
Observer-based Control for Block-triangular Hybrid Automata

Domitilla Del Vecchio

University of Michigan, USA

Abstract— The safety control problem for the class of block-
triangular order preserving hybrid automata with imperfect
state information is addressed. A dynamic feedback law is
proposed, which exploits the order preserving properties of
the dynamics to construct state estimation and control algo-
rithms that have linear complexity in the number of variables.
The proposed algorithms are applied to a collision avoidance
problem arising in the context of intelligent transportation.

I. I

The problem addressed in this paper is the dynamic control

(state estimator plus control) of the parallel composition

of a class of hybrid automata (triangular order preserving

hybrid automata) under safety specifications. Motivating

applications both for the model and for the problem con-

sidered include multi-agent hybrid systems such as intelli-

gent transportation systems and railway control systems. In

these systems, each agent (a vehicle) can be modeled as a

hybrid automaton, in which the continuous state dynamics

has triangular structure and models the physical motion of

the agent. The discrete state can model a control mode

in which the agent can be (turning, accelerating, run-out,

etc.) or it can model input and state constraints. The entire

system is given as the parallel composition of the component

systems modeling the agents. In particular, one problem

for which automated solutions are sought [1], [2] is the

collision prediction and avoidance at traffic intersections

and at railway mergings. In these systems, the state (speed

and position, for example) is known to the controller only

within some uncertainty bounds. This uncertainty is due

to measurement errors or to missing measurements as it

happens for example with the position measurement obtained

by the Global Positioning System (GPS).

The control problem under safety specifications assuming

perfect state information has been addressed by several

researchers (see [3]–[5], for example). There is a large body

of literature about safety control design and the list here

provided is not exhaustive. In these works, the safety control

problem has been addressed by computing the set of states

that lead to an unsafe configuration independently of an

input choice (called the backward reachable set [3] or the

uncontrollable predecessor [6] of an unsafe set). Then, a

feedback is computed that guarantees that the state never

enters such a set. As it appears from these works, a bottleneck

in solving this problem is complexity. For classes of hybrid

automata for which the continuous dynamics reachable set

can be computed, computational constraints usually limit the
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system to four or five continuous variables and to two or three

discrete states. Furthermore, the proposed algorithms are not

guaranteed to terminate [3], [4]. To reduce the computational

load, approximate algorithms have been proposed to compute

an over-approximation of the backward reachable set of the

unsafe set [7]–[9]. The safety control problem with imperfect

or partial state information has been scarcely addressed in

the literature. Pioneering work in this direction can be found

in [10] and in [11], for example. In [10], a controller that

relies on a state estimator is proposed for finite state systems.

The results are then extended to control a class of rectangu-

lar hybrid automata with imperfect state information. The

proposed algorithm has exponential complexity in the size

of the system. In [11], a partial order approach is proposed

for the design of computationally efficient state estimation

and control algorithms. In such work, only discrete dynamic

feedback is considered. Also, no algorithm is provided to

compute the set of initial states in the state space from which

a state estimation-based control strategy would work.

In this paper, we propose a solution for the dynamic

control of block triangular order preserving hybrid automata

under imperfect state information. The proposed approach

relies on an approximate computation of the uncontrollable

predecessor as performed in [7]–[9]. However, a control

law that relies on a state estimator is constructed to handle

imperfect state information. The state estimation and con-

trol algorithms are constructed exploiting the partial order

structure associated with the system dynamics. By virtue of

this structure, our algorithms have linear complexity with the

number of variables.

The contents of this paper are as follows. In Section

II, we provide some preliminary notions on partial orders,

transition systems, and we define the escape set. In Section

III, we introduce the block triangular order preserving hybrid

automaton model. In Section IV, we introduce the state

estimator while the dynamic controller is constructed in

Section V. Finally, Section VI proposes two application

examples arising in the context of intelligent transportation.

II. P ,  ,   

A partial order [12] is a set P with a partial order relation

“≤”, and we denote it by the pair (P,≤). For all x,w ∈ P,

the sup{x,w}, denoted x g w, is the smallest element that

is larger than both x and w. The inf{x,w}, denoted x f w,

is the largest element that is smaller than both x and w. If

S ⊆ P,
∨

S := sup S and
∧

S := inf S . If x f w ∈ X

and x g w ∈ X for all x,w ∈ X, then (X,≤) is a lattice. Any

interval sublattice of (P,≤) is given by [L,U] = {w ∈ P | L ≤
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w ≤ U} for L,U ∈ P. That is, this special sublattice can

be represented by only two elements. Let (P,≤) and (Q,≤)

be partially ordered sets. A map f : P → Q is (i) an order

preserving map if x ≤ w =⇒ f (x) ≤ f (w); (ii) an order

isomorphism if x ≤ w ⇐⇒ f (x) ≤ f (w) and it maps P onto

Q; (iii) order continuous if f (
∨

S ) =
∨

f (S ) and f (
∧

S ) =
∧

f (S ) for S ⊆ P. An order isomorphism is always order

continuous. A particular partial order that we will consider

in the sequel, is the power set of a set S , that is, the set of

all subsets of S , denoted 2S , ordered according to inclusion

relation. This partial order will be denoted by (2S ,⊆).

We introduce the escape set for the general modeling

formalism of transition systems (see [6], for example) as the

notion of escape set is independent on whether the system

has continuous or discrete variables. A transition system

with output is a tuple Σ = (S ,I,Y, τ, γ), in which S is a

(possibly infinite) set of states, I is a set of inputs, Y is

a set of outputs, τ : S × I → S is a transition map, and

γ : Y → 2S is the output map. We denote a state by s ∈ S

and an input by u ∈ I. If a state s ∈ γ(y), we say that s is

compatible with measurement y. Also, we will say that an

output measurement y is compatible with state s if s ∈ γ(y).

An execution of Σ is an infinite sequence {sk}k∈N such that

sk+1 = τ(sk, uk) for uk ∈ I. An input sequence is denoted

by {uk}k∈N and an output sequence by {yk}k∈N, in which yk is

such that sk ∈ γ(yk).

For transition system Σ, we define the operator τ̂ : 2S ×I×

Y → 2S as follows. Let ŝ ⊆ S , then τ̂(ŝ, u, y) := τ(ŝ, u)∩γ(y).

Given an output sequence of Σ, {yk}k∈N, corresponding to

the execution {sk}k∈N, the set of all states at step k that are

compatible with such output sequence up to step k and with

the system transition map is given by

ŝk+1 = τ̂(ŝk, uk, yk+1) (1)

ŝ0 = γ(y0).

One can verify that sk ∈ ŝk for all k. We refer to equations

(1) as a state estimator for the transition system Σ. A

state estimator-based control strategy is one in which the

control law depends on ŝ, that is, u = g(ŝ) for ŝ ⊆

S . We define the notation τ̂n+1(ŝ, {uk}k<n+1, {y
k}k≤n+1) :=

τ̂(τ̂n(ŝ, {uk}k<n, {y
k}k≤n), un, yn+1)τ̂0(ŝ, {uk}k<0, {y

k}k≤0) = γ(y0).

Definition 1: Let B ⊆ S be a bad set of states. The escape

set E for system Σ = (S ,I,Y, τ, γ) is defined as

E = {X ∈ 2S | ∀ {uk}k∈N, ∃ N and {yk}k≤N , such that

τ̂N(X, {uk}k<N , {y
k}k≤N) ∩ B , ∅}.

E is the set of all subsets of S such that if the state estimator

is initialized with one of such subsets of S , then there will be

an output sequence for which the state estimate at a later time

will intersect the bad set no matter what input sequence is

applied to the system. This definition is analogous to the one

in [10]. To maintain safety, we must thus guarantee that the

state estimator (1) will never have as a state one of the sets

in E. For a system Σ with only discrete states, set E can be

computed in a finite number of steps [10], but the algorithm

computation scales exponentially with the number of states.

For a system Σ with also continuous states, the computation

of E is impractical because the sets are infinite. Therefore,

instead of considering E ∈ 2S , we consider another set. That

is, we consider the smallest set E ⊆ S containing B, if it

exists, with the property that if the state estimate does not

intersect it, there is an input sequence that will guarantee

that the state estimate will never intersect E at a later time.

This is formally stated as follows.

Problem 1: (State estimator-based safety control prob-

lem) Determine the smallest set E ⊆ S with B ⊆ E, if it

exists, and a dynamic feedback law uk = g(ŝk), with ŝk =

τ̂(ŝk−1, uk−1, yk), with ŝ0 = γ(y0) and with {yk}k∈N output

sequence of Σ such that if ŝ0 ∩ E = ∅ then ŝk ∩ E = ∅

for all k.

Since sk ∈ ŝk for all k, the dynamic control law given in

Problem 1 guarantees that the state of the system never

enters the bad set B. In general, the set E could be the

entire space S even if E is not equal to the entire 2S . For

the class of systems that we consider here, this will not be

the case. In particular, we will show that we can have an

overapproximation of E, called E, to be the same as the one

obtained for the full information case, which was shown to

be a tight overapproximation of the escape set for the full

information case [13].

III. B     

We start by defining the discrete time hybrid automaton

in a way analogous to the continuous time counterpart [3].

Definition 2: A discrete time hybrid automaton is a tuple

H = (Q, X,I, ι,Y, f ,Dom,R, γ), in which Q = {q1, ..., qm}

is a set of discrete states (or modes); X = Rp is the set of

continuous states; I = ID × IC , is the set of discrete and

continuous inputs, respectively; ι : Q→ 2I is a function that

attaches to each discrete state the set of enabled inputs; Y

is a set of outputs; f : Q × X × IC → X is the continuous

state update function; Dom : Q → 2X is a map that for

each mode establishes the domain in X in which such mode

holds; R : Q× X ×ID → Q is the discrete state update map,

which for any current discrete state, continuous state, and

input determines the new discrete state; γ : Y → 2X is the

output map.

We denote by q ∈ Q the mode, by x ∈ X the continuous

state, by u ∈ IC the continuous input, and by σ ∈ ID the

discrete input. We assume that the reset function is static,

that is, it does not contain memory of previous discrete

states. Thus, we have that q = R(x, σ). We make an explicit

distinction between two types of modes: the modes q such

that Dom(q) = Rp and the modes q such that Dom(q) , Rp.

In particular, we assume that a transition to a mode with

Dom(q) = Rp can happen only by a suitable choice of

discrete input σ ∈ ID, while a transition to a mode with

Dom(q) , Rp can happen only autonomously and thus cannot

be controlled. This is formalized by the following structure

of R:

R(x, σ) :=















R(σ) if σ , ∅

R(x) if σ = ∅,
(2)

in which we define R(x) := q if x ∈ Dom(q). One can verify

that this update is deterministic if Dom(q1) ∩ Dom(q2) = ∅
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whenever Dom(q1) , Rp and Dom(q2) , Rp. Also, we

assume that for any mode with Dom(q) = Rp, there exists a

discrete input σ ∈ ID such that q = R(σ). The non-blocking

condition can be guaranteed if
⋃

{q | Dom(q),Rp} Dom(q) = Rp.

In the sequel, we use the notation Q := {q ∈ Q | Dom(q) ,

R
p}. Hybrid automaton H corresponds to the transition

system ΣH = (S ,I,Y, τ, γ), in which S = X, I = ID×IC . An

input u ∈ I is a pair u = (u, σ), in which u ∈ IC and σ ∈ ID.

The transition map is given by τ(x, u) := f (R(x, σ), x, u) with

q = R(x, σ) and u ∈ ι(q). Finally, γ : Y → 2X . Thus, the

definition of escape set for H is the same as the definition

of escape set for transition system ΣH as given in Definition

1.

Definition 3: Let (Rn,≤) be the partial order established

according to component-wise ordering. A triangular order

preserving hybrid automaton is a hybrid automaton H =

(Q, X,I, ι,Y, f ,Dom,R, γ), in which

(i) The update map f (q, x, u) for every q ∈ Q and x =

(x1, ..., xn) ∈ Rn has the following triangular structure

f (q, x, u) = ( f1(x1, ..., xn), ..., fi(xi, ..., xn), ..., fn(xn, q, u)),

in which fi : Rn−(i−1) → R for i ∈ {1, ..., n − 1}, fn :

R × Q × IC → R with IC = R, and Dom(q) ⊆ Rn.

(ii) We assume that the set of discrete states with Dom(q) =

R
n is a lattice with minimum α and with maximum

β, that is, {q ∈ Q | Dom(q) = Rn} = [α, β]. For all

q ∈ Q, we assume that ι(q) is an interval in R, that is,

ι(q) = [uL(q), uU(q)]. Also, the functions uL(·) and uU(·)

are order preserving in q with Dom(q) = Rn.

(iii) We assume that fi is order preserving in all of its

arguments, that is, if (xa
i
, ..., xa

n) ≤ (xb
i
, ..., xb

n) then

fi(xa
i
, ..., xa

n) ≤ fi(xb
i
, ..., xb

n) for i < n, and fn(xa
n, q, u) ≤

fn(xb
n, q, u). Also, fn : Q|{q∈Q | Dom(q)=Rn} ×R× IC → R is

order preserving in all of its arguments. Additionally, fi
is one-one and onto in xi, that is, fixed xi+1, .., xn, q, u,

for any x′
i

there is one and only one xi such that

fi(xi, ..., xn) = x′
i

if i < n or fi(xi, q, u) = x′
i

if i = n.

We denote the first one by f −1
i

(x′
i
, xi+1, ..., xn) and the

second one by f −1
i

(x′
i
, q, u).

(iv) The maps fi are non-decreasing: fi(xi, ..., xn) ≥ xi, for

i < n and fn(xn, q, uU(q)) > xn for all q.

(v) For all y ∈ Y, the set γ(y) ⊆ Rn is an interval in (Rn,≤),

that is, γ(y) = [
∧

γ(y),
∨

γ(y)].

Item (v) of the above definition implies that there is a

bounded measurement uncertainty for each continuous vari-

able. The parallel composition of a number of triangu-

lar order preserving hybrid automata generates a block-

triangular order preserving hybrid automaton. This is made

more precise by defining the parallel composition of hybrid

automata in a way similar to [14].

Definition 4: Let H1 = (Q1, X1,I1, ι1,Y1, f1,Dom1,

R1, γ1) and H2 = (Q2, X2,I2, ι2,Y2, f2,Dom2,R2, γ2) be two

hybrid automata. The parallel composition, denoted H =

H1||H2, is given by H = (Q, X,I, ι,Y, f ,Dom,R, γ), in

which Q = Q1 × Q2, X = X1 × X2, I = IC × ID with

IC = IC,1 × IC,2 and ID = ID,1 × ID,2; ι : Q → IC is

given by ι = (ι1, ι2); Y = Y1 × Y2; f : Q × X × IC → X

is given by f = ( f1, f2); Dom(q) = Dom1(q1) × Dom2(q2);

R(x, σ) = (R1(x1, σ1),R2(x2, σ2)); γ = (γ1, γ2).

Definition 5: A block triangular order preserving hybrid

automaton is the parallel composition of N triangular order

preserving hybrid automata H1, ...,HN .

Let xi = (x1,i, ..., xn,i) ∈ R
n, qi ∈ Qi, ui ∈ ι(qi), σi ∈

ID,i represent the continuous state, the discrete state, the

continuous input, and the discrete input of the triangular

hybrid automaton Hi, respectively. Then, in each mode q =

(q1, ..., qN) of the hybrid automaton H = H1||...||HN , the

continuous state update map has the following form

x′j,i = f j,i(x j,i, ..., xn,i), j < n i ∈ {1, ...,N}

x′n,i = fn,i(xn,i, qi, ui), i ∈ {1, ...,N}, (3)

in which primed variables denote updated variables. In

the sequel, we will use the notation fi(qi, xi, ui) =

( f1,i(x1,i, ..., xn,i), ..., fn,i(qi, xn,i, ui)). For this system, we

model the safety requirement by requesting that the state

x never enter the bad set

B = {(x1,1, ..., xn,1, ..., x1,N, ..., xn,N) | (x1,1, ..., x1,N) ∈ B},

B = [L1,U1] × ... × [LN ,UN], with Li,Ui ∈ R. (4)

In the sequel, we denote L = (L1, ..., LN) and U =

(U1, ...,UN). This choice of the safety requirement to involve

only the variables (x1,1, ..., x1,N) is motivated by the applica-

tions that we are targeting (see Section VI).

To the block triangular order preserving hybrid automa-

ton, the following transition system corresponds. Let H =

H1||...||HN be the block triangular order preserving hybrid

automaton with Hi = (Qi, Xi,Ii, ιi,Yi, fi,Domi,Ri, γi). Let

ΣHi
= (Xi,Ii,Yi, τi, γi) be the transition system associated

with Hi and ΣH = (X,I,Y, τ, γ) be the one associated with

H. We thus have that τ(x, u) = (τ1(x1, u1), ..., τN(xN , uN)),

in which τi(xi, ui) = fi(Ri(xi, σi), xi, ui) with xi ∈ Xi and

ui = (σi, ui) ∈ Ii. As a consequence, the escape set E

for H = H1||...||HN is the same as the escape set defined

in Definition 1 for transition system ΣH .

IV. S 

Consider hybrid automaton H and let x̂ ⊆ X. A state

estimator for H of the type of the one in equation (1) can

take, for example, the form

x̂′ = f (q̂, x̂, u) ∩ γ(y′), with q̂ = R(x̂, σ), (5)

and R(x̂, σ) =















R(σ) if σ , ∅

R(x̂) if σ = ∅,

in which R(x̂) = {q ∈ Q | ∃ x ∈ x̂, with, x ∈ Dom(q)} and

x̂0 = γ(y0). One can verify that xk ∈ x̂k for all k. This type of

estimator is impractical for implementation because the sets

x̂ are in general infinite sets. However, since H is the parallel

composition of order preserving (triangular) hybrid automata

Hi, we have that the update maps fi are order preserving

and that γ(yi) = [
∧

γ(yi),
∨

γ(yi)]. As a consequence, one can

keep track of the lower and upper bounds of x̂ as follows.

Let
∨

x̂ = (
∨

x̂1, ...,
∨

x̂N) and
∧

x̂ = (
∧

x̂1, ...,
∧

x̂N), denote the
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upper and lower bounds of x̂, respectively. Then, we have that
∨

x̂i = (
∨

x̂1,i, ...,
∨

x̂n,i) ∈ R
n and

∧

x̂i = (
∧

x̂1,i, ...,
∧

x̂n,i) ∈ R
n are

the lower and the upper bounds of x̂i, respectively, in which

x̂i ⊆ R
n is the state estimate of the component automaton Hi.

Then, the bounds of x̂i for all i are updated according to the

following equations

if σi , ∅















∧

x̂′
i
= fi(

∧

x̂i,R(σi), ui) g
∧

γ(y′
i
)

∨

x̂′
i
= fi(

∨

x̂i,R(σi), ui) f
∨

γ(y′
i
)

(6)

if σi = ∅















∧

x̂′
i
=
∧

qi∈
ˆ
Qi

fi(
∧

x̂i, qi, ui) g
∧

γ(y′
i
)

∨

x̂′
i
=
∨

qi∈
ˆ
Qi

fi(
∨

x̂i, qi, ui) f
∨

γ(y′
i
),

(7)

in which y′
i

is the output observation of Hi,
ˆ
Qi is the set of

possible modes that are compatible with the interval of states

[
∧

x̂i,
∨

x̂i], that is,

ˆ
Qi = {qi ∈ Qi | ∃ xi ∈ [

∧

x̂i,
∨

x̂i], such that xi ∈ Domi(qi)},

(8)
∧

x̂0
i =

∧

γ(y0
i )

∨

x̂0
i =

∨

γ(y0
i ). (9)

Proposition 1: Let {uk}k∈N be an input sequence for the

block triangular order preserving hybrid automaton H =

H1||...||HN , and let {xk}k∈N and {yk}k∈N be the corresponding

execution and output sequence. Let {
∧

x̂k}k∈N and {
∨

x̂k}k∈N
with

∨

x̂ = (
∨

x̂1, ...,
∨

x̂N) and
∧

x̂ = (
∧

x̂1, ...,
∧

x̂N) be generated

by equations (6-9). Then, xk ∈ [
∧

x̂k,
∨

x̂k] for all k.

The proof of this proposition is a consequence of the order

preserving property of fi and of the interval structure of

γ(yi). For more details on these types of estimators and for

convergence conditions, the reader is referred to [15].

V. C 

To solve Problem 1, we compute set E as follows. Denote

Fi(x2,i, ..., xn,i, qi, ui) := f2,i(x2,i, ..., xn,i), ..., fn,i(xni
, qi, ui) and

xi = (x2,i, ..., xn,i). Let Fk
i
(xi, qi, ui) := F(Fk−1(xi, qi, ui), qi, ui)

and define x = (x1, ..., xN). In particular, we have that

E = {x | (x1,1, ..., x1,N) ∈ E
∗
(x)}, in which E

∗
(x) is given by

the following algorithm.

Algorithm 1.

E
∗
(x) =

⋃

k≥0[L
k
(x),U

k
(x)], L

0
(x) = L, U

0
(x) = U, L

k
=

(L
k

1(x1), ..., L
k

N(xN)), U
k
= (U

k

1(x1), ...,U
k

N(xN)) with

L
1

i (xi) = f −1
1,i (L

0

i , xi)

U
1

i (xi) = f −1
1,i (U

0

i , xi),

while for k > 1, we have

Lk
i (xi) = L

k,a

i
(xi) g L

k,b

i
(xi) (10)

L
k,a

i
(xi) =

∧

qi∈Qi

f −1
1,i (L

k−1

i (Fi(xi, qi, uL(qi))), xi) (11)

Lk,b
i

(xi) = f −1
1,i (L

k−1

i (Fi(xi, αi, uL(αi))), xi) (12)

Uk
i (xi) = Uk,a

i
(xi) f Uk,b

i
(xi) (13)

Uk,a
i

(xi) =
∨

qi∈Qi

f −1
1,i (U

k−1

i (Fi(xi, qi, uU(qi))), xi) (14)

U
k,b

i
(xi) = f −1

1,i (U
k−1

i (Fi(xi, βi, uU(βi))), xi) (15)

with for k < k∗ (removing the dependence on xi for shortness

of notation)

L
k

i = inf(Lk
i , L

k−1

i ) (16)

U
k

i =















sup(Uk
i
, L

k−1

i ), if ∃ j such that Uk
j
> L

k−1

j ,

Uk
i
, if Uk

j
≤ L

k−1

j ∀ j,
(17)

with k∗ the smallest k such that

Uk
i ≤ L

k−1

i ∀ i and ∃ j such that U
k+1

j < L
k+1

j .

For k ≥ k∗, we instead define

U
k+1

i = sup(Uk+1
i , L

k+1
i ) (18)

L
k+1

i = inf(Uk+1
i , L

k+1
i ). (19)

�

If k∗ is finite, it means that the iteration of Algorithm 1

terminates. For termination conditions, the reader is referred

to [13]. In order to solve Problem 1, one needs to check

whether E ∩ x̂ = ∅ and in such a case compute a controller

that guarantees that E ∩ x̂′ = ∅. We then proceed by giving

two results. The first result exploits the structure of the set

E and of the set x̂ to provide a simple check for determining

whether E ∩ x̂ = ∅. The second result provides a controller

such that if E ∩ x̂ = ∅ then E ∩ x̂′ = ∅. First, let us give

the following intermediate result that states that whenever

x < E (and thus (x1,1, ..., x1,N) < E
∗
(x) ⊆ RN) there is a two-

dimensional projection of E
∗
(x) ⊆ RN and of (x1,1, ..., x1,N)

along coordinate axis (i, j) in RN , such that (x1,i, x1, j), is not

contained in
⋃k∗

k=0[L
k

i (xi),U
k

i (xi)] × [L
k

j(x j),U
k

j(x j)].

Proposition 2: If (x1,1, ..., x1,N) < E
∗
(x) with E

∗
(x) as

given in Algorithm 1, then there is a pair of coordinates

(i, j) such that (x1,i, x1, j) < [L
k

i (xi),U
k

i (xi)] × [L
k

j(x j),U
k

j(x j)]

for all k.

For the proof, the reader is referred to [13].

Proposition 3: We have that [
∧

x̂,
∨

x̂] ∩ E = ∅ if and only

if

[
∧

x̂1,1,
∨

x̂1,1]× ...× [
∧

x̂1,N ,
∨

x̂1,N]∩
⋃

k≥0

[L
k
(
∨

x̂),U
k
(
∧

x̂)] = ∅.

Proof: (⇐) We show that if [
∧

x̂1,1,
∨

x̂1,1] × ... ×

[
∧

x̂1,N ,
∨

x̂1,N] ∩
⋃

k≥0[L
k
(
∨

x̂),U
k
(
∧

x̂)] = ∅, then [
∧

x̂,
∨

x̂] ∩

E = ∅. This derives directly from the fact that E =

{x | (x1,1, ..., x1,N) ∈ E
∗
(x)}, in which E

∗
(x) is given by

Algorithm 1, and by the fact that the functions L
k

i (xi) and

U
k

i (xi) are order reversing functions of their arguments.

(⇒) We show that if [
∧

x̂,
∨

x̂] ∩ E = ∅, then also

[
∧

x̂1,1,
∨

x̂1,1] × ... × [
∧

x̂1,N ,
∨

x̂1,N] ∩
⋃

k≥0[L
k
(
∨

x̂),U
k
(
∧

x̂)] = ∅.

If [
∧

x̂,
∨

x̂]∩E = ∅ we have that all x ∈ [
∧

x̂,
∨

x̂] are not inside

E. If x < E, it means that (x1,1, ..., x1,N) <
⋃

k≥0[L
k
(x),U

k
(x)].

By virtue of Proposition 2, we have that there is a pair

of coordinates (i, j) such that (x1,i, x1, j) < [L
k

i (xi),U
k

i (xi)] ×

[L
k

j(x j),U
k

j(x j)] for all k. This means that for all k either

x1,i > U
k

i (xi) or x1,i < L
k

i (xi) or either x1, j > U
k

j(x j) or

x1, j < L
k

j(x j). Assume that for a given k x1,i > U
k

i (xi)
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(ui, u j)

(L
k+1

i , L
k+1

j )

(L
k

i , L
k

j)

(L
k−1

i , L
k−1

j )

(U
k+1

i ,U
k+1

j )

(U
k

i ,U
k

j)

(U
k−1

i ,U
k−1

j )

i

j

Fig. 1. Conceptual picture explaining how the controller exploits the order

preserving property of the update map to maintain sets outside E. The

picture shows a slice of E for a specific value of xi, x j in the x1,i , x1, j

plane. The points on the lower dashed line are such that x1, j > U
k+1

j (x j).

Thus, there is an input u j that will map such points above U
k

j(x′j), that is,

x′
1, j
> U

k

j(x′j). The points on the lower solid line are such that x1,i < L
k

i (xi).

Thus, there is an input ui that will map such points on the left of L
k−1

i (x′i ),

that is, x′
1,i
< L

k−1

i (x′i ).

and x1, j < L
k

j(x j). Since this must be true for all x1,i ∈

[
∧

x̂1,i,
∨

x̂1,i] and all x1, j ∈ [
∧

x̂1, j,
∨

x̂1, j], then in particular

we must have that
∧

x̂1,i > U
k

i (
∧

x̂i) and
∨

x̂1, j < L
k

j(
∨

x̂ j).

Since the same reasoning is true for all k, we have that

[
∧

x̂1,1,
∨

x̂1,1] × ... × [
∧

x̂1,N ,
∨

x̂1,N] ∩ [L
k
(
∨

x̂),U
k
(
∧

x̂)] = ∅ for

all k. This gives us the desired result.

As a consequence of Proposition 3, to compute an input

that maintains the intersection [
∧

x̂k,
∨

x̂k]∩E empty at all time

it is then sufficient (and necessary) to compute a control

law such that whenever [
∧

x̂1,1,
∨

x̂1,1] × ... × [
∧

x̂1,N ,
∨

x̂1,N] ∩
⋃

k≥0[L
k
(
∨

x̂),U
k
(
∧

x̂)] = ∅ we have that also [
∧

x̂′
1,1
,
∨

x̂′
1,1

] ×

... × [
∧

x̂′
1,N
,
∨

x̂′
1,N

] ∩
⋃

k≥0[L
k
(
∨

x̂
′
),U

k
(
∧

x̂
′
)] = ∅. This control

law can be easily computed by exploiting the order preserv-

ing properties of the map fi. We first make the following

assumption

Assumption 1: We assume that
⋂

qi∈Qi
[uL(qi), uU(qi)] ,

∅. Also let
∨

qi∈Qi
Fi(xi, qi, uL(qi)) = Fi(xi, qi,M, uL(qi,M))

in which uL(qi,M) =
∨

qi∈Qi
uL(qi). Similarly, let

∧

qi∈Qi
Fi(xi, qi, uU(qi)) = Fi(xi, qi,m, uU(qi,m)) in which

uU(qi,m) =
∧

qi∈Qi
uU(qi).

Proposition 4: Let L
k

i (xi) and U
k

i (xi) be as in Algorithm 1

and let Assumption 1 hold. Let
∨

x̂i,
∧

x̂i ∈ R
n and let

∨

x̂′
i
,
∧

x̂′
i
∈

R
n be the updated values according to equations (6) and

(7). If
∨

x̂1,i < L
k

i (
∨

x̂i), (
∧

x̂1,i > U
k

i (
∧

x̂i)) then there exists

a continuous/discrete control law (σi, ui) such that
∨

x̂′
1,i
<

L
k

i (
∨

x̂
′

i), (
∧

x̂′
1,i
> U

k

i (
∧

x̂
′

i )). In particular, such control laws are

as follows:

if
∨

x̂1,i < L
k

i (
∨

x̂i), then














Ri(σi) = αi, ui = uL(αi) if Lk,a
i

(
∨

x̂i) < Lk,b
i

(
∨

x̂i)

ui =
∨

qi∈
ˆ
Qi

uL(qi) if L
k,a

i
(
∨

x̂i) ≥ L
k,b

i
(
∨

x̂i)
(20)

if
∧

x̂1,i > U
k

i (
∧

x̂i),














Ri(σi) = βi, ui = uU(βi) if U
k,a

i
(
∧

x̂i) > U
k,b

i
(
∧

x̂i)

ui =
∧

qi∈
ˆ
Qi

uU(qi) if Uk,a

i
(
∧

x̂i) ≤ Uk,b

i
(
∧

x̂i).
(21)

Proof: (sketch) We show that if
∧

x̂1,i > U
k

i (
∧

x̂i) then

there exists a continuous/discrete control law (σi, ui) such

that
∧

x̂′
1,i
> U

k

i (
∧

x̂
′

i ) (the other case can be shown in a similar

way). There are two cases: (1) k < k∗; (2) k ≥ k∗.

Case (1): k < k∗. In such a case, the update law is the

one in equation (17). If
∧

x̂1,i > U
k

i (
∧

x̂i) and U
k,a

i
< U

k,b

i
, we

will have that
∧

x̂1,i > Uk,a

i
(
∧

x̂i). Applying f1,i both sides and

taking into account that f1,i preserves the ordering, we obtain

that f1,i(
∧

x̂i) > f1,i(U
k,a

i
(
∧

x̂i),
∧

x̂i). By expression (14), we

have that f1,i(U
k,a

i
(
∧

x̂i),
∧

x̂i) =
∨

qi∈Qi
U

k−1

i (Fi(
∧

x̂i, qi, uU(qi)).

By the fact that Ui(·) are order reversing functions of their

arguments, we have that
∨

qi∈Qi
U

k−1

i (Fi(
∧

x̂i, qi, uU(qi)) =

U
k−1

i (
∧

qi∈Qi
Fi(
∧

x̂i, qi, uU(qi))). As a consequence, if we

choose ui =
∧

qi∈
ˆ
Qi

uU(qi), we obtain that
∧

x̂′
1,i
> U

k−1

i (
∧

x̂
′

i)

by virtue of Assumption 1. If instead Uk,a
i
≥ U

k,b

i , we will

have that x̂1,i > U
k,b

i
(
∧

x̂i). Applying f1,i both sides and taking

into account that f1,i preserves the ordering, we obtain that

f1,i(
∧

x̂i) > f1,i(U
k,b

i
(
∧

x̂i),
∧

x̂i). By expression (14), we have

that f1,i(U
k,b

i
(
∧

x̂i),
∧

x̂i) = U
k−1

i (Fi(
∧

x̂i, βi, uU(βi)). Therefore,

choosing Ri(σi) = βi and ui = uU(βi), we obtain that
∧

x̂′
1,i
> U

k−1

i (
∧

x̂
′

i).

Case (2): k ≥ k∗. In such a case, the update law is the one

in equation (18). Since U
k

i = sup(Uk
i
, Lk

i
) then

∧

x̂1,i > U
k

i (
∧

x̂i)

implies that also
∧

x̂1,i > Uk
i
(
∧

x̂i) and the proof proceeds as

in case (1).

The idea of this proposition is visualized in Figure 1. All

points that have the jth coordinate larger than U
k+1

j can

be mapped to points with jth coordinate larger than U
k

j by

suitable choice of input u j (or σ j). Similarly, all points with

ith coordinate smaller than L
k

i can be mapped to points with

ith coordinate smaller than L
k−1

i by suitable choice of input

ui (or σi).

Algorithm 2.

(i) Evaluate all L
k

i (
∨

x̂i) and U
k

i (
∧

x̂i) for all i and all k until
∧

x̂1,i > U
k

i (
∧

x̂i) for all i;

(ii) If there is a k and a pair of coordinates (i, j) such that
∧

x̂1,i > U
k+1

i (
∧

x̂i) and
∨

x̂1, j < L
k

j(
∨

x̂ j) then set (σi, ui) as

in equation (21) with k+1 in place of k, and set (σ j, u j)

as in equation (20);

Theorem 1: Algorithm 2 solves the state estimator-based

control problem (Problem 1). Furthermore, Algorithm 2

terminates.

The fact that Algorithm 2 solves Problem 1 is a straight-

forward consequence of Proposition 2, Proposition 3, and

Proposition 4. Algorithm 2 terminates if and only if (i) of

Algorithm 2 terminates. Termination of step (i) is guaranteed

by the fact that the sequence {U
k

i (
∧

x̂i)}k∈N is strictly decreas-

ing by virtue of the property (iv) of the model in Definition

3. The fact that E ⊆ E is implied by the above theorem.
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v1 C

d

d d
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v2

Fig. 2. Vehicles at a traffic intersection. The bad set is the set of
all vehicle 1/vehicle 2 configurations in which the vehicles are both
closer than some distance d from the intersection C of their paths.
This corresponds to a rectangle in the x1, x2 plane.
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Fig. 3. Vehicles at a traffic intersection. On the left, we show a
sample trajectory in the x1, x2 plane. The dots represent the position
of the vehicles and the rectangle surrounding them is given by the
state estimator (equations (7)). On the right, we show a slice of the

set E at the initial time for the initial values of v1, v2.

Remark. The entire control strategy is established as fol-

lows. Based on the current values of
∧

x̂ and of
∨

x̂, we predict

the values of
∧

x̂ and of
∨

x̂ at the next step by using equations

(6) and (7) with the previous input and without intersecting

with γi(y
′
i
). Let these predicted values be

∧

x̂pred and
∨

x̂pred.

Thus, the intervals [L
k
(
∨

x̂pred),U
k
(
∧

x̂pred)] are computed so

that we can check whether [
∧

x̂pred,
∨

x̂pred] ∩ E = ∅ (using

Proposition 3). If this intersection is empty, then the input is

set to its previous value. If this intersection is not empty, we

use Algorithm 2 to compute the new input.

VI. A 

Example 1: Vehicles at a traffic intersection. Let us

consider two vehicles converging to a traffic intersection

(Figure 2). The vehicle’s physical motion can be modeled

by considering its longitudinal dynamics along its geometric

path (determined by the geometry of the lanes) following a

similar modeling framework as performed in [3]. Let then

x1 and x2 denote the position of the two vehicles along their

path with respect to some fixed reference point. Let v1 and v2

be the velocities of the two cars along their lanes. We assume

that each car dynamics along its lane can be modeled as a

second order system, which in discrete time becomes:

x′i = xi + vi(∆T ), v′i = vi + ui(∆T ), i ∈ {1, 2}, (22)

in which ∆T is the time interval. The controller ui can

directly affect the acceleration by acting on the throttle

pedal or on the brake. The system also has the following

constraints. When a vehicle is inside the intersection, it

cannot stop as it has to free the intersection as soon as

possible, while it can stop before entering the intersection. In

addition, a vehicle cannot move backwards in its lane. These

constraints can be modeled by requiring, for a suitable xA
i

that for xi ≤ xA
i

then vi ≥ 0, while for xi > xA
i

we must have

vi ≥ vm with vm > 0. Let um < 0 < uM. Each vehicle can be

described by a hybrid automaton with two modes: qi = q1,i

if (xi ≤ xA
i

and vi ≤ 0) or (xi > xA
i

and vi ≤ vm); qi = q2,i if

(xi ≤ xA
i

and vi > 0) or (xi > xA
i

and vi > vm). In each one of

these modes, the update map f is given by equations (22), in

which ι(q1,i) = [0, uM], ι(q2,i) = [um, uM]. Since ID = ∅, the

hybrid automaton admits only autonomous mode transitions.

Example 2: Trains at a railway merging. Consider two

trains in the proximity of a railway merging. Assuming

a second order dynamics along their rail, each train can

be modeled again as in equations (22). However, now the

input sets will be different from the previous example. In

digital control mode [16], the input ui can take four values

corresponding to a “hard-brake” mode, a “run-out” mode,

a “constant-speed” mode, and an “acceleration” mode. Let

these 4 values be denoted by respectively α, γ, δ, β so that

α < γ < δ < β. Each vehicle dynamics can thus be modeled

by a hybrid automaton with four modes such that qi = q1,i iff

ui = α, qi = q2,i iff ui = γ, qi = q3,i iff u3 = δ, and qi = q4,i iff

ui = β. There are not autonomous switches in this system,

so that for each train R(xi, vi, σi) = R(σi) where σi is the

discrete input.

For both examples, the measurement model is given by

Yi = R and γ(yi) = [yi − ∆, yi + ∆], in which ∆ can be

an uncertainty of several meters. One can verify that the

above models for each vehicle are triangular order preserving

hybrid automata. The safety requirement is that the two

vehicles never are in a ball of radius d around the conflict

point C at the same time. This is encoded by a bad set B =

{(x1, v1, x2, v2) | (x1, x2) ∈ B}, in which B = [L1,U1]×[L2,U2]

for suitable L1,U1, L2,U2 ∈ R. Algorithm 1 and Algorithm

2 were implemented for both examples and the results are

shown in Figure 3 and in Figure 4.

VII. C

In this paper, we have presented a dynamic feedback
algorithm for the class of block-triangular order preserving
hybrid automata. By virtue of the structure of the system, the
hybrid dynamics update map preserves the ordering of the
continuous variables (component-wise partial ordering). This
allows to construct a state estimator that only keeps track of
suitable lower and upper bounds in the partial ordering. Such
lower and upper bounds are then used by a safety control law
that computes the control actions that guarantee that the state
will be mapped outside the escape set. The proposed state
estimation and control algorithms have linear complexity in
the number of variables. Two application examples from the
area of intelligent transportation systems are considered to
show that the class of systems considered is general enough
to model practically relevant systems. We will investigate in
our future work extensions to the case in which the discrete
state update map has memory and to the case in which the
bad set B involves all the coordinates in the state space.
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Fig. 4. Trains at a railway merging. This figure shows a run of Algorithm 2 at different time instants in the upper plots. The trajectory

of the trains in the x1, x2 plane and the sets
⋃

k≥0[L
k
(
∨

x̂),U
k
(
∧

x̂)] are both shown: L
k

i and U
k

i are computed by Algorithm 1 up to the k
established in item (i) of Algorithm 2 are shown in blue. The lower left side plot shows the control commands applied to each train.
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