
On the Compromise between Retroactivity Attenuation and Noise

Amplification in Gene Regulatory Networks

Shridhar Jayanthi and Domitilla Del Vecchio

Abstract— A bio-molecular system can be rendered insen-
sitive to impedance-like effects, called retroactivity, at its
downstream interconnections by implementing a large input
amplification gain in a negative feedback loop. This type of
design, however, relying on large amplifications, may have
undesired effects on the internal noise of the system. We
investigate this problem on a simple transcriptional component
connected to downstream load by performing a stochastic
analysis based on the Ω-expansion. While high gains increase
the signal-to-noise ratio of the species in the upstream system
and attenuate retroactivity, they also contribute to a shift

toward high frequency of the internal noise of the system.
We mathematically study this compromise by employing the
Langevin equation and by analyzing the noise-to-state transfer
function of the linearized system.

I. INTRODUCTION

A common approach to either analyzing or synthesizing

a complex network is to decompose it into input/output

modules. Then, one predicts the overall network function

by the composition of the functions of its modules [1]. This

approach implicitly assumes that the (dynamic) behavior of

a component (or module), characterized in isolation, does

not change upon interconnection. We have shown in our

earlier work that, just as in many engineering systems,

this assumption is not satisfied in transcriptional networks

[5]. This effect, which we call retroactivity, arises at the

interconnection between any two components. To counteract

retroactivity and enable modular design, we have proposed

to place insulation devices between any two modules. An

insulation device does not apply retroactivity to its upstream

system and is insensitive to retroactivity at its interconnection

with downstream systems. As in electronic amplifiers, these

devices attain this property by implementing a large input

amplification coupled with a large negative feedback [5].

While large gains enable retroactivity attenuation, it is

known that they can impact the noise properties of a

biomolecular system [2], [3], [12]. Since biological processes

are intrinsically stochastic [14], [16], [17], [20], it is essential

to analyze and quantify the impact of these gains on noise.

We thus employ stochastic analysis techniques, such as Ω-

expansion [21] and the Langevin equation [10] to study

these effects. Our results show that the signal-to-noise ratio

increases with the gains, while it decreases when retroactivity

increases. As a consequence, higher gains contribute to

retroactivity attenuation and better signal-to-noise ratio.

However, data obtained from simulating our system

through the Gillespie algorithm [9] shows that when gains

are increased, the frequency content of realizations at higher

frequencies also increases. To study this effect, also observed

in [2], we analyze the power spectral density of the noise

process [13], [18]. In line with results shown in [18], we

employ the Langevin equation. Our studies point to the

following compromise. We usually seek a small amplitude of

the noise-to-state transfer function in the range of frequencies

where we seek high retroactivity attenuation. However, we

show that in the range of frequencies of interest attenuating

retroactivity may also increase noise. This limitation, while

being similar to the fundamental limitations implied by

Bode’s integral formula [15], cannot be derived by the latter

because the relative degree of the system under study is not

at least two. This limitation arises from the stochastic nature

of the system and not from the structure of the corresponding

deterministic system.

This paper is organized as follows. In Section II, the

system studied in the paper is described and its deterministic

model is introduced. In Section III, we introduce the stochas-

tic model using the Master Equation, derive the Fokker-

Planck equation obtained from the Linear Noise Approx-

imation, and study the effect of retroactivity and system

parameters on the signal-to-noise ratio. Section IV employs

the Langevin equation to understand the frequency content

of the noise in single realizations. Finally, in Section V we

discuss the methods and the various results.

II. DETERMINISTIC MODEL

In this paper, we focus on a simple transcriptional com-

ponent and study the internal noise of this system when

adding a downstream component (load) and when increasing

the rates of protein transcription and turnover. These rates

correspond to the input amplification and negative feedback

in the transcriptional component. Experimentally, these rates

can be changed through mutations in the promoters of the

gene and by adding a protease that targets the expressed pro-

tein for degradation. More sophisticated designs that increase

the gains employing phosphorylation for input amplification

and dephosphorylation for negative feedback can also be

employed [5].

Consider the transcriptional component shown in Figure

1. This component takes a transcription factor U as an

input and produces a transcription factor Z as output. The

transcription rate of gene z, which expresses protein Z, is

given by a time varying function Gk(t) that depends on

the transcription factor U. This dependency is not modeled,

since it is not central to our discussion. The parameter G
models the input amplification gain. The degradation rate of

protein Z is also assumed to be tunable and thus identified

by Gδ. The variable gain parameter G will be adjusted to
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Fig. 1. The upstream transcriptional component takes the transcription
factor U as input and produces the transcription factor Z as output. The
downstream transcriptional component takes Z as input through its reversible
binding to the promoter p.

improve the insulation properties. The transcription factor

Z is in turn an input to the downstream load through the

reversible binding of Z to promoter sites p. Neglecting the Z

messenger RNA dynamics, which are typically much faster

than transcription and decay, the system can be modeled by

the chemical equations

∅
Gk(t)−−−⇀↽−−−

Gδ
Z, Z + p

kon−−−⇀↽−−−
koff

C. (1)

We assume that k(t) and δ are of the same order and

denote kd = koff/kon. We also assume that the production

and decay processes are slower than binding and unbinding

reactions, that is, koff ≫ Gδ, kon ≫ Gδ [1]. Let the total

concentration of promoter be pT . The deterministic ordinary

differential equation model of system (1) is given by

˙[Z] = Gk(t) − Gδ[Z] + koff [C] − kon(pT − [C])[Z],

˙[C] =−koff [C] + kon(pT − [C])Z, (2)

in which [Z] and [C] denote the concentrations of Z and C,

respectively. Figure 2 shows that adding load to the system

decreases the amplitude of the signal [Z]. This effect is due

retroactivity to the output of the transcriptional component.

The figure shows also how the retroactivity effect can be

compensated by increasing the gains G. In our examples,

the amount of load chosen is much higher than the output

concentration to model the fact that the upstream system

signal is designed to carry information and is independent of

the load value. This, in turn, can become arbitrarily large as

the number of different clients requiring the upstream signal

increases.

To identify by what amounts G should be increased to

compensate the retroactivity effect, we perform a linearized

analysis of system (2) about k(t) = k̄, and the corresponding

equilibrium ¯[Z] = k̄/δ and ¯[C] = ¯[Z]pT /( ¯[Z] + kd).
The dynamics of small perturbations about the equilibrium

(k̄, ¯[Z], ¯[C]) are, with abuse of notation, given by

˙[Z] = Gk(t) − (Gδ + kon(pT − ¯[C]))[Z]

+(koff + kon
¯[Z])[C],

˙[C] = kon(pT − ¯[C])[Z] − (koff + kon
¯[Z])[C]. (3)

Since kon ≫ δ and koff = konkd, write

kon = δ/ǫ and koff = δkd/ǫ, (4)
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Fig. 2. Effect of retroactivity from the load on system (2). Here, ω =
0.005rad/s, δ = 0.01s−1, koff = 50s−1 and kd = 20M. The input signal
is k(t) = δ(1 + 0.8 sin (ωt))Ms−1. The top plot shows how adding the
load impacts [Z]. The bottom plot shows how increasing G can reduce the
impact of the retroactivity from the load. For this plot we chose G = 1+Rl

(see text).

in which ǫ ≪ 1. Let y = [Z] + [C]. Substituting (4) into (3)

and writing the system in terms of y and [C], one obtains

the system in the standard singular perturbation form

ẏ = Gk(t) − ((Gδ(y − [C])

ǫ ˙[C] = δ(pT − ¯[C])y − δ(pT − ¯[C] + kd + ¯[Z])[C]

Setting ǫ = 0, one obtains the expression of the slow

manifold as [C] = kdpT [Z]/( ¯[Z] + kd)
2 = :γ([Z]). It can

be shown that this manifold is exponentially stable. Defining

the constant

Rl =
kdpT

(k̄/δ + kd)2
, (5)

the expression of the slow manifold can be rewritten as

γ([Z]) = Rl[Z]. Letting [Z] = y − γ([Z]), we obtain

that ˙[Z] = ẏ − Rl
˙[Z], in which ẏ = Gk(t) − Gδ[Z]. The

approximated dynamics of [Z] on the slow manifold then

becomes

˙[Z] =
G

1 + Rl
(k(t) − δ[Z]). (6)

Thus, for small perturbations about the equilibrium, we

should choose G ≈ 1 + Rl to compensate for retroactivity

from the load.

III. STOCHASTIC MODEL

A. Master Equation

Let P (Z, C, p; t|Z0, C0, p0; t0 = 0) denote the conditional

probability that at time t, the number of molecules of the

species Z, C and p are Z , C and p respectively, given that

the number of molecules were Z0, C0 and p0 at the initial

time t0 = 0. Throughout this paper we omit the dependency

on initial conditions and write P(Z, C, p; t) for convenience.

Let Ω denote the volume of the system. Then, the relation

between concentrations and number of molecules is given

by Z = Ω[Z] and C = Ω[C]. Define the step operator as

E
a
Xf(X) = f(X + a). We know that p + C = ΩpT with
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probability one. The resulting two-state Master Equation [21]

for the system described in (1) is given by

Ṗ(Z, C; t) =
(

Gk(t)Ω(E−1
Z − 1) + Gδ(E+1

Z − 1)Z

+kon(Ω−1(E+1
Z E

−1
C − 1)Z(ΩpT − C)

+koff(E−1
Z E

+1
C − 1)C

)

P(Z, C; t). (7)

From the above Master Equation, one can see that when the

input signal k(t) is periodic, the resulting random process is

cyclostationary [8].

B. Linear Noise Approximation

Since the coefficients of P(Z, C; t) in equation (7) are not

linear functions of the states, we cannot obtain a closed set

of exact equations for the moments [11]. To proceed with

the analysis, we thus employ the Ω-expansion [21].

Define the change of variables

Z = ΩφZ + Ω1/2ζ and C = ΩφC + Ω1/2ξ, (8)

in which ζ and ξ are random variables and φZ , φC are

deterministic quantities. Let also Π(ζ, ξ; t) := P(ΩφZ +
Ω1/2ζ, ΩφC +Ω1/2ξ; t). Then, the left hand side of equation

(7) becomes

Ṗ (Z, C; t) = ∂tΠ(ζ, ξ; t) − Ω1/2φ̇Z∂ζΠ(ζ, ξ; t)

−Ω1/2φ̇C∂ξΠ(ζ, ξ; t), (9)

in which ∂x := ∂/∂x. By performing Taylor expansion of

the step operator in the new variables ζ and ξ, we obtain the

identities

E
a
Z =

∞
∑

k=0

(aΩ−1/2)k

k!
∂k

ζ , E
a
C =

∞
∑

k=0

(aΩ−1/2)k

k!
∂k

ξ . (10)

Substituting (7) and (10) in equation (9), solving for

∂tΠ(ζ, ξ; t) and collecting the terms in powers of Ω up to

order Ω0, we obtain a differential equation. As shown in [21],

it is possible to obtain from this equation the macroscopic

laws by setting the coefficient of Ω1/2 to zero, and the

Fokker-Planck equation by taking the volume to be large

enough. The resulting macroscopic laws for the deterministic

variables φZ and φC are given by

φ̇Z = Gk(t) − δφZ − konφZ(pT − φC) + koffφC

φ̇C = konφZ(pT − φC) − koffφC . (11)

and the resulting Fokker-Planck equation is

∂t Π (ζ, ξ; t) =

[

∂ζ

(

(Gδ + kon(pT − φC))ζ + (−konφZ

− koff )ξ
)

+ ∂ξ

(

− kon(pT − φC)ζ + (konφZ + koff )ξ
)

+
1

2
∂2

ζ

(

Gk(t) + GδφZ + konφZ(pT − φC) + koffφC

)

+
1

2
∂2

ξ

(

konφZ(pT − φC) + koffφC

)

+ ∂ζ∂ξ

(

− konφZ(pT − φC) − koffφC

)

]

Π(ζ, ξ; t). (12)

The above procedure, often referred to as Linear Noise

Approximation, takes the jump Markov process defined by

equation (7) and approximates it by the continuous Markov

process that solves equation (12) [7]. This approximation

is valid for (i) large volumes and (ii) when changes in the

number of molecules caused by single events (jumps) of the

original process are small compared to the total number of

molecules in the system [7]. Assumption (i) is satisfied by

the fact that the number of proteins and promoter sites are of

the order of tens to hundrends. The fact all the reactions have

stoichiometry 1, along with assumption (i) makes assumption

(ii) relevant in our model.

Given a general Fokker-Planck equation of the form

∂Pt(x; t) = −
∑

i

∂iAi(x, t)P (x, t) +

1

2

∑

i

∑

j

∂i∂jBij(x, t)P (x, t), (13)

it is possible to derive differential equations for the ex-

pectancy of any polynomial function f(x). Multiplying both

sides of equation (13) by f(x) and integrating both sides

over the state space one obtains the differential equation [7]

˙〈f(x)〉 =
∑

i

〈Ai∂if(x)〉 +
1

2

∑

i

∑

j

〈Bij∂i∂jf(x)〉 .(14)

Repeating this process with the Fokker-Planck equation

(12), we obtain the differential equations for the first order

moments as

˙〈ζ〉 =−δ 〈ζ〉 − kon(pT − φC) 〈ζ〉 + konφZ 〈ξ〉 + koff 〈ξ〉 ,

˙〈ξ〉= kon(pT − φC) 〈ζ〉 − konφZ 〈ξ〉 − koff 〈ξ〉 . (15)

Setting the initial conditions of the macroscopic equations

(11) to correspond to the initial values of the number of

species, that is, setting φZ(0) = Ω−1Z0 and φC(0) =
Ω−1C0, then 〈ζ(0)〉 = 0 and 〈ξ(0)〉 = 0. From this,

〈ζ(t)〉 = 0 and 〈ξ(t)〉 = 0 for all time. Therefore, ζ(t) and

ξ(t) are zero-mean random processes.

Similarly, the dynamics of the second order moments are

given by

˙〈ζ2〉=−2Gδ
〈

ζ2
〉

− 2kon(pT − φC)
〈

ζ2
〉

+ 2konφZ 〈ζξ〉
+2koff 〈ζξ〉 + konφZ(pT − φC) + koffφC

+Gk(t) + GδφZ

˙〈ζξ〉 =−Gδ 〈ζξ〉 + konφZ

〈

ξ2
〉

+ koff

〈

ξ2
〉

+kon(pT − φC)
〈

ζ2
〉

− konφZ 〈ζξ〉 − koffζξ

−konφZ(pT − φC) − koffφC

˙〈ξ2〉= 2kon(pT − φC) 〈ζξ〉 − 2konφZ

〈

ξ2
〉

− 2koff

〈

ξ2
〉

+konφZ(pT − φC) + koffφC . (16)

To validate the Fokker-Planck approximation (12), we

compare the time-dependent mean and standard deviation

of the concentrations predicted by numerical integrations of

equations (11) and (16) with the mean and standard-deviation

from sample realizations given by a Stochastic Simulation

Algorithm (SSA) implementation [9]. Let the means be

denoted by µ[Z] and µ[C]and the standard deviations denoted
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by σ[Z]and σ[C]. To obtain these quantities from the Fokker-

Planck approximation, recall that ζ and ξ are zero-mean

random variables and that φZ and φC are deterministic.

Then, from the substitution of variables (8) the mean and

the standard deviation of the concentration of Z and C are

given by µ[Z] = φZ , µ[C] = φC , σ[Z] =
√

Ω−1 〈ζ2〉 and

σ[C] =
√

Ω−1 〈ξ2〉 respectively. To obtain these quantities

from N realizations Zi and Ci of the SSA we used the

sample mean and the biased sample variance estimator.

Figure 3 shows that the means and standard deviations of

Z and C predicted by the Fokker-Planck equation are very

close to the values obtained from the samples of the SSA.
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Fig. 3. The sample means and variances from SSA and from Fokker-
Planck equation are shown to be very close to each other. For these plots,
δ = 0.01s−1, kd = 20M, koff = 50s−1 with input signal k(t) = δ(1 +
0.8 sinωt)Ms−1 and volume Ω = 10M−1. To simulate the time varying
input in the SSA, we imposed a deterministic time-varying concentration of
a Z protein messenger with concentration k(t) = δ(1+0.8 sin(ωt))Ms−1.
Means from SSA were calculated using 500 realizations. Note that due to
the sinusoidal input, the random process is cyclostationary.

C. Signal to Noise Ratio Analysis

A traditional metric used to assess noise in many electrical

engineering applications is the signal-to-noise ratio. This

quantity is usually defined by taking the ratio between the

power of the signal and the power of the noise and gives a

measure of how much the noise corrupts the signal.

For this study, we consider periodic input signals and

characterize the signal-to-noise ratio as a function of the

input frequency. Since concentrations are always positive,

we consider inputs of the form k(t) = k̄ + k̃(t), in which k̄
is a constant bias and k̃(t) = A0sin(ωt) is a periodic signal

with amplitude A0 < k̄ and frequency ω. We assume that all

the information transmitted is contained in the signal k̃(t).
Therefore, to obtain a signal-to-noise figure of merit, the

power of a signal is taken to be the square of its amplitude.

The power of the noise is quantified by the steady-state

variance calculated when the input is constant and equal to

the bias, that is, k(t) = k̄. Denoting A the amplitude of a

signal and σ̄2 the steady-state variance, the figure of merit

for the noise is given by

SNR :=
A2

σ̄2
. (17)

To calculate the values of σ̄2, set k(t) = k̄ in equations

(11) and (16). The corresponding equilibrium values of

the deterministic variables φZ and φC are obtained from

equations (11) as

φ̄Z =
k̄

δ
and φ̄C =

pT φ̄Z

1 + δkd/k̄
=

pT /kd

1 + φ̄Z/kd
. (18)

Substituting (18) in equations (16) and setting the time

derivatives to zero, the equilibrium values for the second-

order moments become ¯〈ζ2〉 = k̄/δ, ¯〈ζξ〉 = 0 and ¯〈ξ2〉 =
φ̄ZRl, in which Rl is the same constant defined in expression

(5). From the change of variables (8), and since ζ and ξ
are zero-mean, we have that σ̄2

[Z] = Ω−1 ¯〈ζ2〉 and σ̄2
[C] =

Ω−1 ¯〈ξ2〉 leading to expressions

σ̄2
[Z] = φ̄Z/Ω and σ̄2

[C] = φ̄ZRl/Ω. (19)

For small amplitudes of the signal k̃(t), σ̄2 approximates

the time-average value of the time-dependent variance σ(t)
when the system is subject to the input k(t) = k̄ + k̃(t).

Due to the fact that ζ and ξ are zero-mean random

variables, 〈Z〉 = ΩφZ and 〈C〉 = ΩφC . Therefore, the

amplitude of the mean concentration signals [Z] and [C]
are equal to the amplitude of φZ and φC , respectively. To

calculate this amplitude, we proceed by linearizing equation

(11) about the equilibrium corresponding to the fixed input

k(t) = k̄. With abuse of notation, the linear system becomes

φ̇Z = Gk̃(t) − (Gδ − kon(pT − φ̄C))φZ

+(konφ̄Z + koff )φC ,

φ̇C = kon(pT − φ̄C)φZ − (konφ̄Z + koff )φC . (20)

In order to obtain the amplitude of the signals φZ and φC ,

we compute the transfer functions from k̃ to φZ and φC .

Let ΦZ(s), ΦC(s) and K̃(s) denote the Laplace transforms

of φZ(t), φC(t) and k̃(t), respectively. From (20), applying

substitution (4) and setting ǫ = 0, we obtain the transfer

functions

G1(s) =
ΦZ(s)

K̃(s)
=

G

s(1 + Rl) + Gδ

G2(s) =
ΦC(s)

K̃(s)
=

GRl

s(1 + Rl) + Gδ
.

Therefore, for a input signal k̃(t) with frequency ω and

amplitude A0, the amplitude of the concentrations are

A[Z] = |G1(jω)|A0 =

√

G2

G2δ2 + ω2(1 + Rl)2
A0,

A[C] = |G2(jω)|A0 =

√

G2R2
l

G2δ2 + ω2(1 + Rl)2
A0. (21)
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Substituting expressions (19) and (21) in the definition

(17), the signal-to-noise ratios obtained for an input k̃(t)
with amplitude A0 and frequency ω are

SNRZ(ω) =
Ω

kδ

G2

G2 + ω2

δ2 (1 + Rl)2
A2

0, (22)

SNRC(ω) =
Ω

kδ

G2Rl

G2 + ω2

δ2 (1 + Rl)2
A2

0. (23)

Recalling from (5) that Rl is monotonically increasing

with pT , expression (22) shows that for a signal with non-

zero frequency, addition of load pT leads to a lower value of

SNRZ . Notice also that higher input frequencies increase

the sensitivity of the SNRZ to the load. Increasing the

gain G improves SNRZ and in the limit when G → ∞,

SNRZ → ΩA2
0/(k̄δ) giving a theoretical upper bound on

the SNRZ . Equation (23) shows that the effect of increasing

G on SNRC is similar to the effect on SNRZ : as the

gain increases, the signal-to-noise ratio increases, and in the

limit when G → ∞, SNRC → ΩRlA
2
0/k̄δ. The effect

of increasing the load, however is not trivial. If we are

able to increase the gain to G ≈ 1 + Rl to compensate

for the retroactivity, then SNRC decreases with a higher

load. If, instead, the value of G cannot be large enough

to reach 1 + Rl, then increasing pT will reduce SNRC .

This is a consequence of the fact that when G cannot

compensate for the retroactivity the amplitude A[Z] decreases

and consequently so does A[C].

IV. FREQUENCY ANALYSIS OF DISTURBANCES AND THE

LANGEVIN APPROACH

In Section III, we have shown that increasing the gain G
is beneficial for both attenuating retroactivity and decreasing

the noise-to-signal ratio. However, as shown in Figure 4,

increasing the gain G impacts the frequency content of

the noise in a single realization. For low values of G, the

error signal between a realization and the mean is of lower

frequency when compared to a higher gain. This effect

can only be captured by autocorrelation based metrics and,

therefore, is not evident from the signal-to-noise ratio.

To study how this problem impacts retroactivity atten-

uation, we employ the Langevin equation derived from

the Master Equation (7), as performed in [18]. As shown

in [10], a Master Equation of the form
dP (X;t)

dt =
∑M

j=1 (
∏N

i=1 E
vij
xi − 1)aj(X)P (X; t) can be approximated

by a Langevin system of equations of the form dXi

dt =
∑M

j=1 vijaj(X(t)) +
∑M

j=1 vija
1/2
j (X(t))Γj(t), in which

Γj(t) are independent Gaussian white noise processes. Ap-

plying the above approximation to the Master Equation (7),

one obtains the system of Langevin equations

Ż = Gk(t) − GδZ − kon(pT − C)Z + koffC

+
√

Gk(t) Γ1(t) −
√

GδZ Γ2(t)

−
√

kon(pT − C)Z Γ3(t) +
√

koffC Γ4(t),

Ċ = kon(pT − C)Z − koffC +
√

kon(pT − C)Z Γ3(t)

−
√

koffC Γ4(t). (24)
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Fig. 4. Increasing the value of G produces a disturbance signal of higher
frequency. Two realizations are shown with different values for G without
load. The parameters used in the simulations are δ = 0.01s−1, kd = 20M,
koff = 50s−1, ω = 0.005rad/s and Ω = 10M−1. The input signal used
is k(t) = δ(1 + 0.8 sin ωt)Ms−1. The mean of the signal is given as
reference.

The above system can be viewed as a non-linear system

with five inputs, k(t) and Γi(t) for i = 1, 2, 3, 4. Let k(t) =
k̄, Γ1(t) = Γ2(t) = Γ3(t) = Γ4(t) = 0 be constant inputs

and let Z̄ and C̄ be the corresponding equilibrium points.

As we are considering small amplitude signals k̃(t) we work

with a linearization of the system (24) around the fixed input

k̄ with corresponding equilibrium points Z̄ and C̄. We can

simplify the system further by noting that in equilibrium

δZ̄ = Gk̄ and kon(pT − C̄)Z̄ = koff C̄. Also, since Γj are

independent identical Gaussian white noises, we can write

Γ1(t) − Γ2(t) =
√

2N1(t) and Γ3(t) − Γ4(t) =
√

2N2(t),
in which N1(t) and N2(t) are independent Gaussian white

noises identical to Γj(t). With these simplifications, the

system becomes

Ż = Gk̃(t) − GδZ − kon(pT − C̄)Z + konZ̄C + koffC

+
√

2Gk̄N1(t) −
√

2koff C̄N2(t),

Ċ = kon(pT − C̄)Z − konZ̄C − koffC

+
√

2koff C̄N2(t). (25)

This is a system with three inputs: the deterministic input

k̃(t) and two independent white noise sources N1(t) and

N2(t). One can interpret N1 as the source of the fluctuations

caused by the production and degradation reactions while N2

is the source of fluctuations caused by binding and unbinding

reactions. Since the system is linear, we can analyze the

different contributions of each noise source separately and

independent from the signal k̃(t).

The transfer function from N1 to Z , after employing

substitutions(4) and setting ǫ = 0 is

T1(s) =
Z(s)

N1(s)
=

√
2Gk̄

s(1 + Rl) + Gδ
. (26)
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The DC gain of this transfer function is equal to T1(0) =√
2k̄/

√
Gδ. Thus, as G increases, the DC gain decreases.

But for large enough frequencies ω, jω(1 + Rl) + Gδ ≈
jω(1+Rl), and the amplitude |T1(jω)| ≈

√
2k̄G/ω(1 + Rl)

becomes a monotone function of G. This effect is illustrated

in the upper plot of Figure 5. The frequency at which the

amplitude of |T1(jω)| computed with G = 1 intersects the

amplitude |T2(jω)| computed with G > 1 is given by the

expression ωe = δ
√

G/(1 + Rl). Thus, when increasing the

gain from 1 to G > 1, we reduce the noise at frequencies

lower than ωe but we increase it at frequencies larger than

ωe.

The transfer function from the second white noise source

N2 to Z , after employing substitutions (4) and multiplying

numerator and denominator by ǫ, is given by

T2(s) =
[√

ǫ
√

2δC̄s
]

/
[

ǫs2 + (ǫGδ + δ(pT − C̄) + δZ̄

+δkd)s + Gδ(δZ̄ + δkd)
]

. (27)

This transfer function has one zero at s = 0 and two poles

s− and s+ such that s− → −∞ and s+ → −Gδ/(1 + Rl)
as ǫ → 0. Thus, the contribution of N2(t) to Z is relevant at

high frequencies due to the high-pass nature of the transfer

function. Furthermore, increasing the gain G increases the

cutoff frequency given by the pole s+. It is also important

to note that N2(s) is scaled by
√

ǫ, making the noise at

low-frequency caused by N2(t) negligible when compared to

that caused by N1(t). The Bode plot of the transfer function

T2(s) is shown in the lower plot of Figure 5.
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Fig. 5. Magnitude of the transfer functions T1(s) and T2(s). The
parameters used in this plot are δ = 0.01s−1, kd = 1M, koff = 50s−1,
ω = 0.005rad/s, pT = 100M. When G increases from 1 to 1+ Rl = 25,
contribution from N1 decreases but it now spreads to a higher range of the
spectrum. Note that there was an increase on the noise at the frequency
of interest ω. Increasing G reduces the contribution from N2 in the low
frequency range, leaving the high frequency range unaffected. Note also that
the amplitude of T2 is significantly smaller than that of T1.

V. DISCUSSION

A. Figures of Merit for Noise

The literature presents a number of methods to quantify

noise. Popular figures of merit include the Fano factor [6],

[19], [20] and the coefficient of variation [3], [12], [14].

Our interest in this work, in analogy to what is performed

in electronic circuits, is to study the behavior of a system

under a periodic input, resulting in a cyclostationary random

process after the transient. Therefore, the mean µ(t) and

variance σ(t) are periodic time-varying quantities. As a

result, the coefficient of variation is also a periodic quantity

CV (t) = σ(t)/µ(t). In a previous work [4], the maximal

coefficient of variation CV max := maxt CV (t) was used as

figure of merit. However, this metric does not capture the

degradation of the signal we are interested in transmitting.

In fact, Figure 6 shows that we can artificially decrease

the coefficient of variation while reducing the signal quality

when increasing the bias.
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Fig. 6. Increasing only the bias leads to a degraded signal. This is not
reflected by the coefficient of variation which decreases when we increase
the bias. Mean signals are shown for reference. The parameters used in
the simulations are δ = 0.01s−1, kd = 20M, koff = 50s−1, ω =
0.005rad/s and Ω = 10M−1. The input signals for the plots are k(t) =
δ(k̄ + 0.8 sin(ωt))Ms−1 in which k̄ denote the bias.

The coefficient of variation is, therefore, not suitable for

our needs. In this paper, we adopt as a metric, the signal-to-

noise ratio as defined in equation (17). Signal-to-noise ratios

are defined by taking the power of the signal and dividing it

by the power of the noise. Here, the power of the signal is

given by the square of the amplitude A2 and the power of

the noise is given by the steady-state variance σ̄2.

B. Compromise between Retroactivity Attenuation and Noise

Amplification

In our previous work, it was suggested that the noise

increases when the gains of the system increase [4]. However,

as discussed in Section V-A this effect seen in the figure

of merit CV max does not reflect the signal quality. The

analysis in this paper using the SNR figure of merit leads

to a different conclusion. In particular, equations (22) and

(23) show that increasing the gain helps improving the
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signal-to-noise ratio. Equation (22) points that the addition

of load increases noise in the upstream component, while

equation (23) shows that the addition of load impacts the

downstream SNR in a frequency-dependent way. For inputs

at high frequencies, where the system suffers from retroac-

tivity, increasing the load will decrease the quality of the

signal. However, if the gain is sufficiently large to overcome

retroactivity, then increasing the load decreases the noise of

the downstream component. Equations (22) and (23) also

show that the signal-to-noise ratio cannot be made arbitrarily

large by increasing the gain, presenting a limitation. It is

also important to notice that in real biological systems, G
cannot be arbitrarily large as it is limited by the rates of the

fastest available reactions (binding and unbinding of small

molecules to transcription factors) [1].

The effect of the gains on the signal-to-noise ratio of

the upstream component is tightly linked to the problem of

retroactivity. From the first equation in (21), the amplitude

A[Z] is attenuated by the addition of load and is recovered by

increasing G. However, the steady-state variance σ̄2
Z does not

change with G or pT . According to this, one should choose

G to be large enough to compensate for retroactivity in the

desired frequency range. However, the frequency of the noise

in single realizations is shifted to higher frequencies when G

increases, as seen in Figure 4. This effect has been studied

in [18] in the context of auto-regulated gene circuits, where

it is shown that increasing the negative feedback leads to

increase in noise at high frequencies.

In our study, the analysis employing the linearized

Langevin approximation (25) shows that when increasing the

gain from 1 to G we reduce the noise in the frequency ranges

below ωe = δ
√

G/(Rl + 1), but the noise at frequencies

above ωe increases. Starting from the original system suffer-

ing from retroactivity, it is possible to increase the gain up to

G = Rl + 1 to recover the isolated system behavior. In this

case we obtain ωe = δ/
√

(Rl + 1) < δ. This implies that

if the input signal is on the same time-scale of the natural

dilution rates, which is very likely, we increase the noise in

the frequencies of interest. This effect is showed on the top

plot of Figure 5. In theory, one could increase G beyond

(Rl + 1)2 so that ωe > δ, but in practice the value of G is

limited.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we employed two tools to study the relation-

ship between retroactivity and noise. Moment dynamics were

calculated using the Fokker-Planck approximation to obtain

the signal-to-noise ratio. This study shows that increasing

gains decreases the overall signal-to-noise ratio. However,

the Langevin approximation shows that the frequency con-

tent of intrinsic noise in realizations is shifted to higher

frequencies when gains are increased. This points to a trade-

off between retroactivity attenuation and noise amplification.

We are studying the application of these techniques to more

complex insulation devices designed from phosphorylation

systems. We are also extending the approach presented

to study the effect of external (extrinsic) noise. Finally,

we are seeking methods to validate the theoretical results

from the Langevin approach with data from SSA by using

metrics based on sample autocorrelation functions for the

cyclostationary random processes under study.
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