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Abstract

Predicting the dynamic behavior of a large network from that of the composing modules is a central prob-
lem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules
display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon
similar to loading that influences in non-trivial ways the dynamic performance of a module upon con-
nection to other modules. Here, we establish an analysis framework for gene transcription networks that
explicitly accounts for retroactivity. Specifically, a module’s key properties are encoded by three retroac-
tivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation
and can be computed from macroscopic parameters (dissociation constants and promoter concentrations)
and from the modules’ topology. The internal retroactivity quantifies the effect of intramodular connec-
tions on an isolated module’s dynamics. The scaling and mixing retroactivity establish how intermodular
connections change the dynamics of connected modules. Based on these matrices and on the dynamics
of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary
interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on
the performance of recurrent network motifs, including negative autoregulation, combinatorial regula-
tion, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative
metric that determines how robust the dynamic behavior of a module is to interconnection with other
modules. This metric can be employed both to evaluate the extent of modularity of natural networks and
to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.

Author Summary

Biological modules are inherently context-dependent as the input/output behavior of a module often
changes upon connection with other modules. One source of context-dependence is retroactivity, a load-
ing phenomenon by which a downstream system affects the behavior of an upstream system upon inter-
connection. This fact renders it difficult to predict how modules will behave once connected to each other.
In this paper, we propose a general modeling framework for gene transcription networks to accurately
predict how retroactivity affects the dynamic behavior of interconnected modules, based on salient phys-
ical properties of the same modules in isolation. We illustrate how our framework predicts surprising and
counter-intuitive dynamic properties of naturally occurring network structures, which cannot be captured
by existing models of the same dimension. We describe implications of our findings on the bottom-up ap-
proach to designing synthetic circuits, and on the top-down approach to identifying functional modules in
natural networks, revealing trade-offs between robustness to interconnection and dynamic performance.
Our framework carries substantial conceptual analogies with electrical network theory based on equiv-
alent representations. We believe that the framework that we have proposed, also based on equivalent
network representations, can be similarly useful for the analysis and design of biological networks.
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Introduction

The ability to accurately predict the behavior of a complex system from that of the composing modules
has been instrumental to the development of engineering systems. It has been proposed that biological
networks may have a modular organization similar to that of engineered systems and that core processes,
or motifs, have been conserved through the course of evolution and across different contexts [1], [2], [3],
[4], [5]. In addition to having profound consequences from an evolutionary perspective, this view implies
that biology can be understood, just like engineering, in a modular fashion [6]. To predict the behavior
of a network from that of its composing modules, it is certainly desirable that the salient properties
of modules do not change upon connection with other modules. This modularity property is especially
important in a bottom-up approach to engineer biological systems, in which small systems are combined
to create larger ones [7], [8].

Unfortunately, despite the fact that biological networks are rich of frequently repeated motifs, suggest-
ing a modular organization, a module’s behavior is often affected by its context [9]. Context-dependence
is due to a number of different factors. These include unknown regulatory interactions between the
module and its surrounding systems; various effects that the module has on the cell network, such as
metabolic burden [10], effects on cell growth [11], and competition for shared resources [12]; and loading
effects associated with known regulatory linkages between the module and the surrounding systems, a
phenomenon known as retroactivity [13], [14]. As a result, our current ability of predicting the emergent
behavior of a network from that of the composing modules remains limited. This inability is a central
problem in systems biology and especially daunting for synthetic biology, in which circuits need to be
re-designed through a lengthy and ad hoc process every time they are inserted in a different context [15].

In the phenomenon known as retroactivity, a downstream module perturbs the dynamic state of its
upstream module in the process of receiving information from the latter [13], [14]. These effects are due
to the fact that, upon interconnection, a species of the upstream module becomes temporarily unavailable
for the reactions that make up the upstream module, changing the upstream module’s dynamics. The
resulting perturbations can have dramatic effects on the upstream module’s behavior. For example, in
experiments in gene circuits in E. coli, a few fold ratio in gene copy number between the upstream module
and the downstream target results in more than 40% change in the upstream module’s response time [16].
More intriguing effects take place when the upstream module is a complex dynamical system such as an
oscillator. In particular, experiments in transcriptional circuits in vitro showed that the frequency and
amplitude of a clock’s oscillations can be largely affected by a load [17] and computational studies on the
genetic activator-repressor clock of [18] further revealed that just a few additional targets for the activator
impose enough load to quench oscillations. Surprisingly, adding a few targets for the repressor can restore
the stable limit cycle [19]. Retroactivity has also been experimentally demonstrated in signaling networks
in vitro [20] and in the MAPK cascade in vivo [21]. In particular, it was shown in [19] that a few fold
ratio between the amounts of the upstream and downstream system’s proteins can lead to more than
triple the response time of the upstream system.

In this paper, we provide a quantitative framework to accurately predict how and the extent to which
retroactivity will change a module’s temporal dynamics for general gene transcription networks and
illustrate the implications on a number of recurrent network motifs. We demonstrate that the dynamic
effects of loading due to interconnections can be fully captured by three retroactivity matrices. The first is
the internal retroactivity, which accounts for loading due to intramodular connections. We illustrate that
due to internal retroactivity, negative autoregulation can surprisingly slow down the temporal response
of a gene as opposed to speeding it up, as previously reported [22]; perturbations applied at one node can
lead to a response at another node even in the absence of a regulatory path from the first node to the
second, having consequences relevant for network identification techniques (e.g., reviewed in [23]); and
an oscillator design can fail even in the presence of small retroactivity. The other two matrices, which we
call scaling and mixing retroactivity, account for loading due to intermodular connections. We illustrate
that because of the scaling retroactivity, the switching characteristics of a genetic toggle switch can be
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substantially affected when the toggle switch is inserted in a multi-module system such as that proposed
for artificial tissue homeostasis in [24]. The interplay between scaling and internal retroactivity plays a role
in performance/robustness trade-offs, which we illustrate considering the single-input motif [5]. Using
these retroactivities, we further provide a metric establishing the robustness of a module’s behavior
to interconnection. This metric can be explicitly calculated as a function of measurable biochemical
parameters, and it can be used both for evaluating the extent of modularity of natural networks and for
designing synthetic circuits modularly.

Our work is complementary to but different from studies focusing on partitioning large transcription
networks into modules using graph-theoretic approaches [13], [25], [26]. Instead, our main objective is
to develop a general framework to accurately predict both the quantitative and the qualitative behavior
of interconnected modules from their behavior in isolation and from key physical properties (internal,
scaling, and mixing retroactivity). In this sense, our approach is closer to that of disciplines in biochemical
systems analysis, such as metabolic control analysis (MCA) [27], [28]. However, while MCA is primarily
focused on steady state and near-equilibrium behavior, our approach considers global nonlinear dynamics
evolving possibly far from equilibrium situations.

This paper is organized as follows. We first introduce a general mechanistic model for gene transcrip-
tion networks to explain the physical origin of retroactivity and to formulate the main question of the
paper (System Model and Problem Formulation). We then provide the two main results of the paper
(Results). These are obtained by reducing the mechanistic model through the use of time scale separation
(leading to models of the same dimension as those based on Hill functions), in which only macroscopic pa-
rameters and protein concentrations appear. In these reduced models, the retroactivity matrices naturally
arise, whose practical implications are illustrated on five different application examples.

System Model and Problem Formulation

We begin by introducing a standard mechanistic model for gene transcription networks, which includes
protein production, decay, and reversible binding reactions between transcription factors (TFs) and pro-
moter sites, required for transcriptional regulation. Specifically, transcription networks are usually viewed
as the input/output interconnection of fundamental building blocks called transcriptional components. A
transcriptional component takes a number of TFs as inputs, and produces a single TF as an output. The
input TFs form complexes with promoter sites in the transcription component through reversible binding
reactions to regulate the production of the output TF, through the process of gene expression (for details,
see Methods). To simplify the notation, we treat gene expression as a one-step process, neglecting mRNA
dynamics. This assumption is based on the fact that mRNA dynamics occur on a time scale much faster
than protein production/decay [1]. In addition to this, including mRNA dynamics is not relevant for the
study of retroactivity, and would yield only minor changes in our results (see Methods).

Within a transcription network, we identify a transcriptional component with a node. Consequently,
a transcription network is a set of interconnected nodes in which node xi represents the transcriptional
component producing TF xi. There is a directed edge from node xj to xi if xj is a TF regulating the
activity of the promoter controlling the expression of xi [29], in which case we call xj a parent of xi.
Activation and repression are denoted by Ñ and %, respectively. Modules are a set of connected nodes.
Modules communicate with each other by having TFs produced in one module regulate the expression of
TFs produced in a different module. When a node xi is inside the module, we call the corresponding TF
xi an internal TF, while when node xi is outside the module we call the corresponding TF xi an external
TF. Further, we identify external TFs that are parents to internal TFs as inputs to the module. Let
x, u and c denote the concentration vector of internal TFs, external TFs and TF-promoter complexes,
respectively. According to [30], we can write the dynamics of the module as

ˆ

9c
9x

˙

“ Nstvpx, c, uq, (1)
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where Nst is the stoichiometry matrix and v is the reaction flux vector. The reactions are either protein
production/decay or binding/unbinding reactions. Therefore, we partition v into r˚ and r, representing
the reaction flux vectors corresponding to production/decay and binding/unbinding reactions, respec-
tively (see Methods). We assume that the DNA copy number is conserved, therefore, we can rewrite (1)
as

ˆ

9c
9x

˙

“

„

0 A
B˚ B



loooooomoooooon

Nst

ˆ

r˚px, cq
rpx, c, uq

˙

looooooomooooooon

vpx,c,uq

,

where the upper left block matrix in Nst is the zero matrix as DNA is not produced/degraded. As a
result, with g px, cq “ B˚r˚ px, cq we obtain

9c “Ar px, c, uq ,

9x “g px, cq `Br px, c, uq ,
(2)

which we call the isolated dynamics of a module.
Next, consider the case when the module is inserted into a network, which we call the context of the

module. We represent all the quantities related to the context with an overbar. Let sx and sc denote the
concentration vector of TFs and promoter complexes of the context, respectively. Furthermore, denote
by sr˚ and sr the reaction flux vectors corresponding to production/decay and binding/unbinding reactions
between TFs and promoters in the context of the module, respectively. Then, the dynamics of the species
in the module (c and x) and in the context (sc and sx) can be written as

¨

˚

˚

˝

9c
9
sc
9x
9
sx

˛

‹

‹

‚

“

»

—

—

–

0 0 A 0
0 0 0 sA

B˚ 0 B sE
0 sB˚ E sB

fi

ffi

ffi

fl

¨

˚

˚

˝

r˚

sr˚

r
sr

˛

‹

‹

‚

, (3)

where the upper left block matrix is zero as DNA is assumed to be a conserved species. Furthermore, since
r and sr encapsulate the binding/unbinding reactions in the module and in its context, respectively, the
off-diagonal block matrices in the upper right block matrix are zero. Similarly, as r˚ and sr˚ encapsulate
the production/decay reactions in the module and its context, respectively, the off-diagonal block matrices
in the lower left block matrix are zero. Finally, the stoichiometry matrix sE represents how internal TFs of
the module participate in binding/unbinding reactions in the context of the module (E can be interpreted
similarly).

With s “ sEsr describing the effective rate of change of x due to intermodular binding reactions, we
obtain

9c “Ar px, c, uq ,

9x “g px, cq `Brpx, c, uq ` spsx,sc, suq,
(4)

which we call the connected dynamics of a module. We refer to s as the retroactivity to the output of the
module, encompassing retroactivity applied to the module due to the context of the module. Similarly, we
call r the retroactivity to the input of a module, representing retroactivity originating inside the module.
The general interconnection of a group of modules can be treated similarly (Figure 1).

As an example of the implications of retroactivity s on the module’s dynamic behavior, consider
Figure 2. For the purpose of illustration, assume that ζ1 ptq and sζ1 ptq, external inputs to x1 and sx1 (see
Methods), are periodic (in general, they can be arbitrary time-varying signals). When the module is
not connected to its context (Figure 2A), its output is periodic (Figure 2B). Upon interconnection with
its context (Figure 2C), due to the retroactivity to the output s applied by the context, the output of
the module changes significantly (Figure 2D). Hence, connection with the context leads to a dramatic
departure of the dynamics of the module from its behavior in isolation. This example illustrates that
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Figure 1. The dynamics of a module depend on the module’s context. Downstream modules
change the dynamics of an upstream module by applying a load. The effect of this load is captured by
the retroactivity to the output s of the upstream module, which is the weighted sum of the retroactivity
to the input rpiq of the downstream modules.
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Figure 2. The context (downstream system) affects the behavior of the module (upstream
system). (A) The module in isolation. (B) The module in isolation displays sustained oscillations. (C)
The module connected to its context. (D) Upon interconnection with its context, the dynamics of the
module change due to the retroactivity s from its context, since some of the molecules of x1 are involved
in binding reactions at node sx2. As a result, those molecules are not available for reactions in the
module, and the output of the module is severely changed. For details on the system and parameters,
see Supporting Text ??.

retroactivity s significantly alters the dynamic behavior of modules after interconnection, therefore, it
cannot be neglected if accurate prediction of temporal dynamics is required. Unfortunately, model (4)
provides little analytical insight into how measurable parameters and interconnection topology affect
retroactivity.

The aim of this paper is to provide a model that captures the effects of retroactivity, unlike standard
regulatory network models of the same dimension based on Hill functions [1]. Specifically, we seek a
model that explicitly describes the change in the dynamics of a module once it is arbitrarily connected
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to other modules in the network. This model is only a function of measurable biochemical parameters,
TF concentrations, and interconnection topology.

Results

We first characterize the effect of intramodular connections on an isolated module’s dynamics. We
then analytically quantify the effects of intermodular connections on a module’s behavior. Finally, we
determine a metric of robustness to interconnection quantifying the extent by which the dynamics of a
module are affected by its context. We demonstrate the use of our framework and its implications on
network motifs taken from the literature.

The main technical assumptions in what follows are that (a) there is a separation of time scale
between production/degradation of proteins and the reversible binding reactions between TFs and DNA,
and that (b) the corresponding quasi-steady state is locally exponentially stable. Assumption (a) is
justified by the fact that gene expression is on the time scale of minutes to hours while binding reactions
are on the second to subsecond time scale [1]. Assumption (b) is implicitly made any time Hill function-
based models are used in gene regulatory networks. In addition to these technical assumptions, to
simplify notation, we model gene expression as a one-step process, however, a more detailed description
of transcription/translation would not yield any changes to the main results (see Methods).

Effect of Intramodular Connections

Here, we focus on a single module without inputs and describe how retroactivity among nodes, modeled
by Br in (2), affects the module’s dynamics. To this end, we provide a model that well approximates the
isolated module dynamics, in which only measurable macroscopic parameters appear, such as dissociation
constants and TF concentrations. We then present implications of this model for negative autoregulation,
combinatorial regulation and the activator-repressor clock of [18].

Employing assumptions (a)-(b), we obtain the first main result of the paper as follows. Let x “
px1, x2, . . . , xN q

T denote the vector of concentrations of internal TFs, then the dynamics

9x “ rI `Rpxqs
´1
h pxq (5)

well approximate the dynamics of x in (2) in the isolated module with

hpxq “

¨

˚

˚

˚

˝

ζ1 `H1pp1q ´ δ1x1

ζ2 `H2pp2q ´ δ2x2

...
ζN `HN ppN q ´ δNxN

˛

‹

‹

‹

‚

and Rpxq “

$

&

%

ÿ

t i | xiPΦ u

V Ti RippiqVi if Φ ‰ H,

0NˆN if Φ “ H,
(6)

where ζi represents external perturbations to xi (inducer, noise, or disturbance, ζiptq ” 0 unless specified
otherwise), δi is the decay rate of xi, and Hippiq is the Hill function modeling the production rate of
xi, regulated by the parents pi of xi. We call Rippiq the retroactivity of node xi. For the most common
binding types, Table 1 shows the expressions of Hippiq and Rippiq (for their definition, see Methods).
The binary matrix Vi has as many columns as the number of nodes in the module, and as many rows as
the number of parents of xi, such that its pj, kq element is 1 if the jth parent of xi is xk, otherwise the
entry is zero. That is, an entry in the following matrix

Vi “

x1 x2 . . .
»

–

fi

fl

pi,1
pi,2

...
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is 1 if the species indexing the corresponding row and column are the same, otherwise the entry is zero,
yielding pi “ Vix. Finally, Φ is the set of nodes having parents from inside the module. For the derivation
of this result, see Theorem 1 in Supporting Text ??.

Table 1. Hill function and retroactivity of node xi for the most common binding types. If
node xi has no parents, its node retroactivity is not defined. In the single parent case, node xi has one
parent, y binding as an n-multimer with dissociation constant ky. In the case of independent,
competitive and cooperative binding, node xi has two parents, y and z, binding as multimers with
multimerization factors n and m, respectively, together with dissociation constants ky and kz,
respectively. The total concentration of the promoter of xi is denoted by ηi. The production rates πi,0,
πi,1, πi,2 and πi,3 correspond to the promoter complexes without parents, with y only, with z only, and
with both y and z, respectively. For details, see Supporting Text ??.

No parent Hi “ ηiπi,0

Single
parent

Hipyq “ ηi
πi,0 ` πi,1

yn

ky

1` yn

ky

Ripyq “ ηi
n2yn´1

ky

´

1` yn

ky

¯´2

Independent
binding

Hipy, zq “ ηi
πi,0 ` πi,1

yn

ky
` πi,2

zm

kz
` πi,3

yn

ky
zm

kz

1` yn

ky
` zm

kz
`

yn

ky
zm

kz

Ripy, zq “ ηi

»

—

—

–

n2yn´1

ky

´

1` yn

ky

¯´2

0

0 m2zm´1

kz

´

1` zm

kz

¯´2

fi

ffi

ffi

fl

Competitive
binding

Hipy, zq “ ηi
πi,0 ` πi,1

yn

ky
` πi,2

zm

kz

1` yn

ky
` zm

kz

Ripy, zq “
ηi

´

1` yn

ky
` zm

kz

¯2

»

—

–

n2yn´1

ky

´

1` zm

kz

¯

´
nyn

ky
mzm´1

kz

´
nyn´1

ky
mzm

kz
m2zm´1

kz

´

1` yn

ky

¯

fi

ffi

fl

Cooperative
binding

Hipy, zq “ ηi
πi,0 ` πi,1

yn

ky
` πi,3

yn

ky
zm

kz

1` yn

ky
`

yn

ky
zm

kz

Ripy, zq “
ηi

´

1` yn

ky
`

yn

ky
zm

kz

¯2

»

—

–

n2yn´1

ky

´

1` zm

kz

¯

nyn

ky
mzm´1

kz

nyn´1

ky
mzm

kz

yn

ky
m2zm´1

kz

´

1` yn

ky

¯

fi

ffi

fl
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We call R the internal retroactivity of the module as it describes how retroactivity among the nodes
internal to the module affects the isolated module dynamics. When R “ 0, we have 9x “ hpxq, the
commonly used Hill function-based model for gene transcription networks [1]. It is possible to show that
hpxq represents the rate of change of total (free and bound) TFs (see Supporting Text ??). Hence, (5)
describes how changes in the total concentration of TFs hpxq relate to changes 9x in the concentration of
free TFs. Specifically, to change the concentration of free TFs by one unit, the module has to change
the total concentration of TFs by pI ` Rq units, as R units are “spent on” changing the concentration
of bound TFs. Having R “ 0 implies that the module’s effort on affecting the total concentration of
TFs is entirely spent on changing the concentration of free TFs. By contrast, }R} Ñ 8 implies that no
matter how much the total concentration of TFs changes, it is not possible to achieve any changes in the
free concentration of some of the TFs. Therefore, the internal retroactivity R describes how “stiff” the
module is against changes in x due to loading applied by internal connections.

The entries of Rippiq have the following physical interpretation. Consider first a module with the
autoregulated node x1, that is, x1 has a single parent: itself. The retroactivity of node x1 is R1px1q “ a,
where a is given in Table 1. In this case, we obtain Rpx1q “ a by (6), so that (5) yields 9x1 “

1
1`ahpx1q.

Hence, the greater a, the harder to change the concentration of free x1 by changing its total concentration
(the “stiffer” the node), and the temporal dynamics of x1 become slower. The retroactivity R1 of node
x1 can be increased by increasing its DNA copy number η1 or by decreasing the dissociation constant k1

of x1. For a node with two parents, we provide the explicit formula for Ri in Table 1 in the case of the
most frequent binding types, so that here we simply write

Ri “

„

b c
d e



. (7)

The diagonal entries b and e in (7) can be interpreted similarly to a, while the off-diagonal entries can
be interpreted as follows. Having c ą 0 means that the second parent facilitates the binding of the
first, whereas c ă 0 represents blockage (d can be interpreted similarly with the parents having reverse
roles). Therefore, we have c “ d “ 0 in the case of independent binding (Table 1), as the parents bind to
different sites. By contrast, we have c, d ď 0 in the case of competitive binding (Table 1), since the parents
are competing for the same binding sites, forcing each other to unbind. Following a similar reasoning,
we obtain c, d ě 0 in the case of cooperative binding (Table 1). Notice that Ri is scaled by the total
concentration of promoter ηi, which can be changed, for example, in synthetic circuits by changing the
plasmid copy number.

Practical Implications of Intramodular Connections

In order to illustrate the effects of intramodular connections, we consider three recurrent network motifs
in gene transcription networks: (i) negative autoregulation of a gene, (ii) combinatorial regulation of a
gene by two TFs, and (iii) the activator-repressor clock of [18].

Negative autoregulation. One of the most frequent network motifs in gene transcription networks is
negative autoregulation, as over 40% of known Escherichia coli TFs are autorepressed [29]. Earlier studies
concluded that negative autoregulation makes the response of a gene faster [22]. Here, we demonstrate
that in the case of significant retroactivity, negative autoregulation can actually slow down the response
of a gene. To this end, consider a module consisting of the single node x1, and analyze first the case when
its production is constitutive with promoter concentration η1, production rate constant π1,0 and decay
rate δ1. Then, the dynamics of x1 are given by 9x1 “ η1π1,0 ´ δ1x1.

In the case of negative autoregulation, x1 has itself as the only parent. Let k1 denote the dissociation
constant of x1 and assume it binds as a monomer repressing its own production (so that n “ 1 and

π1,1 “ 0 in Table 1). According to Table 1, we have H1px1q “ η1
π1,0

1`x1{k1
and R1px1q “ η1

1{k1
p1`x1{k1q2
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Figure 3. Negative autoregulation can make the temporal response slower. Time response at
a steady state fixed at x1 “ 50nM. The red and blue plots denote the cases with and without negative
autoregulation, respectively, whereas the green plot represents the case of negative autoregulation
neglecting retroactivity (R “ 0 in (8)). Simulation parameters are δ1 “ 1hr´1, k1 “ 10nM, together
with π1,0 “ 20hr´1, π1,0 “ 10hr´1, π1,0 “ 1hr´1 for A, B and C, respectively. To carry out a
meaningful comparison between the unregulated and regulated systems, we compare the response time
of systems with the same steady state. To do so, we pick the same value of η1 in the case of the
regulated systems (η1 “ 15nM, η1 “ 30nM, η1 “ 300nM for A, B and C, respectively), but a different
one for for the unregulated system (η1 “ 2.5nM, η1 “ 5nM, η1 “ 50nM for A, B and C, respectively),
such that the steady states match (see Methods for parameter ranges). Decreasing π1,0 (lower
production rate constant) while increasing η1 (higher DNA copy number) results in slower response, as
internal retroactivity increases.

together with V1 “ 1 and Φ “ tx1u, yielding from (6) Rpx1q “ R1px1q and hpx1q “ H1px1q ´ δ1x1, so
that (5) results in

9x1 “
1

1`Rpx1q

ˆ

η1
π1,0

1` x1{k1
´ δ1x1

˙

. (8)

This expression indicates that negative autoregulation yields two changes in the dynamics. First, protein
production changes from η1π1,0 to the Hill function H1px1q. Second, the dynamics are premultiplied by

p1`Rq
´1

, which is the effect of internal retroactivity.
As it was shown in [22], the response time of the regulated system without retroactivity is smaller

than that of the unregulated system. When considering internal retroactivity, however, the response
time increases, as the absolute value of 9x1 decreases with increased R according to (8). Specifically, the
response time with R is greater than without R since R ą 0. That is, while the Hill function makes
the response faster, internal retroactivity has an antagonistic effect, so that negative autoregulation can
render the response slower than that of the unregulated system, as illustrated in Figure 3. Furthermore,
if π1,0η1 is kept constant, the response time of both the unregulated (blue) and the regulated system
without retroactivity (green) remain the same, together with the steady states. By contrast, increasing
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η1 (and decreasing π1,0) makes the internal retroactivity R greater (since R is proportional to η1), while
the contribution of the Hill function remains unchanged. As a result, the response of the regulated system
with retroactivity (red) becomes slower as we increase η1 (and decrease π1,0). This is illustrated in Figure
3 with different pη1, π1,0q pairs. Note that π1,0 can be decreased, for example, by decreasing the ribosome
binding site (RBS) strength, whereas η1 can be increased by increasing the gene copy number.

Combinatorial regulation. As a second example, we consider a single gene co-regulated by two tran-
scription factors (Figure 4A). This topology appears in recurrent network motifs, such as the feedforward-
loop, the bi-fan and the dense overlapping regulon [5]. Here, we show that a perturbation introduced
in one of the parents (blue in Figure 4A) can affect the concentration of the other parent (red node in
Figure 4A), even in the absence of a regulatory path between the two.

Referring to (5)–(6), note that x3 is the only node with parents (Φ “ tx3u), so that Rpxq “ V T3 R3V3.
Using (6) with

V3 “

„

1 0 0
0 1 0



and R3px1, x2q “

„

b c
d e



,
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Figure 4. Nodes can become coupled via common downstream targets. (A) Node x3 has two
parents: x1 and x2, without a regulatory path between them. (B) Perturbation ζ1 applied to x1. (C) In
the case of competitive binding, increasing the concentration of free x1 yields more of x1 bound to the
promoter of x3, forcing some of the molecules of x2 to unbind, thus increasing the free concentration x2.
Consequently, x1 acts as if it were an activator of x2. (D) By contrast, in the case of cooperative
binding, when the binding of x1 must precede that of x2, pulses in x1 yield pulses of the opposite sign in
x2. Consequently, x1 acts as if it were a repressor of x2. Simulation parameters are: η1 “ η2 “ 10nM,
η3 “ 20nM, δ1 “ δ2 “ 1hr´1, π1,0 “ 0, π2,0 “ 10hr´1, k1 “ k2 “ 1nM4, and both x1 and x2 bind as
tetramers.
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where the entries of R3 are given in Table 1 (depending on the binding type at x3) together with
H3px1, x2q, the dynamics in (5) take the form

¨

˝

9x1

9x2

9x3

˛

‚“

»

–

1`e
p1`bqp1`eq´cd ´ c

p1`bqp1`eq´cd 0

´ d
p1`bqp1`eq´cd

1`b
p1`bqp1`eq´cd 0

0 0 1

fi

fl

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

rI`Rpxqs´1

¨

˝

ζ1 ` π1,0η1 ´ δ1x1

π2,0η2 ´ δ2x2

H3px1, x2q ´ δ3x3

˛

‚

loooooooooooooomoooooooooooooon

hpxq

.

This expression implies that unless d “ 0, a perturbation ζ1 (Figure 4B) in x1 yields a subsequent
perturbation in x2. In the case of independent binding, we have d “ 0, and as a result, no perturbation
is observed in x2. In the case of competitive binding, instead, we have d ă 0, so that perturbations ζ1
in x1 yield perturbations of the same sign in x2, that is, x1 acts as if it were an activator of x2 (Figure
4C). In the case of cooperative binding, instead, we have d ą 0. As a result, perturbations in x1 yield
perturbations in x2 of opposite sign (Figure 4D), which implies that x1 behaves as if it were a repressor
of x2. As d is proportional to η3 (Table 1), higher DNA copy number for x3 yields greater pulses in x2

subsequent to an equal perturbation in x1. Interestingly, if we view x2 as the output of the module, the
module has the adaptation property with respect to its input x1 (or ζ1). That is, retroactivity enables
to respond to sudden changes in input stimuli, while adapting to constant stimulus values.

Activator-repressor clock. One common clock design is based on two TFs, one of which is an activa-
tor and the other is a repressor [18], [31], [32]. Here, we illustrate the effect of internal retroactivity on the
functioning of the clock design of [18] depicted in Figure 5A. In particular, x1 activates the production
of both TFs, whereas x2 represses the production of x1 through competitive binding. Consequently, the
network topology is captured by the binary matrices V1 “ I and V2 “

“

1 0
‰

, whereas hpxq and Rpxq
can be constructed by considering pH1px1, x2q, H2px1qq and pR1px1, x2q, R2px1qq, respectively, in Table
1. Here, we write R2 “ a, while the entries of R1 are denoted by b, c, d and e, as in (7). Then, we obtain
that (5) takes the form

ˆ

9x1

9x2

˙

“

«

1`e
p1`a`bqp1`eq´cd ´ c

p1`a`bqp1`eq´cd

´ d
p1`a`bqp1`eq´cd

1`a`b
p1`a`bqp1`eq´cd

ff

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

rI`Rpxqs´1

ˆ

H1px1, x2q ´ δ1x1

H2px1q ´ δ2x2

˙

loooooooooooooomoooooooooooooon

hpxq

. (9)

It was previously shown [33] that the principle for the clock to oscillate is that the activator dynamics
are sufficiently faster than the repressor dynamics (so that the unique equilibrium point is unstable).
Equation (9) shows that the activator and repressor dynamics are slowed down asymmetrically (diagonal
terms in rI ` Rpxqs´1), and that they become coupled (off-diagonal terms in rI ` Rpxqs´1, c, d ‰ 0),
because of internal retroactivity. In particular, in the case when c, d ! 1 ` e ! 1 ` a ` b, the activator
would slow down compared to the repressor. Based on the principle of functioning of the clock, we should
expect that this could stabilize the equilibrium point, quenching the oscillations as a consequence. In fact,
oscillations disappear even if the circuit is assembled on DNA with a single copy (η1 “ η2 “ 2nM), as it
can be observed in Figure 5D. Therefore, accounting for internal retroactivity is particularly important in
synthetic biology during the design process when circuit parameters and parts are chosen for obtaining the
desired behavior. An effective way to restore the limit cycle in the clock, yielding sustained oscillations,
is to render the repressor dynamics slower with respect to the activator dynamics. This can be obtained
by adding extra DNA binding sites for the repressor [19], as shown in Figure 5B. In fact, in this case,
we have R3px2q ą 0 given in Table 1, which, due to (5), will yield the following change in (9): instead of
e, we will have e` R3 ą e, rendering the dynamics of the repressor slower with respect to the activator
dynamics. As a result, the equilibrium point becomes unstable, restoring the limit cycle, verified by
simulation in Figure 5E. Further studies on specific systems have investigated the effects of TF/promoter
binding on the dynamics of loop oscillators, such as the repressilator [34].
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Figure 5. Neglecting internal retroactivity could falsely predict that the
activator-repressor clock will display sustained oscillations. (A) The module consists of the
activator protein x1 (dimer) and the repressor protein x2 (tetramer), with dissociation constants k1 and
k2, respectively. (B) An extra node x3 is introduced as a target for the repressor. (C) Without
accounting for internal retroactivity, the module in A exhibits sustained oscillations. (D) When internal
retroactivity is included for the module in A, however, the equilibrium point is stabilized and the limit
cycle disappears. (E) Oscillations can be restored by applying a load on the repressor (module in B)
with concentration η, so that the repressor dynamics are slowed down. Simulation parameters:
π1,0 “ 0.04hr´1, π1,1 “ 2500hr´1, π1,2 “ 0hr´1, π2,0 “ 0.004hr´1, π2,1 “ 100hr´1, δ1 “ 1hr´1,
δ2 “ 0.6hr´1, η1 “ η2 “ 2nM, k1 “ 1nM2, k2 “ 1nM4 and η “ 40nM.

Effect of Intermodular Connections

After investigating how retroactivity due to intramodular connections affect a single module’s dynamics,
we next determine how the dynamics of a module change when the module is inserted into its context.
To this end, we first extend the model in (5) to the case in which the module has external TFs as inputs.
Hence, let u “ pu1, u2, . . . , uW q

T denote the concentration vector of TFs external to the module. With
this, we obtain that the dynamics

9x “ rI `Rpx, uqs
´1
rh px, uq ´Qpx, uq 9us “ fpx, u, 9uq (10)

well approximate the dynamics of x in (2) with

Qpx, uq “

$

&

%

ÿ

t i | xiPpΦXΩq u

V Ti RippiqDi if Ω ‰ H,

0NˆW if Ω “ H,
(11)

where Ω is the set of nodes having parents from outside the module (external TFs), and the binary matrix
Di has as many columns as the number of inputs of the module, and as many rows as the number of
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parents of xi, such that its pj, kq element is 1 if the jth parent of xi is uk, otherwise the entry is zero.
That is, an entry in the following matrix

Di “

u1 u2 . . .
»

–

fi

fl

pi,1
pi,2

...

is 1 if the species indexing the corresponding row and column are the same, otherwise the entry is zero,
yielding pi “ r Vi Di sp x

T uT qT . Furthermore, note that in the presence of input u, both hp.q and
Rp.q given in (6) depend on x and u, as some of the parents of internal TFs are external TFs. For the
derivation of this result, see Theorem 2 in Supporting Text ??.

Before stating the main result of this section, we first provide the interpretation of Q. Recall that
hpx, uq “ 0 implies that the total concentrations of internal TFs are constant. In this case, (10) reduces

to 9x “ ´pI `Rq
´1
Q 9u, where x is the concentration vector of free internal TFs. This means that

the concentrations of free internal TFs can still be changed subsequent to changes in the external TFs
(input), despite the fact that the total concentration (free and bound) of internal TFs remains unaffected.
Therefore, Q captures the phenomenon by which external TFs force internal TFs to bind/unbind, for
instance, by competing for the same binding sites. Having Q “ 0 means that external TFs do not affect
the binding/unbinding of internal TFs, which is the case, for example, when all bindings are independent.
Thus, we call Q the external retroactivity of the module.

The main result of this section describes how the context of a module affects the module’s dynamics
due to retroactivity. Specifically, we consider the module of interest and we represent the rest of the
network, the module’s context, as a different module. As previously, we use the overbar to denote that
a quantity belongs to the context. With this, we obtain that the dynamics

ˆ

9x
9
sx

˙

“

„

I ` pI `Rq´1
sS pI `Rq´1

ĎM
pI ` sRq´1M I ` pI ` sRq´1S

´1 ˆ
fpx, Usx, U 9

sxq
sfpsx, sUx, sU 9xq

˙

loooooooooomoooooooooon

isolated dynamics
of the module and

of its context

(12)

well approximate the dynamics of x and sx in (4) in the module connected to the context with

Spx, sxq “

$

&

%

ÿ

t i | xiPΩ u

rDiU s
T
RippiqDiU if Ω ‰ H,

0
ĎNˆĎN if Ω “ H,

Mpx, sxq “

$

&

%

ÿ

t i | xiPpΦXΩq u

rDiU s
T
RippiqVi, if ΦX Ω ‰ H,

0
ĎNˆN if ΦX Ω “ H,

(13)

where N and sN denote the number of nodes in the module and in the context, respectively. Furthermore,
the binary matrix U has as many rows as the number of inputs of the module, and as many columns as
the number of nodes in the context, such that its pj, kq element is 1 if the jth external TF of the module
is the kth internal TF of the context (uj “ sxk), otherwise the entry is zero. That is, an entry in the
following matrix

U “

sx1 sx2 . . .
»

–

fi

fl

u1

u2

...
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is 1 if the species indexing the corresponding row and column are the same, otherwise the entry is zero,
yielding u “ Usx. The quantities corresponding to the context, that is, sS, ĎM and sU are defined similarly
with the only difference that variables with and without overbar have to be swapped (for instance, N
and sN have to be swapped in (13)). For the derivation of this result, see Theorem 3 in Supporting Text
??.

We next provide the interpretation of the scaling and mixing retroactivity. The reduced order model
(12) describes how retroactivity between the module and the context affects each other’s dynamics. Note
that zero matrices S, M , sS and ĎM lead to no alteration in the dynamics upon interconnection. To
further deepen the implications of these matrices and their physical meaning, note that when ĎM “ 0, the
dynamics of the module after interconnection become

9x “
”

I ` pI `Rq
´1

sS
ı´1

f
`

x, Usx, U 9
sx
˘

looooooomooooooon

isolated dynamics
of the module

, (14)

that is, sS determines how the isolated dynamics of the module get “scaled” upon interconnection. There-
fore, we call sS the scaling retroactivity of the context, accounting for the loading that the context applies
on the module as some of the TFs of the module are taken up by promoter complexes in its context (we
obtain sS “ 0 if nodes in the context do not have parents in the module, that is, if sΩ “ H). Since the
dynamics of the context enter into the module’s dynamics through ĎM , we call ĎM the mixing retroactivity
of the context, referring to the “mixing” of the dynamics of the module and that of its context. The
mixing retroactivity ĎM establishes how internal TFs force external TFs to bind/unbind, so that ĎM “ 0
can be ensured if the binding of parents from the module is independent from that of the parents from
the context. This holds if nodes in the context are not allowed to have parents in both the module and
in the context (sΩX sΦ “ H). When ĎM ‰ 0, a perturbation applied in the context can result in a response
in the upstream module, even without TFs in the context regulating TFs in the module, leading to a
counter-intuitive transmission of signals from downstream (context) to upstream (module).

With this, we can explain the simulation results in Figure 2D by analyzing sS and ĎM for the system
in Figure 2C. Let R1 “ a and let sR2 be defined as in (7), where a, b, c, d and e are given in Table 1.
Then, we have R “ a by (6) and sS “ b and ĎM “ p c 0 q by (13). Hence, expression (12) yields

9x1 “
1` a

1` a` b
loooomoooon

effect of sS

fpxq ´
c

1` a` b
loooomoooon

effect of ĎM

sf1psx, x, 9xq, (15)

describing the dynamics of x1 upon interconnection with its context, where 9x1 “ fpxq and 9
sx1 “ sf1psx, x, 9xq

describe the dynamics of x1 and sx1, respectively, when the module and the context are not connected to
each other. If ĎM “ 0, then (15) reduces to

9x1 “
1` a

1` a` b
fpxq,

that is, the context rescales the dynamics of the module. The smaller p1 ` aq{p1 ` a ` bq, that is, the
greater the scaling retroactivity b “ sS, the greater the effect of this scaling. Note that since the scaling
factor is smaller than 1 (unless the scaling retroactivity is zero, i.e., b “ 0), the effect of the scaling
retroactivity of the context in this case is to make the temporal dynamics of the module slower.

Once ĎM ‰ 0, in addition to this sclaing effect, the dynamics of the context appear in the dynamics
of the module (Figure 2D). Referring to (15), we can quantify the effect of the context on the module,
considering the ratio c{p1`aq. The greater c{p1`aq, that is, the greater ĎM , the stronger the contribution
of the context compared to that of the module to the dynamics of the module upon interconnection. Here,
both b and c increase, for instance, with the copy number of sx2 (Table 1).
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Connecting the module to its context such that x1 and sx1 are competing for the same binding sites is
less desirable than employing independent binding, as the dynamics of the context (downstream system)
can suppress the dynamics of the module (upstream system). Dismantling the dynamics of the module
will “misinform” other downstream systems in the network that are regulated by x1. From a design
perspective, multi-module systems should be designed and analyzed such that the modules have zero
mixing retroactivity. This can be achieved, for instance, by avoiding non-independent binding at the
interface nodes (at sx2 in Figure 2B). However, since completely independent binding can be hard to
realize in the case of combinatorial regulation, nodes integrating signals from different modules should
not be placed into the input layer (nodes having parents from other modules), yielding sΩX sΦ “ H. This
can be achieved by introducing an extra input node in the downstream module (see Supporting Figure
S1).

Next, we quantify the difference between the isolated and connected module behavior. In particular,
we provide a metric of the change in the dynamics of a module upon interconnection with its context,
dependent on R and sS and under the assumption that ĎM “ 0 (obtained, for instance, by avoiding mixing
parents from the module and the context). The isolated dynamics of the module can be well approximated
by the reduced order model 9x “ fpx, u, 9uq in (10), and let xptq denote its solution. Once we connect the

module to its context, its dynamics change according to (14), which we write as 9x “ rfpx, u, 9uq and let
rxptq denote the corresponding solution. Using the sub-multiplicative property of the induced 2-norm, we
have that the percentage change of the dynamics upon interconnection can be bounded from above as
follows:

}fpx, u, 9uq ´ rfpx, u, 9uq}2
}fpx, u, 9uq}2

ď µpx, uq “ }rI ` pI `Rq´1
sSs´1 ´ I}2. (16)

Furthermore, with pµ ě 0 independent of x and u, such that µpx, uq ď pµ, we obtain that

}xptq ´ rxptq}2 “ Oppµq,

that is, pµ provides an upper bound on the percentage change in the dynamics of the module, and on the
difference in the trajectories of the module upon interconnection with its context. Furthermore, by using
the properties of the induced 2-norm, we obtain that we can pick

pµ “ max
x,sx

σmaxpsSq

σminpI `Rq ´ σmaxpsSq

provided that σmaxpsSq ă σminpI`Rq for all x and sx, where σminpI`Rq and σmaxpsSq denote the smallest
singular value of pI `Rq and largest singular value of sS, respectively. For the mathematical derivations,
see Supporting Text ??. This suggests that the module becomes more robust to interconnection by
increasing minx,sx σminpI `Rq or by decreasing maxx,sx σmaxpsSq.

Such a metric can be used both in the analysis and in the design of complex gene transcription networks
as follows. Given any network and a desired module size N (number of nodes within the module), we
can identify the module that has the least value of pµ, that is, the module with the greatest guaranteed
robustness to interconnection. Furthermore, we can also evaluate existing partitioning based on other
measures (e.g., edge betweenness [35], its extension to directed graphs with nonuniform weights [36], round
trip distance [25] or retroactivity [37]) with respect to robustness to interconnection. From a design point
of view, one can design multi-module systems such that internal, scaling and mixing retroactivities allow
for low values of pµ, leading to modules that behave almost the same when connected or isolated.

Practical Implications of Intermodular Connections

We next illustrate the effect of intermodular connections on the dynamics of interconnected modules,
considering both a synthetic genetic module that is being employed in a number of applications and a
natural recurring network motif.
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Toggle switch. Here, we consider the toggle switch of [38], a bistable system that can be permanently
switched between two steady states upon presentation of a transient input perturbation. This module
has been proposed for synthetic biology applications in biosensing (see, for example, [24], [39]). In this
paper, we consider the toggle switch inserted into the context of the synthetic circuit for controlling tissue
homeostasis as proposed in [24], and investigate how the context of the toggle affects its switching charac-
teristics. Figure 6A illustrates the toggle switch in isolation, whereas Figure 6B shows the configuration
when connected to the context [24]. Note that all nodes, both in the toggle switch and in its context,
have a single parent. Therefore, H1px2q, H2px1q, sH1px1q, sH2px1q, sH3px2q, and similarly, R1px2q, R2px1q,
sR1px1q, sR2px1q, sR3px2q are given in Table 1.

We first consider the model of the toggle switch when not connected to its context (Figure 6A).
Since the toggle switch has no input, its isolated dynamics are described by (5), where Φ “ tx1, x2u,
V1 “ r 0 1 s and V2 “ r 1 0 s yield

ˆ

9x1

9x2

˙

“

«

1
1`R2px1q

0

0 1
1`R1px2q

ff

looooooooooooooomooooooooooooooon

rI`Rpxqs´1

ˆ

ζ1 `H1px2q ´ δ1x1

H2px1q ´ δ2x2

˙

looooooooooooooomooooooooooooooon

hpxq

“ fpxq.

Next, we consider the toggle switch connected to its context (Figure 6B). As nodes in the toggle switch
have no parents from outside it, we have S “ 0 and M “ 0 by (13). Nodes in the context have no
parents in the context, leading to sR “ 0 from (6), and to sQ “ 0, referring to (11). With this, the isolated
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Figure 6. Effects of the context on the switching characteristics of the toggle switch. (A)
The toggle switch in isolation. (B) The toggle switch connected to its context [24]. (C) A narrow pulse
in ζ1 (input perturbation in x1, depicted in green) causes the isolated toggle to switch between the two
stable equilibria. (D) When connected to the context, the same pulse is insufficient to yield a switch.
(E) With a wider pulse, the switching is restored (however, dynamics are slower compared to the
isolated case). Simulation parameters: both x1 and x2 bind as dimers, η1 “ η2 “ 10nM,
k1 “ k2 “ 1nM2, δ1 “ δ2 “ 1hr´1, π1,0 “ π2,0 “ 10hr´1, sη1 “ sη2 “ sη3 “ 5nM, and the height of the
input perturbation pulse is ζ1 “ 10nM hr´1.
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dynamics of the context are given by

¨

˝

9
sx1

9
sx2

9
sx3

˛

‚“

¨

˝

sH1px1q ´ sδ1sx1
sH2px1q ´ sδ2sx2
sH3px2q ´ sδ3sx3

˛

‚

loooooooooooomoooooooooooon

shpsx,suq

“ sfpsx, suq,

according to (10). The fact that nodes in the context do not have mixed parents from the toggle switch
and from the context results in ĎM “ 0 from (13). With sΩ “ tsx1,sx2,sx3u, sD1 “ sD2 “

“

1 0
‰

,
sD3 “

“

0 1
‰

, and sU “ I we obtain

sS “

„

sR1 ` sR2 0
0 sR3



.

As a result, with αpx1q “ p sR1 ` sR2q{p1 ` R2q ě 0 and βpx2q “ sR3{p1 ` R1q ě 0, the dynamics of the
toggle switch once connected to the context (Figure 6B) are given by

ˆ

9x1

9x2

˙

“

„ 1
1`α 0

0 1
1`β



loooooooomoooooooon

rI`pI`Rq´1
sSs´1

˜

ζ1`H1px2q´δ1x1

1`R2
H2px1q´δ2x2

1`R1

¸

loooooooooooomoooooooooooon

fpxq

according to (12), so that the dynamics of x1 and x2 are unaffected if α “ 0 and β “ 0, respectively.
When α, β ą 0, both the x1 and x2 dynamics become slower upon interconnection, so that the response
to an input stimulation will also be slower. As a consequence, upon removal of the stimulation, the
displacement in the toggle state may not be sufficient to trigger a switch. This is illustrated in Figure
6C–D. In order to recover the switch, a wider pulse is required (Figure 6E) to compensate for the slow-
down due to the context (also, note that the switching dynamics are slower than in the isolated case). As
a result, even if the toggle had been characterized in isolation, it would fail to function as expected when

inserted into its context. Note that we have pµ “ maxx1,x2

` αpx1q

1`αpx1q
, βpx2q

1`βpx2q

˘

, where α represents the

amount of load on x1 imposed by the context compared to that by the module, and β can be interpreted
similarly. The greater α (or β), the slower the dynamics of x1 (of x2) become upon interconnection with
the context. Greater α and β yield greater pµ, suggesting decreased robustness to interconnection, verified
by the simulation results.

Single-input motif. As a second example, we focus on a recurrent motif in gene transcription networks,
called the single-input motif [5]. The single-input motif is defined by a set of operons (context) controlled
by a single TF (module), which is usually autoregulated (Figure 7A). It is found in a number of instances,
including the temporal program controlling protein assembly in the flagella biosynthesis [40]. Here, we
show that the dynamic performance (speed) of the module and its robustness to interconnection with its
context are not independent, and that this trade-off can be analyzed by focusing on the interplay between
the internal retroactivity R of the module and the scaling retroactivity sS of the context.

The isolated dynamics of the module are given in (8), which we write here as 9x1 “ fpx1q. Furthermore,

we have sDi “ 1 for i “ 1, 2, . . . , l and sU “ 1, so that sSpx1q “
řl
i“1

sRipspiq by (13), where l is the number
of nodes in the context and sRipspiq is given in Table 1 (single parent). Consequently, upon interconnection,
the dynamics of the module change according to (14) as

9x1 “
1`Rpx1q

1`Rpx1q ` sSpx1q
looooooooooomooooooooooon

effect of the context

fpx1q “ r1´ µpx1qs
looooomooooon

effect of
the context

fpx1q,
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Figure 7. Internal retroactivity makes a module more robust to interconnection at the
expense of speed. (A) The module consists of a single negatively autoregulated node, whereas the
context comprises l nodes repressed by the TF in the module. (B) The internal retroactivity R of the
module increases with the DNA copy number η1 of x1. As a result, the module becomes slower as R
increases. (C) The percentage increase in the response time of the module decreases with η1, that is,
internal retroactivity R increases the robustness to interconnection. Simulation parameters: δ1 “ 1hr´1,
k1 “ 10nM and π1,0 is changed such that x1 “ 50nM at the steady state. The context contains l nodes
each with DNA concentration sηi “ 1nM for i “ 1, 2, . . . , l (low load: l “ 10; medium load: l “ 20; high
load: l “ 50). The response time is calculated as the time required to reach 50% of the steady state
value.

where µpx1q “ sSpx1q{r1`Rpx1q` sSpx1qs and equals the expression in (16). The smaller µpx1q, the more
robust the module to interconnection. Note that Rpx1q is proportional to η1, therefore, while increasing
Rpx1q makes the module slower (Figure 7B), it also makes it more robust to interconnection (Figure 7C).
It was previously shown that negative autoregulation increases robustness to perturbations [41]. Here,
we have further shown that increasing the internal retroactivity R of the module provides an additional
mechanism to increase robustness to interconnection, at the price of slower response. For a fixed steady
state (the product of π1,0 and η1 is held constant), smaller π1,0 yields greater η1, that is, increased R and,
in turn, smaller µ. From a design perspective, if speed is a priority, one should choose a strong RBS with
a low copy number plasmid, or alternatively, a promoter with high dissociation constant k1. By contrast,
if robustness to interconnection is central, a weak RBS with a high copy number plasmid (or with low k1)
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is a better choice. If both speed and robustness to interconnection are desired, other design approaches
may be required, such as the incorporation of insulator devices, as proposed in other works [42].

Remark. The above presented trade-off between robustness to interconnection and dynamic perfor-
mance can be observed also in electrical systems. To illustrate this, consider the electrical circuit in
Figure 8A consisting of the series interconnection of a voltage source f , a resistor R and a capacitor C,
in which the output voltage is w. The speed of the circuit can be characterized by its time constant
τ “ RC: the greater τ , the slower the response. Upon interconnection with its context, represented by
the capacitor sC, the time constant of the system changes to τ “ RpC` sCq, while the steady state remains
the same. Note that the percentage change in τ decreases with C, making the module more robust to
interconnection, at the expense of slower response when isolated.

To further generalize the analogy between electrical systems and gene transcription networks [43],
consider the electrical circuits in Figure 8B. When the module is not connected to its context, we have
w “ f and sw “ sf , which changes to

ˆ

w
sw

˙

“

«

1
1`Z{ sZ

1
1` sZ{Z

1
1`Z{ sZ

1
1` sZ{Z

ff

ˆ

f
sf

˙

upon interconnection. This relationship is conceptually analogous to (12). That is, the module is robust
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Figure 8. Analogy with electrical systems. (A) The module consists of the series interconnection
of a voltage source f , a resistor R and a capacitor C. The speed of the module can be characterized by
the time constant τ “ RC, which increases upon interconnection with the context. The greater C, the
slower the module in isolation, but the smaller the percentage change in its speed upon interconnection.
(B) According to the fundamental theorem by Thevenin [48], any linear electrical network can be
equivalently represented by a series interconnection of a voltage source and an impedance. As a result,
a generic module consists of the series interconnection of a voltage source f and an impedance Z, and
similarly, any context can be represented with the series interconnection of sf and sZ.
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to interconnection with its context if Z is small compared to sZ, whereas the genetic module is robust to
interconnection with its context if sS and ĎM are “small” compared to R. Therefore, R is conceptually
analogous to 1{Z (output admittance), whereas sS and ĎM play a role similar to 1{ sZ (input admittance).

Discussion

In this paper, we have focused on retroactivity, one source of context-dependence, and demonstrated that
the internal, scaling, and mixing retroactivity provide missing knowledge that captures loading effects
due to intramodular and intermodular connections. The internal retroactivity quantifies the effect of
intramodular load, applied by nodes within a module onto each other because of binding to promoter
sites within the module. Given a module of interest, the effects of intramodular loading on the module’s
dynamics are captured by equations (5)–(6), in which one needs to replace the specific expressions of
the Hill functions Hippiq and node retroactivities Rippiq provided in Table 1, and the binary matrices Vi
encoding the network topology. The scaling retroactivity accounts for the intermodular loading that the
context applies on a module, due to having some TFs of the module bound to promoter sites belonging to
the context. The mixing retroactivity couples the dynamics of the module and that of the context upon
interconnection, and it is non-zero when TFs from different modules bind non-independently at promoter
sites. The effects of intermodular loading are captured by equations (10)–(13). To obtain this description,
it is sufficient to consider the Hill functions Hippiq and node retroactivities Rippiq provided in Table 1,
together with the binary matrices Vi, Di and U representing the network topology. In general, the
effects of the retroactivity matrices tend to increase with increased DNA copy number and/or decreased
dissociation constants.

We have illustrated that accounting for retroactivity reveals surprising dynamical properties of mod-
ules and, at the same time, can aid design. For example, negative autoregulation, depending on the gene
copy number and production rates, can slow down the response of a system instead of speeding it up. A
gene can respond to a perturbation applied to a different gene even in the absence of a regulatory path
between the two genes. We have shown that this can occur when a group of TFs co-regulate common
targets and these common targets are found in abundance. This type of motif, referred to as the dense
overlapping regulon, is highly frequent in natural regulatory networks [1]. As a result, system identifi-
cation techniques based on perturbation analysis [23] could erroneously identify non-existent regulatory
linkages if retroactivity is not accounted for in the corresponding models. An activator-repressor clock
on low copy DNA plasmid displays sustained oscillations when internal retroactivity is neglected, while
oscillations are quenched once internal retroactivity is accounted for. However, by carefully adjusting
the module’s internal retroactivity through the addition of DNA load for the repressor, we can restore
oscillations. A genetic toggle switch that can be flipped by a transient external stimulation requires a
substantially longer stimulation to be flipped once it is connected to just few downstream targets. These
facts are relevant, in particular, when designing synthetic biology circuits and multi-module systems.

Similar to synthetic systems, natural systems are subject to retroactivity. For example, clocks re-
sponsible for circadian rhythms have a large number of downstream targets [44], [45], which, in turn,
may apply substantial load. This load can affect the amplitude and frequency of oscillations of the clock
as well as the stability of the corresponding limit cycle. This suggests that natural systems may have
evolved to use retroactivity in advantageous ways such as using it to properly tune the dynamic behavior
of a module without changing the module’s components. This hypothesis is further supported by the
fact that there are a large number of TF binding sites on the chromosome that do not have a regulatory
function [46], [47]. These sites have an impact on the temporal response of transcription factors, and
could therefore be exploited by nature to further control the dynamics of gene regulation. More generally,
retroactivity provides means for information to travel from downstream targets to upstream regulators,
therefore establishing indirect connections. In highly interconnected topologies, this information transfer
can result in previously unknown ways of realizing sophisticated functions. One such example that we
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have provided is the adaptation function that topologies such as the dense overlapping regulon can realize
by virtue of having nodes co-regulate multiple downstream targets.

Based on the three retroactivity matrices, we provided a metric of robustness to interconnection,
quantifying the percent change between the dynamics of a module in isolation and once connected to
other modules. This metric is an explicit function of measurable parameters and becomes smaller when
a module’s internal retroactivity is large compared to the scaling retroactivity of the modules it connects
to. This interplay may help uncover trade-offs in natural systems, providing a new angle for under-
standing natural principles of network organization. From an engineering perspective, we have provided
quantitative design tools that can be employed in synthetic biology to appropriately match the internal
and scaling retroactivity of connected circuits to preserve the circuits’ behavior upon interconnection
with different contexts. Our metric of robustness to interconnection further allows to evaluate the ex-
tent of modularity of a dynamical module, possibly enabling the discovery of previously unknown core
processes. Our metric could be employed by currently available methods for partitioning networks into
modules. Specifically, to evaluate connectivity, these methods rely on several metrics, for instance, edge
betweenness [35], its extension to directed graphs with nonuniform weights [36], round trip distance [25]
or retroactivity [37]. The metric of robustness to interconnection that we have introduced can enhance
these methods by providing a way to evaluate modules on the basis of their functional robustness to
interconnection in addition to distinguishing them at the connectivity level.

The framework that we have proposed carries substantial conceptual analogies with the electrical
circuit theory established by Thevenin [48], which has been used for more than a hundred years to analyze
and to design electrical networks. Within this theory, each circuit has an equivalent input and output
impedance (conceptually analogous to the scaling/mixing and internal retroactivity, respectively), and an
equivalent energy source (playing a role similar to the isolated module dynamics). This theory has been
instrumental for answering key questions in the analysis and design of electrical networks including, for
example, how the output of a circuit changes after it is interconnected in a network; how to design circuits
to maximize the power transfer upon connection (impedance matching); and how to design circuits whose
input/output response is unaffected by loads. We believe that the framework proposed in this paper can
be used in a similar way for the analysis and design of gene regulatory networks.

Although our framework can be applied to a general gene transcription network, there are a number
of aspects that it does not currently capture. These include post-translational protein modifications,
such as phosphorylation, which are present in many regulatory networks and may potentially affect
retroactivity. Including these will require to extend our framework to mixed gene transcription and
signaling network models, leading to systems with multiple time scales. Furthermore, the transcription
and translation processes use shared resources such as RNA polymerase and ribosomes, which may create
couplings among unconnected circuits [12]. The dynamics of shared resources has not been included in
our modeling framework and will be the focus of our future work.

Methods

Detailed Description of the System Model

The production of TF xi is regulated by its parents pi,1,pi,2, . . . : they bind to the promoter of xi, and form
complexes ci,1, ci,2, . . . with the promoter. Each of these complexes, in turn, produce xi with a different
rate, where we use a one-step production process encapsulating both transcription and translation [1].
As a result, the reactions we consider for node xi are

H
ζiptq
ÝÝÝáâÝÝÝ
δi

xi, ci,j `mi,lpi,l
αi,j,k
ÝÝÝáâÝÝÝ
βi,k,j

ci,k, ci,j
πi,j
ÝÝÑ ci,j ` xi, (17)
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modeling the following physical phenomena. We denote by δi protein decay, whereas ζi ptq represents the
production rate that may be due to external inputs or perturbations (inducer, noise or disturbance). The
second reversible reaction in (17) describes the binding of parent pi,l with multimerization factor mi,l to
promoter complex ci,j forming complex ci,k, where αi,j,k and βi,k,j are the association and dissociation
rate constants, respectively. Furthermore, each promoter complex ci,j will contribute to the production of
xi through the production rate constant πi,j , modeled by the third reaction in (17). This production rate
constant is a lumped parameter that incorporates features such as the RBS strength and the promoter
strength. Finally, we assume that the total concentration of the promoter, denoted by ηi, for each

transcription component is conserved, so that ηi “
ř|Ci|

j“0 ci,j , where |Ci| is the number of possible
complexes formed with the promoter of xi. This concentration is proportional to the concentration
of copies of the promoter, which can be controlled, for example, by changing plasmid copy numbers in
synthetic systems.

The reaction flux vector v contains all the reactions in the system, that is, binding/unbinding and
protein production/decay. Given that binding/unbinding reactions occur on a much faster time-scale
than protein production/decay [1], we partition v into r˚ and r, where r˚ contains the slow processes,
whereas r is composed of the fast reactions, that is,

r˚ “

¨

˚

˚

˚

˚

˚

˚

˝

...
ζi
δixi
πi,jci,j

...

˛

‹

‹

‹

‹

‹

‹

‚

and r “

¨

˚

˚

˚

˚

˝

...
αi,j,kci,jp

mi,l

i,l

βi,k,jci,k
...

˛

‹

‹

‹

‹

‚

. (18)

Biochemical Parameters

Since the production of a typical protein takes approximately 5 minutes [1], and a few dozen mRNAs
can be transcribed from the same gene simultaneously by [49], and similarly, a few dozen proteins can
be translated from the same mRNA at the same time by [50], the effective production rate of protein
from a gene can be as high as π « 10000hr´1. This value can be arbitrarily decreased, for instance, by
decreasing the RBS strength in synthetic circuits. The cell volume of Escherichia coli is typically between
0.34 ´ 1.32µm3 by [51], so that 1 molecule/cell corresponds to approximately 1 ´ 5nM concentration.
By [52], a typical value of the dissociation constant of bacterial promoters is k “ 1nM, whereas [22]
suggests k “ 10nM, and experimentally obtained values are provided in [53]. One of the most widely
used high copy number vectors is the pUC plasmid [54], which can have hundreds of copies per cell [55].
A frequently used medium copy number plasmid is p15A with a few dozen copies per cell [56], whereas
pSC101 is regarded as a low copy number plasmid with only a few copies per cell [56]. Finally, since the
lifetime of a protein is on the order of a cell-cycle [1], we have δ “ 0.3´ 1.2hr´1 [50]. The typical range
of macroscopic parameters in E. coli is summarized in Table 2.

If we had not neglected mRNA dynamics, there would be three different time scales in the system.
Binding and unbinding reactions occur on the time scale of seconds (or even subseconds) [1], representing

Table 2. Typical range of macroscopic parameters in E. coli.

Parameter Symbol Range Unit Reference
Production rate constant π 0´ 10000 hr´1 [1], [49], [50]

Dissociation constant k 1´ 10 nM [22], [52], [53]
DNA concentration η 1´ 500 nM [51], [54], [56], [56]
Protein decay rate δ 0.3´ 1.2 hr´1 [1], [50]
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the fastest time scale. The intermediate time scale is that of mRNA dynamics, as the average lifetime
of mRNA is on the time scale of minutes [57], [58], [59]. Finally, the dynamics of proteins evolve on
the slowest time scale (hours). As we are interested in describing the dynamics of the system on the
time scale of gene expression, the concentration of promoter complexes and mRNA transcripts can be
both approximated with their quasi-steady state values, leading to the models we have proposed in the
paper. However, we would like to point out that including mRNA dynamics would not change anything
substantial in the results and it would simply add N more ODEs to the ODE model of an N -node module
without any effects on the retroactivity matrices (shown in [34] considering a specific example).

Definition of Hippiq and Rippiq

First, note that A in (2) has a block diagonal structure, yielding
¨

˚

˚

˚

˝

9c1
9c2
...

9cN

˛

‹

‹

‹

‚

looomooon

9c

“

»

—

—

—

–

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AN

fi

ffi

ffi

ffi

fl

looooooooooooooomooooooooooooooon

A

¨

˚

˚

˚

˝

r1 pp1, c1q
r2 pp2, c2q

...
rN ppN , cN q

˛

‹

‹

‹

‚

loooooooooomoooooooooon

r

, (19)

where rippi, ciq denotes the reaction flux vector corresponding to reversible binding reactions with the
promoter of xi. Let ci “ γippiq denote the vector of concentrations of complexes with the promoter of xi
at the quasi-steady state, obtained by setting 0 “ Airippi, ciq.

We first define Hippiq as follows:

Hippiq “

|Ci|
ÿ

j“0

πi,jγi,jppiq, (20)

where γi,jppiq is the jth entry in γippiq and |Ci| is the number of complexes with the promoter of xi.
Next, define the matrix Ψi as follows: it has as many columns as the number of complexes formed

with the promoter of xi, and as many rows as the number of parents of xi:

Ψi “

ci,1 ci,2 . . .
»

–

fi

fl

pi,1
pi,2

...

such that its pj, kq element is m if the jth parent of xi is bound as an m-multimer in ci,k (m “ 0 if the
jth parent is not bound). Finally, for nodes having parents, define the retroactivity Rippiq of node xi as

Ri ppiq “ Ψi
dγippiq

dpi
. (21)

For the most common binding types, Hippiq and Rippiq are given in Table 1. For details on their
derivation, see Supporting Text ??.
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Text S1

Here, we provide the ODE model of the system in Figure 2 together with the parameter values used for
simulation.

Consider first the isolated module in Figure 2A. The reversible binding reactions in the module are
given by

c1,0 ` nx1
α1
ÝáâÝ
β1

c1,1,

where c1,0 and c1,1 denote the complexes of the promoter of x1 without and with x1 bound as an n-
multimer, respectively. Protein production and decay are modeled by

H
ζ1
ÝáâÝ
δ1

x1, c1,0
π1,0
ÝÝÑ c1,0 ` x1, c1,1

π1,1
ÝÝÑ c1,1 ` x1,

together with the conservation law η1 “ c1,0 ` c1,1, yielding c1,0 “ η1 ´ c1,1. As a result, referring to (2),
with x “ x1 and c “ c1,1 we have

A “
`

1 ´1
˘

, B “
`

´n n
˘

, B˚ “
`

1 ´1 1 1
˘

,

rpx, cq “

ˆ

α1c1,0x
n
1

β1c1,1

˙

, r˚px, cq “

¨

˚

˚

˝

ζ1
δ1x1

π1,0c1,0
π1,1c1,1

˛

‹

‹

‚

,

yielding gpx, cq “ ζ1 ´ δ1x1 ` π1,0c1,0 ` π1,1c1,1. Note that r does not depend on u as the module has
no input (u is vacuous). When the module is interconnected to its context (Figure 2C), we have the
following reversible binding reactions in the case when x1 and sx1 are competing for the same binding
sites of the promoter of sx2:

sc2,0 ` snx1
sα1
ÝáâÝ
sβ1

sc2,1, sc2,0 ` smsx1
sα2
ÝáâÝ
sβ2

sc2,2,

where sc2,0, sc2,1 and sc2,2 denote the empty promoter of sx2, and the promoter complexes with x1 as an
sn-multimer and with sx1 as an sm-multimer, respectively. Protein production and decay in the context are
modeled by

H
sζ1
ÝáâÝ
sδ1

sx1, sc1,0
sπ1,0
ÝÝÑ sc1,0 ` sx1, sc2,0

sπ2,0
ÝÝÑ sc2,0 ` sx2,

H
sζ2
ÝáâÝ
sδ2

sx2, sc2,1
sπ2,1
ÝÝÑ sc2,1 ` sx2, sc2,2

sπ2,2
ÝÝÑ sc2,2 ` sx2,

together with the conservation laws sη1 “ sc1,0 and sη2 “ sc2,0 ` sc2,1 ` sc2,2, yielding sc2,0 “ sη2 ´ sc2,1 ´ sc2,2.
Referring to (4), with sx “ p sx1 sx2 q

T , sc “ p sc2,1 sc2,2 q
T and su “ x1 we have

sE “
`

´sn sn 0 0
˘

, srpsx,sc, suq “

¨

˚

˚

˝

sα1sc2,0x
sn
1

sβ1sc2,1
sα2sc2,0sx

Ďm
1

sβ2sc2,2

˛

‹

‹

‚

,

yielding spsx,sc, suq “ sEsrpsx,sc, suq. The dynamics of the context (sc and sx) are given by (3) with

sA “

„

1 ´1 0 0
0 0 1 ´1



, sB˚ “

„

1 ´1 1 0 0 0 0 0
0 0 0 1 ´1 1 1 1



,
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sr˚ “
`

sζ1 sδ1sx1 sπ1,0c1,0 sζ2 sδ2sx2 sπ2,0sc2,0 sπ2,1sc2,1 sπ2,2sc2,2
˘T
,

E “

ˆ

0
0

˙

, sB “

„

0 0 ´sn sn
0 0 0 0



.

Simulation parameters in Figure 2 are as follows: η1 “ sη1 “ sη2 “ 50nM, δ1 “ sδ1 “ sδ2 “ 1hr´1,
ζ1 ptq “ 100 ` 100 cos p2πtq rnM hr´1

s, sζ1 ptq “ 100 ` 100 cos pπtq rnM hr´1
s, π1,0 “ π1,1 “ sπ1,0 “ sπ2,0 “

sπ2,1 “ sπ2,2 “ 0, n “ sn “ sm “ 4, α1 “ sα1 “ sα2 “ 100nM´4hr´1 and β1 “ sβ1 “ sβ2 “ 100hr´1.
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Text S2

Here, we provide the Theorems and Propositions together with the corresponding proofs. Subsections
include the following: (1) Isolated module without input; (2) Isolated module with input; (3) Interconnec-
tion of modules; and (4) Bounding the difference between the trajectories of an isolated and a connected
module.

Isolated module without input

In this section, we consider a module with no input. Introduce

xBpcq :“
ÿ

t i | xiPΦ u

V Ti Ψici, (S1)

the concentration vector of bound internal TFs in the module. That is, the ith entry of xB is the
concentration of xi bound in promoter complexes. Furthermore, define xT :“ x` xB , the vector of total
concentrations of internal TFs (free and bound).

Proposition 1. With xT “ x` xB we obtain 9xT “ g px, cq.

Proof. Considering the block diagonal structure of A in (19) yields

9xT “ gpx, cq `Br `
ÿ

t i | xiPΦ u

V Ti ΨiAiri

from (2) and (S1). Therefore, it is enough to prove that

Br “ ´
ÿ

t i | xiPΦ u

V Ti ΨiAiri “ ´
“

V T1 Ψ1A1 V T2 Ψ2A2 . . .
‰

loooooooooooooooooomoooooooooooooooooon

rB

r. (S2)

As a result, it is sufficient to show that B “ ´ rB. We prove this by focusing on the first block V T1 Ψ1A1

of rB in (S2), since the procedure can be repeated for the other blocks the same way.
Recall that

V T1 “

p1,1 p1,2 . . .
»

–

fi

fl

x1

x2

...

and Ψ1 “

c1,1 c1,2 . . .
»

–

fi

fl

p1,1

p1,2
...

,

where the entries are defined as follows. In the binary matrix V T1 an entry is 1 if the species labeling
the corresponding row and column are the same, otherwise the entry is 0. An entry in Ψ1 is m if the
promoter complex labeling the corresponding column has m molecules bound of the parent labeling the
corresponding row. As a result, an entry in

V T1 Ψ1 “

c1,1 c1,2 . . .
»

–

fi

fl

x1

x2

...

,
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is m if the promoter complex labeling the corresponding column has m molecules bound of the TF
labeling the corresponding row (we used the fact that V1 is binary and there is at most a single 1 in each
row and column). Furthermore, note that

A1 “

ρ1 ρ2 . . .
»

–

fi

fl

c1,1

c1,2

...

,

such that an entry in A1 is 1 (or -1) if the reversible binding reaction ρl labeling the column releases
(or sequesters) the promoter complex labeling the corresponding row. If the reaction does not affect
the concentration of the promoter complex, the corresponding entry is 0. As a result, the pj, kq entry in
V T1 Ψ1A1 being n means the following. Upon occurrence of the reversible binding reaction ρk, the number
of xj bound to promoter complexes changes with n, that is, the concentration of free xj changes with
´n. Similarly to A1, we have

B “

ρ1 ρ2 . . .
»

–

fi

fl

x1

x2

...

,

such that the pj, kq entry in B being equal to n˚ means the following. If n˚ ą 0, the reaction releases n˚

molecules of xj ; if n˚ ă 0, the reaction sequesters n˚ molecules of xj ; and if n˚ “ 0, the reaction does
not affect the concentration of xj . That is, the concentration of free xj changes with n˚ upon occurrence
of the reversible binding reaction ρk. As a result, we conclude that the pj, kq entry of B is equal to the
negative of the pj, kq entry in V T1 Ψ1A1, which completes the proof.

Proposition 2. Let c “ γpxq be the locally unique solution of 0 “ Arpx, cq. When c “ γpxq, we obtain
9xT “ hpxq with hpxq given in (6).

Proof. Proposition 1 yields 9xT “ gpx, cq, therefore, it is sufficient to show that hpxq “ g px, γ pxqq.
According to Detailed Description of the System Model in Methods, we can write gpx, cq “ B˚r˚ in (2)
as

gpx, cq “

¨

˚

˚

˚

˚

˝

ζ1 `
ř|C1|

j“1 π1,jc1,j ´ δ1x1

ζ2 `
ř|C2|

j“1 π2,jc2,j ´ δ2x2

...

ζN `
ř|CN |

j“1 πN,jcN,j ´ δNxN

˛

‹

‹

‹

‹

‚

, (S3)

where |Ci| is the number of complexes with the promoter of xi. Next, consider the block diagonal structure
of A in (19), and let ci “ γi ppiq be the locally unique solution of 0 “ Airi ppi, ciq. Then, we can write the
manifold c “ γ pxq as ci “ γi ppiq for i “ 1, 2, . . . , N . With this, we obtain that when c “ γpxq, we have

gpx, γpxqq “

¨

˚

˚

˚

˚

˝

ζ1 `
ř|C1|

j“1 π1,jγ1,jpp1q ´ δ1x1

ζ2 `
ř|C2|

j“1 π2,jγ2,jpp2q ´ δ2x2

...

ζN `
ř|CN |

j“1 πN,jγN,jppN q ´ δNxN

˛

‹

‹

‹

‹

‚

,

where γi,jppiq is the jth entry in γippiq. With (20), this yields gpx, γpxqq “ hpxq, which completes the
proof.
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Proposition 3. Define Rpxq :“ dxBpγpxqq
dx and consider Rippiq defined in (21). Then, we have

Rpxq “
ÿ

t i | xiPΦ u

V Ti RippiqVi.

Proof. Consider the block diagonal structure of A in (19), and let ci “ γi ppiq be the locally unique
solution of 0 “ Airi ppi, ciq. Then, we can write the manifold c “ γ pxq as ci “ γi ppiq for i “ 1, 2, . . . , N .
Given that pi “ Vix if the module has no input, we have dpi

dx “ Vi. Then, using the chain rule and (S1),
we obtain

Rpxq “
ÿ

t i | xiPΦ u

V Ti Ψi

dγippiq

dx
“

ÿ

t i | xiPΦ u

V Ti Ψi

dγippiq

dpi

dpi
dx

“
ÿ

t i | xiPΦ u

V Ti RippiqVi.

According to [29], the binding and unbinding reactions are much faster than protein production
and decay. By picking some nonzero decay rate δ and dissociation rate constant β, the dimensionless
parameter ε :“ δ{β ! 1 captures the difference between the two time scales. Note that r in (18) can be
written as

r “

¨

˚

˚

˚

˚

˝

...
αi,j,kci,jp

mi,l

i,l

βi,k,jci,k
...

˛

‹

‹

‹

‹

‚

“
β

δ

¨

˚

˚

˚

˚

˚

˝

...
δ
αi,j,k

β ci,jp
mi,l

i,l

δ
βi,k,j

β ci,k
...

˛

‹

‹

‹

‹

‹

‚

“
1

ε

¨

˚

˚

˚

˚

˚

˝

...
δ
αi,j,k

β ci,jp
mi,l

i,l

δ
βi,k,j

β ci,k
...

˛

‹

‹

‹

‹

‹

‚

looooooooooomooooooooooon

pr

“
1

ε
pr. (S4)

Let pcptq, xptqq be the solution of the isolated module dynamics (2) for t P r0, tf s with initial condition
pc0, x0q. Let c “ rγpxT q be an isolated root of 0 “ ArpxT ´ xBpcq, cq, and define w :“ c´ rγpxT q, τ :“ t{ε
and the dynamics

9x “ rI `Rpxqs
´1
hpxq. (S5)

Let pxptq be the solution of (S5) for t P r0, tf s with initial condition pxp0q “ px0 such that px0`xBpγppx0qq “

x0 ` xBpc0q.

Theorem 1. Consider dw
dτ “ Apr pxT ´ xBpw ` rγpxT qq, w ` rγpxT qq and assume that w “ 0 is an expo-

nentially stable equilibrium point uniformly in xT and let C be a compact subset of the region of attraction.
If c0 P C, then there exists a constant ε˚ ą 0 such that for 0 ă ε ă ε˚ we have }x ptq ´ px ptq}2 “ O pεq for
t P r0, tf s.

Proof. Since we can write 9xT “ g px, cq with xT “ x`xB pcq according to Proposition 1, we can transform
(2) into standard singular perturbation form [60] using (S4) with xT p0q :“ x0 ` xB pγ px0qq:

9xT “g pxT ´ xB pcq , cq , (S6)

ε 9c “Apr pxT ´ xB pcq , cq . (S7)

To obtain the reduced order model, we set ε “ 0 in (S7). Since 0 “ Apr pxT ´ xB pcq , cq implies 0 “
Ar pxT ´ xB pcq , cq “ Ar px, cq, we conclude that the slow manifold is given by c “ rγ pxT q “ γ pxq.
Therefore, the reduced system becomes 9xT “ g px, γ pxqq “ hpxq by Proposition 2. As xT “ x ` xBpcq,

on the slow manifold we have 9xT “ 9x` dxBpγpxqq
dx 9x “ rI `Rpxqs 9x, equivalent to (S5). Applying Theorem

11.1 in [60] concludes the proof.
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Isolated module with input

Here, we consider a module with inputs, so that we now have rpx, c, uq instead of rpx, cq, unlike in the
previous section. As before, internal TFs of the module do not participate in binding/unbinding reactions
outside the module.

Proposition 4. Let c “ γpx, uq be the locally unique solution of 0 “ Arpx, c, uq and define Rpx, uq :“
BxBpγpx,uqq

Bx and Qpx, uq :“ BxBpγpx,uqq
Bu . Then, we have

Rpx, uq “
ÿ

t i | xiPΦ u

V Ti RippiqVi and Qpx, uq “
ÿ

t i | xiPΦXΩ u

V Ti RippiqDi.

Proof. Consider the block diagonal structure of A in (19), and let ci “ γi ppiq be the locally unique
solution of 0 “ Airi ppi, ciq. Then, we can write the manifold c “ γ pxq as ci “ γi ppiq for i “ 1, 2, . . . , N .
Given that

pi “
“

Vi Di

‰

ˆ

x
u

˙

,

we have Bpi
Bx “ Vi and Bpi

Bu “ Di. Then, using the chain rule and (S1), we obtain

Rpx, uq “
ÿ

t i | xiPΦ u

V Ti Ψi

Bγippiq

Bx
“

ÿ

t i | xiPΦ u

V Ti Ψi

dγippiq

dpi

Bpi
Bx

“
ÿ

t i | xiPΦ u

V Ti RippiqVi.

Similarly, we obtain

Qpx, uq “
ÿ

t i | xiPΦ u

V Ti Ψi

Bγippiq

Bu
“

ÿ

t i | xiPΦ u

V Ti Ψi

dγippiq

dpi

Bpi
Bu

“
ÿ

t i | xiPΦXΩ u

V Ti RippiqDi,

where we used the fact that Di “ 0 if xi R Ω.

Remark. Note that Rpx, uq in Proposition 4 can be computed the same way as Rpxq in Proposition 3,
the only difference is their argument. This is due to the fact that when the module has input u, some of
the parents of internal TFs are external TFs, which means that the retroactivity of the node xi depends
on pi, which is a function of both x and u. 4

Similarly to before, let pcptq, xptqq be the solution of the isolated module dynamics (2) for t P r0, tf s
with initial condition pc0, x0q and with smooth input uptq. Note that pr defined in (S4) is now a function
of x, c and u, however, for simpler notation, we write it as prpx, c, tq. Let c “ rγpxT , uq be an isolated root
of 0 “ ArpxT ´ xBpcq, c, uq, and define pγpxT , tq :“ rγpxT , uq, w :“ c ´ pγpxT , tq, hpx, uq :“ gpx, γpx, uqq,
τ :“ t{ε, together with the dynamics

9x “ rI `Rpx, uqs
´1
rh px, uq ´Qpx, uq 9us “: f px, u, 9uq . (S8)

Let pxptq be the solution of (S8) for t P r0, tf s with initial condition pxp0q “ px0 such that px0`xBpγppx0, up0qqq “
x0 ` xBpc0q.

Theorem 2. Consider dw
dτ “ Apr pxT ´ xBpw ` pγpxT , tqq, w ` pγpxT , tq, tq and assume that w “ 0 is an

exponentially stable equilibrium point uniformly in pxT , tq and let C be a compact subset of the region of
attraction. If c0 P C, then there exists a constant ε˚ ą 0 such that for 0 ă ε ă ε˚ we have }x ptq ´ px ptq}2 “
O pεq for t P r0, tf s.
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Proof. Since we can write 9xT “ g px, cq with xT “ x`xB pcq according to Proposition 1, we can transform
(2) into standard singular perturbation form using (S4) with xT p0q :“ x0 ` xB pγ px0, up0qqq:

9xT “g pxT ´ xB pcq , cq , (S9)

ε 9c “Apr pxT ´ xB pcq , c, tq . (S10)

To obtain the reduced order model, we set ε “ 0 in (S10). Since 0 “ Apr pxT ´ xB pcq , c, tq implies 0 “
Ar pxT ´ xB pcq , c, uq “ Ar px, c, uq, we conclude that the slow manifold [60] is given by c “ rγ pxT , uq “
γ px, uq. Therefore, the reduced system becomes 9xT “ g px, γ px, uqq “ hpx, uq from Proposition 2 (since
r is a function of u, hp.q is also a function of u). As xT “ x ` xB , on the slow manifold we have

9xT “ 9x` BxBpγpx,uqq
Bx 9x` BxBpγpx,uqq

Bu 9u “ rI `Rpx, uqs 9x`Qpx, uq 9u, equivalent to (S8). Applying Theorem
11.1 in [60] concludes the proof.

Interconnection of modules

In this section we consider the interconnection of the module Σ and its context. Recall that u “ Usx is
the input to Σ, and define qpcq :“

ř

t i | xiPΦ u
rDiU s

TΨici, so that qj denotes the concentration of bound

uj (TF from the context) in Σ.

Proposition 5. Let c “ γpx, uq be the locally unique solution of 0 “ Arpx, c, uq and define Spx, sxq :“
Bqpγpx,U sxq

Bsx and Mpx, sxq :“ Bqpγpx,U sxq
Bx . Then, we can compute S and M as

Spx, sxq “
ÿ

t i | xiPΩ u

rDiU s
T
RippiqDiU and Mpx, sxq “

ÿ

t i | xiPpΦXΩq u

rDiU s
T
RippiqVi.

Proof. Consider the block diagonal structure of A in (19), and let ci “ γi ppiq be the locally unique
solution of 0 “ Airi ppi, ciq. Then, we can write the manifold c “ γ pxq as ci “ γi ppiq for i “ 1, 2, . . . , N .
Given that

pi “
“

Vi Di

‰

ˆ

x
u

˙

,

we have Bpi
Bx “ Vi and Bpi

Bu “ Di, and finally, u “ Usx yields du
dsx “ U . Then, using the chain rule and (S1),

we obtain

Spx, sxq “
ÿ

t i | xiPΩ u

rDiU s
T

Ψi
dγi ppiq

dpi

Bpi
Bu

du

dsx
“

ÿ

t i | xiPΩ u

rDiU s
T
RippiqDiU,

and similarly, we have

Mpx, sxq “
ÿ

t i | xiPΩ u

rDiU s
T

Ψi
dγi ppiq

dpi

Bpi
Bx

“
ÿ

t i | xiPΩ u

rDiU s
T
RippiqVi “

ÿ

t i | xiPpΦXΩq u

rDiU s
T
RippiqVi,

where we used the fact that Vi “ 0 for xi R Φ.

The isolated dynamics of Σ and that of its context are given by

9c “Ar px, c, uq , 9x “ g px, cq `Br px, c, uq ,

9
sc “ sAsr psx,sc, suq , 9

sx “ sg psx,scq ` sBsr psx,sc, suq
(S11)

by (2), respectively. Once we insert Σ into its context, however, their dynamics change according to (4),
yielding

9c “Ar px, c, Usxq , 9x “ g px, cq `Br px, c, Usxq ` s
`

sx,sc, sUx
˘

,

9
sc “ sAsr

`

sx,sc, sUx
˘

, 9
sx “ sg psx,scq ` sBsr

`

sx,sc, sUx
˘

` ss px, c, Usxq ,
(S12)
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with s “ sEsr
`

sx,sc, sUx
˘

and ss “ Er px, c, Usxq. When considering the interconnection of Σ with its context,
it is useful to treat them as one module in isolation, which we call Σ1. Therefore, we define

x1 :“

ˆ

x
sx

˙

, c1 :“

ˆ

c
sc

˙

, g1px1, c1q :“

ˆ

gpx, cq
sgpsx,scq

˙

,

r1px1, c1q :“

ˆ

rpx, c, Usxq
srpsx,sc, sUxq

˙

, A1 :“

„

A 0
0 sA



, B1 :“

„

B sE
E sB



.

(S13)

Consequently, (S12) can be rewritten as the isolated module dynamics (2) with (S13). Finally introduce

G :“

„

pI `Rq´1 0
0 pI ` sRq´1



, ∆ :“

„

S M
ĎM sS



, Ξ :“

„

0 QU
sQsU 0



, (S14)

where R, Q, S and M are the internal, external, scaling and mixing retroactivity matrices of Σ, respec-
tively, and similarly for the context.

Proposition 6. The internal retroactivity R1 of Σ1 can be written as R “ G´1 ´ I `∆` Ξ.

Proof. Recall that according to Proposition 3, the internal retroactivity R1px1q of Σ1 can be calculated as
R1 “

ř

t i | x1iPΦ
1 urV

1
i s
TR1ipp

1
iqV

1
i , where R1i is the retroactivity of node x1i and Φ1 is the set of nodes having

parents in Σ1. Note that x1i “ xi for i “ 1, 2, . . . , N and x1N`j “ sxj for j “ 1, 2, . . . , sN . That is, according
to (S13), in Σ1 first come the nodes in the module Σ followed by the nodes in the context.

We first show that V 1i “
“

Vi DiU
‰

for nodes that are in Σ (i “ 1, 2, . . . , N). To this end, recall
that the binary matrix V 1i establishes the relationship between the parents of node x1i and the nodes in
Σ1:

V 1i “

x11 x12 . . . x1N x1N`1 x1N`2 . . . x1
N`ĎN

»

–

fi

fl

p1i,1
p1i,2

...

where an entry is 1 if the species indexing the corresponding row and column are the same, otherwise
the entry is zero. Exploiting the order of the nodes, we can relabel the rows and columns of V 1i as

V 1i “

x1 x2 . . . xN sx1 sx2 . . . sx
ĎN

»

–

fi

fl

pi,1
pi,2

...

. (S15)

Given that the rows and columns of Vi are labeled as

Vi “

x1 x2 . . . xN
»

–

fi

fl

pi,1
pi,2

...

,

we conclude that the first block in V 1i is equivalent to Vi. Next, we show that the second block in V 1i is
equivalent to DiU . To this end, recall that

Di “

u1 u2 . . .
»

–

fi

fl

pi,1
pi,2

...

and U “

sx1 sx2 . . . sx
ĎN

»

–

fi

fl

u1

u2

...

,
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yielding

DiU “

sx1 sx2 . . . sx
ĎN

»

–

fi

fl

pi,1
pi,2

...

,

exploiting the fact that Di and U are binary, furthermore, that there is at most a single 1 in each row
and column. As a result, we conclude that the second block of V 1i in (S15) is DiU , so that we obtain
V 1i “

“

Vi DiU
‰

for nodes that are in Σ (i “ 1, 2, . . . , N). Similarly, we obtain V 1N`j “
“

sDj
sU sVj

‰

for nodes in the context (j “ 1, 2, . . . , sN).
Next, note that the set of nodes in Σ having parents is given by ΦYΩ, as the parents are either from

Σ or they are inputs of Σ. Similarly, the set of nodes in the context having parents is given by sΦ Y sΩ.
Consequently, the set of nodes in Σ1 having parents is given by Φ1 “ Φ Y Ω Y sΦ Y sΩ. Furthermore, we
have R1i pp

1
iq “ Ri ppiq for i “ 1, 2, . . . , N and R1N`j

`

p1j
˘

“ sRj
`

spj
˘

for j “ 1, 2, . . . , sN . As a result, the
internal retroactivity R1 of Σ1 can be written as

R1 “
ÿ

t i | xiPpΦYΩq u

rV 1i s
TR1iV

1
i `

ÿ

t j | xc
jPpsΦYsΩq u

rV 1N`js
TR1N`jV

1
N`j

“
ÿ

t i | xiPpΦYΩq u

rV 1i s
TRiV

1
i `

ÿ

t j | sxjPpsΦYsΩq u

rV 1N`js
T
sRjV

1
N`j . (S16)

Employing V 1i “
“

Vi DiU
‰

for i “ 1, 2, . . . , N yields

ÿ

t i | xiPpΦYΩq u

rV 1i s
TRiV

1
i “

ÿ

t i | xiPpΦYΩq u

„

V Ti RiVi V Ti RiDiU

rDiU s
T
RiVi rDiU s

1
RiDiU



. (S17)

Next, we focus on each of the four block matrices on the right hand side of (S17). Recall that Vi “ 0 if
xi R Φ, and similarly, Di “ 0 if xi R Ω. We can write the upper left block of (S17) as

ÿ

t i | xiPpΦYΩq u

V Ti RiVi “
ÿ

t i | xiPΦ u

V Ti RiVi `
ÿ

t i | xiPpΩzΦq u

V Ti RiVi “
ÿ

t i | xiPΦ u

V Ti RiVi “ R (S18)

by Proposition 3. Similarly, the upper right block matrix on the right hand side of (S17) can be written
as

ÿ

t i | xiPpΦYΩq u

V Ti RiDiU “
ÿ

t i | xiPpΦzΩq u

V Ti RiDiU `
ÿ

t i | xiPpΩzΦq u

V Ti RiDiU

`
ÿ

t i | xiPpΦXΩq u

V Ti RiDiU “
ÿ

t i | xiPpΦXΩq u

V Ti RiDiU “ QU
(S19)

by Proposition 4. The lower left block matrix on the right hand side of (S17) reduces to
ÿ

t i | xiPpΦYΩq u

rDiU s
T
RiVi “

ÿ

t i | xiPpΦzΩq u

rDiU s
T
RiVi `

ÿ

t i | xiPpΩzΦq u

rDiU s
T
RiVi

`
ÿ

t i | xiPpΦXΩq u

rDiU s
T
RiVi “

ÿ

t i | xiPpΦXΩq u

rDiU s
T
RiVi “M

(S20)

according to Proposition 5, and similarly, the lower right block matrix in (S17) reads
ÿ

t i | xiPpΦYΩq u

rDiU s
T
RiDiU “

ÿ

t i | xiPΩ u

rDiU s
T
RiDiU `

ÿ

t i | xiPpΦzΩq u

rDiU s
T
RiDiU

“
ÿ

t i | xiPΩ u

rDiU s
T
RiDiU “ S.

(S21)
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Therefore, combining (S17) with (S18)–(S21), we obtain

ÿ

t i | xiPΦYΩ u

“

V 1i
‰T
RiV

1
i “

„

R QU
M S



, (S22)

and similarly, one can show that

ÿ

t j | sxjPsΦYsΩ u

“

V 1N`j
‰T

sRjV
1
N`j “

„

sS ĎM
sQsU sR



. (S23)

Substituting (S22)–(S23) into (S16) yields

R1 “

„

R QU
M S



`

„

sS ĎM
sQsU sR



,

so that

R “

„

I `R 0
0 I ` sR



´

„

I 0
0 I



`

„

sS ĎM
M S



`

„

0 QU
sQsU 0



“ G´1 ´ I `∆` Ξ.

Proposition 7. Let c1 “ γ1px1q be the locally unique solution of 0 “ L1r1px1, c1q and define h1px1q :“
g1px1, γ1px1qq. Then, the right-hand side of

9x1 “ pI `R1q´1h1px1q (S24)

is equivalent to the right-hand side of (12). As a result, a solution of (12) satisfies (S24) with identical
initial conditions, and vice versa.

Proof. Let c “ γ px, uq and sc “ sγ psx, suq denote the locally unique solution of 0 “ Ar px, c, uq and 0 “
sAsr psx,sc, suq, respectively. Since u “ Usx and su “ sUx upon interconnection, the block diagonal structure
of A1 in (S13) yields

γ1
`

x1
˘

“

ˆ

γ px, Usxq
sγ
`

sx, sUx
˘

˙

,

and similarly, considering hpx, uq “ gpx, γpx, uqq and shpsx, suq “ sgpsx, sγpsx, suqq together with (S13) results
in

h1
`

x1
˘

“

ˆ

h px, Usxq
sh
`

sx, sUx
˘

˙

.

According to Theorem 2, the isolated dynamics of Σ and that of its context are well approximated by

9x “rI `Rs
´1
rh px, uq ´Q 9us “: f px, u, 9uq ,

9
sx “

“

I ` sR
‰´1 “

sh psx, suq ´ sQ 9
su
‰

“: sf
`

sx, su, 9
su
˘

.
(S25)

Rewriting this with G and Ξ defined in (S14) yields

h1px1q “ G´1

ˆ

f px, Usxq
sf
`

sx, sUx
˘

˙

` Ξ 9x1.

Substituting this into 9x1 “ pI `R1q´1h1px1q and using R “ G´1 ´ I `∆` Ξ from Proposition 6 yields

9x1 “
`

G´1 `∆` Ξ
˘´1

G´1

ˆ

f
`

x, Usx, U 9
sx
˘

sf
`

sx, sUx, sU 9x
˘

˙

`
`

G´1 `∆` Ξ
˘´1

Ξ 9x1
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which reduces to

9x1 “
“

I ´
`

G´1 `∆` Ξ
˘´1

Ξ
‰´1`

G´1 `∆` Ξ
˘´1

G´1

ˆ

f
`

x, Usx, U 9
sx
˘

sf
`

sx, sUx, sU 9x
˘

.

˙

. (S26)

Given that
`

G´1 `∆` Ξ
˘´1

G´1 “
“

G
`

G´1 `∆` Ξ
˘‰´1

“
`

I `G∆`GΞ
˘´1

,

we can write (S26) as

9x1 “
“

I ´
`

I `G∆`GΞ
˘´1

GΞ
‰´1`

I `G∆`GΞ
˘´1

ˆ

f
`

x, Usx, U 9
sx
˘

sf
`

sx, sUx, sU 9x
˘

˙

“
 `

I `G∆`GΞ
˘“

I ´
`

I `G∆`GΞ
˘´1

GΞ
‰(´1

ˆ

f
`

x, Usx, U 9
sx
˘

sf
`

sx, sUx, sU 9x
˘

˙

“
`

I `G∆`GΞ´GΞ
˘´1

ˆ

f
`

x, Usx, U 9
sx
˘

sf
`

sx, sUx, sU 9x
˘

˙

“
`

I `G∆
˘´1

ˆ

f
`

x, Usx, U 9
sx
˘

sf
`

sx, sUx, sU 9x
˘

˙

,

which is equivalent to (12).

Let pc1ptq, x1ptqq be the solution of the isolated module dynamics (2) with (S13) for t P r0, tf s with
initial condition pc10, x

1
0q. Furthermore, let x1B and x1T denote the vectors of concentrations of bound and

total TFs in Σ1, respectively. Let c1 “ rγ1px1T q be an isolated root of 0 “ A1r1px1T ´ x
1
Bpc

1q, c1q, and define
w1 :“ c1´rγ1px1T q, τ :“ t{ε. Let px1ptq be the solution of (12) for t P r0, tf s with initial condition px1p0q “ sx10
such that px10 ` x

1
Bpγ

1ppx10qq “ x10 ` x
1
Bpc

1
0q.

Theorem 3. Consider dw1

dτ “ Apr1 px1T ´ x
1
Bpw

1 ` rγ1px1T qq, w
1 ` rγ1px1T qq and assume that w1 “ 0 is an

exponentially stable equilibrium point uniformly in x1T and let C be a compact subset of the region
of attraction. If c10 P C, then there exists a constant ε˚ ą 0 such that for 0 ă ε ă ε˚ we have
}x1 ptq ´ px1 ptq}2 “ O pεq for t P r0, tf s.

Proof. According to Proposition 7, px1ptq is also a solution of 9x1 “ rI`R1px1qs´1h1px1q. Then, by applying
Theorem 1 to Σ1, that is, to (2) with (S13), we conclude the proof.

Bounding the difference between the trajectories of an isolated and a con-
nected module

Let
9x “ fpx, u, 9uq (S27)

denote the dynamics of the module in isolation by (10). Once the module is connected to its context, its
dynamics change according to

9x “
“

I ` pI `Rq
´1

sS
‰´1

f px, u, 9uq (S28)

by (14), provided that ĎM “ 0. Let x ptq and rx ptq denote the solution of (S27) and (S28), respectively,
with identical initial conditions.

Proposition 8. Consider µpx, uq defined in (16). Assume that (i) f px, u, 9uq have Lipschitz constant pl,

(ii) }f px, u, 9uq}2 ď
pf and (iii) µ px, uq ď pµ for x P D1, u P D2 and 9u P D3. If x ptq , rx ptq P D1, u P D2

and 9u P D3 for t P r0, T s, then we have }x ptq ´ rx ptq}2 ď
pµ pf
pl

”

e
plt ´ 1

ı

for t P r0, T s.
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Proof. We can rewrite (S28) as

9x “ f pxq `
“ `

I ` pI `Rq´1
sS
˘´1

´ I
‰

f px, u, 9uq .

Furthermore, if x P D1, u P D2 and 9u P D3, the sub-multiplicative property of the induced 2-norm yields

›

›

“ `

I ` pI `Rq´1
sS
˘´1

´ I
‰

f px, u, 9uq
›

›

2
ď pµ pf.

Given that the initial conditions of (S27) and (S28) are identical, applying Theorem 3.4 in [60] concludes
the proof.

Moreover, we can provide a constant bound independent of time if the isolated dynamics of the module
has an additional property called contraction [61]. A system 9x “ f px, tq is called contracting if there
exists a square matrix Θ px, tq with the following two properties: (i) ΘTΘ is uniformly positive definite
and (ii) the symmetric part of the generalized Jacobian

J px, tq :“

ˆ

9Θ`Θ
Bf

Bx

˙

Θ´1

is uniformly negative definite. The absolute value of the largest eigenvalue of the symmetric part of J is
called the system’s contraction rate with respect to the metric Θ.

Proposition 9. Assume that (i) the system (S27) is contracting with rate λ ą 0 and metric transfor-

mation Θ px, tq, (ii) }f px, u, 9uq}2 ď
pf and (iii) µ px, uq ď pµ for x P D1, u P D2 and 9u P D3. Denote by

κ px, tq the condition number of Θ px, tq, and let pκ ě 0 such that pκ ě κ px, tq for x P D1 and for t P r0,8s.

If rx ptq P D1, u P D2 and 9u P D3 for t P r0,8s, then we have }x ptq ´ rx ptq}2 ď
pµ pf pκ
λ for t P r0,8q .

Proof. Rewrite (S28) as

9x “ f px, u, 9uq `
”

`

I ` pI `Rq´1
sS
˘´1

´ I
ı

f px, u, 9uq . (S29)

Using the sub-multiplicative property of the induced 2-norm, we have

›

›

“ `

I ` pI `Rq´1
sS
˘´1

´ I
‰

f px, u, 9uq
›

›

2
ď pµ pf

for x ptq P D1, u P D2 and 9u P D3. Since rx ptq P D1 for all t, we apply Lemma 1 in [62] with (S27) as the
nominal system and (S29) as the perturbed system.

Proposition 10. Let σminpI `Rq denote the smallest singular value of pI `Rq, and similarly, σmaxpsSq

stands for the greatest singular value of sS. Then, we have µ ď σmaxp sSq

σminpI`Rq´σmaxp sSq
for µ defined in (16) if

σmaxpsSq ă σminpI `Rq.

Proof. Let G :“ pI `Rq´1, so that }G}2 “ σmaxrpI `Rq
´1s “ 1{σminpI `Rq. Consider the eigenvalue λ

of GsS with the corresponding eigenvector v:

|λ| }v}2 “ }λv}2 “
›

›GsSv
›

›

2
ď }G}2

›

›sS
›

›

2
}v}2 “

σmaxpsSq

σminpI `Rq
}v}2 ă }v}2 ,

so that |λ| ă 1, consequently, the spectral radius ρ of GsS satisfies ρ ă 1. Using the result on the
convergence of geometric series of matrices in [63], we can write

`

I `GsS
˘´1

“ I `
8
ÿ

k“1

p´1q
k `
GsS

˘k
,
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so that we have

µ ď
8
ÿ

k“1

›

›GsS
›

›

k

2
“

›

›GsS
›

›

2

1´
›

›GsS
›

›

2

ď

›

›G}2}sS
›

›

2

1´
›

›G}2}sS
›

›

2

“
σmaxpsSq

σminpI `Rq ´ σmaxpsSq
,

where we used the fact that
›

›GsS
›

›

2
ď }G}2

›

›sS
›

›

2
“

σmaxp sSq
σminpI`Rq

ă 1.
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Text S3

Here, we provide the details of the derivation of Hippiq and Rippiq for the most common binding types
presented in Table 1.

We first consider the case when xi has no parents, so that there are no reversible binding reactions
with the promoter of xi, yielding ηi “ ci,0, and thus Hi “ πi,0ηi by (20). Furthermore, Ri is not defined
for nodes without parents.

Next, we focus on the case when xi has a single parent y, that is, pi “ y. The binding of y to the
empty promoter ci,0 of xi as an n-multimer forms the promoter complex ci,1, given by the reaction

ci,0 ` ny
αy
àÝÝÝÝã
βy

ci,1,

together with the conservation law ηi “ ci,0 ` ci,1, resulting in ci,0 “ η1 ´ ci,1. As a result, we have

9ci “
`

1 ´1
˘

looooomooooon

Ai

ˆ

αyci,0y
n

βyci,1,

˙

looooooomooooooon

ri

,

so that ci “ γipyq denotes the solution of the above equation when the left-hand side is set to zero,
corresponding to the value of ci,1 at the quasi-steady state. Substituting this into (20) yields the corre-
sponding Hipyq in Table 1. Similarly, substituting γipyq into (21) together with Ψi “ n results in the
corresponding Ripyq in Table 1.

Next, take node xi, coregulated by two TFs, y and z, so that pi “ p y z qT . Furthermore, for y and
z, denote the corresponding multimerization factors by n and m, the association constant rates by αy
and αz, and the dissociation constant rates by βy and βz, respectively. Let ky “ βy{αy and kz “ βz{αz
denote the dissociation constant of y and z to the promoter of xi, respectively.

In the case of independent binding, the parents bind to different sites of the promoter, not affecting
each other’s binding/unbinding, represented by the reactions

ci,0 ` ny
αy
àÝÝÝÝã
βy

ci,1, ci,0 `mz
αz
àÝÝÝÝã
βz

ci,2, ci,2 ` ny
αy
àÝÝÝÝã
βy

ci,3, ci,1 `mz
αz
àÝÝÝÝã
βz

ci,3,

together with the conservation law ηi “ ci,0` ci,1` ci,2` c1,3, yielding ci,0 “ ηi´ ci,1´ ci,2´ c1,3, so that

¨

˝

9ci,1
9ci,2
9ci,3

˛

‚

loooomoooon

9ci

“

»

–

1 ´1 0 0 ´1 1 0 0
0 0 1 ´1 0 0 ´1 1
0 0 0 0 1 ´1 1 ´1

fi

fl

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Ai

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

αyci,0y
n

βyci,1
αzci,0z

m

βzci,2
αzci,1z

m

βzci,3
αyci,2y

n

βyci,3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

loooooooomoooooooon

ri

where ci “ γipy, zq denotes the solution of the above set of equations when the left-hand side is set to
zero. Substituting this into (20) yields the corresponding Hipy, zq in Table 1. Similarly, substituting
γipyq into (21) together with

Ψi “

„

n 0 n
0 m m



.

results in the corresponding Ripy, zq in Table 1.
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In the case of competitive binding, the parents are competing for the same binding sites which they
occupy mutually exclusively. As a result, complex ci,3 is not formed, represented by the reactions

ci,0 ` ny
αy
àÝÝÝÝã
βy

ci,1, ci,0 `mz
αz
àÝÝÝÝã
βz

ci,2,

together with the conservation law ηi “ ci,0 ` ci,1 ` ci,2, yielding ci,0 “ ηi ´ ci,1 ´ ci,2, so that

ˆ

9ci,1
9ci,2

˙

loooomoooon

9ci

“

„

1 ´1 0 0
0 0 1 ´1



looooooooooomooooooooooon

Ai

¨

˚

˚

˝

αyci,0y
n

βyci,1
αzci,0z

m

βzci,2

˛

‹

‹

‚

loooooooomoooooooon

ri

where ci “ γipy, zq denotes the solution of the above set of equations when the left-hand side is set to
zero. Substituting this into (20) yields the corresponding Hipy, zq in Table 1. Similarly, substituting
γipyq into (21) together with

Ψi “

„

n 0
0 m



results in the corresponding Ripy, zq in Table 1.
In the case of cooperative binding, z can only bind after y, that is, complex ci,2 is not formed,

represented by the reactions

ci,0 ` ny
αy
àÝÝÝÝã
βy

ci,1, ci,1 `mz
αz
àÝÝÝÝã
βz

ci,3,

together with the conservation law ηi “ ci,0 ` ci,1 ` c1,3, yielding ci,0 “ ηi ´ ci,1 ´ c1,3, so that

ˆ

9ci,1
9ci,3

˙

loooomoooon

9ci

“

„

1 ´1 ´1 1
0 0 1 ´1



looooooooooooomooooooooooooon

Ai

¨

˚

˚

˝

αyci,0y
n

βyci,1
αzci,1z

m

βzci,3

˛

‹

‹

‚

loooooooomoooooooon

ri

where ci “ γipy, zq denotes the solution of the above set of equations when the left-hand side is set to
zero. Substituting this into (20) yields the corresponding Hipy, zq in Table 1. Similarly, substituting
γipyq into (21) together with

Ψi “

„

n n
0 m



results in the corresponding Ripy, zq in Table 1.
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Figure S1. Mixing retroactivity can be avoided by introducing an extra node. Rectangles
represent promoter regions, arrows denote coding regions. Promoters are regulated by TFs expressed
from coding regions of the same color. (A) The production of sxk is regulated by two TFs: xi from the
module, and sxj from the context. If the binding of xi is not completely independent from that of sxj , the
mixing retroactivity ĎM of the context is non-zero. As a result, the dynamics of the context can suppress
that of the module by (12). (B) One possible solution to obtain zero mixing retroactivity ĎM is to
introduce an extra input node sx˚ in the context, so that parents from the module and from the context
are not mixed. In particular, replace the promoter of sxk with one that is regulated by sx˚. As a result,
parents from the module and from the context are not mixed anymore, yielding ĎM “ 0, in the
meantime, sxk still integrates the signal coming from xi (through sx˚) and from sxj .


