

be mapped to points with j th coordinate larger than U
k
j by suitable choice of input u j (or � j ).

Similarly, all points with the i th coordinate smaller than L
k
i can be mapped to points with i th

coordinate smaller than L
k−1
i by a suitable choice of input ui (or �i ).

Algorithm 4

(i) Evaluate all L
k
i (∨x̂ i ) and U

k
i (∧x̂ i ) for all i and all k until ∧x̂1,i>U

k
i (∧x̂ i ) for all i .

(ii) If there is a k and a pair of coordinates (i, j) such that ∧x̂1,i>U
k+1
i (∧x̂ i ) and

∨x̂1, j<L
k
j (∨x̂ j ), then set (�i ,ui ) as in Equation (33) with k+1 in place of k, and set

(� j ,u j ) as in Equation (32);

Theorem 1
The control law of Algorithm 4 guarantees that if initially [∧x̂1,1,∨x̂1,1]×· · ·×[∧x̂1,N ,∨x̂1,N ]∩⋃

k�0[L k
(∨x̂),U

k
(∧x̂)]=∅, then [∧x̂,∨x̂]∩C̄=∅ at all time. Furthermore, Algorithm 4 termi-

nates.

The fact that Algorithm 4 keeps [∧x̂1,1,∨x̂1,1]×· · ·×[∧x̂1,N ,∨x̂1,N ]∩⋃
k�0[L k

(∨x̂),U
k
(∧x̂)]=

∅ at all time is a consequence of Propositions 5 and 6. Therefore, by virtue of Proposition 4, also
[∧x̂,∨x̂]∩C̄=∅ at all time. Algorithm 4 terminates if and only if (i) of Algorithm 4 terminates.

Termination of step (i) is guaranteed by the fact that the sequence {U k
i (∧x̂ i )}k∈N tends to −∞

for a fixed ∧x̂ i .
In summary, the overall dynamic control strategy is established as follows. Based on the current

values of ∧x̂ and of ∨x̂ , the predicted values of ∧x̂ and ∨x̂ at the next step, denoted ∧x̂pred and
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∨x̂pred, are determined by

if �i 	=∅,
∧x̂pred = fi (∧x̂i , R1,i (�i ),ui )

∨x̂pred = fi (∨x̂i , R1,i (�i ),ui )

if �i =∅,

∧x̂pred = ∧
qi∈Q̂i

fi (∧x̂i ,qi ,ui )

∨x̂pred = ∨
qi∈Q̂i

fi (∨x̂i ,qi ,ui )

with Q̂i as in Equation (22), with ui and �i the inputs applied at the previous step. Thus, the

intervals [L k
(∨x̂pred),U

k
(∧x̂pred)] are computed to check whether [∧x̂pred,∨x̂pred]∩C=∅ using

Proposition 4. If the intersection is empty, then the current input is set to its previous value. If the
intersection is not empty, we use Algorithm 4 to compute the new current input.

5. SIMULATION RESULTS

We consider two examples: one example involves the collision prediction and avoidance of vehicles
at a traffic intersection and it involves only autonomous discrete state transitions. The second
example instead considers a similar problem but with two trains at a railway merging and it involves
only controlled mode transitions.

Vehicles at a traffic intersection. Let us consider two vehicles converging to a traffic intersection
(represented in Figure 3). Each vehicle longitudinal dynamics can be modeled by the second-order

Figure 3. Vehicles converging at a traffic intersection. The bad set is defined to be the set of all
vehicle 1/vehicle 2 configurations in which the vehicles are both in the ball centered at b.
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system in Equations (5), that is,

x ′
1,i = x1,i +x2,i�T

x ′
2,i = x2,i +ui�T, i ∈{1,2} (34)

in which x1,i represents the position of vehicle i with respect to a coordinate axis along its path,
while x2,i represents the longitudinal velocity of vehicle i along the same path (Figure 3). When a
vehicle is inside the intersection, it cannot stop as it has to free the intersection as soon as possible,
while it can stop before entering the intersection. In addition, a vehicle cannot move backwards
in its lane. These constraints can be modeled by requiring that (for a suitable x A

1,i ) for x1,i�x A
1,i

then x2,i�0, while for x1,i>x A
1,i we must have x2,i�vm with vm>0. Let um<0<uM be lower and

upper bounds for each ui . To enforce this requirement, we assume that ui satisfy

when x1,i � x A
1,i , ui ∈

{[0,uM ] if x2,i�0

[um,uM ] if x2,i>0

when x1,i > x A
1,i , ui ∈

{[0,uM ] if x2,i�vm

[um,uM ] if x2,i>vm

in which vm>0 is a lower bound on the speed. Thus, each vehicle can be described by a hybrid
automaton with two modes: qi =q1,i if (x1,i�x A

1,i and x2,i�0) or (x1,i>x A
1,i and x2,i�vm); qi =q2,i

if (x1,i�x A
1,i and x2,i>0) or (x1,i>x A

1,i and x2,i>vm). In each one of these modes, the update
map f is given by Equations (34), in which �(q1,i )=[0,uM ], �(q2,i )=[um,uM ]. Since ID=∅, the
hybrid automaton admits only autonomous mode transitions. We assume that all continuous state
variables are subject to bounded uncertainty, that is, � :R2→2R2

and �(yi )=[yi −�, yi +�], for
some ��0. The safety requirement is modeled by requesting that the two vehicles are never in the
ball centered at b of Figure 3 at the same time. This is encoded by a bad set B={x |(x1,1, x1,2)∈ B̄},
in which B̄=[L1,U1]×[L2,U2] for suitable L1,U1, L2,U2∈R. The results obtained by applying
Algorithms 3 and 4 are shown in Figure 4. In all simulations �T =1.

Trains at a railway merging. Consider two trains in the proximity of a railway merging. Assuming
a second-order dynamics along their rail, each train can be modeled again as in Equations (34).
However, now the input sets will be different from the previous example. In digital control mode
[29], the input ui can take four values corresponding to a ‘hard-brake’ mode, a‘run-out’ mode, a
‘constant-speed’ mode, and an ‘acceleration’ mode. Let these four values be denoted by �,�,
,�,
respectively, so that �<�<
<�. Each vehicle dynamics can thus be modeled by a hybrid automaton
with four modes such that qi =q1,i iff ui =�, qi =q2,i iff ui =�, qi =q3,i iff ui =
, and qi =q4,i iff
ui =�. There are no autonomous switches in this system, so that for each train Ri (x1,i , x2,i ,�i )=
Ri,2(�i ), where �i is the discrete input and can take four values, each corresponding to one of the
modes. Algorithms 1 and 2 were implemented for the perfect information case and results are in
Figure 5. Algorithms 3 and 4 were implemented for the imperfect information case and results are
in Figure 6. For the perfect information case, Algorithms 1 and 2 provide a tight over-approximation
of the capture set as demonstrated by the fact that the trajectories of the system pass very close to
the bad set (Figure 5). For the imperfect information case, the resulting dynamic control law still
guarantees safety but is more conservative (Figure 6). The reason is not in Algorithm 3, which
is basically the same as Algorithm 1, but in Algorithm 4, in which the lower and upper bounds
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Figure 4. Vehicles at a traffic intersection (imperfect state information). Left: show a sample trajectory
in the x1,1, x1,2 plane with initial conditions x2,1= x2,2=1, and u1=u2=0 is shown. The values of um
and uM are chosen to be um =−0.2 and uM =1. The dots represent the position of the vehicles and the
rectangle surrounding them is given by the state estimator (Equations (21)). The measurement uncertainty
is �=10. Right: show a slice of the set C at the initial time for the initial values of velocities x2,1, x2,2

is shown. The box with bold sides represents the set B̄.
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Figure 5. Trains at a railway merging (perfect state information). The box represents the set B̄. The plot
shows the x1,1, x1,2 trajectories of trains at a railway merging. Each trajectory corresponds to a different
choice of initial values for x1,1, x1,2, x2,1, x2,2,u1,u2. The trajectories pass very close to the bad set. This

shows that Algorithms 1 and 2 are tight.

expressions of Algorithm 3 are evaluated on the lower and upper bounds of the state estimate.
In fact, Proposition 4 gives only a sufficient condition for the non-intersection of the estimate set
with the capture set, but not a necessary condition.
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Figure 6. Trains at a railway merging (imperfect state information). This figure shows a run of Algorithm 4
at different time instants in the upper plots. The trajectory of the trains in the x1,1, x1,2 plane and the

set
⋃

k�0[L k
(∨x̂),U

k
(∧x̂)] are both shown. The set B in each plot is the last up-right one in the set⋃

k�0[L k
(∨x̂),U

k
(∧x̂)]. The lower left side plot shows the control commands applied to each train. These

commands are left to their initial values until at time step t=25 it is predicted that leaving these commands

constant will cause the trajectory to enter the set
⋃

k�0[L k
(∨x̂),U

k
(∧x̂)]. As a consequence, one vehicle

is slowed down by braking (u2=−0.2) and the other is accelerated (u1=+1). The corresponding train
speeds are shown in the lower right side plot.

6. CONCLUSION AND FUTURE WORK

We have proposed a dynamic feedback law for safety control in a class of triangular order preserving
hybrid automata with imperfect state information. The structure of the system allowed to compute
a tight over-approximation of the capture set and the dynamic control map through algorithms that
have linear complexity in the number of variables.

In our future work, we plan to extend these results to continuous time hybrid automata, relax
the assumptions to only require monotone flows, and state a separation principle between state
estimation and control. We plan to modify Algorithm 4 so as to obtain a less conservative control
map for the imperfect state information case. In addition, we will consider the more general case
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in which the discrete state needs also to be estimated and the discrete state update map is not
static. Unknown, bounded disturbances will also be considered to handle modeling uncertainty.
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