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1 Introduction

The engineering of biological systems, whether within the cell (bacterial or mammalian) or in
cell-free extracts, can be applied to a number of areas, ranging from diagnostic, biosafety (i.e.
biothreat detection), and materials in the short term, to targeted drug delivery and the engineered
microbiome in the medium term, to engineered living materials and reprogrammed patient-specific
cells to repair wounds and cure diseases in the long term [1-4]. Modular and hierarchical design
has been a highly convenient and successful approach to design complex systems in electrical
and computer engineering, wherein a system is described as the composition of simpler subsys-
tems whose properties are fully understood and maintained after composition. As they move from
“lower” to “higher” layers, such as from the physical layer of parts, to logic gates, to comput-
ers, to networks, system designers typically ignore details concerning systems at the lower layers
while designing any given layer, focusing only on suitable input/output connectivity. This is possi-
ble because subsystems often contain compensation mechanisms (such as through feedback) that
maintain desired input/output properties, thus providing convenient and simplified abstractions for
design.

Since the creation of the first two synthetic genetic circuits in the year 2000 [4], the field of
synthetic biology has been strongly influenced by the electrical and computer engineering com-
munity, and these modular and hierarchical design abstractions have been proposed as a starting
premise for design [5, 6]. The input/output view of genetic modules, often as static and digital
gates, has permeated the field and has provided convenient abstractions to reason about composi-
tion, as demonstrated by design tools such as Cello and COMET [6,7]. On the other hand, there is
clear evidence today that the input/output properties of defined genetic modules are not maintained
upon composition. Instead, they are highly dependent in rather surprising ways on the genetic,
intra-cellular, extra-cellular, and environmental context through a variety of interactions, such as
DNA supercoiling, retroactivity, resource sharing, and growth rate feedback to name a few [8—19].
This is not surprising, given that there is nothing within the genetic module’s design that should
guarantee “‘robustness to context,” which is instead taken care of in electrical and computer en-
gineering through suitable internal compensation mechanisms. Indeed, many of the failures that
we experience when building synthetic genetic circuits can be often traced back to the fact that a
working system may not work anymore as intended once a new component is added to it. This
forces one to redesign existing parts each time a new component is added, and this requirement
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leads to a largely monolithic and hence not scalable design process. There is no design formalism
today that explicitly manages context-dependence of genetic modules. Thus, the questions remain:
how can we move forward and reach a robust and scalable design approach that guarantees quanti-
tatively predictable outcomes? To what extent can we adapt the design abstraction hierarchy used
in computer engineering to biological systems? These and related questions have been lingering
in the community in the past few years, and are at the core of this workshop.

Systems and control theory can offer a powerful formalism to reason about what is today vaguely
referred to as context-dependence. As an example, the moment that we consider resource loading,
one of the contributors to intra-cellular context dependence, as a disturbance input on a module
of interest, then we can analyze and mitigate it just like we analyze and design robustness to
disturbance inputs and uncertainty in any engineered system [20, 21]. Of course, the details of
the physical domain lead to mathematical model descriptions that carry substantial differences
from what we have in more traditional engineering domains and often require new theory and
deeper understanding of biomolecular interactions [22,23]. Additionally, in many engineering
systems, a module interacts with its surroundings through well-defined media, so the connectivity
with the context is relatively simpler to capture and isolation can be often aided by using physical
compartments. None of this is the case for biomolecular circuits running inside cells or in cell-free
extracts, and achieving full insulation may even be suboptimal. A natural question is, thus: to
what extent existing formalism and mathematical frameworks in systems and control theory are
applicable to engineering biology or need to be reinvented?

Workshop structure. To address these questions, this two-day workshop brought together lead-
ing researchers worldwide, who work at the intersection of synthetic biology and systems and con-
trols. The workshop structure and schedule is reported in Figure 1. Specifically, the morning of the
first day featured longer, introductory, and more provocative talks from a subset of the participants,
meant to stimulate discussion. During the following working lunch, a different subset of partic-
ipants presented more technical shorter talks focused on specific problems and questions. After
this, the participants were organized into fours subgroups, each associated with a theme highly
represented in both the Q&A and the on-line collaboration document, which was shared with all
the participants and available for editing throughout the whole workshop. Then, participants re-
grouped, and each subgroup discussed the assigned theme and prepared a presentation, for which
a template was given and included: (i) challenges discussed; (i1) approaches that may be used from
systems and control; (iii) where available approaches need re-thinking; and (iv) how other disci-
plines may complement systems and control. Day 2 started with morning short talks, again with
an aim of triggering discussion, then additional (or same) themes were assigned to each of four
groups for discussion in the break-out session. At the end of Day 2, for each of the eight groups
over the two days, a lead person had 10 minutes to go over the presentation of the discussion
outcomes, including Q&A, with the exception of the group discussing the “Community Building”
theme, which had 20 minutes allocated.

This report is the summary of the group presentations’ content, the collaboration document,
and the Q&A during the day 2 final discussion. This summary is focusing for the most part on
the following highly debated topics: modularity and scalability, robustness, pedictability, multi-
cellular systems, applications, and community building.

Workshop participants. Neda Bagheri (U. Washington, Seattle); Enoch Yeung (UCSB); Ed-
uardo Sontag (NEU); Hana El Samad (UCSF); Murat Arcak (UC Berkeley); Brian Munsky (Col-
orado State U.); Jeff Hasty (UCSD); Howard Salis (Penn. State U.); Leonidas Bleris (UT Dallas);
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Day 1: Thursday November 4

Morning: Introductory talks and themes discussion

8:00AM-9:00AM

Breakfast pick-up

9:00AM- 9:05AM

Domitilla Del Vecchio (MIT): Opening remarks

9:05AM- 9:15AM

Walter Rance Cleaveland II (NSF, CCF Division Director): Welcome

9:15AM- 9:30AM

\Domitilla Del Vecchio (MIT): Workshop introduction and Q&A

9:30AM-10:00AM

Hana El Samad (UCSF): Build to understand

10AM-10:30AM

Mustafa Khammash (ETH): Nothing so practical as a good theory: Theory and methods for practical
synthetic controller design

10:30AM-11:00AM

Coffee break

11:00AM-11:30AM

Eduardo Sontag (NEU): Systems and control for composition

11:30AM-12:00PM

Jeff Hasty (UCSD): Dynamics and control in small ecologies

12:00PM-12:30PM

Ophelia Venturelli (U. of Wisconsin): Dynamics and control in engineered microbial communities

Afternoon: Short talks and themes discussion

12:30PM-12:45PM

Lunch box pick-up

12:45PM-2:20PM

Working lunch: Short talks from participants (10 minutes each) - Diego Oyarzun (U. of Edinburgh
(UK)), Neda Bagheri (U. Washington, Seattle), David Ross (NIST), Elisa Franco (UCLA), Brian
Munsky (Colorado State U.), Enoch Yeung (UCSB), Andras Gyorgy (NYU, Abu-Dhabi)

2:20PM-3:00PM

Organization of break-out sessions: extraction of main research topics emerging from talks, starting

team leader for each team - break into groups

3:00PM-5:00PM

Groups discussions on the main themes - each team leader will collect ideas into a power point
presentation

5:00PM-5:30PM

Summary and adjourn for the day

Day 2: Friday November 5

8:00AM-8:45AM

Breakfast pick-up

8:45AM-9:00AM

Domitilla Del Vecchio (MIT): Opening remarks for day two

9:00AM-11:40AM

Short talks from participants (10 minutes each) - Josh Leonard (North Western U.), Murat Arcak
(UC Berkeley), Howard Salis (Penn State U.), Leo Bleris (UT Dallas), Marcella Gomez (UC Santa
Cruz), Xiaojun Tian (Arizona State U.), Chris Myers (U Colorado, Boulder), Xiao Wang (Arizona State
U.)

11:40AM-12:30AM

Organization of break-out sessions: shuffling groups - create four new teams - assign new leader for
each team - break out into four new groups - lunch pick up

12:30PM-2:00PM

'Working lunch: Groups discussions on the main themes - each team leader will collect ideas into a
power point presentation

2:00PM-3:00PM

Team leaders finalize presentations

3:00PM-4:30PM

All team leaders (~8 teams) each give a 10-minute presentation on the group discussion outcomes

4:30PM-5:00PM

Summary, follow-ups, and meeting adjourn

Figure 1: Workshop schedule.

Ophelia Venturelli (U. of Wisconsin, Madison); Chris Myers (U Colorado, Boulder); Marcella
Gomez (UC Santa Cruz); Andras Gyorgy (NYU, Abu Dhabi); Diego Oyarzun (U. of Edinburgh
(UK)); Xiaojun Tian (Arizona State U.); Xiao Wang (Arizona State U.); Josh Leonard (North-
western U.); Elisa Franco (UCLA); Mustafa Khammash (ETH); Aura Gimm (OSD); Mitra Basu
(NSF); Sankar Basu (NSF); David Ross (NIST); Ron Weiss (MIT); Domitilla Del Vecchio (MIT).

2 Modularity and scalability

Modularity is generally intended as the property by which the input/output behavior of a system
does not change when this is composed with other systems. Modularity therefore allows to predict
the behavior of a complicated system by that of subsystems through well defined input/output



connections. The extent to which natural cellular networks are modularly organized has been one
of the most vexing questions in systems biology and has been investigated for decades by leading
researchers in the field [24-27]. For engineering, modularity is highly convenient as it allows
to design larger systems by incrementally adding new components without ever worrying about
whether the functions of the pre-existing subsystems are impacted by the addition of new ones.
It is thus a critical requirement for design processes whose complexity scales with the number
of subsystems. Here, we report the main discussion points raised during the workshop and the
break-out group discussions.

Challenges discussed. Leading questions were whether biology is modular at all, what is a defi-
nition of modularity, and whether for design we really need strict modularity and if not what would
be a suitable form of modularity that could facilitate scaling up design practices. Related questions
include whether genetic parts themselves have any hope to be modular and if not how to handle
this [18]. Indeed, strict modularity enables scalable and rational design, so it is highly convenient,
but it can also be highly inefficient. In fact, designing for insulation has been shown to be possible
in engineering biology but also costly in terms of parts, energy, and cellular resources [28, 29].
We, in engineering, are perhaps trying to enforce modularity too strictly; yet, it may not be needed
in order to obtain robust and quantitatively predictable functions. After all, biology has reached
highly sophisticated designs that are robust, reliable, and predictable, while also being highly ef-
ficient, without strict modularity. Although, nature took the course of evolution to reach today’s
robustness and reliability; by contrast, we are trying to rationally engineer robust, predictable, and
reliable biological systems within months or years.

Where available approaches need re-thinking. There was an overall consensus among work-
shop participants that synthetic biology does not need to look like electronics (VLSI), even though
much of its inspiration may be derived from it, at least conceptually. Clearly, new theory and
formalisms are required to help us design functions without strict modularity, in a way that al-
lows to design systems “embracing” contextual dependencies instead of fighting against them to
reach full module insulation. To this end, though, it is required that we become more proficient in
quantitatively predicting system’s behavior while accounting for contextual interactions.

Rationale for an alternative approach. While at the functional level, some form of modular-
ity is desirable and convenient, this may not be the case at the level of physical parts and their
interactions, as multiple functions can be realized by the same parts. Evidence is emerging that
a systems design theory can be obtained where function is achieved without imposing strict mod-
ularity. This is consistent with a one-part/multiple-roles paradigm, such as within the notions of
conserved core processes and weak regulatory linkages [27], with the approximate internal model
principle from control theory [30], and with celebrated results from electrical network analysis
such as Thévenin’s theorem. Within a new paradigm of composability, the notion of constrained
structure, as opposed to strict modularity, could be the driving principle. More generally, an ap-
proach that combines functional modularity, convenient for design, with the more lenient structural
design paradigm is needed. Specifically, since design is performed through several iterations, at
the first iteration, a designer could assume a modular design framework where each module ideally
achieves a strictly delineated subfunction and modules have strictly unidirectional interactions. At
a second iteration, the designer could collapse the strict boundary between modules, allowing parts
to be shared and information to flow in both directions such as with retroactivity [31]. Within this
framework, the new looser interactions between modules can be determined based on yet to be
developed theory that preserves the function while blurring the boundary between modules. Such
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a theory could be based on optimization, network theory, stochastic analysis such as a stochastic
behavioral approach for biomolecular systems a la Willems [32]. In this framework, retroactivity,
loading, parts-sharing, may become features that enable efficiencies, not deleterious effects to be
designed away.

Additional thoughts. What is then modularity? The answer may depend on the level of ab-
straction. For example, systems that are modular at the function level may not be so at the parts
level. Indeed, modularity in biology seems to depend on scale: modularity is seen at the large
scale (organs), while less modularity is observed at the intra-cellular level but it emerges again at
the level of protein domains, for example. Many times, what is at a first sight considered modular,
it is often not so after a closer inspection (example: Syn-notch antigen/receptor/TFs are billed as
modular but they are not quite so). Strict modularity is expensive, while weak regulatory linkages
are more efficient. Yet, to start a design process, it is still convenient to assume strict modularity
and then iterate on the strict boundaries and allow weak interactions. Rational design performed
this way can bring us close to the final design objective, but complementary approaches, such as di-
rected evolution [33], may help refine the design and reach the optimum. Overall, modularity may
just be a convenient assumption made at the early stage of design at the functional level, but not
enforced strictly at the implementation level. This way, modularity becomes more of a convenient
tool as opposed to a property that needs to be enforced on the systems that we are engineering.
In circuit design, the notion of modularity may be much stronger than what is required or even
possible in engineering biology, that is, infinite input impedance and zero output impedance. After
all, Thévenin’s theorem tells us how to compose complex electrical circuits without infinite input
impedance or zero output impedance. Another important aspect to consider is temporal dynam-
ics. Although sometimes subsystems may look modular by their steady state behavior, they may
actually not behave modularly when considering temporal behavior. Overall, structural modules
could be entities that are reused in different contexts, but that have a different quantitative behavior
depending on the context in which they are inserted. We therefore need to determine what an ac-
ceptable notion of modularity is for engineering biology and a formalism for design that is based
on it.

3 Robustness

In general, robustness of a system to some form of perturbation is the property that allows the
system to maintain a desired behavior despite having unexpected influences (i.e., perturbations or
disturbances) act on the system itself. Every engineering system incorporates mechanisms that
ensure robustness to perturbations. For example, the thermostat controls the heating of a room
such that the room remains at a desired temperature, independent of the outside temperature and
of whether it snows or is a sunny day. The cruise control system allows a vehicle to travel at a
user-set speed, independent of how many passengers the vehicle carries and of the slope of the
road. Indeed, control system design is largely centered around the problem of making quantitative
performance specifications robust to uncertainty in parameter values, unmodeled dynamics, and
perturbing inputs that cannot be controlled nor measured [34]. Biological systems also have natural
robustness mechanisms built-in, which are critical for healthy physiology. For example, the human
body’s temperature is regulated to stay between 97 F and 99 F, independent of whether we are
running outdoor on a sunny day or are standing at the bus stop in a cold winter night. In this sense,



robustness generally allows a system to perform as specified despite significant uncertainty around
it.

Therefore, to some extent, the problem of enforcing some form of modularity when engineering
biology is closely related to the problem of making modules somewhat robust to the influences of
their environment (context). More generally, genetic circuits built today only function as predicted
in narrowly controlled laboratory conditions, and even then, if the cellular stresses or the genetic
background of the cell change due to insertion of other modules, the circuit will most likely cease
to function as desired. With this fragility, it is difficult to envision a future where engineered
organisms will be deployed in the field, whether for environmental biosensing, in-gut applications,
or within patients’ bodies to cure illnesses.

Challenges discussed. In the context of engineering biology, the main challenges include care-
fully determining which system properties need to be robust and to what perturbations these prop-
erties need to be robust. Also, robustness needs to be considered not only for a given physical
system’s property but also for the design process itself — if every biological solution requires its
own a unique one-off set of tools, then progress in biotechnology will be unbearably slow. At a
high level, there is a general need for robust design methods that incorporate or mitigate the effect
of context on biomolecular systems. It may be more important and efficient to focus on just a
handful of specific key system variables that we want to make robust (e.g., uniformly throughout
entire cells or in critical spatially resolved compartments), since all the other variables may be
mostly dependent on them and less directly dependent on the perturbation/environment. This may
be similar as to what already occurs in natural systems: the body temperature is tightly regulated
because there are a large number of physiological responses that depend on it and in fact tempera-
ture disregulation (hyperthermia or hypothermia) can lead to significant health threats. A specific
standing grand-challenge is how to engineer robustness to extra-cellular factors, such as nutrients
and environmental conditions (temperature and pH). In fact, today’s engineered cells often can per-
form as predicted only when in narrowly maintained laboratory conditions and completely fail if
these vary slightly. How to engineer robustness to differential growth rates for genetic circuits that
are distributed across engineered strains, or perhaps even between different spatial compartments
within individual cells, remains also a significant challenge. In general, there appear to be a lack
of a unifying theory of robustness that spans across scales of organizations (from intra-cellular to
inter-cellular and extra-cellular) and accounts for weak regulatory linkages to determine the critical
knobs that should be kept homeostatic.

At a higher level, there is a compelling need for engineering processes that are robust to lack
of information and even wrong, or non-reproducible, information. Many of the interactions in-
volving engineered modules in the cell will be hard or impossible to completely untangle, so how
to establish a design process that withstands this lack of information? We may need new mod-
eling frameworks that are robust to uncertainty especially in the connectivity among subsystems,
stepping away from more convenient, dogmatic, modeling frameworks and instead embrace such
an uncertainty in the design phase. We need descriptors and checkable quantitative standards for
identifying where and why a specific design has failed and under what conditions could its per-
formance be rescued. We need more accessible and inter-operable descriptions of robustness of
measurements, laboratory outcomes, and move from qualitative descriptions to precise quantita-
tive characterizations. To this end, it would be useful to develop calibration approaches that allow
quantitative comparisons of heterogeneous data sets (e.g., from different labs or using different
measurement devices) that are quantitatively different (even under specific controls), but that can
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reliably identify qualitative and quantitative trends. It may be helpful for community to reconsider
carefully and quantify past failures and successes to ask if there are precise principles that improve
(or common mistakes that impede) performance of genetically engineered processes. As an exam-
ple, if we were to re-design a genetic toggle switch, what would be the design process to augment
the original, more fragile, toggle switch design, and enable a module that, on the first try, would
immediately be robust to temperature changes, to growth conditions variability, and to the variable
presence of other modules in the cell (genetic background)?

An additional challenge discussed is the tradeoft between robustness and malleability. Specifi-
cally, we need to balance between responding to inputs of relevance while maintaining low sensi-
tivity to other stimuli that may harm function. How to establish frameworks to design this selective
robustness within systems? Furthermore, robustness is often only considered for steady state level,
and referred to as homeostasis. It is yet unclear how to design robust dynamic behaviors such as
oscillators, signal processing units, and multi-stable systems. Stochastic approaches are also re-
quired if we want to engineer circuits in low copy to ensure robustness of overall system function
to resource burden.

Tools that may be used. Uncertainty quantification (UQ) approaches from statistical analysis
could be useful to characterize robustness to parameter variations, since parameters are largely un-
known and highly variable. Accordingly, UQ-informed experiment design approaches are needed
to reduce uncertainty, if not with respect to parameters then with respect to predictions that may de-
pend on those parameters. Generally, exploiting notions of entrainment seems promising, wherein
constituting agents or subsystems may each be allowed to be poorly robust and highly variable
on their own, but overall combine together to produce an emergent (e.g., population-level) behav-
ior that is robust and predictable. Related to this, multi-agent control for either reasoning about
multi-cellular systems (distribution of function, metabolic burden) or multi-module systems are
mostly available but underutilized (e.g., decentralized control). Adapting them to the nonlinear
and highly heterogenous dynamics of the composing agents (or subsystems) will require signifi-
cant effort. Stochastic control approaches may also be promising, where the focus is to control a
distribution rather than the means, and can handle systems functioning at low-copy numbers, which
could be advantageous for alleviating cellular burden. With respect to cellular burden specifically,
we mainly have approaches today to re-distribute resources but do not have approaches for mod-
ulating resource production to match demands. This, in turn, is the general approach in other
engineering fields such as in the control of the power grid.

Where current approaches need rethinking. At a high level, there is a concern that pursuing
research on robustness may not be well aligned with current trends within research groups because
current focus is often placed on short-term rewards, and more narrowly focused projects appear
to be better able to reach a goal of publication in high-profile journals (e.g., Nature, Science,
or Cell) that may give preference to catchy ideas rather than to thorough studies of long-term
unresolved problems. Careful consideration of robustness will likely require substantially longer
time investments and more technically-oriented research. Although this research may lead to high
impact outcomes that the community will utilize at large, such long-term studies may require larger
collaborative teams and may be more difficult to publish in high-profile journals. On the technical
side, classical robust control methodologies [35] are focused on exact parameterization of control
synthesis, which is not useful for biologists. Therefore, new methods will be needed that lead
to robust designs, without the requirement for explicit parameterizations of uncertainty and with
the acceptance that the control components that we can design are also subject to large parameter
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uncertainty. Remarkably, natural systems that implement (integral) feedback control (chemotaxis)
are extremely accurate, precise, and repeatable. Yet, if one looks at their mathematical models at
the scale of molecular reactions, every part of the system is subject to parameter uncertainty and
noise. Learning from how biology can design precise and accurate functions out of uncertain and
variable components would be highly valuable for engineering biology.

4 Predictability

Overall, our current ability to predict system’s behavior in a quantitative way is still severely
limited by poor understanding of how the properties of parts, modules, and systems, are affected
by their genetic context [18, 19], intra-cellular conditions and connectivity [8—10,15,17], and extra
cellular environment [36]. To handle this uncertainty on interactions with surrounding systems,
two orthogonal, yet not mutually exclusive, approaches have been discussed: (a) engineering insu-
lation from surrounding context so that prediction of behavior becomes simpler or (b) substantially
improving the modeling framework to enable prediction of complicated interactions with surround-
ing elements. Approach (a) has been employed especially for predicting the behavior of modules,
that is, including negative feedback compensation mechanisms [10, 13,20,21,28], and approaches
closer to (b), for predicting behavior of parts, are starting to arise [18]. As outlined in Section 2,
approach (a) alone may not be the most effective or optimal way of engineering biology and a mix
of the two approaches may be required in the end. Here, we outline some of the details discussed
with this respect during the workshop.

Challenges discussed. Although quantitative prediction is still a challenge, predicting the qual-
itative behavior (trend) of a system is today largely achievable through suitable mathematical mod-
els. A key question then is when is quantitative predictive accuracy needed versus qualitative model
prediction. This issue is tightly linked to the definition of system’s performance that we take, which
should be re-usable and operationally relevant. With respect to quantitative prediction accuracy,
one question regards the role of machine learning (ML) to reduce the uncertainty of biophysical
models, in a way that allows system composition and prediction in different contexts. Reversely,
within a ML model, biophysical constraints could be included as a prior in order to bias emerging
models towards those that are compatible with known physics. How to use ML or biophysics mod-
els to merge high throughput and low fidelity experiments (from random construct design, in vitro
experiments) with low throughput high-fidelity experiments (from rational design in vivo) is also
still a major question. Tightly linked to the issue of quantitative prediction accuracy is the issue of
measurements: we often have inaccurate, indirect, and sparse measurements, wherein only a subset
of the system’s state can be measured, through some proxy, and also with population-level reso-
lution and less commonly with single-cell resolution. With this respect, there is also a challenge
about how to integrate heterogeneous data streams (e.g., RNAseq bulk/single-cell, flow cytometry,
and smFISH). Overall, a central challenge remains how to incorporate a model of the environment
of a circuit of interest in a way that is generalizable to new designs and situations and that can
allow quantitative prediction accuracy. With this respect, redundancy and feedback compensation
may be employed also as a way to make predictability simpler, especially on longer time scales of
operation.

Furthermore, although the emphasis in the field of synthetic biology has mostly been on pre-
dicting steady state and deterministic behavior in the form of input/output characteristics, an in-



creasingly important challenge is to predict temporal, dynamic, and stochastic behavior, as these
are critical in systems where temporal specifications are important (see Section 6) or where the
behavior of the system should be multi-modal at the cell population level. Specifically, how to
use cellular noise and temporal dynamics as a phenotypic observation (fluctuation fingerprints)
that can discriminate between available hypotheses is still unclear. Noise, especially, is typically
treated as something to defeat, but in reality it could be exploited for inferring critical interactions
and also for design. For example, how to use data from heterogeneous cell populations (individual
cells within a population or spatial heterogeneity within single cells) to infer temporal dynamics of
circuits is still unclear. Finally, there is a major issue about the fact that often distinct models have
equivalent descriptive and predictive power but have entirely different mechanistic interpretation.
How to reconcile this within a systematic and rigorous predictive modeling framework? Would
there be an issue of model discrimination that needs to be addressed? With this respect, it is still
not clear how to choose the right scale and granularity of a model and required data to validate
it for a given application at hand. There is currently no systematic approach to expand a model
to include more mechanisms and interactions in such a way that the behavior remains compatible
with the specifications as one moves through the different stages of design.

Tools that may be used. ML and biophysical models could be merged together. Specifically,
ML could offer improved learning across biological parts, systems, and domains; however, im-
proved interpretability of ML model constants in terms of physical parameters would be required
to be useful for design. Most importantly, we need ML models that address synthetic biology de-
sign and prediction questions and allow composition. On the other hand, biophysics models can
explicitly incorporate mechanisms from molecular interactions (DNA, RNA, and protein), to gene
expression (transcription, translation, and decay), to metabolism (kinetics & fluxes). Agent-based
models could then be better leveraged for design of multi-cellular systems, although analysis and
interpretation approaches that make these models suitable for forward engineering, as opposed to
only simulation, would be required. Methods such as massively parallel reporter assays, which
characterize 1000s to millions of genetic system variants quickly, could be better used to identify
interactions among subsystems and to create a predictive modeling framework that scales with sys-
tem size. Other tools that could be better leveraged to identify input/output responses is optogenetic
control and, more generally, in silico control of genetic circuits [37].

Tools from the field of uncertainty quantification could be employed to determine the extent of
parameter variation that is consistent with experimental data. Specific tools include Bayesian anal-
ysis (including approximate Bayesian computing), Monte Carlo sampling, and bootstrapping/cross
validation. Model-driven experiment design is also a concept that is currently under-utilized. Spe-
cific tools that could be adapted include Fisher information matrices, Bayesian experimental de-
sign, variance minimization, sensitivity analysis methods, and Latin hypercube sampling methods.
Analytical tools such as bifurcation and stability analysis as well as frequency domain noise reduc-
tion analysis to explore parameter space could be better utilized and adapted. A popular concept
in learning and adaptive control is persistence of excitation, which ensures that the input/output
data is sufficient to identify the required model parameters [38]. How to generalize similar de-
sign approaches to allow for on-line identification and control of complex biological processes
would be highly valuable. Methods to extend work on dynamics of distributed systems, decen-
tralized and cooperative control, to multi-module genetic circuits could also be useful. Similarly,
fluctuation-dissipation theorems, modeling based on the chemical master equation and the stochas-
tic simulation algorithms could be better leveraged to understand the noise in the context of control
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of interaction between synthetic gene circuits and host cells.

Where current approaches need rethinking. Although ML has a plethora of potential models
and learning algorithms for parameters, ML approaches are currently not well suited to address
design questions in engineering biology. They would need to be customized to recapitulate and
engineer biological functions, resulting in human-understandable, interpretable, models with high
accuracy and high generalizability. These models should further allow some form of composability
to enable scalable, as opposed to monolithic, design of biological systems. Specific examples
include ML frameworks that allow to map sequence to function in a composable way, that direct
experimental design, and select among design options for high-success outcomes. Although neural
networks (NNET) may not be the best modeling framework for engineering biology, the concept
of physics-informed ML, developed for other engineering problems, may be leveraged [39]. In
general, we need to improve model development & predictable design by storing experimental
protocols, sequences, measurements using minimum and domain-adaptive information encoding.
Methods are needed to improve the design of “open-loop” systems with well-controlled behaviors
and to design optimal controllers to correct system’s behavior.

How tools from other disciplines can complement systems and controls. In general, we
should think of revisiting the foundations of genetics and gene regulation altogether to ensure that
whatever modeling framework we adopt is really compatible with the critical physical constraints
that we know of. This could lead to create and test better models of gene regulation to carry
out improved design of genetic systems. Accordingly, building databases of mechanistic features
(DNA sequence to DNA rigidity) that can be re-used to predict biological functions across different
systems and domains (as input features into machine learning models) could be valuable. Further-
more, text-mining for automating the reading of papers could be highly useful to ensure sufficient
biological knowledge when creating a model.

S Multi-cellular systems

Although much of the field has focused on engineering genetic circuits within single cell strains,
the design of engineered multi-cellular systems has been a growing field in the community. The
basic problem is to engineer genetically different cellular strains that, in some form, interact with
one another to obtain a population-level behavior. This is particularly relevant in applications such
as for the engineered microbiome [40] and in future applications of mammalian synthetic biology
to in vivo directed differentiation. A major challenge in designing multi-cellular systems where
two or more cell strains co-exist is the issue of differential growth, which causes the faster growing
strains to take over the population and hence harm the desired overall function [36]. Here, we
summarize some of the discussion topics in this area.

Challenges discussed. Today, a grand challenge still remains to determine the most effective
way to coordinate, control, and engineer more than 2 species such that they can co-exist together.
One reason why we may want to have more than one strain in the population is to divide the
labor across multiple hosts. However, there is still a question of whether the task of ensuring
co-existence is actually harder than figuring out how to manage the cellular load of having one
species do all the tasks. How to distribute the load optimally across multiple strains or cell types
is also still unanswered. Accordingly, what the relative advantages are of having two (or more)
different genotypes of cells versus just one genotype that can dynamically adopt more than one

10



state are still unclear. Indeed, direct ratiometric control of population sizes versus intrinsic con-
trol of growth rate are two different approaches to manage metabolic burden and the advantages
of one over the other are not very clear, and ultimately a combination of the two may be needed.
How to engineer a single (or limited number) of cells to regulate/control the behavior of larger,
diverse populations of un-engineered cells is also a major question. For example, one could in-
troduce an engineered immune cell to control the coordinated behavior of a non-engineered pop-
ulation of immune cells; similarly, one could introduce engineered microbes in the gut to control
the un-engineered diverse microbiome. Related to these, the following questions arise: (a) What
data/understanding/characterization is required to enable this goal? (b) What mathematical or com-
putational models could predict and characterize emergent population dynamics in a way that is
useful for design? (c) What methods would enable control of such emergent dynamics? (d) How to
identify/validate control handles? These would be high dimensional systems with relatively lower
number of observables. How do we reason about controllability, observability, and reachability in
these systems [34]? Related to this, how do we better understand the impact of cell-cell commu-
nication on these properties? Ultimately, a grand challenge remains finding ways to design robust
systems that operate in a highly heterogeneous and multiclonal population. Finally, functionality
in heterogeneous environments is a general issue difficult to handle, whether in bacteria or mam-
malian cells, wherein the cell itself often evolves, through genetic mutations (frequent in bacteria)
or through cell-state changes such as in cellular differentiation.

Tools that may be employed from systems and control theory. Among existing tools that
could provide a conceptual basis for reasoning about the above questions, there are those estab-
lished by the field of decentralized and cooperative control [41]. These could be leveraged to
coordinate the dynamics of independent individual agents in a population that is largely not con-
trollable. This is similar to what found in coordination of multiple drones, multi-vehicle systems,
and swarms of robots. There is also the general pairing problem where one needs to identify con-
trol handles in multi-cellular systems, wherein adding a resource (input) to a microbial community
shifts the relative competition for resources and niche availability to control the frequency of the
species (output). Accordingly, as done for Boolean node control, one can design a system to have
specific attractors. That is, one could define a “base case” for frequencies of different species of
microbes in a population, such that the population might shift to respond to a perturbation, but it,
by definition, relaxes back to the base case distribution of species frequencies.

Where available approaches need rethinking. Coordinating the behavior of spatially distant
cells will likely need completely different approaches and could be enabled by using computer-in-
the-loop methods. For example, optical sensing and optical control can reduce the timescales re-
quired for distant cells to communicate and coordinate. But formulating a control objective/strategy
to align with an application is more complicated and needs rethinking. Controlling complex net-
works of cells might require defining and implementing multi-parametric control objectives and
could benefit from optimal control, but needs adaptation. Finally, tools from controlling complex
networks (economics and logistics) can complement approaches currently used, which are more
based on dynamical and control systems, using other mathematical frameworks for describing the
systems.
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6 Applications

The discussion on applications focused on highlighting challenges that are common to different
application domains and setups (bacterial, mammalian, or cell-free systems), but used specific
applications as running examples to keep arguments anchored to practically relevant problems.
Motivating applications with cross-cutting challenges include, but are not limited to, cell-based
and gene-based therapy, tissue engineering and regenerative medicine, diagnostic, environmental
sensing and agriculture, the engineered microbiome (sentinels and sense-and-respond systems in
the gut), engineered living materials, and biomanufacturing [1-4].

Challenges discussed. Most of these applications present unique challenges for design and
control often driven by safety and performance requirements that should be robust despite environ-
mental uncertainty. Achieving these goals often require consensus and/or engineered diversity in
the cell population, which necessitates new control algorithms. Furthermore, cellular applications
often require sophisticated multi-cellular sense-and-respond mechanisms (for controlling popula-
tion size and growth and to avoid aberrant differentiation in the case of mammalian cells). In what
follows, we expand on specific requirements motivated by the concrete application of these tech-
nologies. Safe operation in variable and potentially unpredictable environments must be ensured
for practical application of these new technologies. This requires confidence in the design, which
should be associated with safety guarantees and fail-safe operation modes. For example, if cells
were to start doubling too quickly while in an internal state abiding the specification, then a safety
mechanism could be triggered to detect the failure mode and kill cells that are proliferating while
in the incorrect state. In the specific case of environmental applications, cells could commit suicide
once the task is completed for a full cleanup. A plausible approach for guaranteed safety would
be to limit the environment configuration to a set of a few situations that are reasonably well char-
acterized up to some uncertainty, which could be taken care of by a robust control mechanism.
A way to sense when environment conditions deviate from standard ones could allow engineered
organism to commit suicide to avoid operating in a poorly characterized scenario. An interest-
ing challenge with this respect is to device control solutions that adapt to changing environments
through some form of adaptive control. Furthermore, generating population diversity with desired
features, consensus and spatio-temporal coordination among diverse populations, can overall im-
prove performance and robustness. Here, local sensing could be used to reach global consensus
and spatio-temporal averaging.

Tools that may be used from systems and control theory. At a high level, control approaches
for evolving systems should be considered, which conceptually fall in the class of adaptive and
learning control systems but with notable differences on the level and form of uncertainty and on
the extent to which the “plant” to be controlled and the environment are varying in time. Multi-
modal sensing, where information from different sensors and parts of a system are merged, could
leverage methods developed for sensor fusion and could be used to reach consensus among differ-
ent cell populations. At a high level, methods to determine system structure that allows consensus
from decentralized control could be used, but again with substantial differences in the level of
complexity of the dynamics of single agents (cells) or of circuit components. Also, methods for
generating population diversity to allow exploration of different solutions could be used, similarly
to, for example methods based on stochastic gradient descent that allow some level of exploration
to reach an optimal performance.
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7 Community Building

This topic was discussed with respect to two main aspects: data sharing and education.

Data sharing. Among the data and material that could be shared, we have DNA editors, DNA
repositories (addgene), software tools to predict I/O response of parts and modules (RBS calcu-
lator [42]), design processes, experimental protocols, biophysical and simulation models along
with the parameter values for clearly defined cellular and genetic backgrounds. In particular, ad-
dgene (http://www.addgene.org/) constitutes a successful example of a curated DNA reposi-
tory, which could be followed to create and maintain repositories of other materials, software, and
data. Data sharing protocols must allow researchers to encode data in a way that is easy to re-use.
For example, starting with data (as opposed to DNA parts), such as the input/output transfer curve
of a promoter-RBS-reporter system, a data sharing system would have a set of customized Q&A
that allow to input all the relevant information on the conditions under which the experiments were
carries, both intra-cellular and extra-cellular. Indeed, the data that people want to access must be
detailed enough to allow understanding of the context of the experiment (the system’s genome and
other DNA background, i.e., what other plasmids are present), which is critical to re-usability. Fur-
ther, a database must be easily searchable, by organism, by part, and by function, and all data must
be comparable, i.e., we need an internal reference for the database such as the one we currently use
for promoter strengths (reference promoter). Data representation should be human-understandable
and complete, easily usable by an experimentalist. We further need an electronic methods section
that should be easily filled with an interactive Q&A process. Ultimately, the way to digitally en-
code this information should be easy and fast. Curators are needed for maintaining the repository
and cleaning it up, just like it is done by addgene for genetic constructs and by the ENCODE
project.

One critical topic that was discussed pertains the incentive of researchers to contribute to the
database. One potential incentive is that researchers typically want their results and data to be
re-used by others and a database could provide the means to do so. Further internal incentive could
be that in order for a researcher to use the information on the database they also need to contribute.
A later method could be an external incentive such as a journal requiring that the data is submitted
to the repository before a paper is published. For example, some journals require submission of
DNA constructs to addgene before publication. An alternate or complementary approach could
provide an external positive incentive, such as a journal providing a “blue ribbon” to the abstract of
a paper upon publication if data was submitted to the database. This could exert some peer pressure
on the authors to submit to the database. So, how do we start? We need to encourage everyone
to digitize and share their data (broadly defined) to maximize their re-use in future applications.
Thus, there should be an easy and fast way to make data public. For example, an interactive web-
based software could be created to assist with the encoding, upload, and re-sharing of data with
data formats that are adaptive to experimentalist needs. We need to lower friction/frustration and
create incentives, preferably using positive incentive first, i.e., we want our own information to
be re-used and also be able to access others’ information and maybe obtain a blue ribbon upon
publication. These could also be ways to encourage researchers to publish detailed datasets in
Supplementary Data in a pre-set tabular format. Then, we could build on initial successes to keep
the momentum going and possibly reach the stage where detailed tabular data formats and upload
become a standard requirement for final publication.

Education. A typical question that we, as researchers working at the crossroads of engineering
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biology and mathematical modeling/control design, are often asked by (perspective) students is
“What courses do I need to take to get your expertise and skills and ultimately do the research
that you do?” Today, it is still challenging to address this question and the answer varies greatly,
depending on the institution. For example, some institutions have established curricula and courses
that students can take both at the undergraduate and graduate levels, but other institutions have
more fragmented teaching in this area. We therefore discussed what general means could be to
educate students and young researchers in this area. Clearly, establishing institution-based courses
and curricula is an effective way to do so, which requires resources in terms of time of faculty,
teaching assistants, and teaching materials for laboratory courses. On-line courses, tutorials, and
edX are also possibilities, however resources like edX need curation. On-line accredited courses,
in which enrolled students obtain a degree at the end could also be an effective mechanism. One
specific model to implement this could be to have students at one institution remotely take a course
for credit offered at another institution, where such curricula are available. This would broaden the
reach of the education curriculum created at one institution to other places where such curricula
are not yet established. Summer boot camps, especially for experimentalists, could be an effctive
way to start someone’s education, wherein undergraduate students could use an REU program just
for synthetic biology and graduate students could receive travel grants to attend the same. There is
an issue, however, of knowledge retention after these short fast-paced courses. So, there should be
some detailed plan for right after the camp for applying the acquired knowledge within a research
project at the home institution. Overall, these structured pedagogical approaches should improve
students abilities not just to perform experiments in the lab, but also and especially to create and
run models, and interpret their outputs, to design systems with given specifications in mind, to
analyze and interpret experimental data, and to store data in effective formats.

8 Conclusions and Outlook

A main focus of the workshop has been to revisit the tightness of the analogies between the de-
sign approach in synthetic biology and the modular and hierarchical approach used in electrical and
computer engineering. These analogies have permeated the field of synthetic biology and a one-
one mapping has often been used as a starting assumption for design. Although loose, conceptual,
analogies can serve as means to reason about design problems at the initial stages in engineering
biology, forcing a one-one mapping at the implementation level is, at this point, considered not
beneficial for advancing the field and for overcoming current challenges in scalability, robustness,
and predictability. Indeed, assumptions being made when engineering biological systems within a
strict “logic gate” hierarchical design framework are clearly violated by the physics of biological
systems. Examples include failure of strict modularity; genetic modules are often not digital and
not even static, indeed temporal responses are substantial and neglecting them can lead to failures;
and, finally, engineered genetic circuits are not robust to changes in surrounding intra-cellular and
extra-cellular environment. Robustness to the environment (intra and extra-cellular) is a critical
missing property of today’s synthetic biology circuits that, if unresolved, will likely prevent the
application of this technology in the real-world, where safety, accuracy, reliability, and perfor-
mance requirements are needed while operating in uncertain and evolving environments. There
has been almost no attention to problems of robustness of engineered genetic circuits so far as the
focus has mostly been on creating proof-of-concept circuits that solve a specific task in specific
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conditions.

In order to address the described challenges that the field is facing on issues discussed in this
report, such as scalability, modularity, robustness, and predictability, it is time to deeply re-think
these problems. We may want to investigate how tools from disciplines that have handled these
problems in other domains, such as systems and control engineering, could be adapted or even
re-invented and merged with other tools in order to be applicable in a new physical domain. Fun-
damental and longer term research would be needed that allows to investigate novel formulations
and implementations of modularity, novel scalable approaches to design that embrace context-
dependence instead of rejecting it, new mathematical formalisms for predicting systems’ compo-
sition, and approaches to achieve emergent robustness from possibly non-robust composing units.
These efforts should be accompanied by a community building effort that ensures the establish-
ment of training and pedagogical resources at the intersection of synthetic biology and quantitative
disciplines such as mathematical modeling, systems and control design, and dynamical systems, in
a more systematic and broadly available fashion. Accordingly, a substantial effort should be placed
to create shared and well curated databases for experimental protocols, systems characterization
data, design processes, and mathematical and computational models. There are successful exam-
ples of these shared resources, and approaches could use these as inspiring examples to follow.

To support the above efforts, funding resources would be needed that give the sufficient temporal
flexibility to explore fundamentally new approaches that can potentially be game changers in engi-
neering biology. Within such opportunities it would be critical to keep theoretical and fundamental
research grounded on concrete problems by having specific applications both as a motivation and
as a test-bed used throughout the research program. It would be important that resources are allo-
cated to broadening the reach of new or exiting pedagogical curricula beyond the home institution
through a number of possible mechanisms such as, for example, discussed in this report. Tightly
linked with the research project, resources could be allocated to contribute to a central database
system, for which curators could be hired from the project itself to ensure the data is periodically
cleaned up, internally compatible, and respects some pre-fixed metrics established by the overall
research program.
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