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Abstract— Synthetic biology applications have the po-
tential to have lasting impact; however, there is consider-
able difficulty in scaling up engineered genetic circuits.
One of the current hurdles is resource sharing, where
different circuit components become implicitly coupled
through the host cell’s pool of resources, which may
destroy circuit function. One potential solution around
this problem is to distribute genetic circuit components
across multiple cell strains and control the cell population
size using a population controller. In these situations,
perturbations in the availability of cellular resources, such
as due to resource sharing, will affect the performance
of the population controller. In this work, we model a
genetic population controller implemented by a genetic
circuit while considering perturbations in the availability
of cellular resources. We analyze how these intracellular
perturbations and extracellular disturbances to cell growth
affect cell population size. We find that it is not possible to
tune the population controller’s gain such that the popu-
lation density is robust to both extracellular disturbances
and perturbations to the pool of available resources.

I. INTRODUCTION

Many exciting applications exist for engineered bi-
ological systems in fields ranging from medicine to
the environment [1]–[4]. In order to create sufficiently
sophisticated engineered systems that can be applied in
practice, substantial research has gone into techniques
to scale up the size and complexity of genetic circuits.
One major hurdle to scaling up a circuit’s size is
resource sharing, where different circuit components
become undesirably coupled through the host cell’s pool
of resources [5], [6] and affects cell growth [7]–[9].
Solutions to the resource sharing problem have recently
appeared. Some solutions make genetic modules robust
to resource fluctuations with feedback control [10], [11],
some engineer a separate pool of resources for the
engineered circuits [12], and others distribute the circuit
across multiple cell strains [13], [14].

Some highly complex circuits have been created by
distributing genetic circuits across different cell strains
[14]–[21]. Many of these systems utilize microfluidic
platforms or spacial separation to isolate bacterial strains
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from one another. However, if multiple cell strains are
not spatially separated, population control is required
to maintain a desired cell population size [19]. In
future applications, genetic circuits may be distributed
across cells, and each cell also contains a population
controller. Then, the population controller’s robustness
to perturbations in cellular resources, e.g., those applied
by the other genetic circuits, will influence the overall
system’s function.

In particular, in a setup where a population controller
operates concurrently with other genetic circuits, such as
with a sensor or a more sophisticated circuit that releases
pharmaceutical proteins, perturbations to the pool of
resources due to these circuits affect the population
controller as a disturbance. Meanwhile, changes in the
availability of nutrients in the environment, for example,
due to the presence of other cell strains competing for
nutrients, affect the dynamics of the cell population size
that the controller is attempting to regulate as shown in
Figure 1. Here, we specifically focus on the potential
trade-off between robustness to extracellular perturba-
tions due to the presence of other cells competing for
nutrients (W in Figure 1), and to intracellular perturba-
tions to the pool of cell’s resources due to the expression
of other genetic circuits (X in Figure 1). In related
work, [22] considers a decrease in growth rate due to
the expression of enzymes and finds a condition on the
genetic circuit parameters where dividing the production
of a metabolite across multiple cell strains results in
higher yield; however, perturbations in the availability
of cellular resources and environmental disturbances are
not considered.

This paper is organized as follows. In Section II,
we create a mechanistic model for cell growth and the
population controller. In Section III, we present our main
results by analyzing this model for its sensitivity to
disturbances in the environment and to fluctuations in
available cellular resources. We conclude in Section IV.

II. MODEL OF A POPULATION CONTROL SYSTEM

We consider the cellular population control circuit of
[23], shown in Figure 1. This controller has been shown
to maintain a constant number of cells in a bacterial
population significantly below the carrying capacity of
the environment under controlled laboratory conditions.



This population control architecture has been used in
most of the applications of genetic circuits distributed
across multiple cells [19]. We create a model to de-
scribe the population dynamics, then, we will model the
dynamics of the population controller. We will use this
system model to analyze how the number of cells in the
population changes with extracellular disturbances–for
example, due to competing cell strains–and with intra-
cellular disturbances–for example, due to the expression
of additional synthetic genes within the cell [5].
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Fig. 1. Population control genetic circuit. The metabolite A is
produced from DNA DA. The metabolite A diffuses through the cell
membrane into the environment. A also diffuses into the cell and binds
to R to become R2. The R2 complex then activates the production of
the killing gene E, which increases the cell death rate. Each protein
production step requires cellular resources X to function. Other cells
in the environment compete for nutrients with the strain of interest,
resulting in the disturbance W . We consider W and fluctuations in X
as disturbance inputs.

Considering the situation shown in Figure 1, let the
number of cells in the bacterial population of interest
be N . We model the population size with the logistic
growth model, which is standard for bacteria [23], [24].
Then, the dynamics of the cell population size are given
as

Ṅ = µN

(
1− N +W

K

)
− (γN +GE)N, (1)

where µ is the maximum growth rate of the cell line,
K is the carrying capacity of the environment, γN is
the basal rate of cell death, E is the concentration
of the killing protein E, and G is the effect of the
concentration of the killing protein on the population
death rate. Additionally, W represents an environmental
disturbance, such as the presence of other cell strains,
which reduces the available nutrients to our cell strain
of interest and only affects the carrying capacity term
N+W
K .
Next, we model the biochemical species that control

the cell population size N through the production of
the killing protein E as shown in Figure 1. In this
system, each cell produces the small molecule A at a

constant rate. Here, we model the generation of this
molecule as a simple gene expression process. Then,
molecule A diffuses through the cellular membrane into
the surrounding media. We assume that the diffusion of
A occurs quickly and the media is well mixed so the
concentration of A is uniform throughout (both within
and outside the cell). As the concentration of A becomes
large due the presence of a large number of cells, A
diffuses into cells and binds to R, which is expressed
at a constant rate. The active complex of R with A
is represented by R2. The R2 complex then activates
the production of the killing protein E, which kills
some of the cells, decreasing the number of cells in
the population [23]. This population controller structure
is based off a common quorum sensing motif found in
multiple natural bacteria [25], [26].

In the model, we include resources X required for
gene expression as indicated in Figure 1. Specifically,
we lump together the processes of transcription and
translation [27], so that we can view X as a lumped
resource required for protein production. Additionally,
we consider the free resources as an input for simplicity.
More realistic models may consider the free resources
as a state that depends on all proteins being produced in
the cell [27] with the activation or repression of other
circuits appearing as the new disturbance, imparting a
change in X. We ignore any interaction between resource
fluctuations and cell growth and assume that protein
degradation and dilution remain constant and are inde-
pendent of population size. Under these assumptions, the
chemical reactions describing the biochemical controller
are given as

DA +X
aA−−⇀↽−−
dA

CA
kA−−→ A+DA +X, (N times)

DR +X
aR−−⇀↽−−
dR

CR
kR−−→ R+DR +X

R+A
aR2−−⇀↽−−
dR2

R2

DE +X+R2
aE−−⇀↽−−
dE

CE
kE−−→ E +DE +X+R2

CA
γ−→ DA +X, CR

γ−→ DR +X

CE
γ−→ DE +X+R2

A
γA−−→ ∅, R

γ−→ ∅, R2
γ−→ ∅, E

γ−→ ∅,

where DA, DR, and DE are the DNA molecules that
produce A, R and E, respectively. Since A diffuses
through the cellular membrane and the concentration of
A is uniform throughout the media, the production rate
of A is proportional to the cell population size N since
each cell produces A and N is dimensionless. Then,
using the law of mass-action [28], the dynamics of the
concentration of the biochemical controller species are



given as

Ȧ = kACAN − aR2
AR+ dR2

R2 − γAA (2a)

Ṙ = kRCR − aR2
AR+ dR2

R2 − γR (2b)

Ė = kECE − γE (2c)

Ṙ2 = aR2
AR− dR2

R2 − aEDER2X

+ (dE + kE + γ)CE − γR2 (2d)

ĊA = aADAX − (dA + kA + γ)CA (2e)

ĊR = aRDRX − (dR + kR + γ)CR (2f)

ĊE = aEDER2X − (dE + kE + γ)CE , (2g)

with the conservation laws for the DNA

DAtot = DA + CA (3a)
DRtot = DR + CR (3b)
DEtot = DE + CE , (3c)

which are coupled with the cell population dynamics
given in (1). Next, we utilize timescale separation to
reduce the dimension of (2), since we are interested
in the dynamics of this system on the slow timescale.
Since binding and unbinding reactions occur much
faster than protein production and degradation [27], i.e.
dR2 , dA, dR, dE � γ, we define a small parameter
ε , γ

dR2
� 1 and the parameters KA = dA

aA
, KR = dR

aR
,

KE = dE
aE

, KR2
=

dR2

aR2
, θR2A = dA

dR2
, θR2R = dR

dR2
,

and θR2E = dE
dR2

. Then it can be shown that R2, CA,
CR, and CE are fast variables, while A and R are mixed
variables, and E is a slow variable. We apply a change of
coordinates and define the new states zA = A+R2+CE
and zR = R+R2+CE , representing total A and total R,
respectively, which may be shown to be slow variables.
Then, the system can be written in standard singular
perturbation form [29] with slow dynamics given as

żA = kACAN − γA(zA −R2 − CE)− γR2 (4a)
żR = kRCR − γ(zR − CE) (4b)

Ė = kECE − γE, (4c)

and fast dynamics given as

εṘ2 = γ

(
AR

KR2

−R2(1 + ε)

−θR2E

[
R2DEX

KE
+ CE

(
1 + ε

kE + γ

γθR2E

)])
(5a)

εĊA = γθR2A

(
DAX

KA
− CA

(
1 + ε

kA + γ

γθR2A

))
(5b)

εĊR = γθR2R

(
DRX

KR
− CR

(
1 + ε

kR + γ

γθR2R

))
(5c)

εĊE = γθR2E

(
DEX

KE
− CE

(
1 + ε

kE + γ

γθR2E

))
.

(5d)

We let ε→ 0. Then, the slow manifold is given as

R2 =
AR

KR2

, gR2
(A,R) (6a)

CA =
DAX

KA
=
DAtot

X
KA

1 + X
KA

(6b)

CR =
DRX

KR
=
DRtot

X
KR

1 + X
KR

(6c)

CE =
R2DEX

KE
=
DEtot

R2X
KE

1 + R2X
KE

, gCE (R2). (6d)

The slow manifold (6) is exponentially stable, which
is verified by checking that the eigenvalues of the
Jacobian of the fast states (5) evaluated on the slow
manifold (6) have uniformly negative real parts [29].
The Jacobian computed on the slow manifold (6) along
the fast manifold (5) is given as

J = γ


a11 0 0 a14
0 a22 0 0
0 0 a33 0
a41 0 0 a44

 , (7)

where a11 = −1 − (A+R)
KR2

− θR2E
X

KE
DE < 0, a22 =

−θR2A

(
1 + X

KA

)
< 0, a33 = −θR2R

(
1 + X

KR

)
< 0,

a44 = −θR2E

(
1 + R2X

KE

)
< 0, a14 = −(A+R)

KR2
+

θR2E

(
1 + R2X

KE

)
, and a41 = γθR2E

X
KE

DE . It can be
shown that the real part of all eigenvalues of (7) are
uniformly negative if a22, a33 < 0, which are always
satisfied since concentrations are always nonnegative,
and if a11a44 > a14a41. The latter inequality reduces
to

1 +
XR2

KE
+

(A+R)

KR2

(
1 +

X(R2 +DE)

KE

)
> 0

which is also always satisfied since concentrations are
nonnegative. Thus, the slow manifold is exponentially
stable. Next, substituting (6) into the dynamics of the
slow variables (4) with the conservation laws (3), and
defining αA = kADAtot , αR = kRDRtot , and αE =
kEDEtot , we have the reduced dynamics of the slow
variables given by

żA = N
αAX

KA +X
−A

(
γA + γ

R

KR2

)
(8a)

żR =
αRX

KR +X
− γR

(
1 +

A

KR2

)
(8b)

Ė =
αEARX

KR2
Ke +ARX

− γE. (8c)

We now change variables back to the original variables
A and R where the relation of the time derivatives



between zA and zR to A and R are given as

żA = Ȧ+

(
Ȧ
dgR2

dA
+ Ṙ

dgR2

dR

)(
1 +

dgCE
dR2

)
(9a)

żR = Ṙ+

(
Ȧ
dgR2

dA
+ Ṙ

dgR2

dR

)(
1 +

dgCE
dR2

)
. (9b)

Solving (9) for Ȧ and Ṙ, we have

Ṙ =
żR

(
1+

dgR2
dA

(
1+

dgCe
dR2

))
−żA

dgR2
dA

(
1+

dgCE
dR2

)
1+

(
1+

dgCE
dR2

)(
dgR2
dA +

dgR2
dR

) (10a)

Ȧ =
żA

(
1+

dgR2
dR

(
1+

dgCe
dR2

))
−żR

dgR2
dR

(
1+

dgCE
dR2

)
1+

(
1+

dgCE
dR2

)(
dgR2
dA +

dgR2
dR

) . (10b)

Next, we substitute (8) into (10). We assume
that A+R

KR2
� 1, R

KR2

żA
żR

(
1 +

dgCe
dR2

)
� 1, and

A
KR2

żR
żA

(
1 +

dgCe
dR2

)
� 1, which can be guaranteed

if binding between A and R is sufficiently weak, i.e.
KR2

� A+R. Then, system (10) takes the approximate
form

Ṅ = µN

(
1− N +W

K

)
− (γN +GE)N (11a)

Ȧ = N
αAX

KA +X
−A

(
γA + γ

R

KR2

)
(11b)

Ṙ =
αRX

KR +X
− γR

(
1 +

A

KR2

)
(11c)

Ė =
αEARX

KR2
KE +ARX

− γE. (11d)

In this model, N is the output variable of interest while
W and X are disturbances, which affect the popula-
tion dynamics and the biomolecular feedback controller,
respectively, as shown in Figure 2. In the following
section, we analyze the sensitivity of the output N of
(11) with respect to the disturbances X and W .

Population
dynamics

W

X

E

Biomolecular 
controller

N

A, R, E

N

Fig. 2. Block diagram of system (11) with disturbance inputs W and
X and output N . The population dynamics block has state N and the
biomolecular controller block has states A, R, and E.

III. CLOSED LOOP SENSITIVITY ANALYSIS

We now analyze the sensitivity of the cell population
density N with respect to the environmental disturbance
W and the internal resource disturbance X . To achieve
this, we linearize the nonlinear system (11) about an
equilibrium point and compute the transfer functions

from W and X to N . We then use these sensitivity
transfer functions to analyze the trade-off between ro-
bustness to step disturbances in W and in X .

A. Linearization

Let (N0, A0, R0, E0) be an equilibrium point of
system (11) in the positive orthant corresponding to
constant nonnegative input levels X0 and W0. Let δW =
W − W0 and δX = X − X0 be small perturbations
(disturbances) to the nominal inputs X0 and W0, and
let δN = N − N0, δA = A − A0, δR = R − R0, and
δE = E − E0 be the corresponding perturbations to
the state of system (11). Then, the dynamics of these
perturbations can be obtained by the linearization of
system (11) about equilibrium point (N0, A0, R0, E0)
as
δ̇N
δ̇A
δ̇R
δ̇E

 =

[
m11 0 0 BE
BN M

]
δN
δA
δR
δE

+

[
BW 0
0 BX

] [
δW
δX

]

y =
[
1 0 0 0

] 
δN
δA
δR
δE

 (12)

where m11 = µ
(
1− 2N0+W0

K

)
− (γN + GE0) =

−µN0

K , which simplifies using the equilibrium point
constraint in (11a). Additionally, BE = −GN0, BN =[
αA

X0
KA

1+
X0
KA

0 0

]T
, and

M =

−γA − γ
R0

KR2
−γ A0

KR2
0

−γ R0

KR2
−γ
(
1 + A0

KR2

)
0

α∗ER0X0 α∗EA0X0 −γ

 ,
where α∗E =

αE
KEKR2(

1+
A0R0X0
KEKR2

)2 . The disturbance input

matrices are given as BW = −µN0

K , and

BX =

[
N0

αA
KA(

1+
X0

KA

)2

αR
KR(

1+
X0

KR

)2

αE
A0R0
KEKR2(

1+
A0R0X0
KEKR2

)2

]T
.

Next, we take advantage of the structure of (12)
and rewrite the system as a feedback interconnection
between of the growth dynamics δN and the biomolec-
ular controller dynamics as in Figure 2. The population
dynamics takes δE and δW as inputs and gives δN as the
output, and the biomolecular controller takes δN and δX
as inputs and gives δE as the output. Then, we have the
state space representation of the population dynamics

d

dt
δN = m11

[
δN
]
+
[
BW BE

] [δW
yC

]
(13)

yP =
[
1
] [
δN
]
,



and the state space representation for the biomolecular
controller as

d

dt

δAδR
δE

 =
[
M
] δAδR
δE

+
[
BN BX

] [yP
δX

]
(14)

yC =
[
0 0 1

] δAδR
δE

 .
B. Problem formulation

We wish to analyze how the disturbances δW and
δX affect the output δN computed for an equilibrium
point of the nonlinear system (11). In this system, it
is possible to change the degradation rate γA of A
by changing the pH of the media [23]. Additionally,
we will show that 1

γA
is related to the closed loop

gain, and will examine how changing γA affects the
sensitivity of the output δN to disturbances δW and
δX . To this end, we compute transfer functions from
δW and δX to δN using (13) and (14). Using (13),
the transfer functions from δE to δN and from δW
to δN are given by P (s) = [1](s − m11)

−1BE and
PW (s) = [1](s − m11)

−1BW , respectively, using the
standard formula. Then, simplifying, we have

δN (s) =
−GN0

s+ µN0

K︸ ︷︷ ︸
P (s)

δE(s) +
−µN0

K

s+ µN0

K︸ ︷︷ ︸
PW (s)

δW (s). (15)

Additionally, the transfer function of the biomolecu-
lar controller from δN to δE using (14) is δE(s)

δN (s) =

[0, 0, 1](sI −M)−1BN , which simplifies to become

C(s) =
δE(s)

δN (s)
=

α∗R0X
2
0

s2 + sξ + γ
(
γA + γAA0+γR0

KR2

)
(16)

where α∗ =
αAαE

R0X
2
0

KAKEKR2(
1+

X0
KA

)(
1+

A0R0X0
KEKR2

)2 and ξ =(
γA0+R0

KR2
+ γ + γA

)
. The transfer function from the

disturbance δX to δE is given as CX(s) = δE(s)
δX(s) =

[0, 0, 1](sI − M)−1BX . To simplify and for ease of
analysis later, we pull CX(s) through C(s) and define
KC(s) = CX(s)

C(s) , which is shown in Figure 3 and is
given by

KC(s) =
A0

(
KA
X0

+1
)

X0αA

(
s+ γA + γ R0

KR2

)
+

N0
X0

1+
X0
KA

+
(
s+γA
s+γ

) A0

(
1+

KA
X0

)
αA

(
γA0

X0KR2
+

αR
KRR0(

1+
X0
KR

)2

)
. (17)

In the closed loop system, we wish to evaluate how
tuning the parameter γA affects the performance of the
biomolecular controller. To this end, we calculate the

loop gain of the closed loop system L(s) = P (s)C(s),
which is given as

L(s) =
−GN0α

∗R0X
2
0(

s+ µN0

K

) (
s2 + sξ + γ

(
γA + γAA0+γR0

KR2

)) .
Thus, the loop gain L(s) may be tuned by varying γA.

P(s) +

+

PW(s)

C(s)
+ + KC(s)

Fig. 3. Block diagram of the closed loop system rearranged such
that the perturbation δX(s) appears on the feedback path. This form
is helpful for analyzing the closed loop sensitivity of δN (s) to
perturbations in the combination of δW (s) and δX(s).

Next, we analyze a weighted sensitivity function that
is a linear combination of the sensitivity of δN to δX and
to δW and show in Theorem 1 that this function has a
strictly positive lower bound. This implies that the con-
troller may not be tuned to reject disturbances from both
resource fluctuations and environmental disturbances.
These results hold even though the equilibrium point of
the nonlinear system changes as the loop gain is varied.

Definition 1. Let the magnitude of the sensitivity of the
output δN to the disturbance δW be

S(s) =

∣∣∣∣ δN (s)

δW (s)

∣∣∣∣
and the normalized magnitude of the sensitivity of the
output δN to the disturbance δX be

T (s) =

∣∣∣∣(X0

N0

)
δN (s)

δX(s)

∣∣∣∣ .
The total weighted sensitivity function is defined as

ζ(s) = S(s) + T (s).

The value of ζ(s) determines the magnitude of the
response of δN with respect to the combination of the
disturbances δW and δX .

Theorem 1. Consider system (12) where δW and δX are
step disturbances, then the weighted sensitivity function
ζ evaluated at s = 0 has the lower bound

ζ(0) ≥ 1.

Proof. First we evaluate S(s) at s = 0. From the block
diagram in Figure 3, S(s) =

∣∣∣ N(s)
W (s)

∣∣∣ =
∣∣∣ PW (s)
1−L(s)

∣∣∣. At
s = 0, PW (0) = −1, so S(0) = 1

|1−L(0)| . Next, we
evaluate T (s) at s = 0. From the block diagram in

Figure 3, T (0) =
∣∣∣X0

N0

δN (s)
δX(s)

∣∣∣ = ∣∣∣∣ X0
N0
KC(0)L(0)

1−L(0)

∣∣∣∣ where



KC(s) is given in (17). To find a bound for T (0), we
note that A0 = N0

αA
γA+γ

R0
KR2

(
X0

KA+X0

)
from (11b).

Then, substituting and evaluating (17) at s = 0 and
simplifying, KC(0) is given as

KC(0) =
N0

X0

(
1 +

1

1 + X0

KA

)
+

N0γA(
γA + γ R0

KR2

)
·

 N0αA
X0+KA

γAKR2 + γR0
+

αR
γKRR0(
1 + X0

KR

)2
 ≥ N0

X0
(18)

since all concentrations are nonnegative. Substituting the
relations for T (0), S(0), and the inequality (18) into the
definition of ζ and simplifying, we have

ζ(0) =
1 + X0

N0
KC(0)|L(0)|
|1− L(0)|

≥ 1 + |L(0)|
|1− L(0)|

= 1

since L(0) ≤ 0.

Theorem 1 shows that for any stable equilibrium point
of the nonlinear system (11), it is impossible to tune
the population controller to reject step disturbances from
both the environment δW and resource fluctuations δX ,
i.e. S(0) and T (0) cannot both be made small simultane-
ously. This is a nonlinear extension of the classical trade-
off between sensitivity and complementary sensitivity
functions in linear systems. In Figure 4, S(0), T (0),
and ζ(0) are shown for different values of the parameter
γA, and ζ(0) is bounded from below by 0 dB. Future
work may consider the system for s 6= 0 and compare
the sensitivities at each value of s. Additionally, this
type of analysis may be used to better design closed
loop systems in genetic circuits while accounting for the
sensitivity of growth effects and may be used to optimize
bacterial population controllers using mixed sensitivity
design tools such as H-infinity control.

C. Remarks on Stability of the Closed Loop System

The calculation of sensitivity functions in Section III
only have meaning when the closed loop system is
stable, since the output after a perturbation must remain
within a neighborhood of the equilibrium point. Here we
find conditions where the closed loop is guaranteed to
be stable using the closed loop linearized transfer func-
tion. From (15) and (16), the closed loop characteristic
polynomial is given as

s3 + s2
(
µN0

K
+ ξ

)
+ s

(
b+ ξ

µN0

K

)
+
µN0

K
b− α∗GN0,
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Fig. 4. Values of the sensitivity functions S, T , and ζ about the
equilibrium point of (11) evaluated at s = 0 for different values of γA.
For these parameters, the magnitude of the loop gain |L(0)| decreases
as γA is increased. ζ(0) shows the lower bound of 0 dB derived in
Theorem 1. Parameters used for the simulations are µ = 4.1 h−1 ,
K = 2000, G = 1h−1 nM−1, γN = 0.1 h−1, γ = 1h−1, kA =
2h−1, kR = 1h−1, kE = 1h−1, DAtot = 100 nM, DRtot =
10nM, DEtot = 10nM, KA = 15nM, KR = 20nM, KE =
300 nM2, KR2

= 1000 nM, X0 = 55nM. The equilibrium point of
the system for all values of γA shown exhibit asymptotic stability.

where b = γ
(
γA + γAA0+γR0

KR2

)
. From the Routh-

Hurwitz criterion for a 3rd degree polynomial, the closed
loop system is stable if and only if

µN0

K
+ γA + γ

(
1 +

A0 +R0

KR2

)
> 0 (19a)

γ
µ

K

(
γA +

γAA0 + γR0

KR2

)
> α∗G (19b)

γ
(
µN0

K + γ
(
1 + A0+R0

KR2

)
+ γA

)
·
(
γγA + γ γAA0+γR0

KR2
+ µN0

K (γ + γA)
)
> α∗GN0.

(19c)

If we also assume that A0+R0

KR2
� 1 and γR0

γAKR2
� 1, as

before, then (19) simplifies to

µN0

K
+ γA + γ > 0 (20a)

γAγ
µ

K
> α∗G (20b)

γ
(
µN0

K + γA + γ
)(

γA + µN0(γ+γA)
K

)
> α∗GN0.

(20c)

Since α∗ ≤ αAαE
A0

and N0 ≤ K, if γA > αAαEGK
µγA0

and γA >
√

αAαEGK
A0γ

, then all inequalities in (20) are
satisfied. Since A0 is bounded away from 0, then the
closed loop system is stable for large enough γA, i.e.
when the feedback gain is sufficiently small.

IV. DISCUSSION

We derived a mechanistic model for a cellular popu-
lation controller, which is the most common population



control system in bacteria [26], [30]. We showed that, in
this controller architecture, there is a trade-off between
robustness to environmental disturbances and robustness
to perturbations in available resources to the genetic
circuit. Placing different genetic circuit components in
multiple cells has been proposed as a possible solution
to relieve some resource sharing effects for larger ge-
netic circuits [20], [22], [31]. However, our analysis
shows that when fluctuations in cellular resources are
considered, it is not possible to tune the population
controller to be both robust to extracellular disturbances
and to intracellular disturbances. Thus, if distributed
biomolecular systems are to be used to mitigate resource
loading within a single cell in order to make larger
genetic circuits, the population controller should be
designed to ensure an acceptable level of robustness to
environmental disturbances and to perturbations due to
resource fluctuations.
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