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Abstract

The design of genetic circuits typically relies on characterization of constituent mod-

ules in isolation to predict the behavior of modules' composition. However, it has been

shown that the behavior of a genetic module changes when other modules are in the

cell due to competition for shared resources. In order to engineer multi-module circuits

that behave as intended, it is thus necessary to predict changes in the behavior of a

genetic module when other modules load cellular resources. Here, we introduce two

characteristics of circuit modules: the demand for cellular resources and the sensitivity

to resource loading. When both are known for every genetic module in a circuit library,

they can be used to predict any module's behavior upon addition of any other mod-

ule to the cell. We develop an experimental approach to measure both characteristics

for any circuit module using a resource sensor module. Using the measured resource

demand and sensitivity for each module in a library, the outputs of the modules can

be accurately predicted when they are inserted in the cell in arbitrary combinations.
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These resource competition characteristics may be used to inform the design of genetic

circuits that perform as predicted despite resource competition.
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1 Introduction

Genetic circuits are typically designed in a bottom-up fashion by combining previously char-

acterized modules together to create new behaviors for particular applications (1 ). How-

ever, genetic modules often behave di�erently depending on the cellular context resulting in

a lengthy design process and signi�cant trial-and-error in designing genetic circuits (2�4 ).

One major aspect of context dependence is resource competition between genetic circuit

modules due to the fact that cellular resources such as RNAP and ribosomes are �nite and

shared among modules within a genetic circuit (5�7 ). It has previously been shown that

resource competition between genes may result in more than a 60% decrease in expression

levels (6 ), and that resource competition may cause signi�cant changes in the qualitative

behavior of genetic circuits (7 ). Resource competition has also been observed in cell-free

systems (8 ), mammalian cells (9 ), and in computational models (10�12 ). Much work has

gone into developing strategies to improve genetic circuits' robustness to changes in cellular

resources (13�19 ). In these strategies, resource competition is assumed to be an unknown

disturbance and a controller (feedback or feedforward) is implemented to decrease the e�ects

of resource competition on the system. However, characterization of genetic circuits with

resource competition for prediction has remained largely unexplored.

Consider a situation where multiple genetic circuit modules are initially characterized in

isolation. When the modules are combined to form a multi-module system, each module

behaves di�erently since the modules must compete for resources with every other module,
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and, therefore, each module has access to a di�erent amount of resources than when it was

initially characterized. Therefore, to accurately design multi-module genetic circuits, the

behavior of every module must be able to be predicted in the context of the �nal application

despite resource competition e�ects. Additionally, it is highly desirable to characterize mod-

ules individually with a minimum number of experiments needed to characterize resource

competition e�ects.

Here, we present an experimental method to estimate the e�ects of resource competition

in genetic circuits, which can be used to predict circuit behavior in new contexts. We �rst

present the method of estimating two key resource competition characteristics for a genetic

circuit module of interest: resource demand and sensitivity. We de�ne these quantities using

a published mechanistic model of resource competition in genetic circuits (6 , 7 ). These

characteristics can be used to predict a module's output with resource competition, which

aids module design of genetic circuits. Additionally, the characteristics are dimensionless,

which facilitates their measurement as well as allowing them to be compared across di�er-

ent modules. To experimentally measure the resource competition characteristics, we �rst

characterize two resource sensors, which are then used to estimate the resource competition

characteristics for any module of interest in a library. We then show that, using these charac-

teristics, we can quantitatively predict the outputs of modules when they are inserted in the

cell in any new combination. The predictions of module outputs are always more accurate

than those obtained when neglecting resource competition.

In this paper, we investigate resource competition at the translational level, which has

been shown to be the dominant source of resource competition in bacteria (6 ). To control for

any di�erences in transcriptional e�ects, the tested circuits contain multiple modules where

gene translation is turned on or o� for situations when modules are irrelevant by using a

very weak RBS. For more details, see the Discussion Section 3.
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2 Results

2.1 Using Resource Competition Properties to Predict Outputs

When genetic circuit modules are inserted into a cell, they use cellular resources for protein

production and change the availability of cellular resources to other circuit modules in the

cell. As shown in Figure 1a, the input-output response of a genetic circuit module of interest

may be characterized in isolation. When the module of interest is in the same cell as other

(perturbing) modules, the modules compete for cellular resources and, therefore, the output

of the module of interest cannot be accurately predicted based only on its behavior in isolation

(6 , 7 ).

In order to predict the e�ect of resource competition on genetic circuit modules, we

demonstrate a method to estimate two key resource competition characteristics of a genetic

circuit module, which may be used to predict changes in the module's input-output response

due to resource competition in new situations.

For a module of interest M, the resource competition characteristics are the resource

demand QM (�quantity� of resources used by the module) and resource sensitivity SM (sen-

sitivity of the module's output to resource loads). As shown in Figure 1b, the output of the

module of interest is predicted by a function of the module's output when measured alone

yM, the module of interest's resource sensitivity SM, and the resource demands of both the

module of interest QM and of the other, perturbing modules in the cell QP. Thus, by esti-

mating the resource demand and sensitivity for all modules, the changes in module outputs

due to resource competition e�ects can be predicted as explained next.

The resource competition characteristics QM and SM are de�ned based on a previously

proposed model describing resource competition in bacterial cells, which we recall here (6 , 7 ).

We consider the production rate of a protein (which is related to the concentration of the

protein at steady state; see the SI, Section S1.2) as the output of a genetic circuit module of

interest M, where the circuit module's output is measured in the presence of another circuit
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Figure 1: Resource competition characteristics allow prediction of modules' out-
put in new contexts. (a) The input-output response of a genetic circuit module of interest
is characterized in isolation within the cell. When a new module is added to the cell, this
module perturbs the pool of available cellular resources. This results in a change in the
input-output response of the module of interest. (b) A resource sensor module enables the
estimation of the resource competition characteristics QM (resource demand) and SM (re-
source sensitivity) for a module of interest by measuring the input-output response of this
module with the resource sensor in the cell. (c) Knowledge of the resource competition char-
acteristics QM and SM and of the QP for a perturbing module enables the prediction of the
input-output response of the module of interest in new contexts such as with the perturbing
module.

module P. Based on this model, the production rate y of a module's output protein is given

as

y =
αyFy(uy)

1 +
∑

j∈M

wjFj(uj)

︸ ︷︷ ︸
(a)

+
∑

k∈P

wkFk(uk)

︸ ︷︷ ︸
(b)

, (1)

where αy represents the maximum production rate of the output and is proportional to the

total resources for transcription and translation, the functions Fi(ui) represent the regula-
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tion function of the gene i by its input(s) ui (which may be a Hill function (20 )) and, for a

single regulator is of the form Fi(ui) =
1+ayu

ni
i

1+biu
ni
i

for some constants ai, bi, and ni. This model

can be derived by applying the conservation law of gene expression resources during protein

production and is derived in the SI, Section S1.1 as well as in (7 ). The quantity wjFj(uj)

represents the resource demand of the individual gene j and is nondimensional (7 ) with

wj representing the resource demand coe�cient of gene j which is a lumped parameter of

biochemical binding constants that depends on the promoter strength, ribosome binding site

(RBS) strength, and plasmid copy number. Furthermore, γ represents the protein degrada-

tion and dilution rate, andM represents the set of genes in module M where the output y

is inM, while P represents the set of genes in module P. Term (a) represents the resource

demand of all the genes in module M and term (b) represents the resource demand of all

genes in module P. This model assumes that total cellular resources are �nite and constant.

Based on Eq. (1), the resource demand of the module of interest M, is de�ned as

QM =
∑

j∈M

wjFj(uj), (2)

where M is the set of all genes contained in the module of interest M. Note that the

resource demand QM is the sum of the resource demands of all the constituent genes within

the module.

The second resource competition characteristic is the sensitivity of the regulation function

of the module's output Fy(uy) to changes in cellular resources, which we call the resource

sensitivity, and is de�ned as

SM =
dFy(uy)

dQP

1

Fy(uy)|QP=0

, (3)

where QP is the resource demand of a module that is perturbing the resource pool, in other

words, term (b) in Eq. (1). The resource sensitivity SM determines how disturbances in the

pool of cellular resources imparted by a perturbing module a�ect the regulation function of

6



the module's output. This change of the regulation function arises because, upon a resource

perturbation, the expression of genes within the module of interest that regulate the modules'

output also change. Note that, for constitutive modules, SM = 0 by de�nition since Fy(uy)

is constant in this case.

As shown in Figure 1b, in order to estimate the resource demand QM and resource

sensitivity SM of a general module, a special module called a resource sensor is used, where

the resource demand QRS of the resource sensor was previously characterized. The output

of the module of interest in new situations when the resource pool is perturbed by other

modules can be predicted using the estimated Q̂M and ŜM for all modules in the circuit, as

shown in Figure 1c. Speci�cally, by combining the two resource competition characteristics

QM and SM based on their de�nitions, the output of a genetic circuit module can be predicted

as other modules compete for resources through their own resource demand QP according

to the equation

ypM = yM (1 + SMQP)
1 +QM

1 +QM +QP

, (4)

where yM is the output of the module of interest in isolation and ypM is the predicted output

of the module when perturbed due to the depletion of the resource pool by the presence of

the module P. For the derivation of Eq. (4), see the SI, Section S1. For systems with more

than two modules where all the resource demands and sensitivities have been estimated, the

output of moduleM is predicted by taking the resource perturbation QP to be the sum of the

resource demands for all modules excluding the module of interest, speci�cally QP =
∑
i 6=M

Qi.

2.2 Characterization of a Resource Sensor

To estimate the resource competition characteristics QM and SM for a generic module M, a

special module called a resource sensor must be �rst characterized, which will be used to

probe modules of interest. The resource sensor module consists of a single constitutively

expressed �uorescent protein. Since the resource sensor is a single constitutive gene, QRS
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fully characterizes the resource competition characteristics of the resource sensor given that

Fy(uy) is a constant.

The resource demand of the resource sensor can be estimated from a procedure of three

experiments as shown in Figure 2a. First, the outputs of two resource sensor modules are

each measured in isolation. Then, both resource sensor modules are placed in the same cell,

where they compete for resources, and their outputs are measured together. By comparing

the change in output of each sensor under the resource perturbation by the other sensor,

the resource demand QRS for both resource sensors 1 and 2 (RS1 and RS2) can be found

according to the Resource Sensor Demand Estimation equations in Figure 2a.

These equations were derived by expressing the output of each sensor using the model

of Eq. (1) and using the fact that they are constitutive genes. See the SI, Section S1.4 for

the derivation of these equations. The system was set to its steady state, and solved for the

resource demand characteristics QRS1 and QRS2 from the corresponding equations. Then,

the estimators for the resource demand of the resource sensors are given by

Q̂RS1 =
1− ypRS2

yRS2

ypRS1

yRS1
+

ypRS2

yRS2
− 1

(5a)

Q̂RS2 =
1− ypRS1

yRS1

ypRS1

yRS1
+

ypRS2

yRS2
− 1

, (5b)

where yRS1 and yRS2 are the outputs of resource sensors 1 and 2 measured in isolation and

ypRS1 and y
p
RS2 are the outputs of resource sensors 1 and 2 when they are measured together.

In the experiments, the output �uorescent protein production rate per cell is used as the

output of each module or resource sensor. The protein production rate is proportional to

the steady state of the protein concentration per cell and independent of dilution rate (see

the SI, Section S1.2) (21 ). For �gures showing module and resource sensor outputs against

time, see the SI, Section S5.3.

As in Figure 2b, the constitutive mTagBFP (BFP) gene with a strong promoter and
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Figure 2: Experimental procedure to measure resource demand for a pair of re-
source sensors. (a) The outputs of two resource sensors, yRS1 and yRS2 when each sensor's
output is measured in isolation (Experiments 1 and 2) are compared to their respective
outputs ypRS1 and y

p
RS1 when the sensors are in the same cell together (Experiment 3). The

superscript yp represents the output of a sensor under a resource perturbation. (b) Genetic
constructs used for implementing the resource sensors. See the SI, Section S4 for sequence
details and Figure S15 for the relevant plasmid maps. The constitutive mTagBFP (BFP)
gene with a strong promoter and moderate RBS strength, bfp2, was chosen as resource sen-
sor 1 (RS1), and a constitutive mRFP (RFP) gene with a strong promoter and strong RBS,
rfp1, was chosen as resource sensor 2 (RS2). Both resource sensors have strong constitutive
promoters. Translation initiation rates (TIR) and transcription initiation rates (TXIR) were
estimated using the RBS calculator 2.0 and promoter calculator 1.0 (22 , 23 ). (c) From
the measurements of the resource sensors outputs in isolation and together, the resource de-
mands of both resource sensors can be estimated according to the Resource Sensor Demand
Estimation Equations (Panel (a) or Eq. (5)). The �uorescent protein production rate per cell
at steady state was used as the output of each resource sensor module. It was veri�ed that
the �uorescent protein production rate and cellular growth rate were constant over the time
window selected as the steady state. See Methods Section 4.4 for details on the selection of
the steady state and how production rate per cell was calculated. All measurements are the
average of three technical replicates. Error bars represent one standard deviation from the
mean and were propagated through the relevant equations using the standard error. Mea-
surements were made using a microplate reader, see Methods Section 4.1 and Section 4.3
for details on cellular growth conditions and measurement conditions. (d) Speci�c growth
rate at steady state for experiments of resource sensors alone and together while cells were
growing in exponential phase.
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a moderate ribosome binding site (RBS) strength was chosen as resource sensor 1, and a

constitutive mRFP (RFP) gene with a strong promoter and a strong RBS was chosen as

resource sensor 2. The normalized output of resource sensors 1 and 2 are given in Figure 2c.

These measurements are then used to calculate the resource demands QRS1 and QRS2 ac-

cording to Eq. (5), with the resulting resource demands QRS1 and QRS2 for each resource

sensor shown in Figure 2c. The resource demand of resource sensor 2 is signi�cantly larger

than the resource demand of resource sensor 1 since resource sensor 2 causes a larger de-

crease in the output of resource sensor 1 than resource sensor 1 causes in resource sensor

2. Detailed plasmid maps of all resource sensor constructs are shown in the SI, Figure S15.

For additional experimental details on the design of the resource sensor modules and speci�c

considerations for controlling for genetic context e�ects (24 ), see Methods Section 4.2.

Resource sensors should be chosen to give a measurable change in the output of other

modules when paired with them in order to obtain useful estimates of the sensitivity SM. If

the resource demand of the resource sensors are too small, the sensitivity SM of the modules

cannot be accurately measured. Additionally, it is bene�cial to select resource sensors that

do not cause too large of a decrease in cellular growth rate when paired with modules to

minimize errors due to changes in growth rate. In fact, the concentration of total ribosomes,

which a�ects parameter αy in Eq. 1, is related to the cellular growth rate (25 ), so decreases

in growth rate may result in decreases in the total concentration of ribosomes, which is

not accounted for in our model. In the majority of the experiments we conducted, changes

in growth rate were less than 20% compared to wild-type (except for measurements with

module 1, where growth rate decreased between 20% and 34%), see the SI, Figures S7 and

S8. Changes in growth rate less than 30% did not signi�cantly a�ect estimates of QM, SM,

or the predictions of module outputs. Therefore, it is recommended to maintain decreases

in growth rate to less than 30% when combining modules for the most reliable estimates of

QM, SM, and module outputs.
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2.3 Characterization of a Module

Using the estimated resource demand of the resource sensors Q̂RS, the resource competition

characteristics QM and SM of an arbitrary genetic module M may be estimated by following

a similar set of experiments used to characterize the resource sensor. As shown in Figure 3a,

the output of the module of interest is measured both with and without the presence of the

resource sensor, and, similarly, the output of the resource sensor is measured both with and

without the module of interest. These four measurements along with the measured resource

demand Q̂RS of the resource sensor are used to estimate the module's resource competition

characteristics Q̂M and ŜM.

As with the resource sensors, the resource demand characteristic QM of a module repre-

sents the resource competition term in Eq. (1) for all genes associated with the particular

module. The resource competition characteristics are estimated by measuring the module

output in isolation (Experiment 1) and the output perturbed by the resource sensor (Experi-

ment 2) and using the resource competition model, Eq. (1), to solve for the desired quantities.

The resource sensitivity ŜM is solved for using an approximation for the derivative in the

de�nition of SM, Eq. (3). The formulas of the estimates for the resource demand Q̂M and

resource sensitivity ŜM of a module of interest M are given as

Q̂M =

(
yRS

ypRS

− 1

)
(1 + Q̂RS) (6a)

ŜM =

(
ypM
yM
− 1
)
(1 + Q̂RS) +

ypRS

yRS

Q̂RS

(
1− ypRS

yRS
+ Q̂RS

) (6b)

where yRS is the output of the resource sensor measured in isolation, Q̂RS is the estimate for

the resource demand of the resource sensor, ypRS is the output of the resource sensor with the

module of interest, yM is the output of the module in isolation, and ypM is the output of the

module when measured with the resource sensor. For the derivation of these formulas, see

SI, Section S1.5.
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Figure 3: Estimation of the resource characteristics Q̂M and ŜM of a genetic circuit
module. (a) Experiments to characterize the resource competition characteristics of the
module of interest. The input-output responses of the resource sensor and of the module
of interest are measured in isolation (Experiment 0 and 1). Then, the module is measured
with the resource sensor (Experiment 2). (b) Genetic constructs of the circuit modules.
See SI, Section S4 for sequence details and Figures S16 and S17 for plasmid maps. Module
1 consists of a constitutive mTagBFP (BFP) gene with a strong RBS, modules 2 and 3
consist of a constitutive GFPop1 (GFP) gene with a weak and strong RBS, respectively,
and module 4 consists of a constitutive mRFP gene (RFP) with a weak RBS. The outputs
of these modules were measured in isolation according to Experiment 1 and with resource
sensors 1 and 2 according to Experiment 2, where the resource sensor demands Q̂RS1 and
Q̂RS2 were previously estimated (Figure 2). (c) Measurements of the outputs of the resource
sensors and modules according to Experiments 0, 1, and 2. Measurements are normalized
such that the output of the module in isolation is set to 1. Superscripts pi indicate that the
measurement is the perturbed output by module or resource sensor i for resource sensors
i ∈ {1, 2} or modules i ∈ {1, 2, 3, 4}. The resource competition characteristics Q̂M for each
module are estimated according to the Module Resource Properties Estimation equations
(Eq. (6)). Since the modules are constitutive the estimate for the sensitivity ŜM was set to 0
for modules 1-4. The resource competition characteristics for module 1 was calculated using
resource sensor 2 and the resource competition characteristics for module 4 were calculated
using resource sensor 1. The resource demand and resource sensitivity for modules 2 and 3
are taken as the average of the respective resource demands and resource sensitivities found
using both resource sensors 1 and 2. Non-averaged resource demands and sensitivities are
shown in the SI, Figure S3 and the corresponding module output predictions are shown in SI
Figure S4. All measurements represent the average of three technical replicates. Error bars
represent one standard deviation from the mean. Error estimates of Q̂M were obtained by
propagating estimates for the error through Eq. (6) using the standard error. Measurements
were made using a microplate reader, see Methods Section 4.1 and Section 4.3 for details
on cellular growth conditions and measurement conditions. (d) Speci�c growth rate of each
experiment calculated at steady state while cells were growing in exponential phase.
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As shown in Figure 3b, four genetic circuit modules were characterized using both re-

source sensors. Each module consists of a constitutive gene with a �uorescent protein output,

but could be a more complex module in practice (see Section 2.5). The output of each mod-

ule was measured both in isolation and with the resource sensors. Resource sensors 1 and

2 were used depending on whether the resource sensor's output is a di�erent color from the

module's output. The outputs for each resource sensor alone and in the presence of the mod-

ules along with the outputs of the module alone and with the resource sensors are shown in

Figure 3c. These data are then used to estimate the corresponding resource demand Q̂M of

the module of interest with the resource demand Q̂RS for the corresponding resource sensor

following the Module Resource Estimation equations. Since modules 1-4 are constitutive,

the sensitivity ŜM was set to 0 by the de�nition of SM (Eq. (3)). The estimated value of

Q̂M for each module is shown in Figure 3c. The sensitivity for an inducible module will be

estimated from data in Section 2.5.

2.4 Prediction and Validation

Having estimated Q̂M and ŜM for each module, the module's input-output response in new

contexts accounting for resource competition can now be predicted. To demonstrate this,

predictions of module outputs obtained from Eq. (4) are compared to measured outputs

when pairs of modules are measured together in the cell. The four previously characterized

modules were used, as shown in Figure 4a.

Each module was measured with every other module and resource sensor, resulting in

a new cellular context due to the resource competition between the modules, as shown in

Figure 4b. The output of each module when perturbed by another module was predicted

using the estimated Q̂M and ŜM for each module along with its output in isolation yM. The

predicted output of a module under resource competition from another, perturbing module

P is given as

ypM = yM

(
1 + ŜMQ̂P

) 1 + Q̂M

1 + Q̂M + Q̂P

, (7)
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Figure 4: Validation of the method by prediction of module outputs in new con-
texts. (a) The four constitutive modules previously characterized in Figure 3 with known
Q̂M and ŜM were used to validate the method. The sensitivity for all constitutive modules
was set to 0. (b) Based on each module's output in isolation and the estimated resource
competition characteristics Q̂M and ŜM, the outputs of the modules when measured together
are predicted using the Prediction of Module Outputs equations (Eq. (7)). The superscript
p indicates that the output is perturbed and theˆ indicates that it is an estimated (or pre-
dicted) quantity. Additionally, the outputs of the modules are measured when they are
together in pairs to compare with the predictions. See the SI, Section S4 for sequence details
and Figure S18 for the relevant plasmid maps. (c) Comparison of the measured outputs of
modules 1, 2, 3, and 4 with the predicted outputs based on Q̂M and ŜM for each module
when perturbed by another module or resource sensor. Measurement results are shown in
darker colored bars and predictions shown with lighter colored bars. All measurements are
the average of three technical replicates. Error bars represent one standard deviation from
the mean. Error estimates of the predicted outputs were obtained by propagating the error
estimates through Eq. (7) using the standard error. Measurements were made using a mi-
croplate reader, see Methods Sections 4.1 and 4.3 for details on cellular growth conditions
and measurement conditions.
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which is found by comparing the resource competition model, Eq. (1) with and without the

perturbing module resource demand QP and combining with the de�nition of SM (Eq. (3)).

Further details on the derivation can be found in the SI, Section S1.3.

The measured outputs of the modules when measured with other modules were compared

to the predictions using the resource competition characteristics of each module Q̂M and ŜM,

shown in Figure 4c. Predictions for the outputs of module 1 and module 2 are within one

standard deviation from the measured values except when perturbed by resource sensor 2 and

when module 2 was perturbed by resource sensor 1 the prediction was within two standard

deviations. Predictions for modules 3 and 4 are within two standard deviations from the

measured values except when module 3 is perturbed by resource sensor 2. The main reason

for this discrepancy is that the growth rate changes signi�cantly under the perturbation from

resource sensor 2 (SI, Figures S7 and S8), resulting in e�ects that are unaccounted for in the

model such as a change in total cellular resource concentration. More discussion on these

discrepancies are presented in the Discussion, Section 3. Thus, the resource competition

characteristics can be used to accurately predict the outputs of the constitutive modules

in new contexts arising from resource competition between modules. The predictions using

the resource competition characteristics are always a signi�cant improvement compared to

ignoring resource competition e�ects (modules alone). When the estimated sensitivities

ŜM of modules 1-4 are allowed to be non-zero and estimated according to Eq. (6b), these

predictions moderately improve in accuracy, see SI, Figure S2. This corresponds to allowing

the gene regulation function Fy(uy) in the resource competition model Eq. (1) to encompass

regulatory functions of the whole cell, such as changes in gene expression due to a cellular

stress response or changes in the total resource concentration in the cell.

2.5 Application to Inducible Genetic Modules

To verify that the new characterization method that we have proposed gives accurate pre-

dictions for more complex modules, we next considered inducible modules. Characterization
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of an inducible module is the same as that presented for the constitutive modules except

that the resource competition characteristics QM and SM must be estimated for each value

of the input inducer concentration, u. We created module 5, consisting of an EYFP (YFP)

gene and PhlF repressor, as shown in Figure 5a.

After measuring module 5 alone and with the resource sensors, the resource sensor out-

puts and module outputs for each inducer concentration, shown in Figure 5b, were used

to estimate the module's resource demand Q̂M(u) and resource sensitivity ŜM(u) for each

inducer concentration. The input-output curves of the inducible module when paired in the

cell with another characterized, perturbing module can be predicted for each input using

these maps, as shown in Figure 5c. All predictions are within 1.5 standard deviations to

the corresponding measurements except for the output of module 5 with module 4, where

module 5's output is not predicted to signi�cantly decrease under the perturbation, since Q̂M

for module 4 is less than 0.1. This may be a result of genetic context e�ects, as explained

further in the Discussion, Section 3.

3 Discussion

In this paper, the resource demand QM and sensitivity SM were de�ned based on a mathe-

matical model describing resource competition in genetic circuits. These quantities describe

how modules behave in the presence of other modules that perturb the pool of cellular re-

sources. Knowledge of QM and SM for every module in a collection enables the quantitative

prediction of changes in module outputs in new cellular context including di�erent mod-

ule combinations. Estimation of QM and SM for a module of interest requires measuring the

module of interest with a resource sensor module. This method was experimentally validated

where predictions of module outputs using QM and SM were compared with measurements of

module outputs when pairs of modules were measured together. Predictions were within one

standard deviation from the true measurements for the majority of the combinations tested,
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Figure 5: Application to predict an inducible module's input-output response in
new contexts. (a) Module 5 consists of a PhlF repressor and EYFP �uorescent protein
output. The inducer 2,4-Diacetylphloroglucinol (DAPG) is used to vary the level of repres-
sion of the pPhlF promoter regulating EYFP by PhlF. See the SI, Section S4 for sequence
details and Figure S19 for plasmid maps. (b) The outputs of module 5 and resource sensors
1 and 2 were measured for each module in isolation and when module 5 was measured with
resource sensors 1 and 2 for each inducer concentration 0 nM, 0.1 nM, 1 nM, and 10 nM.
The resource competition characteristics of the module were estimated for each value of the
input using the Module Resource Properties Estimation equations (Eq. (5)). The resource
demand and sensitivity were calculated using both resource sensor 1 and 2 and the average of
each was taken for each input concentration. Non-averaged resource demand and sensitivity
are shown in the SI, Figure S3, and the corresponding predicted outputs are shown in the
SI, Figure S4. The sensitivity SM for 0 nM and 0.1 nM inductions were set to 0 since the
measurements of the module output were below the lower limit of detection and resulted in
noisy estimates. (c) Prediction of the behavior of module 5 when operating in new contexts
with other modules based on its output in isolation, Q̂M, and ŜM. Solid bars represent mea-
sured data and dashed bars represent predictions made using Eq. (7). All measurements
are the average of three technical replicates. Error bars represent one standard deviation
from the mean and were propagated through the relevant equations using the standard error.
Measurements were made using a microplate reader, see Methods Sections 4.1 and 4.3 for
details on cellular growth conditions and measurement conditions.
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and were always strictly better than predictions ignoring resource competition (Figures 4

and 5).

Here, we discuss some considerations when implementing the method to estimate QM and

SM for a module and current limitations of the approach. The characteristics QM and SM can

predict large changes in module output due to resource competition e�ects, but care must

be taken to detect or predict small changes in module behavior due to resource competition.

The best resource sensors should have a large enough resource demand QRS to impose a

measurable change in the output of the module of interest, but a small enough QRS to avoid

creating a large stress response from the host cell. Based on our experimental results, it

is recommended that the resource sensor demand QRS be between approximately 0.2 and

0.8. It should be noted that the resource competition characteristics are nondimensional

quantities, so microplate readers do not need to use absolute units of �uorescence to obtain

accurate estimates of the resource demand and resource sensitivity. The resource competition

characteristics may also be applied to estimate changes in the outputs of more complex

genetic circuit modules, such as in toggle switches or winner-takes-all systems (26 ). However,

guarantees that the system does not undergo a large change in qualitative behavior due to

perturbations in the availability of cellular resources such as a change in the number of

equilibrium points (27 ) are required since the sensitivity SM is a local sensitivity measure

and may not result in accurate predictions in this case. This is left for future work.

Di�erences in genetic context (24 ) were controlled for by including all coding sequences

for the constitutive modules on the same plasmid and turning o� module translation by using

a very weak RBS (TIR = 1.0) for the corresponding coding sequence. It was veri�ed that

no signi�cant �uorescence was observed from modules when they were turned o� through

the use of a very weak RBS, as shown in the SI, Section S3.1, Figures S9-S14. Resource

competition has been shown to be mainly attributed to translational resource competition

in exponentially growing bacteria (6 ), so transcriptional resource competition does not sig-

ni�cantly e�ect our results. The resource competition characteristics due to transcriptional
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resources may also be estimated using a similar set of experiments, which have been shown

to be important source of resource competition in mammalian cells (17 ). However, proper

compensation for transcriptional e�ects between modules such as read-through and super

coiling (24 ) must be applied, which is left for future work.

One source of error in the validation of module 5 (Figure 5) is that the coding sequences

for genes (mTagBFP, GFPop1, or mRFP) that were not relevant were not included on the

plasmids with module 5, so genetic context was not held constant across all constructs in the

same way as for the constitutive modules 1-4. Therefore, a possible reason for the di�erence

between the predicted and measured outputs when modules 4 and 5 were measured together

(Figure 5c) is that the spacer between the terminator for module 4 and the promoter of

module 5 was only 19 bp, while for the other pairs of modules, the spacer was larger than

55 bp (see the SI Section S4 for details on the plasmid maps). This may have resulted in a

change in the activity of the EYFP promoter due to transcriptional context di�erences such

as supercoiling (24 ).

Theoretically, the estimated values of QM should be independent of the resource sensor

used to perform the estimation; however, when the resource sensor has a large demand Q̂RS,

the estimated Q̂M of the module of interest was found to be larger than when measured using

a resource sensor with smaller Q̂RS, see the SI, Figure S6. This is likely due to the regulation

of the cellular resources or stress response by the host cell (12 , 28 ). In fact, the model on

which the method is based assumes that total cellular resources are constant. However, if

the cell undergoes a signi�cant change in growth rate due to the presence of a genetic circuit

module, the measurements of resource demand and sensitivity may not be accurate since

total cellular resources is related to growth rate (29�32 ). This is one possible source of error

in the presented method and is especially likely to cause inaccuracies in the estimates for

modules where the resource sensor demand QRS is large (greater than approximately 0.8).

We found that estimates

Some approximations were necessary for estimating Q̂M and ŜM when the resource de-
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mand QM of a module of interest depends on unmeasured protein concentrations, such as

in a more complex, inducible module (SI, Section S1.5). This explains why the predictions

for the constitutive modules 1-4 (Figure 4) were closer to the measurements than for the

inducible module 5 (Figure 5).

Growth rate is subject to change due to burden of the synthetic circuit on the host cell,

which may cause additional unexpected changes in circuit behavior due to changes in dilution

rate (21 , 25 , 30 , 33 , 34 ). Additionally, resource sensors should be selected to not cause too

large of a change in growth rate to minimize changes in the total concentration of cellular

resources, which is not accounted for in the resource competition model. Accounting for

changes in growth rate on the total ribosome level as part of the estimation of QM and SM

is left for future work.

In the SI, Section S2, we demonstrate that the cellular growth rate and the resource

demand QM are closely related and show that estimation of the resource demand may be

used to predict changes in growth rate due to metabolic burden on the host cell. This shows

that the resource demand QM can be used to predict total cellular output and may be useful

in metabolic engineering applications (35�37 ).

The resource competition characteristics may also be used to indicate whether resource

competition e�ects can safely be ignored in genetic circuit design or need to be included for

accurate circuit design. When the resource demands for all modules in a genetic circuit are

small, e.g. Q̂M < 0.2, resource competition e�ects can safely be ignored as long as the number

of modules is su�ciently small. When some module resource demands are moderate, e.g.

0.2 ≤ Q̂M < 0.8, resource competition should be accounted for to make accurate predictions

of module outputs and overall system behavior. When any module resource demand is large,

e.g. Q̂M ≥ 0.8, signi�cant resource competition e�ects can be expected and the cellular

growth rate will likely decrease due to the burden on the host cell. For an analysis of

the experimental dependence of growth rate on the resource demand, see the SI, Section S2.

Note that the resource demand estimation only depends on the resource sensor measurement
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(Eq. (6a)), so it can be estimated even for modules whose output is not measured.

When designing genetic circuits, it should be noted that, in general, the output of a

module with a large resource demand QM will change less in response to the same resource

perturbation than a similar module with a smaller resource demand, as can be seen from

Eq. (7). However, modules with large resource demand will cause other modules to experi-

ence more signi�cant changes in their behavior due to resource competition. Additionally,

unexpected changes in behavior may occur due to resource competition, such as a change in

the number of equilibria of a system (26 , 27 ). The method assumes that disturbances due

to resource competition are small enough such that these qualitative changes do not occur.

In order to ensure more accurate estimates of the sensitivity SM of a module, the resource

demand QRS of the resource sensor should not be too small as it should impart a clear change

on the module's output. As a consequence, chromosomally integrated resource sensors may

not be well suited for this task (21 ). However, a chromosomally integrated resource sensor

as in (21 ) would be very useful in measuring the resource demand QM in cases when the

sensitivity SM is not signi�cant (e.g. for a constitutive module). This set up would minimize

the number of experiments necessary by requiring only one experiment per module to �nd

the module's resource demand QM. Since the resource sensor is chromosomally integrated,

it will impart a much smaller resource demand compared to genes on the plasmid, giving

QRS ≈ 0. Then, the resource demand for a module of interest, QM, can be estimated by

measuring the resource sensor output with and without the presence of the module of interest

and using Eq. (6a) with QRS = 0.

Other recent work has attempted to better characterize genetic circuits for improved

predictions. In (38�40 ), the authors used RNA sequencing and ribosome pro�ling to inform

a mathematical model of a multi-module genetic circuit. However, the mathematical model

does not include resource competition among the constituting genetic modules. Therefore,

the model and its predictive power do not generalize to when the constituent modules are used

in di�erent combinations and contexts when the availability of cellular resources changes.
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Future work may address how changes in the media or temperature change the resource

demand QM and sensitivity SM. The resource competition characteristics QM and SM may be

applied to circuits with feedback or feedforward controllers implemented such as in (14 , 15 ),

so both improved robustness from the controller and improved prediction of module behavior

can be obtained. Software that predicts the values of QM and SM based on DNA sequences

or the strength of promoters and ribosome binding sites may be designed as well. The values

of QM and SM may also be used to give conditions when it is advantageous to distribute

genetic circuits across multiple cells within a consortium to reduce an excessive burden on

the host cell such as in (41 ). Additionally, an extension of QM and SM to situations where

there are multiple pools of resources such as transcriptional resources in mammalian cells

(9 ) or synthetic orthogonal ribosomes as in (13 ) would be valuable. Finally, QM and SM

may be used to investigate more complex models for resource competition such as when the

pool of resources is regulated by the host cell.

4 Methods

4.1 Strain and Growth Medium

The Top10 strain of bacterium E. coli was used to perform all experiments. M9610 supple-

mented media and was used to test the constitutive plasmids was made by modifying M9

supplemented media (14 ). The recipe for 5x M9610 salt stock is 33.36 mM Na2HPO4 ·7H2O,

220.40 mM of KH2PO4, 8.56 mM of NaCl, and 18.69 mM of NH4Cl. The recipe for 50 mL of

M9610 supplemented medium is 10 mL of 5x M9610 salt stock, 1 mL of 10% (w/v) casamino

acid, 1 mL of 20% (w/v) glucose, 50 uL of 0.1 M CaCl2, 100 uL of 1M MgSO4, 333 uL of 50

g/L thiamine, 50 uL of 100x ampicillin, and the remainder of the 50 mL is sterile water.
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4.2 Genetic Circuit Design and Construction

PCR, Gibson assembly and Golden Gate assembly were used to construct the plasmids. DNA

fragments were ampli�ed with PCR. Gibson assembly was performed using NEBuilder HiFi

DNA Assembly Master Mix (NEB #E2621S) or Golden Gate master mix (NEB #E1601).

Plasmids were incubated on ice for 30 min with competent cells which were prepared using

CCMB80 bu�er (TekNova, C3132) and were transformed by heat shocking competent cells at

42◦C for 1 min. Plasmid DNA was prepared using the miniprep kit (Zymo Research, D4015),

and sequencing was performed using the Quintarabio basic DNA sequencing service.

To control for transcriptional e�ects such as super-coiling (24 , 42 ), transcription read-

through, or promoter blocking by nearby terminators, all constitutive plasmids contained the

coding sequences for all of BFP, GFP, and RFP proteins. Gene translation was turned o� for

the unwanted coding sequences by using extremely weak (TIR < 1.0) ribosome binding site

strength (RBS) for the constitutive module experiments. This was veri�ed by �uorescence

measurements for the relevant genes and were observed to have no signi�cant �uorescence.

Translation initiation rates (TIR) values for each module were calculated using the RBS cal-

culator 2.0 (22 ). Multiple strong terminators at the end of each coding sequence were used

to minimize transcriptional read-through and spacers were introduced between terminators

and promoters to minimize DNA-context-related e�ects between modules and resource sen-

sors (see plasmid maps in the SI, Section S4, Figures S15-S19 and plasmid sequences in the

SI, Table S11). Since ribosomes are the limiting resource in bacteria (6 , 10 , 43 ), and all

promoters used for the constitutive modules were strong and of similar strength, varying

the strength of the RBS gives a good estimation of the di�erent resource competition e�ects

between the modules. The strong constitutive promoters J23119, J23104, and J23100 were

used for the constitutive modules and resource sensors to ensure resource competition e�ects

would be signi�cant enough to be easily measurable with transcription initiation rates of

38992.38, 11023.2, and 8927.79, respectively, according to the promoter calculator 1.0 (23 ).

For the inducible EYFP module (module 5) experiments, only the coding sequence for
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the resource sensor/perturbing module of interest was included in the plasmids. It was found

that there were only minor di�erences between the output of the module without a coding

sequence of a �uorescent protein and one with the coding sequence of a �uorescent protein

but a very weak RBS due to transcriptional context e�ects. The module 5 was taken from

the pAJM.847 plasmid in (44 ) (Addgene #108524, additional details in the SI of (44 ), page

42). The molecule 2,4-diacetylphloroglucinol (DAPG) was used as the inducer for module 5.

Controlling for transcriptional context does not appear to be necessary in applications

since module 5 predictions were still good even though the resource sensor or module on

the plasmid with module 5 was di�erent for di�erent experiments. It is necessary to use

multiple strong terminators to eliminate transcriptional read-through between the module

and resource sensor and to use a long enough spacer (at least approximately 40 bp) between

the resource sensor and the module of interest to ensure that terminators do not block nearby

promoter activity.

4.3 Plate Reader

Cells with the relevant plasmids were streaked on LB agar plates with carbenicillin and grown

in an incubator at 37◦C for 20-24 hrs. Cells were then picked and inoculated into 800 µL

of M9610 liquid media with ampicillin in a loose cap culture tube (VWR, 13 mL culture

tube, cat #60818-667) and grown in an air shaker (New Brunswick Scienti�c Excella E24

M1352-0000) at 30◦C with at 200 rpm for 7-9 hrs. Cells were then inoculated into a 96-well

plate (Falcon #351172) and diluted to an initial optical density at 600 nm (OD600) reading

of approximately 0.02 in 200 µL of M9610 liquid media. Cells were grown in a plate reader

(Synergy MX, Biotek, Winooski, VT) at 30◦C for 10 hrs with measurements every 5 mins.

The plate was shaken for 3 sec before OD600 and �uorescence measurements. Excitation

(EX) and emission (EM) wavelengths for the plate reader were chosen to maximize di�erence

between the di�erent �uorescence channels while keeping a strong signal. The plate reader

settings for each measurement are as follows. OD600 channel settings: absorbance at 600 nm;
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BFP channel settings: EX = 400 nm (bandwidth = 9 nm), EM = 460 nm (bandwidth = 9

nm), Sensitivity = 80; GFP channel settings: EX 485 nm (bandwidth = 9 nm), EM 513 nm

(bandwidth = 9 nm), Sensitivity = 90; RFP channel settings: EX 584 nm (bandwidth = 9

nm), EM 619 nm (bandwidth = 13.5 nm), Sensitivity = 100; YFP channel settings: EX 520

nm (bandwidth = 9 nm), EM 545 nm (bandwidth = 13.5 nm), Sensitivity = 100. At least

three wells �lled with 200 uL M9610 liquid media were used to subtract background OD600

and �uorescence measurements. All experimental measurements consisted of three technical

replicates. Measurements of the cells in the 96-well plate were spatially separated with at

least one empty well between active wells to reduce cross-talk between neighboring wells (45 ).

The steady state production rate was selected for each construct in a time window of at least

2 hours long when the cells were in exponential phase where the protein production rate per

cell was approximately constant and the �uorescent protein measurements were above the

lower detection limit of the plate reader. This usually occurred between approximately 2

and 6 hours after the start of the experiment. Module output was calculated as the average

of the production rate (calculated according to Section 4.4) over the time window for each

technical replicate and then averaged across all three replicates. Error bars on the module's

output represent one standard deviation in the di�erence of the means across the three

replicates. Error estimates were propagated through all equations using the standard error

estimates. Graphs of OD600 vs time are available in the SI, Figures S26-S28, and graphs

of �uorescent protein production rate against time are available in the SI, Figures S29-S38,

which show that the protein production rate and growth rate were constant at steady state

in the measurement window when the cells were in exponential phase.

4.4 Data Analysis

The protein production rate was used as the output of each circuit module, since it is

independent of growth rate, see SI Section S1.2 for theoretical justi�cation or (21 ). The
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protein production rate of a protein X per cell is given as

1

OD

dX

dt
(8)

where OD is the optical density of the cells. Fluorescence measurements were taken every 5

minutes using the microplate reader. The numerical time derivative dX
dt

was found after sub-

tracting background �uorescence and absorbance by using a 5-pt centered Savitzky-Golay

�ltered �rst derivative and then applying a (zero-phase) moving average �lter with window

size of 9 points. Growth rate for each construct was determined using a robust nonlinear

least squares logistic curve �t, utilizing the Levenberg-Marquardt algorithm. All computa-

tions were completed using custom scripts written in MATLAB R2020a, which are available

in the Supporting Information. Corrections for �uorescence scattering due to cells and

bleed-through across �uorescence channels were corrected for based o� the raw �uorescence

measurements.

4.5 Fluorescence Scattering Correction

As the optical density cells of the well change, the background �uorescence readings also

change due to light scattering. To correct for this phenomena, correlations were measured

for determining the relationship between background �uorescence measurements and OD600.

Linear regression was applied between OD600 and the relevant raw �uorescence measurements

for cells not expressing the relevant proteins. The correlation between BFP �uorescence and

OD600 was COD,B = −2385BFP/OD(a.u.), and the correlation between GFP �uorescence

and OD600 was COD,G = 1300GFP/OD(a.u.). These correlations are negligible for YFP and

RFP measurement channels. Each was subtracted o� of BFP and GFP �uorescence signals

according to the equations Bnew = Braw − COD,BOD and Gnew = Graw − COD,GOD. The

magnitude of this correction is less than 10% of the signal. Data used to estimate this e�ect

and �nd correlations is shown in the SI, Figure S24.
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Multiple scattering e�ects within the microplate reader become signi�cant at larger opti-

cal densities (46 , 47 ), so steady state data was selected for OD600 lower than this value before

protein production rate was observed to drop, which normally occurred below OD600 < 0.05.

4.6 Bleed-Through Correction

Correction for �uorescence bleed between channels using linear unmixing (48 ) is applied

to each �uorescence channel. The correlation between �uorescence intensities was found

by applying linear regression between pairs of �uorescent measurement channels for a cell

expressing only one protein to �nd the correction (correlation) matrix. Then, the measured

�uorescent values may be expressed as a linear combinations of the true �uorescence values

given by

Xmeasured = CXtrue (9)

where C is the correlation matrix, which can be found by applying linear regression between

measurement channels when only one type of �uorescent protein is expressed (I can't �nd

this treatment in the plate reader literature, only in the microscopy literature), and Xmeasured

is the observed �uorescence intensity for each channel with cross-talk and Xtrue is the actual

�uorescence intensity. For our data, the correlation matrix is

C =




1. 0.0024 0.0110 0.0157

0.0011 1. 0.0076 0.1053

0.0011 0.0003 1. 0.0011

−0.0005 0.2547 −0.0004 1.




(10)

where �rst column encodes the correlation of the readings of the channels BFP, GFP, RFP,

and YFP, respectively, when only mTagBFP2 is expressed and the correlation was found

using linear regression. A similar procedure is used to populate the 2nd (GFP), 3rd (RFP),

and 4th (YFP) columns with their respective proteins. Plots of pairs of �uorescence mea-
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surements against each other for purely expressed BFP, GFP, RFP, and YFP are given in the

SI, Figures S20-S23. Entries in C less than 0.01 are set to 0. Note that the is no signi�cant

�uorescence bleed between channels except for between the YFP and GFP channels. The

compensated �uorescence measurements are given as

Xcompensated = C−1Xmeasured (11)

where Xmeasured is a column vector containing the �uorescent channels in the order BFP,

GFP, RFP, and YFP. Eq. (11) is applied for each well at each time-step.
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