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Abstract—One of the major challenges in systems and
synthetic biology is the lack of modular composition. Modules
change their behavior once connected, due to retroactivity. In
this paper, we build upon our earlier results and provide a
theorem establishing how the dynamics of a master module
change once slave modules are present. We quantify the change
in the dynamics of the master module due to interconnection
as a function of measurable biochemical parameters. Based
on this, we provide a bound on the difference between the
trajectories of the connected system and those of the isolated
system by employing contraction theory. Therefore, we obtain
a measure of robustness, which helps evaluating the degree of
modularity in a system, while providing guidelines for robust
module design. We illustrate the results by considering a re-
curring motif in gene transcription networks: an autorepressed
gene regulating the expression of several downstream targets.

I. INTRODUCTION

Since many biological networks show modular organiza-
tion [1], [2], they might be understood, just like engineering
systems, in a modular fashion [3]. Unfortunately, modules
often exhibit context-dependent behavior [4], so that the
emergent behavior of a network cannot be predicted by sim-
ply considering the dynamics of the composing modules in
isolation. This lacking ability poses a fundamental challenge
in both systems biology and synthetic biology [5].

One cause of context-dependence is retroactivity, a phe-
nomenon describing how a downstream module perturbs
an upstream one due to interconnection [6], [7]. As result,
for example, a two-gene network can be either stable or
display oscillations depending on the addition of a down-
stream module [8]. Retroactivity has been experimentally
demonstrated both in natural and in engineered systems in
vivo and in vitro. For instance, it has been shown in vivo
that retroactivity affects the response time of genes [9] and
it can lead to unexpected interactions in the MAPK cascade
[10]. Retroactivity has been shown experimentally to alter
the behavior of in vitro transcriptional clocks [11] and to
affect the dynamics of signal transduction networks [12].

In this paper, we build upon our earlier results [13] and
give a more detailed description of complex gene transcrip-
tion networks, providing insight regarding both the analysis
and the design of large genetic networks. We introduce the
internal and external retroactivity of a module, capturing
how an isolated module responds to changes in the concen-
tration of its internal and input transcription factors (TFs).
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Furthermore, we define the scaling and mixing retroactivity
of a module establishing how the dynamics of modules
change once connected in a master-slave interconnection.
The scaling retroactivity of the slave describes how the
isolated dynamics of a master is “scaled”, whereas the
mixing retroactivity of the slave captures the extent of the
coupling between the dynamics of the slave and the master.
We show that for obtaining a master module that is robust to
interconnections, its internal retroactivity should be “large”
compared to the scaling and mixing retroactivity of the
slave. Finally, we provide bounds on the change in both the
dynamics and the trajectory of the master once the slave is
connected. Using contraction theory [14], we illustrate the
trade-off between performance and robustness on a specific
example: it is not possible to increase independently the
speed of the master and its robustness to interconnections.

The concept of retroactivity connects with the notion of
fan-out introduced in [15]. Our work is complementary to but
different from those partitioning large transcription networks
into modules by minimizing retroactivity ([16], [6] and [17]).
Instead, our results connect with those of other disciplines’
of biochemical systems analysis, such as metabolic control
analysis [18], [19] and metabolic supply and demand anal-
ysis [20]. However, whereas these methods are primarily
interested in the steady state and near-equilibrium behavior
of a system, we focus on the global nonlinear dynamics of
biomolecular systems.

The paper is organized as follows: first, the system of
interest is introduced in detail. In Section III, we define
the key retroactivity matrices and we provide a theorem
connecting the behavior of connected modules to their dy-
namics in isolation. Based on this, we quantify the effect of
slave modules on a master in Section IV, with an applica-
tion example in Section V where we investigate the trade-
off between performance and robustness to interconnection.
Finally, we conclude with discussion and present future
research directions.

II. SYSTEM MODEL

Transcription networks are the input/output interconnec-
tion of transcription components, which we call nodes. A
node takes TFs as input forming complexes with promoter
sites through reversible binding reactions to produce a single
TF as output (detailed description of the reactions are pro-
vided in the Appendix). There is a directed edge from node
x; to x; if x; is a TF regulating the activity of the promoter
controlling the expression of x; [1], in which case x; is a
parent of X;.



We call a group of nodes a module, and the inputs of the
module are parents not from the module. We call the nodes
inside the module internal TFs, while inputs are considered
external TFs. Let x, u and ¢ denote the concentration vectors
of internal TFs, external TFs, and promoter complexes,
respectively.

According to [21], we can write the dynamics of the

module as .
¢

where NV is the stoichiometry matrix and v is the reaction flux
vector. The reactions are either protein production/decay or
binding/unbinding reactions, therefore, we partition v into r*
and r, representing the reaction flux vectors corresponding
to production/decay and binding/unbinding reactions, respec-
tively (see the detailed system model in the Appendix). We
assume that the DNA copy number is constant, therefore, we
can rewrite (1) as
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where the upper left block matrix in [V is the zero matrix as
DNA is not produced/degraded. As a result, with g (z,c) :=
K*r* (z,c) we obtain

¢=Lr(z,c,u), 5

& =g(z,c) + Kr(z,c,u), )
which we call the isolated dynamics of a module. Note that
4 = g (x,c) describes the retroactivity-free dynamics of x,
i.e., neglecting the retroactivity arising inside the module
(captured by the term Kr).

Now consider the case when the a module is inserted into

a network, which we call the context of the module. Let
z. and c. denote the concentration vectors of TFs and pro-
moter complexes of the context, respectively. Furthermore,
denote by r¥ and r. the reaction flux vectors corresponding
to production/decay and binding/unbinding reactions in the
context of the module, respectively. Then, the dynamics of
the species in the module (c and x) and in the context (c.
and z.) can be written as

¢ 0 0L o0 r*
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where the upper left block matrix is zero as DNA is assumed
to be a conserved species. Furthermore, the off-diagonal
matrices in the upper right and lower left blocks can be
shown to be zero by the definition of 7, r, 7* and r¥. Finally,
the stoichiometry matrix H, represents how internal TFs of
the module participate in binding/unbinding reactions in its
context: for instance, H. = 0 if internal TFs of the module
do not regulate the expression of TFs in the context (H can
be interpreted similarly). With s := H_.r., we obtain
¢=Lr (z,c,u),

4
z =g (z,c,u) + Kr(xz,c,u) + s, @
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Fig. 1: Block diagram representation of interconnections

explicitly accounting for retroactivity

which we call the connected dynamics of a module. We
refer to s as the retroactivity to the output of the module,
encompassing retroactivity arising from the context of the
module. Similarly, we call r the retroactivity to the input of
the module, representing retroactivity originating inside the
module. The general interconnection of a group of modules
(Fig. 1) can be treated similarly: the retroactivity to the input
rBi of module B; is multiplied by the stoichiometry matrix
HBi, so that s = Y," | HPirPi yields the retroactivity to
the output of the upstream module. If TFs of the upstream
system do not take part in reactions of module B;, module
B; does not contribute to s (represented by HB: = 0).

ITII. INTERCONNECTION OF MODULES

In order to understand how downstream modules affect
upstream ones, we first focus on a single module and describe
how internal connections affect the behavior of this module.
Then, we describe how retroactivity between modules affect
their dynamics, and finally, we consider the special case of
master-slave hierarchy.

A. Internal and External Retroactivity

Consider node x; and let p; and ¢; denote the concen-
tration vectors of its parents and complexes formed with
its promoter, respectively. Define the binary matrix W, as
follows: the (j, k) element of ¥, is 1 if the k™ promoter
complex has the j parent bound, otherwise the entry is zero.
Consequently, b; (¢;) := ¥,c; represents the concentration
vector of bound parents at node x;, i.e., its j‘h entry is the
concentration of the j parent bound at node x,. Parents can
be either nodes in the module (internal TFs) or inputs to
the module (external TFs). To represent the interconnection
topology, we define the binary matrices V; and D; as follows.
The (j,k) element of V; (or D;) is 1 if the j™ parent is x;,
(or ug), otherwise the entry is zero. For instance, V; = 0 if
all the parents of x; are external TFs, and similarly, D; = 0
if all parents are internal TFs. Finally, let ® denote the set of
nodes having parents in the module, and similarly, 2 denotes
the set of nodes having parents outside the module (so that
V; =0 for x; ¢ ® and D; = 0 if x; ¢ Q). With this, we



obtain
T
paan=[v 0 ](5). ®
and it follows that

y(o):= > WV
(i]xed)

b; (c;) (6)

represents the total concentration of bound internal TFs in
the module (y; is the concentration of bound x;).
Binding/unbinding reactions are much faster than protein
production/decay [1], thus all protein decay rates are much
smaller than all dissociation rate constants. As a result, we
can define 0 < € := §/a « 1 as a fraction of any nonzero
protein decay rate J and dissociation rate constant c.

Theorem 1. Ler (c(t),x(t)) be the solution of the iso-
lated module dynamics (2) for t € [0,ty] with initial
condition (co,xo) and with input u(t) continuous in t.
Let y(c) be given by (6) and introduce z = x + y(c).
Let ¢ = F(z,u) be an isolated root of 0 = Lr(z —
y(c),e,u), and define 3(z,t) 1= J(z,u), w := ¢ —§(z,1),
h(xz,c,t,e) = eLr(z,c,u), and T := t/e. Assume that
the origin is an exponentially stable equilibrium point of
= h(z—ylw+7(z1),w+75(z,t),t,€) uniformly in
(z,t) and let C be a compact subset of its region of attraction.
Define ?gz,c,t) = r(z — y(c),c,u) and assume that
w and J(z,t) have continuous first partial deriva-
tives with respect to their arguments, moreover, W
is also continuous. Let ¢ = ~(Z,u) be the locally unique
solution of 0 = Lr(Z, ¢, u) and define y(x u) = y(y(z,u)).
Introduce R(Z,u) := 7—2 Q(z,u) = ;Z and the dynamics

i=I+R) " g@ (@) —Qu] = f(T,u,i). (7)

Let Z(t) be the solution of (7) for t € [0,ts] with initial
condition T(0) = Ty such that To+y(To, u(0)) = zo+y(co).
If cg € C, then there exist a constant €* > 0 such that for
0 <e<€* wehave |x(t) —Z (t)|l, = O (¢) for t € [0,f].
Proof: Since we can write 2 = g (z,c) with z = = +

y (¢) (Lemma 1 in the Appendix), we can transform (2) into
standard singular perturbation form [22] with zy = zg +

y (7 (zo,u(0))):

2=9(z=y(c),c)
e¢ =h(z—y(c),c,t,e)

z(0) = 20, ®)
¢ (0) = ¢p. )

To obtain the reduced order model, we set ¢ = 0 in (9). Since
0=nh(z—y(€),ct,0) implies 0 = Lr(z —y(¢),c,u) =
Lr (z,¢,u), we conclude that the slow manifold [22] is given
by ¢ = 7 (z,u) = v(, u). Therefore, the reduced system
becomes 2 = g (Z,7 (Z,u)) with z(0) = 20. As 2 =T + ¥,
we have z =T+ a”x + 24 = (I + R)Z + Qu, equivalent
to(7)asz =g (T ’y( )) Applying Theorem 11.1 in [22]
concludes the proof. [ ]

According to Lemma 1 in the Appendix, z =
g (z,7v(x,u)) where z = x + y represents the total con-
centration of internal TFs (free and bound). We call R the
internal retroactivity of the module. When Qu = 0, (7)

reduces to & = (I + R)f1 z. That is, the “greater” R, the
“harder” to change the concentration of free internal TFs
by changing their total concentration. We refer to () as the
external retroactivity of the module. If the total concentration
of internal TFs is constant (¢ = 0), then (7) reduces to

— (I + R)™" Qu, therefore, ) represents the fact that
one can change the free concentration of internal TFs without
changing their total concentration (by forcing internal TFs to
bind/unbind as a result of changes in ).

Recall that p; and ¢; denote the concentration vectors
of parents of node x; and complexes with the promoter of
X;, respectively. Introduce r; as the reaction flux of bind-
ing/unbinding reactions at node x;, so that ¢; = L;r;(p;, ¢;)
where L, is the corresponding stoichiometry matrix. Let
vi(p;) be defined such that 0 = L;(p;v:(p;)) and define
R; (p;) = w which we call the retroactivity of node
x; [13]. Comblnlng the definition of R and ) with (6) and
the fact that 6(’;’ V; and ‘217’; D; by (5), we can write the
internal retroactivity of a module as R = ;| sy V/ RV}
using the chain rule. Similarly, the external retroactivity of
a module becomes Q = >, |y, c(@nn)} Vi L D;-

B. Scaling and Mixing Retroactivity

Take modules A and B, and for simplicity, assume that
the modules have inputs only from each other, that is, B
encompasses the context of A (see (3)), and vice versa (this
assumption can be relaxed using the results from the previous
subsection). Using the superscript to denote to which module
a quantity belongs, the isolated dynamics of A given by (2)

become ¢4 = LAr4 (z4, ¢4, u?) and 24 = g4 (24, ¢4) +
KArA ( A A, A) and 51m1larly, the isolated dynamlcs of
B are ¢P —LBB 2B,cP uB) and &P = ¢P (2B, cP) +

KBprB (xB,cBmB).

As the inputs of module B are nodes in module A, and
vice versa, we need to establish the relationship between the
inputs of B and the nodes of A. Therefore, we define the
binary matrix 77 as follows: the (j, k) element of T is 1 if
the j" input of B is the k™ node in A (u = xk) otherwise
the entry is zero. As a result, we have uB = TBzA (we
define the matrix 7 similarly for module A, resulting in
uf = TAzB ). Once we connect A with B, the behavior is
captured by the connected dynamics (4) for A:

A _[ARA (xA’CA,TAxB) ’

A _gA (xA’CA) LKA (IA76A7TAJ;B> LA
= HByB (xB7cB7TBxA), and similarly, for B:
B _[B.B (xB,CB,TBxA) ’
@B —gP (xB’CB) I
with % = HA4%4 (24,4, T4%2P). In order to
predict how the dynamics of A and B change upon

interconnection, it is useful to treat the interconnected A
and B modules as one module in isolation. To this end,
define z := ( (z?) (2B) ), ¢ := ( (A (P) ),
g(z,0) = ( (g% e?) (gP(@P,cB)) V. r(z,c,u) =
( (TA(IA,CA,TAIB) / (TB(QSB,CB,TBxA))’ )/’ and

(10
with s4

(1)

KEBpB (a:B,cB,TBxA) + sP



since u is vacuous (modules A and B have no inputs but
from each other), we write r(z, ¢). Furthermore, let

A A B
L::[L 0}’ K::[K "

KB ] (12)

Consequently, (10)—(11) can be rewritten as the isolated
module dynamics (2) with (12). Furthermore, introduce

SA(x) = Z
{ilxfeqa}

MA(z) = Z
{ilxfe(@2n04)}

SB@):= >, (DPTPYRPDPT?,
{i|xPeqn }

MB(x) = Z

{ilxPe(@Bn0B)}

0 LB HA

(DATAY RADATA,

(DATAYRAVA,

13)

(DETPYRPVE.

Note that M B = 0if 8B ~nQF = @&, that is, if nodes in B do
not have parents from both modules. Moreover, considering
the master-slave hierarchy where only B takes inputs from
A, we also obtain M4 = 0 and S4 = 0 as Q4 = . Finally,
let R4 and R® denote the internal retroactivity of A and B,
respectively, and define

A(2) :—[ o ] (14)
oo | T+RY 0
G ( )—[ 0 (I—%—RB)fl 17 15)

together with the dynamics

. _ A *A,TA*B’TALB
¥=(I+GA)™ ( ;B E;B7TB§A7TB§A% ) - (106

[\

isolated dynamics of A and B

Pick any nonzero decay rate 4, dissociation rate constant «,
and define the dimensionless parameter 0 < € := d/a < 1
[1]. Then, we have the following result.

Theorem 2. Let (c¢(t), x(t)) be the solution of the isolated
module dynamics (2) with (12) for A and B for t € [0,1]
with initial condition (cq, zg). Let y(c) be given by (6) and
introduce z = x + y(c). Let ¢ = (z) be an isolated
root of 0 = Lr(z — y(c),c), and define w := ¢ — y(z),
h(x,c,e) = eLr(z,c), and T = t/e. Assume that the
origin is an exponentially stable equilibrium point of fl—’: =
h(z—y(w+v(2)),w+ (), €) uniformly in z and let C be
a compact subset of its region of attraction. Furthermore, de-
fine 7(z,c) :=r(z—y(c),c) and assume that W and
~(2) have continuous first partial derivatives with respect to
their arguments. Let ¢ = ~(T) be the locally unique solution
of 0 = Lr(z,¢) and define y(z) = y(y(x)). Let Z(t) be
the solution of (16) for t € [0,t] with initial condition T,
such that To + y(To) = xo + y(co). If co € C, then there
exist a constant €* > 0 such that for 0 < € < ¢* we have

|z (t) =z (@), = O(e) for t € [0, ty].

Proof: Theorem 1 applied to the network (2) with (12)
yields that the solution of

i=(I+R)" gz, () (17)

with Z(0) = o satisfies the claim. Therefore, it is
sufficient to show that (16) and (17) are equivalent.
Let ¢4 = 44(z4,u?) and ¢® = +B(z8 uP) denote
the locally unique solution of 0 = LAr4(z4 4 u?)
and 0 = LBrB(zB,cB uP), respectively. Given the
block diagonal structure of L in (12), we obtain
1(@) = ( (@, TAZP)Y (P8, TP74)) ). Since
gle.) = ( (g @A) (9P, cB)) V. we can
substitute gA (EAﬁA (EAALA)) and ¢® (fB,'yB (fB,uB))
from (7) with superscripts “A” and “B”, respectively, into
(17). We can show that with Q4 and QP denoting the
external retroactivity of A and B, respectively, by defining

AL 0 QATA
Q = |: QBTB 0 ] )

the internal retroactivity R of the connected modules in (2)
can be written as R = G~ — I + A + Q. For details, see
Lemma 2 in the Appendix. Substituting R and ¢(Z,~(Z))
into (17) yields (16). |

Note that (16) reduces to z4 = fA(z4, T4z, T425)
and 28 = fB(zB,TBz4,TBz4) if A = 0, that is, the
modules behave as if they were in isolation if sS4 =,
MA=0,S8 =0and MB =0.

Finally, consider the case when only module B (slave)
takes inputs from module A (master), that is, u? is vacuous.
We wish to understand how module B affects the dynamics
of module A. Since module A does not take inputs from
module B, we have Q4 = &, thus S4 = 0 and M4 = 0.
As a result, with £ := [ + (I + R*)7'S®]~! and F :=
(I + R4+ SB)=1MB, (16) reduces to

(18)

i =EfA (24,7425, 743P) — FfP (28,7824, TP34)

jjB :fB (xB,TBfA,TBi'A) ,

that is, the isolated dynamics of B appear in the dynamics of
A through the matrix F. In the special case when M?Z = 0,
we have F' = 0, so that the dynamics of A reduce to

it = EfA (2, 7428, 7437) (19)

that is, the connected dynamics of the master are the “scaled”
version of its dynamics in isolation. Therefore, we call SB
the scaling retroactivity of the slave. Since the isolated
dynamics of the slave enter through M in the dynamics of
the master, M ? establishes how the dynamics of the master
and the slave are “mixed”.

IV. QUANTIFYING THE EFFECT OF SLAVES ON
THE MASTER

According to Theorem 1, the isolated dynamics of the
master can be well approximated by its reduced order
model 74 = fA(z4, u?, 1) defined in (7) with super-
script “A”. As u® is vacuous, we write f“(z?) instead



of fA(z?, uA,u?) to simplify notation. Consequently, the
dynamics of the master module in isolation are given by

it = fA(z?). (20)

We denote by R“ the internal retroactivity of the master, and
since the master does not have inputs, RA s only a function
of z. Furthermore, assuming that there are no mixed parents
in the slave (% N QP = ), we have that S given by (13)
is also only a function of x4, moreover, MB = (.

Once we connect the master module to the slave, the
dynamics of the master change according to (19). Define
GA(x4) := [I + RA(z™)]7*, so that (19) yields

it = (I +GASEY LA (2. (21)
We define the percentage difference in the dynamics of the
master upon interconnection with the slave as

_ @+ e85 ) — fa)]
1)l '

Using the sub-multiplicative property of the induced 2-norm,
we have d(z#) < |[I+G*(z)SB (24)] ! *IHQ =: p(z?),
so that p(x4) is an upper bound of the percentage change
in the dynamics of the master once connected to the slave.

d(z?)

Proposition 1. We can bound u from above as p < [i with
fi =[G SP[2/ (1 = |GA2]S7]2) if |G SP]2 < 1.

Proof: Consider the eigenvalue A of GAS® with the
corresponding eigenvector v, so that

Alllvllz = [GASPv]2 < |GA2SZ2vl2 < o],

yielding that |A] < 1. Consequently, the spectral radius

p of GASE satisfies p < 1. Using the result on the

convergence of geometric series of matrices in [23], we

write (I + G’“SB)_1 — T+ (=) (GASB)k, so that

k

p< X |GASP ] = [GASP o/ (1~ |GASP],), and we

conclude the proof by using |[GASE |y < |GA[2|SE|2 < 1.

|

A system & = f(x,t) is called contracting [14] with

respect to the metric transformation ©(x,t) if (i) ©'O is

uniformly positive definite and (ii) the symmetric part of the

generalized Jacobian
. 0
J(z,t) := (@ + @f> o'
ox

is uniformly negative definite. The absolute value of the

largest eigenvalue of the symmetric part of J is called the
system’s contraction rate with respect to ©.

(22)

Theorem 3. Let x“(t) and 72 (t) denote the solution of
(20) and (21), respectively, with identical initial conditions.
Assume that (20) is contracting with rate X > 0 and metric
transformation ©. Denote by x the condition number of ©.
Assume that |f4(x)|s < f and p(x) < i for v € D. If
zA(t), 24(t) € D fort € [0,00), then we have |4 (t) —
ZA(t)2 < Afx/A for t € [0,0).

Proof: Rewrite (21) as

it = A+ [(1+GASP) T =1 ), (23)

in which, using the sub-multiplicative property of the induced
2-norm, |[(I + GASE)=L — IfA(z?)|2 < jif for 24 € D.
Since x4 € D for all ¢, we apply Lemma 1 in [24] with (20)
as the nominal system and (23) as the perturbed system. W

According to Proposition 1, i decreases with ||G4||2]|SZ 2
(more precisely, the upper bound of ;4 decreases), making the
master more robust to interconnection. Denote by o i (F)
and o« (F) the smallest and largest singular value of F,
respectively, and note that |F|y = opax(F) and |F~ Y|y =
o1 (F) from Lemma 2.12 in [25]. As a result, we can make
the master more robust to interconnection (decrease the upper
bound of the change in the master’s behavior) by increasing
Omin(I + R4) or by decreasing o ., (S?).

V. APPLICATION EXAMPLE

Consider the case when the master module is an autore-
pressed gene, that is, it inhibits its own production [1],
and the slave module consists of n nodes regulated by the
TF of the master, which is a frequently recurring motif in
transcription networks. Here, we seek to understand how the
slaves affect the master’s robustness to interconnection and
performance. In particular, we investigate how the response
time of the master changes upon interconnection.

The reactions governing the behavior of the isolated master
are

c(ﬁ—x%cl7 co = co + X, x> &,
such that 7 = ¢y + ¢; denotes the total concentration of the
promoter in the master module with dissociation constant
K4 := /. The dynamics of the isolated master are given

74 30

5 HIGH LOAD, 'Q\? HIGH LOAD

2 )| 3200

2 ¢ S

2 4 g

%__-_-——" éloo_-.-

2 [Low LoAD LOW LOAD™ ™ = = o
10° X 10° 10° 10" 10°

n [nM] n [nM]

(@) (b)

Fig. 2: (a) The response time fregponse Of the master in-
creases with its internal retroactivity (which is proportional
to 7). Furthermore, the greater the load (the higher the
copy number 7); of the slave), the slower the response. (b)
The percentage change &esponse in the response time of the
master upon interconnection with the slave decreases with
its internal retroactivity. Furthermore, the greater the load,
the greater this percentage change. Simulation parameters:
0= 1hr71, K4 = 10nM and 7 is chosen such that it yields
Tss = 10nM, K41 = 10nM, 71 = 50nM (solid, HIGH
LOAD) and 7; = 10nM (dashed, LOW LOAD).



by
nKgq

3 ! ox +
f=——-"|-bs+7—r
r+ Ky

1+ RA

) —f@) @4

according to (7), in which the internal retroactivity of the
master is given by R4 = nKy(x + Kz)~2 [13].

Upon interconnection with the slave, the dynamics of the
master change due to the reactions

ci,o-i-x‘a:‘ici’l, fori=1,2,...,n

Let 7; = c¢;0 + c;,1 denote the total concentration of the
promoter of slave nodes, and define K;; := (;/c, the
dissociation constant of x and the promoter of the i slave
node (: = 1,2,...,n). According to (16), the dynamics of
the master once connected to the slave become

1+ RA

EES e R =

where the scaling retroactivity S” of the slave can be
shown to be SB = S miKai(x + Kq;)~? by (13). In
order to apply Theorem 3 to the isolated system (24) and
the connected system (25), we need to find D, f, [ and
the contraction rate A > 0 (here, we provide a sufficient
condition for contraction).

Since R4 > 0 for z > 0, (24) has a unique positive
steady state xss. Given that f (z) > 0 for 0 < z < x4, and
f(x) < 0 for x > x4, we conclude that xg, is stable.
Consider a trajectory x (t) with initial condition zy > 0
and define m := max (zg,xss). The set D = [0,m] is
positively invariant, as it can be easily verified. We can use
this to provide a bound on f (x) and on p (z) for x € D: in
particular, with f := &m + 7 we obtain | f (z)| < f for all
x € D. Furthermore, given that i = |[(I+GASB)~1 1|, =
SB/(1+ RA + SB), we have w(z) < fu for all x € D with

P n i Kd,i
B= Z’L 1 Kd

-1
(1 + Kd+m (Kg+m)? +Zz 1 (Ka, +m)2) :

Finally, choosing the metric transformation © = I, the
generalized Jacobian in (22) reduces to J = %, so that
we obtain J < [—6 + 7(R4)?](1 + RA)~2. The master is
contracting with rate A > 0if J < —\ < 0, which is satisfied
if 4 is large enough (e.g., if § > 7T(77/Kd) +)\(1 +n/Ka)?)
§—m(R™)?
(1+RrRA)2 >
that the bound on X decreases with R“. The trajectories of
a contracting system converge exponentially to each other
[14]: the greater A, the faster the convergence. The greater
R4, the smaller (the upper bound of) ), thus the slower the
master. The change in the response time of the master once a
single slave is added can be seen in Fig. 2a. As expected by
Proposition 1, as we increase RA or decrease SB, the master
becomes more robust to interconnection with the slave since
it is less affected by the slave, as it can be appreciated in Fig.
2b. That is, a trade-off between performance and robustness
appears: increasing the internal retroactivity of the master
makes it more robust to interconnection at the expense of
slower response.

Furthermore, we have that A < which means

VI. DISCUSSION AND FUTURE WORK

In this paper, we applied singular perturbation theory and
contraction analysis to quantify how slave modules affect a
master in complex gene transcription networks.

We built upon our earlier results and introduced four key
quantities (R, @), S and M) establishing a module’s dy-
namic properties in the presence of interconnections. These
characteristic quantities can be computed by considering the
retroactivity R; of each node and the network structure en-
coded by the binary matrices V;, D; and T". We also provided
a formula linking the behavior of connected modules to
their dynamics in isolation. As a consequence, it becomes
possible to quantify the effect of slave modules on a master.
First, we provided an upper bound p on the percentage
change in the dynamics of the master once connected to the
slave. We showed that this bound decreases by increasing
the internal retroactivity of the master, or alternatively, by
decreasing the scaling retroactivity of the slave. Second, we
presented an upper bound on the difference in the trajectories
of the master once connected to the slave using contraction
theory. As a result, we were able to demonstrate the trade-
off between performance and robustness to interconnection
when the master module is an autorepressed gene: increasing
the internal retroactivity of the master makes it more robust
to interconnection at the expense of slower response.

The objective of this paper was to understand how modules
affect each others’ dynamics upon interconnection. Conse-
quently, we chose a standard model of transcription networks
that allowed us to focus on the effect of interconnections
without the details of biochemical reactions obscuring them.
Although this framework captures most of the relevant pro-
cesses in transcription networks, we plan on extending our
approach by including mRNA dynamics and multimeriza-
tion.

VII. APPENDIX

Detailed system model. Here, we present the reactions gov-
erning the dynamics of a transcription network considered in
this paper. We introduce the alias p; ; for the parents of node
x;. Parents of node x; regulate the production of TF x; by
binding to its promoter forming promoter complexes c; ;.
The dynamics of the network are governed by transcription,
translation and degradation processes. The reactions we
consider for node x; are

v; (t) Qi gk
6] Xq, Cij +Piy =—— Cik,
&4 ik,j

which represent the following physical phenomena. We
denote by v; (t) the production rate that may be due to
external inputs (inducer, noise or disturbance), and let §;
denote protein decay. Furthermore, we consider the re-
versible binding reaction of parent p,; with complex c; ;
with the association and dissociation rate constants o ; j
and f; . j, respectively. Furthermore, we model gene ex-
pression as a one-step reaction process. Specifically, each
promoter complex ¢; ; will contribute to the production
of x; through a production rate constant 7; ;, modeled as



Cij TR ¢;; + X;. Therefore, the reaction flux vector r
is partitioned such that v;, d;x; and m; jc; ; belong to r*
(production/decay), whereas «; j xC; jpiy and B;  jcik are
in r (binding/unbinding). Finally, we assume that the total
concentration of promoter, denoted by 7;, for each node is
conserved, so that 7, = le ’(‘) ¢ ;, where |C;| denotes the
number of promoter complexes at node Xx;.

Lemma 1. With z = x + y (¢) we obtain z = g (x,c).

Proof: Without loss of generality, we can assume that
the nodes are labeled such that the first |®| are the ones
having parents in the module (if not, we relabel them). Note
that c; ; is not involved in reactions at nodes other than Xx;,
consequently, L in (2) is block diagonal with blocks L;, and
we partition r accordingly:

L1 0 N 0 T1

0 LQ [N 0 T2
L= ’ r= )

0 0 L@‘ 7“‘@‘

yielding ¢; = L;r; by (2), where ¢; denotes the concen-
tration vector of promoter complexes at node x;. Since
b; = Wci, by (6) we have § = Y% V’\If L,r,. Define
N; = V/U, and note that [Ni]jk = 1f ik has Xx;
bound, otherwise [Ni]; = 0. Let F; := N;L; and F :=
[ Fi Fy F\@I ], so that we obtaln y=Fr.

We now show that [K]m’n —[#1],,,- To do so,

consider [Fi],, ,, = Zlcl (N1, 5 [L1]},.,,- The entries in
r1 correspond to the reaction rates of the reactions of the

a1,k
form c; TP N _ C1,k» SO that [rl]n = a1,5,kC1,5P1,1 OF

Q1 k,j
[r1],, = o1 jkC1,k, furthermore, we either have P1; = Xm OF

Pi; # Xm (4 cases in total). Note that there are exactly

two nonzero entries in each column of L;. If [r{], =
a1 jkC13p10 and py; = Xp, then [K] = —1. In this
case we have [Li]; , = —1, [Ll]k,n =1, [N1],,; = 0 and
[N1],, = 1, thus [F4], . =1 = —[K], . The other

three cases can be handled’ 51m1larly, all yleldmg [Fl]m,n =
1 = —[K],, - Therefore, the columns of K multiplying
r1 are the columns of H,. We can similarly show that the
columns of K multiplying r; are the columns of F;: to do
s0, just reorder the nodes so that x; becomes the first. This
implies that K = —F, yielding y = — K, and together with
(2) it results in 2 = g (z, ¢). [ |

Lemma 2. Consider A and G defined in (14)—(15), and let

AL 0 QATA
Q T |: QBTB 0

Then, the internal retroactivity R of the connected modules
in (2) with (12) can be written as R =G ' — T+ A + Q

Proof: Let X“ and X7 denote the set of nodes
in A and B respectively. Given that x! = x, for i <
|X4| and xP = XX 4|4 for j < |XP| in the connected
modules A and B given by (2) with (12) we can write
Vi = [ VA DATA ] if x; € XA, and Vixay,; =

(26)

[ D]BTB VjB ] if x; € XB. Since @ = @4 U QA U DB U
B, the internal retroactivity R of the network given by (2)
with (12) can be written with S; := {z|x;4 € (<I>A v QA) }

and Sy := {j|xB e (PP U QB)tas R=3 5 VIR, +
ZjGSQ XAH-]R V\XAIJr.j' Substituting V; and Vixa|4;
yields the sought expression. [ ]
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