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Abstract— A central issue in the analysis of multi-stable
systems is that of controlling the relative size of the basins
of attraction of alternative states through suitable choices
of system parameters. We are interested here mainly in the
stochastic version of this problem, that of shaping the stationary
probability distribution of a Markov chain so that various
alternative modes become more likely than others.

Although many of our results are more general, we were
motivated by an important biological question, that of cell
differentiation. In the mathematical modeling of cell differenti-
ation, it is common to think of internal states of cells (quanfitied
by activation levels of certain genes) as determining the different
cell types. Specifically, we study here the “PU.1/GATA-1 circuit”
which is central to the control of the development of mature
blood cells from hematopoietic stem cells (HSCs). All mature,
specialized blood cells have been shown to be derived from
multipotent HSCs.

Our first contribution is to introduce a rigorous chemical
reaction network model of the PU.1/GATA-1 circuit, which
incorporates current biological knowledge. We then find that
the resulting ODE model of these biomolecular reactions is
incapable of exhibiting multistability, contradicting the fact that
differentiation networks have, by definition, alternative stable
steady states. When considering instead the stochastic version of
this chemical network, we analytically construct the stationary
distribution, and are able to show that this distribution is indeed
capable of admitting a multiplicity of modes. Finally, we study
how a judicious choice of system parameters serves to bias the
probabilities towards different stationary states. We remark
that certain changes in system parameters can be physically
implemented by a biological feedback mechanism; tuning this
feedback gives extra degrees of freedom that allow one to assign
higher likelihood to some cell types over others.

I. INTRODUCTION

In cell-fate gene regulatory networks (GRNs), attractors
are typically associated with biological phenotypes [1], [2].
Hence, a great issue of interest in the theory of multi-stable
GRNs is that of shaping the relative size of the basins of
attraction of the multiple attractors by suitable choices of
system parameters, including constant inputs, as well as the
use of time-varying inputs to drive the state from one region
of attraction to another. For stochastic systems, the first of
these questions can be translated into the shaping of the
stationary probability distribution of an associated Markov
chain. Also for stochastic systems, variations of parameters
(which can be adjusted by means of appropriate feedback
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mechanisms, as discussed later) can be used in order to
reshape this distribution, so that the time evolution of the
distribution of states of this Markov chain will converge to
the desired landscape. In this paper, we present a case study
of this issue in an important biological context, that of dif-
ferentiation of stem cells into different types of blood cells.
We introduce a biochemical model that represents known
biological data, and then remark that the deterministic model
of this network does not exhibit multistationarity, which
contradicts experimental data and hence suggests that one
cannot ignore randomness in this model. We then proceed to
analyze this model from the point of view of stochastic multi-
stationarity and show how to shape the stationary distribution
via controlling the parameters.

Deterministic models are usually justified under the as-
sumptions of sufficiently large volume and sufficiently large
number of molecules [3], or, under some conditions such
as fast promoter kinetics [4], as will be discussed in the
text. In such cases, an ODE model captures the system’s
dynamics, and it produces a similar qualitative behaviour
to the one produced by the stochastic model. However,
these assumptions are not usually satisfied in practice due
to the fact that cell-fate GRNs have usually very low gene
copy numbers. Furthermore, endogenous GRNs in eukaryotic
cells can have the binding/unbinding rate of transcription
factors (TFs) to promoters occurring at a slower rate than
transcription and translation due to the complicating effects
of chromatin structure and regulation [4],[5], [6]. Therefore,
the qualitative behaviour produced by deterministic models
can be erroneous.

The specific network studied in this paper is the PU.1-
GATA-1 GRN, which is a lineage determinant in hematopoi-
etic stem cells (HSCs) [7], [8]. All mature, specialized
blood cells have been shown to be derived from multipotent
HSCs [9]-[10]. The classical hierarchical tree-like model
of blood cells (hematopoiesis) describes the differentiation
of HSCs into progenitor cells which have the ability to
further differentiate into committed cells [11], [12], [13].
The decision to commit to a particular lineage is thought to
depend on the relative expression levels of certain TFs [14],
[15], [16]. Here we consider two particular TFs, PU.1 and
GATA-1, which self-activate and interact antagonistically [7],
[8], [17] as pictorially depicted in Fig. 1. These two TFs are
thought to control the commitment of a differentiating HSC,
typically at the Common Myeloid Progenitor (CMP) state, to
either the Megakaryocyte-Erythroid Progenitor (MEP) or the
Granulocyte-Macrophage Progenitor (GMP). Commitment to
the MEP or GMP phenotype results in the differentiation
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to the erythroid or myeloid/lymphoid lineages, respectively
[18]. The expression level of GATA-1 has been shown
to increase down the lineage from HSC to MEP and the
TF is a key regulator of erythroid genes [19], [20]. Simi-
larly, PU.1 expression increases as cells differentiate to the
myeloid/lymphoid lineage [18] and has been shown to be
critical for myeloid cell regulation. Early progenitor cells
around the CMP stage have been shown to have relatively
low levels of GATA-1 and PU.1 compared to more differ-
entiated cells [20], [21]. A stochastically-driven increase in
the concentration of either PU.1 or GATA-1 may perturb this
balance and tip lineage commitment to either myelopoiesis
or erythropoiesis [17], [22].

The PU.1-GATA-1 network has been extensively studied

P G

Fig. 1. PU.1-GATA-1 GRN demonstrating self-activation and mutual
repression.

since the early 2000s [7], [8], [17]. Previous models of the
PU.1-GATA-1 GRN in the literature make assumptions on
the biological interaction between the TFs to explain the
biologically expected bistable property of this GRN, in which
one stable state corresponds to high levels of GATA-1 and
low levels of PU.1 and vice-versa. However, some of these
assumptions have not been experimentally validated. Specif-
ically, the studies in [23] and [24] assume high cooperativity
of TFs (n=2 and 4, respectively), though mutual repression
and self-activation have been shown to occur primarily in
their monomeric form [25], [26], [7]. The model presented
in [27] introduces a gene X that transcriptionally represses
PU.1 and is activated by GATA-1, which has not been
experimentally identified. The model studied in [28] assumes
both TFs can directly bind to each others’ promoters and
transcriptionally repress each other but this has not been
shown. In this paper, we consider a set of biomolecular
reactions for the system, in which none of these assumptions
are made. Interestingly, we mathematically demonstrate that
the corresponding ODE model is monostable, which does
not agree with the fact that the network should be capable
of exhibiting two phenotypes, high GATA-1, low PU.1
(MEP) and low GATA-1, high PU.1 (GMP). We therefore
use the same biomolecular reactions to construct the CME
model under the assumptions of low gene copy number and
slow promoter kinetics and analytically demonstrate that the
resulting stationary distribution can have multiple modes,
each possibly corresponding to a cell phenotype, including
the MEP and GMP phenotypes.

This paper is organized as follows. In Section II, we
present a system of biochemical reactions that describe the
PU.1-GATA-1 GRN. In Section III, we derive a deterministic
ODE model of this GRN and demonstrate that this system is
unable to demonstrate bistability. In Section IV, a stochastic
model with slow promoter kinetics is presented. Section V

presents a numerical example of how one would use our
techniques in order to shape the distribution. The conclusion
is given in section VI. The appendix lists the biological
modeling assumptions that have lead to the reaction model.

II. MODEL REACTIONS

The reactions that describe this model are given below.
The biological justification for the model is included in
the appendix. Here p0 (shown in Fig. 2(a)) and g0 are the
unbound promoters of TFs PU.1 (P) and GATA-1 (G):

p0 + P
a0−−⇀↽−−
d0

p1, (1)

g0 + G
a
′
0−−⇀↽−−

d
′
0

g1, (2)

p1 + G
a
′
1−−⇀↽−−

d
′
1

p2, (3)

g1 + P
a1−−⇀↽−−
d1

g2, (4)

p0
αp0−−→ p0 + P, (5)

g0
αg0−−→ g0 + G, (6)

p1
αp1−−→ p1 + P, (7)

g1
αg1−−→ g1 + G, (8)

P
δP−−→ ∅, (9)

G
δG−−→ ∅. (10)

The reversible binding reactions between the unbound
promoters (p0 and g0) and their TFs (P and G) to form
complexes p1 (shown in Fig. 2(b)) and g1, respectively are
given by (1)-(2). Reactions (3)-(4) describe the formation of
complexes p2 and g2 by reversible binding of G(P) with
p1(g1), respectively. These complexes represent the “off”
state of the promoter wherein the gene is silenced as shown
in Fig. 2(c) for p2. Reactions (5) and (6) describe the leaky
promoter one-step production of P and G with rates αp0
and αg0, respectively. P(G) is produced at rate αp1(αg1)
when it is bound to its promoter as shown in reactions
(7)-(8) describe the decay of transcription factors. Lastly,
reactions (9)-(10). Since the genes are self-activating, we
have αp0 < αp1 and αg0 < αg1. To simplify the model,
we assume that there is no expression from the repressed p2

and g2 configurations.

P

(a)

P

P

(b)

P

G

(c)

Fig. 2. Promoter states: (a) p0 representing leaky production, (b) p1 with
self-activated production, and (c) p2 when the promoter is fully repressed.
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III. DETERMINISTIC MODEL

The most common model for reaction networks is a deter-
ministic model [29]. It assigns to each species a state variable
corresponding to its concentration. The time-evolution of
species’ concentrations is given by an ordinary differential
equation of the form:

ẋ = ΓR(x), (11)

where x ∈ Rn is the concentration vector. Γ is called
the stoichiometry matrix of the network, and R(x) =
[R1(x), .., Rm(x)]T is the reaction rate function which are
to be defined below. Assume that the ith reaction is given
as:

n∑
i=1

αijXi →
n∑
i=1

βijXi,

where αij , βij are the stoichiometric coefficients. Then the
corresponding stoichiometry vector is:

γj = [β1j − α1j , ..., βnj − αnj ]T , (12)

and the stoichiometry matrix is given as

Γ := [γ1, ..., γm]. (13)

A conservation law for a reaction network is a positive vector
v ∈ Rn≥0 such that vTΓ = 0. Multiplying both sides of (11)
by vT and integrating yields

∑n
i=1 xi(t) ≡M , where M is

the conserved quantity.
The most commonly used form for reaction rate function

is the Mass-Action kinetics [29], which is given as follows:

Rj(x) = kj

n∏
i=1

x
αij

i , (14)

where kj is the kinetic constant.
Applying the definitions above to the PU.1/GATA.1 net-

work presented in the previous section we notice that we
have two conservation laws, namely the total concentration
of each of the genes is constant (p0 + p1 + p2 = pT and
g0+g1+g2 = gT ). A common assumption is to consider that
complex formation occurs significantly faster than protein
production and decay. Hence, setting their respective rate
equations at quasi-steady state in (11) leads to the following
two-state system:

Ṗ =
αp0pT +

αp1pT
K1

P

1 + P
K1

+ PG
K1K2

− δPP,

Ġ =
αg0gT +

αg1gT
K3

G

1 + G
K3

+ PG
K3K4

− δGG,

where K1 = d0
a0

, K2 =
d
′
1

a
′
1

, K3 =
d
′
0

a
′
0

, K4 = d1
a1

.
The number of steady states of this reduced system is the

same as the number of steady states in the original network.
Setting the derivatives to zero and performing algebraic

manipulations, we obtain a quintic equation. In order to
determine the number of positive equilibria, we use the
advanced deficiency algorithm developed in [30], [31],[32],

and implemented in the “Chemical Reaction Network” tool-
box [33]. When the algorithm is applied to our network
(1)-(10), it shows that it cannot admit multiple positive
equilibria for any combination of kinetic parameters. Hence,
the deterministic model cannot explain the bistable behaviour
observed experimentally [18], [19], [20].

IV. STOCHASTIC MODELING WITH SLOW
PROMOTER KINETICS

The validity of the deterministic model rests on high copy
numbers of the species in the GRN. However, this assump-
tion is not usually satisfied in differentiation networks where
TFs are expressed through genes located on the chromosome,
which has one or two copies only. Nevertheless, the issue of
low gene copy numbers has been overlooked in the literature
by assuming high protein copy numbers and fast promoter ki-
netics [4], i.e. the binding and unbinding of TFs to the genes
are assumed to be much faster than protein production and
decay. The underlying justification for this approximation is
that the fast promoter kinetics will “smooth out” the discrete
effects of low gene copy numbers. However, this simplifying
assumption does not generally hold in eukaryotic cells,
which have more complex transcription machinery [4]. In
such cells, transcriptional regulation is often mediated by an
additional regulation layer dictated by DNA methylation and
histone modifications, commonly referred to as chromatin
dynamics. For example, the presence of nucleosomes makes
binding sites less accessible to TFs and therefore TF-gene
binding/unbinding is modulated by the stochastic process
of chromatin opening [34], [35], [36]. Several experiments
have confirmed the role of the aforementioned complex
transcription processes in slow promoter kinetics [37], [38],
[39], [40].

Since it is difficult to characterize the stationary distribu-
tion of the Chemical Master Equation (CME) [29] in general,
our aim is to investigate the effect of slow promoter kinetics
on the steady-state landscape of the network, and whether
it can lead to the emergence of more than one phenotype
in contrast to the unique one predicted by the deterministic
model.

Let X(t) ∈ Zn≥0 be the vector of copy numbers of all
the species in the network and let the stoichiometry matrix
Γ be defined as in (13). The CME employs propensity
functions assigned to each reaction, and we assume that
they follow the form of Mass-Action kinetics. However, the
expression of the propensity functions is slightly different
at low molecule number from the reaction rate functions
given (14). Nevertheless, in the special case where the
stoichiometric coefficients αij ≤ 1 , then (14) can be used.

Let px(t) = Pr[X(t) = x]. Then, the CME is given by
[29]:

ṗx(t) =

m∑
j=1

R(x− γj)px−γj (t)−R(x)px(t). (15)

Let x0, x1, x2 be an enumeration of Zn≥0, and let

p(t) = [px0
, px1

, ..]T ,
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then the CME (11) can be written as:

ṗ = Λp(t), (16)

where Λ is the infinitisimal generator of the Markov chain
defined elementwise as:

λxx̃ :=


Rj(x) if∃j such that x̃ = x− γj
−
∑m
j=1Rj(z) if x̃ = x

0 otherwise.
(17)

Considering the network (1)-(10), we assume that there
is one copy number for each gene. Hence, the conservation
laws imply that

∑3
k=1 pk(t) =

∑3
k=1 gk(t) = 1. Therefore,

we can replace the six stochastic processes pk(t), gk(t) with
two processes p, g defined as p(t) = i iff pi(t) = 1, and
similarly for g.

We employ the results presented in [41] to analyze the
time-scale separation scenario described above. The gene
reactions (1)-(4) are assumed to be much slower than the
protein reactions (5)-(10). To express this separation we start
by decomposing X(t) = [D(t)T , Y (t)T ]T , where D(t) =
[p(t), g(t)]T ∈ {0, 1, 2}2, Y (t) = [P (t), G(t)]T ∈ Z2

≥0.
The probability distribution vector is decomposed corre-
spondingly as:

p(t) = [p00(t), p01(t), ...., p22(t)]T ,

where pij(t) = [py0ij(t), py1ij(t), py2ij(t), ..]
T , pyij(t) =

Pr[Y (t) = y, p(t) = i, g(t) = j], and {y0, y1, ..} is an
enumeration of Z2

≥0.
Hence, using the notation above we can decompose the

CME (16) as [41]:

ṗ(t) = Λp(t) =
(

Λ̃ + εΛ̂
)
p(t), (18)

where

Λ̃ =

Λ00

. . .
Λ22

 , and p(t) =

p00(t)
...

p22(t)

 , (19)

where ε > 0 is assumed to be small. The slow matrix Λ̂
contains the reaction rates from the gene reactions (1)-(4),
while the fast matrix Λ̃ contains the reactions corresponding
to the protein reactions (1)-(5). Each of the submatrices on
the diagonal representation of Λ̃ in (19) can be interpreted
as representing an infinitesimal generator for the network
conditioned on a certain gene state, i.e Λij is the infinitesimal
generator for the Markov chain conditioned on p(t) =
i, g(t) = j.

The above representation allows us to decompose the state
space into weakly coupled ergodic classes. The dynamics on
each class consists of uncoupled birth-death processes which
are known to have a steady state Poisson distribution. Hence,
the overall stationary distribution is expected to be close to
a mixture of Poisson distributions as ε→ 0.

Using singular perturbation techniques, the following the-
orem can be stated.

Theorem 1 ([41]): Given the network (1)-(10) and the
CME (16), assume that πε is the marginal stationary dis-
tribution for P,G. Writing πε = π + επ1 + o(ε), we have:

π = lim
ε→0+

πε =

3∑
i=1

3∑
j=1

ρijP(P,G;αPi/δP , αGi/δG),

(20)
where P(x, y; a, b) := ax

x!
by

y! e
−a−b, ρ = [ρ00, ρ01, ..., ρ22]T

is the normalized principal eigenvector of the following
matrix:

1T 0T ... 0T

0T 1T ... 0T

. . .
0T 0T ... 1T

 Λ̂ [πY |00 πY |01 ... πY |22], (21)

where πY |ij(P,G) = P(P,G;αPi/δP , αGi/δG).
Remark 1: Theorem 1 presents a reduction of an infinite

dimensional Markov chain into a finite dimensional Markov
chain which has nine states only. The matrix in (21) is the
infinitesimal generator for the reduced order Markov chain.
Instead of computing a product of infinite dimensional ma-
trices, we can use the procedure described in [41]. For every
state (i, j), the procedure entails replacing a reaction of the
form:

X + pi
a−→ pi′ ,

with
pi

αE[X|p=i,g=j]−−−−−−−−−→ pi′ ,

where E denotes conditional expectation.
Remark 2: If a mode is defined as a local maximum of a

stationary distribution, then our theorem does not necessarily
imply that the stationary distribution has nine modes since
the peak values of two Poisson distributions can be very close
to each other. In the remainder of the paper, we will call each
Poisson distribution in the mixture a “mode“ in the sense
that it represents a component in the mixture distribution.
The number of local maxima of a distribution can be found
easily given the above expression.

V. CASE STUDY: CONTROLLING THE DISTRIBUTION

While the deterministic model cannot explain the emer-
gence of bistability, the stochastic modeling framework has
shown the capacity to produce up to nine modes.

In order to estimate the probability landscape of the
network we need to estimate the ratio of protein production
rate in the active state to the leakage. We found that we can
use the following ratio for PU.1 gene αP1 : αP0 ≈ 100 : 1,
and αG1 : αG0 ≈ 5− 10 : 1 for the GATA-1 gene [42],[43].
This implies that the production ratios of the gene states
p0, g0 and p2, g2 are close to each other compared to the
production ratio of p1 and g1. Hence, we can group the nine
modes of the landscape into four groups as follows:

1) (low,low):=
{(αp0/δP , αg0/δG), (αp0/δP , 0), (0, αg0/δG), (0, 0)}.

2) (low,high):= {(αp0/δP , αg1/δG), (0, αg1/δG)}.
3) (high,low):= {(αp1/δP , αg0/δG), (αp1/δP , 0)}.
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4) (high,high):= {(αp1/δP , αg1/δG)}.
For convenience, will refer to weight corresponding to each
mode as p``, p`h, ph`, phh, respectively.

The weighting coefficients in (20) play a crucial role in
the “visibility” of a certain mode in the landscape, since a
very small coefficient implies that the corresponding mode
can be ignored in the analysis as it is unlikely to be biolog-
ically observable. However, the expression of the weighting
coefficients for this network is complicated by the fact that
we obtain a high-order rational polynomial which is hard
to optimize or to derive analytic bounds for. Therefore, we
adopt a numerical approach as will be explained below.

In order to illustrate the results, consider the network with
the following production ratios:

αP0

δP
= 25,

αP1

δP
= 2500,

αG0

δG
= 250,

αG1

δG
= 2500.

Hence, the weighting coefficients in (20) depend on four
association ratios, namely d0/a0, d

′

0/a
′

0, d1/a1, d
′

1/a
′

1. We
study two cases that correspond to biologically relevant
phenotypes.

First, we are interested in the bistable phenotype where
the network behaves as a toggle switch that has antagonistic
modes. We assume that d0/a0 = d1/a1 := k1, d

′

0/a
′

0 =
d
′

1/a
′

1 := k2. In this case, numerical computations show that
phh < 0.01, which is negligible. Hence, we are interested in
minimizing p``, while keeping phl, plh relatively balanced.
Figure 3-a shows the contour curves for intervals of interest.
We can achieve low p`` and balanced probabilities of the
antagonistic modes by choosing k1, k2 ≤ 5. Figure 3-b
depicts the probability distribution for parameters in this
range. We can clearly see that the system is bistable.

Second, we are interested in a tristable phenotype where
we have a (high,high) phenotype in addition to the two
antagonistic phenotypes. We assume that d0/a0 = d

′

0/a
′

0 :=
k1, d

′

1/a
′

1 = d1/a1 := k2. In this case, we are interested
in keeping p`` negligible. Hence, we choose to keep p`` <
0.07, having phh with at least 0.2 probability, while keeping
phl, plh relatively balanced. Figure 4-a shows the contour
curves for intervals of interest. We can have the desired
phenotype with k1 ≤ 4, k2 ≥ 1250. Figure 3-b depicts the
probability distribution for parameters in this range. We see
the system is tristable, where the probabilities ph` ≈ phh ≈
p`h ≈ 1/3, p` ≈ 0.

Next, we investigate the control objective of increasing
the production and decay reaction while keeping them at a
fixed ratio. This can be interpreted as adding the following
reactions to the network:

∅
Kp∗−−−⇀↽−−−
K

P (22)

∅
Kg∗−−−⇀↽−−−
K

G (23)

Note this implies that the stationary distribution at the limit

of slow promoter kinetics is given as:

π =

3∑
i=1

3∑
j=1

ρijP
(
P,G; αPi+Kp

∗

δP+K , αGi+Kg
∗

δG+K

)
, (24)

and for a sufficiently high K, the distribution becomes
unimodal at a chosen mode (p∗, g∗). This procedure can
be interpreted as a high-gain state-feedback to “stabilize” a
chosen point in the space [44]. Figure 5 shows a numerical
example where the nominal network has the bistable phe-
notype (as shown in Figure 3-b), and then the “controller”
reactions (22) are included which produces a uni-modal
distribution at a desired location.

VI. CONCLUSION

This paper studies the PU.1-GATA-1 differentiation GRN
which determines cell fate by committing to either the
myeloid/lymhoid or erythroid lineage. Literature search was
used to identify key reactions, which include self-activation,
mutual repression and monomeric TF interaction. A deter-
ministic model consistent with these findings and faithful
to biological reality does not admit bistability, a defining
behaviour of this differentiation network. We have shown
that adopting a stochastic model and assuming realistic slow
promoter kinetics enables the network to exhibit multimodal-
ity, and we can control the shape of the distribution.

VII. APPENDIX: MODELING THE PU.1/GATA.1
NETWORK

Here we seek to model the differentiation of the PU.1-
GATA-1 GRN at the bistable CMP stage, where overexpres-
sion of either TF leads to a different, positive stable steady
state. The list of modeling assumptions we use to derive both
deterministic and stochastic models are:
• PU.1 and GATA-1 transcriptionally self-activate their

respective production [45], [46].
• PU.1 represses GATA-1 production by binding to the

complex formed by GATA-1 and its promoter. This
complex forms repressive chromatin structure effec-
tively silencing transcription (the PU.1-GATA-1 com-
plex has been shown to be present at repressed GATA-1
target genes) [47], [48].

• Similarly, GATA-1 represses production of PU.1 by
binding to it on its target genes and prevents the recruit-
ment of co-activators (such as cJun), which are critical
for PU.1-mediated transcriptional activation [48], [7].

• PU.1 cannot directly bind to the GATA-1 promoter.
[7] reports that PU.1 blocks GATA-1 activation without
affecting GATA-1 mRNA, protein expression, or nuclear
translocation.

• GATA-1 cannot directly bind to the PU.1 promoter. [49]
reports two GATA-1 binding sites on the PU.1 locus, a
-18 kb site, which has not been shown to have a func-
tional regulatory role, and a -17 bp site that potentially
transcriptionally represses PU.1 production. However,
[45] reports that the -14 kb PU.1 URE (to which GATA-
1 cannot directly bind) is significantly more critical
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Fig. 3. The association ratios can be chosen to have a bistable system. (a) Contour curves for the probabilities p``, ph`. The curves are plotted for
the intervals 0 ≤ p`` ≤ 0.07, 0.25 ≤ ph` ≤ 0.75. The variables on the axes are k1 := d0/a0 = d1/a1, k2 := d

′
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′
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distribution for k1 = k2 = 1 computed using (20). The probability of the corresponding modes are p`` = 0.021, ph` = 0.485, p`h = 0.494, phh ≈ 0.
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Fig. 4. The association ratios can be chosen to have a tristable system. (a) Contour curves for the probabilities p``, ph`, phh. The curves are plotted
for the intervals 0 ≤ p`` ≤ 0.07, 0.25 ≤ ph` ≤ 0.45, 0.1 ≤ phh ≤ 0.3. The variables on the axes are k1 := d0/a0 = d

′
0/a
′
0, k2 := d

′
1/a
′
1 = d1/a1.

The values for the contours for p`` are 0.01,0.02,..,0.07 from left to right, (b) The probability distribution for k1 = 0.1, k2 = 2500 computed using (20).
The probability of the corresponding modes are phh = 0.333, ph` = 0.332, p`h = 0.334, p`` ≈ 0.001. Note that the (high,high) mode has a third of the
probability despite having a small height.

than the proximal promoter (which includes the -17
bp GATA-1 binding site) in myeloid cell line 416B
for PU.1 expression. Therefore, here we only consider
the contribution of the PU.1 URE (either activation or
repression when bound with GATA-1).

• All TF interaction occurs in their monomeric form. ETS
TFs, such as PU.1 typically bind as monomers (both to
DNA and other proteins) [25]. Though there is evidence
of GATA-1 dimerization [26], it exists primarily in its
monomeric form. In particular, GATA-1 self-activation

and binding to PU.1 occurs only in its monomeric form
[26], [7]. o

• The promoters of both TFs are leaky [45], [46].
• Protein production occurs in a one-step process (no

intermediary mRNA dynamics).
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