
Multi-modality in gene regulatory networks with slow
promoter kinetics

M. Ali Al-Radhawi1, D. Del Vecchio2, E. D. Sontag3*,

1 Department of Electrical and Computer Engineering, Northeastern University, Boston,
MA 02115, USA.
2 Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02139-4307, USA.
3 Departments of Bioengineering and of Electrical and Computer Engineering,
Northeastern University, Boston, MA 02115, USA. Harvard Program in Therapeutic
Science, Harvard Medical School, Boston, MA 02115, USA.

*sontag@sontaglab.org

Abstract

Phenotypical variability in the absence of genetic variation often reflects complex
energetic landscapes associated with underlying gene regulatory networks (GRNs). In
this view, different phenotypes are associated with alternative states of complex
nonlinear systems: stable attractors in deterministic models or modes of stationary
distributions in stochastic descriptions. We provide theoretical and practical
characterizations of these landscapes, specifically focusing on stochastic Slow Promoter
Kinetics (SPK), a time scale relevant when transcription factor binding and unbinding
are affected by epigenetic processes like DNA methylation and chromatin remodeling.
In this case, largely unexplored except for numerical simulations, adiabatic
approximations of promoter kinetics are not appropriate. In contrast to the existing
literature, we provide rigorous analytic characterizations of multiple modes. A general
formal approach gives insight into the influence of parameters and the prediction of how
changes in GRN wiring, for example through mutations or artificial interventions,
impact the possible number, location, and likelihood of alternative states. We adapt
tools from the mathematical field of singular perturbation theory to represent stationary
distributions of Chemical Master Equations for GRNs as mixtures of Poisson
distributions and obtain explicit formulas for the locations and probabilities of
metastable states as a function of the parameters describing the system. As
illustrations, the theory is used to tease out the role of cooperative binding in stochastic
models in comparison to deterministic models, and applications are given to various
model systems, such as toggle switches in isolation or in communicating populations, a
synthetic oscillator, and a trans-differentiation network.

Author summary

Regulatory mechanisms of slow gene activation and deactivation play a role in 1

triggering and sustaining phenotypically heterogeneous, yet genetically identical (clonal), 2

cellular populations in a wide variety of biological processes. These range from 3

embryonic development and hematopoietic cell differentiation to the emergence of 4

tumor heterogeneity and consequent resistance to therapy. In contrast to previously 5
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reported numerical simulations, we introduce in this paper a theoretical and 6

computational approach to the characterization of the multi-attractor dynamic 7

landscape of gene networks with slow promoter kinetics. We obtain precise formulas 8

that are then illustrated through applications to several systems biology models 9

including a trans-differentiation network and a communicating population of synthetic 10

toggle switches. 11

Introduction 12

A gene regulatory network (GRN) consists of a collection of genes that transcriptionally 13

regulate each other through their expressed proteins. Through these interactions, 14

including positive and negative feedback loops, GRNs play a central role in the overall 15

control of cellular life [1–3]. The behavior of such networks is stochastic due to the 16

random nature of transcription, translation, and post-translational protein modification 17

processes, as well as the varying availability of cellular components that are required for 18

gene expression. Stochasticity in GRNs is a source of phenotypic variation among 19

genetically identical (clonal) populations of cells or even organisms [4], and is considered 20

to be one of the mechanisms facilitating cell differentiation and organism 21

development [5]. This phenotypic variation may also confer a population an advantage 22

when facing fluctuating environments [6, 7]. Stochasticity due to randomness in cellular 23

components and transcriptional and translational processes have been thoroughly 24

researched [8, 9]. 25

The fast equilibration of random processes sometimes allows stochastic behavior to 26

be “averaged out” through the statistics of large numbers at an observational time-scale, 27

especially when genes and proteins are found in large copy numbers. In those cases, an 28

entire GRN, or portions of it, might be adequately described by a deterministic model. 29

Stochastic effects that occur at a slower time scale, however, may render a deterministic 30

analysis inappropriate and might alter the steady-state behavior of the system. This 31

paper addresses a central question about GRNs: how many different “stable steady 32

states” can such a system potentially settle upon, and how does stochasticity, or lack 33

thereof, affect the answer? To answer this question, it is necessary to understand the 34

possibly different predictions that follow from stochastic versus deterministic models of 35

gene expression. Indeed, qualitative conclusions regarding the steady-state behavior of 36

gene expression levels in a GRN are critically dependent on whether a deterministic or 37

stochastic model is used (see [10] for a recent review). It follows that the mathematical 38

characterization of phenomena such as non-genetic phenotype heterogeneity, switching 39

behavior in response to environmental conditions, and lineage conversion in cells, will 40

depend on the choice of the model. 41

In order to make the discussion precise, we must clarify the meaning of the term 42

“stable steady state” in both the deterministic and stochastic frameworks. Deterministic 43

models are employed when molecular concentrations are large, or if stochastic effects can 44

be averaged out. They consist of systems of ordinary differential equations describing 45

averaged-out approximations of the interactions between the various molecular species 46

in the GRN under study. For these systems, steady states are the zeroes of the vector 47

field defining the dynamics, and “stable” states are those that are locally asymptotically 48

stable. The number of such stable states quantifies the degree of “multi-stability” of the 49

system. Stochastic models of GRNs, in contrast, are based upon continuous-time 50

Markov chains which describe the random evolution of discrete molecular count 51

numbers. Their long-term behavior is characterized by a stationary Probability Mass 52

Function (PMF) that describes the gene activity configurations and the protein numbers 53

recurrently visited. Under weak ergodicity assumptions, this stationary PMF is 54

unique [11], so multi-stability in the sense of multiple steady states of the Markov chain 55
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(MC) is not an interesting notion. A biologically meaningful notion of “multi-stability” 56

in this context, and the one that we employ in our study, is “multi-modality,” meaning 57

the existence of multiple modes (local maxima) of stationary PMFs. 58

Intuitively, given a multi-stable deterministic system, adding noise may help to 59

“shake” states, dislodging them from one basin of attraction of one stable state, and 60

sending them into the basin of attraction of another stable state. Therefore, in the long 61

run, we are bound to see the various deterministic stable steady states with higher 62

probability, that is to say, we expect that they will appear as modes in the stationary 63

PMF of the MC of the associated stochastic model. This is indeed a typical way in 64

which modes can be interpreted as corresponding to stable states, with stochasticity 65

responsible for the transitions between multiple stable states [12]. However, new modes 66

could arise in the stationary PMF of a stochastic system besides those associated with 67

stable states of the deterministic model, and this can occur even if the deterministic 68

model had just a single stable state. This phenomenon of “stochastic multi-stability” 69

has attracted considerable attention lately, both in theoretical and experimental 70

work [8, 9, 13–15]. Stochastic multi-stability has been linked to behaviors such as 71

transcriptional bursting/pulsing [16,17] and GRN’s binary response [18]. Furthermore, 72

multi-state gene transcription [4] has been used to propose explanations for phenotypic 73

heterogeneity in isogenic populations. 74

A common assumption in gene regulation models is that transcription factor (TF) to 75

gene binding/unbinding is significantly faster than the rate of protein production and 76

decay [1]. However, it has been proposed [9, 19] that the emergence of new modes in 77

stochastic systems in addition to those that arise from the deterministic model might be 78

due to low gene copy numbers and Slow Promoter Kinetics (SPK), which means that 79

the process of binding and unbinding of TFs to promoters is slow. Thus, the emergence 80

of multi-modality may be due to the slow TF-gene binding and unbinding. Already in 81

prokaryotic cells, where DNA is more accessible to TF binding than in eukaryotic cells, 82

some transcription factors can take several minutes to find their targets, comparable or 83

even higher than the time required for gene expression [20], [21], [22]. This is more 84

relevant in eukaryotic cells, in which transcriptional regulation is often mediated by an 85

additional regulation layer dictated by DNA methylation and histone modifications, 86

commonly referred to as chromatin dynamics. For example, the presence of 87

nucleosomes makes binding sites less accessible to TFs and therefore TF-gene 88

binding/unbinding is modulated by the process of chromatin opening [23], [9, 24–26]. 89

DNA methylation, in particular, has also been reported to slow down TF-gene 90

binding/unbinding [27]. Several experiments have consolidated the role of the 91

aforementioned complex transcription processes in SPK [17,27–29]. 92

In summary, new modes may appear in the stationary PMF that do not correspond 93

to stable states in the deterministic model. Conversely, multiple steady states in the 94

deterministic model may collapse, being “averaged out” by noise, with a single mode 95

representing their mean. It is a well-established fact that, in general, multi-stability of 96

the deterministic description of a biochemical network and multi-modality of the 97

associated stochastic model do not follow from each other [30]. This is especially true in 98

low copy number regimes with SPK. Figure 1 gives two examples for the emergence of 99

new modes due to SPK, and it shows that equilibria derived from the corresponding 100

deterministic model do not provide relevant information on the number and locations of 101

the modes. 102

Here, we pursue a mathematical analysis of the role of SPK in producing 103

multi-modality in GRNs and show analytically how the shape of the stationary PMF is 104

dictated by key biochemical parameters. Previous studies of the Chemical Master 105

Equation (CME) for single genes have already observed bimodality emerging with slow 106

TF-gene binding/unbinding [19,31–34]. This phenomenon was also studied by taking 107
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Fig 1. Emergence of multi-modality due to SPK. (a) A diagram of a
self-repressing gene, where ε is a parameter that multiplies the kinetic rates of all gene
reactions (b) The stationary PMF for different ε which is showing transition from fast
promoter kinetics, i.e., ε→∞, to SPK, i.e., ε→ 0, in a non-cooperative self-repressing
gene. The stationary PMF is bimodal for small ε and unimodal for large ε. The
deterministic equilibrium coincides with the fast kinetics mode. Refer to SI-§6.1. (c) A
diagram of a repression-activation two-node network. (d) SPK gives rise to four modes
while the deterministic model admits a unique stable equilibrium which is marked as a
white point, refer to SI-§6.2. The surface is plotted using (10).

the limit of SPK using the linear noise approximation [35], linear mapping 108

approximation [36], or hybrid stochastic models of gene expression [37,38]. The 109

unregulated gene (SI-§3.1) has been validated for transcriptional bursting [17]. However, 110

and despite its application relevance, mathematical analysis of the CME for multi-gene 111

networks with SPK has been missing, and only numerical solutions have been 112

reported [39,40]. 113

In this work, an underlying theoretical contribution is the partitioning of the state 114

space into weakly-coupled ergodic classes [11] which, in the limit of slow 115

binding/unbinding, results in the reduction of the infinite-dimensional MC into a 116

finite-dimensional MC whose states correspond to “promoter states”. In this limit, the 117

stationary PMF of the network can be expressed as a mixture of Poisson distributions, 118

each corresponding to conditioning the MC on a certain promoter configuration. The 119

framework proposed here enables us to analytically determine how the number of 120

modes, their locations, and weights depend on the biophysical parameters. Hence, the 121

proposed framework can be applied to GRNs to predict the different phenotypes that 122

the network can exhibit with low gene copy numbers and SPK. 123

The results are derived by introducing a new formalism to model GRNs with 124

arbitrary numbers of genes, based on continuous-time MCs. Then, we analyze the 125

stationary solution of the associated CME through a systematic application of the 126

method of singular perturbations [41]. Specifically, we study the SPK limit by letting 127

the ratio of kinetic rate constants of the TF-gene binding/unbinding reactions with 128

respect to protein reactions approach zero. The stationary solution is computed for the 129

singularly-perturbed CME. 130

In order to illustrate the practical significance of our results, we work out several 131

examples, some of which have not been studied before in the literature. As a first 132

application, we discover that, with SPK, a self-regulating gene can exhibit bimodality 133

even with non-cooperative binding to the promoter site. We then investigate the role of 134

cooperativity. In contrast to deterministic systems, we find that cooperativity does not 135

change the number of modes. Nevertheless, cooperativity adds extra degrees of freedom 136

by allowing the network to tune the relative weight of each mode without changing its 137
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location. 138

As a second application, we revisit the classical toggle switch, under slow TF-gene 139

binding/unbinding. It has been reported before that, with fast TF-gene 140

binding/unbinding, the toggle switch with single-gene copies can be “bistable” without 141

cooperative binding [42]. We show that this can also happen with SPK, and, moreover, 142

that a new mode having both proteins at high copy numbers can emerge. We provide a 143

method to calculate the weight of each mode and show that the third mode is 144

suppressed for sufficiently high kinetic rates for the dimerization reactions. 145

A third application that we consider is a simplified model of synchronization of 146

communicating toggle switches. In bacterial populations, quorum sensing has been 147

proposed [43] as a way for bacterial cells to broadcast their internal states to other cells 148

in order to facilitate synchronization. Quorum sensing communication has been adopted 149

also as a tool in synthetic biology [44,45]. Mathematical analysis of coupled toggle 150

switches designs usually employs deterministic models [46]. We study a simplified 151

stochastic model of coupled toggle switches with SPK and compare the resulting 152

number of modes with deterministic equilibria. 153

Our final, and potentially most significant, application is motivated by cellular 154

differentiation. A well-known metaphor for cell lineage specification arose from the 1957 155

work of Waddington [47], who imagined an “epigenetic landscape” with a series of 156

branching valleys and ridges depicting stable cellular states. In that context, the 157

emergence of new modes in cell fate circuits is often interpreted as the creation of new 158

valleys in the epigenetic landscape, and (deterministic) multi-stability is employed to 159

explain cellular differentiation [5]. However, an increasing number of studies have 160

suggested stochastic heterogeneous gene expression as a mechanism for 161

differentiation [13,48,49]. Numerical analysis of the CME for the canonical cell-fate 162

circuit have shown the emergence of new modes due to SPK in such models [39,50]. 163

This general category of cell-fate circuits includes pairs such as PU.1:GATA1, 164

Pax5:C/EBPα and GATA3:T-bet [51]. Cell fate circuits are characterized by TF 165

cross-antagonism. However, their behavior is affected by the promoter configurations 166

available for binding, the cooperativity index of the TFs, and the relative ratio of 167

production rates. Hence, we study two models that differ in the aforementioned aspects 168

and we highlight the differences between our findings and the behavior predicted by the 169

corresponding deterministic model. The first model employs independent cooperative 170

binding. We show that such a network can exhibit more than four modes. In contrast, 171

the deterministic model predicts up to four modes only with cooperativity [52] . The 172

second network is a PU.1/GATA.1 network which employs non-cooperative binding and 173

a restricted set of promoter configurations. The deterministic model is monostable, 174

while the parameters of the stochastic model can be chosen to have additional modes 175

including the cases of bistability and tristability. 176

The Reaction Network Structure 177

In this paper, a GRN is formally defined as a set of nodes (genes) that are connected 178

with each other through regulatory interactions via the proteins that the genes express. 179

The regulatory proteins are called transcription factors (TFs). A TF regulates the 180

expression of a gene by reversibly binding to the gene’s promoter and by either 181

enhancing expression or repressing it. 182

The formalism we employ in order to describe GRNs at the elementary level is that 183

of Chemical Reaction Networks (CRNs) [53]. A CRN consists of species and reactions, 184

which we describe below. 185
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Species: The species in our context consist of promoter configurations for the various 186

genes participating in the network, together with the respective TFs expressed from 187

these genes and some of their multimers. A configuration of a promoter is characterized 188

by the possible locations and number of TFs bound to the promoter at a given time. If 189

a promoter is expressed constitutively, then there are two configurations specifying the 190

expression activity state, active or inactive. A multimer is a compound consisting of a 191

protein binding to itself several times. For instance, dimers and trimers are 2-mers and 192

3-mers, respectively. If a protein forms an nth-order multimer then we say that it has a 193

cooperativity index of n. If species is denoted by X, then its copy number is denoted by 194

X. The set of all species is S . 195

For simplicity we assume the following: 196

(A1) Each promoter can have up to two TFs binding to it.; 197

(A2) Each TF is a single protein that has a fixed cooperativity index, i.e, it cannot act 198

as a TF with two different cooperativity indices; 199

(A3) Each gene is present with only a single copy. 200

All the above assumptions can be relaxed. SI-§4,5 contain generalizations of the results 201

to heterogeneous TFs, and arbitrary numbers of gene copy numbers. 202

Consider the ith promoter. The expression rate of a gene is dependent on the current 203

configuration of its promoter. We call the set of all possible such configurations the 204

binding-site set Bi. Each member of Bi corresponds to a configuration that translates 205

into a specific species Di
j , j ∈ Bi. If a promoter has just one or no regulatory binding 206

sites, then we let Bi = {0, 1}. Hence, the promoter configuration can be represented by 207

two species: the unbound species Di
0 and the bound species Di

1. If the promoter has no 208

binding sites then the promotor configuration species are interpreted as the inactive and 209

active configurations, respectively. On the other hand, if the promoter has two binding 210

sites then Bi = {00, 01, 10, 11}1. The first digit in a member of Bi specifies whether the 211

first binding site is occupied, and the second digit specifies the occupancy of the second 212

binding site. Hence, the promoter configuration can be represented by four species 213

Di
00,D

i
10,D

i
01,D

i
11. Note that in general we need to define 2κ species for a promoter 214

with κ binding sites. 215

The species that denotes the protein produced by the ith gene is Xi. A protein’s 216

multimer is denoted by Xic. If protein Xi does not form a multimer then Xic := Xi. 217

Reactions: In our context, the reactions consist of TFs binding and unbinding with 218

promoters and the respective protein expression (with transcription and translation 219

combined in one step), decay, and n-merization. For each gene, we define a gene 220

expression block. Each block consists of a set of gene reactions and a set of protein 221

reactions as shown in Figure 2. 222

If the promoter is constitutive, i.e. it switches between two configurations 223

autonomously without an explicitly modeled TF-promoter binding, then Bi = {0, 1} 224

and the gene reactions block consists of: 225

Di
0

αi−−⇀↽−−
α−i

Di
1.

We refer to Di
0 and Di

1 as the inactive and active configurations, respectively. If the 226

promoter has one binding site, then also Bi = {0, 1} and the gene reactions block 227

consists of just two reactions: 228

TF + Di
0

αi−−⇀↽−−
α−i

Di
1,

1We interpret the elements of the binding set as integers in binary representation.
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Fig 2. A Gene Expression Block. A GRN that consists of gene expression blocks.
A block consists of a gene reactions block and a protein reactions block. The gene
reactions are described in the text. TF is a vector of TFs which can be monomers,
dimers, or higher order multimers. Di is a vector whose components consist of the Di

j ’s.
The dimension of TF is equal to the number of binding sites of the gene.

where Di
0 and Di

1 are are the promoter configurations when unbound and bound to the
TF, respectively. Note that we did not designate a specific species as the active one
since it depends on whether the TF is an activator or a repressor. Specifically, when TF
is an activator, Di

1 will be the active configuration and Di
0 will be the inactive

configuration, and vice versa when TF is a repressor. Finally, if the promoter has two
TFs binding to it, then they can bind independently, competitively, or cooperatively .
Cooperative binding is discussed in SI-§4.3.1. If they bind independently, then the
promoter has two binding sites. Hence, Bi = {00, 01, 10, 11} and the gene block
contains the following gene reactions:

TF1 + Di
00

αi1−−−⇀↽−−−
α−i1

Di
10

TF1 + Di
01

αi2−−−⇀↽−−−
α−i2

Di
11,

TF2 + Di
00

αi3−−−⇀↽−−−
α−i3

Di
01,

TF2 + Di
10

αi4−−−⇀↽−−−
α−i4

Di
11.

The activity of each configuration species is dependent on whether the TFs are 229

activators or repressors, and on how they behave jointly. This can be characterized fully 230

by assigning a production rate for each configuration as will be explained below. In the 231

case of competitive binding, two different TFs compete to bind to the same location. 232

This can be modeled similarly to the previous case except that the transitions to Di
11, i.e. 233

the configuration where both TFs are bound, are not allowed. Hence, the gene reactions 234

block will have only the first and third, and the binding set reduces to Bi = {00, 01, 10}. 235

Our binding/unbinding reaction models account for the stoichiometric change in 236

proteins when binding to the promoters, and the bound proteins are accounted for by 237

designating a gene state for each promoter configuration (defined by the number and 238

location of bound proteins). The bound protein molecules are only governed by slow 239

gene reactions until they are released. 240

We assume that RNA polymerase and ribosomes are available in high copy numbers, 241

and that we can lump transcription and translation into one simplified “production” 242
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reaction. The latter assumption is a reasonable approximation since the turnover of 243

mRNA is typically faster than that of protein. The rate of production is dependent on 244

the promoter’s configuration. So for each configuration Di
j , j ∈ Bi the production 245

reaction is: 246

Di
j

kij−−→ Di
j + Xi

, where the kinetic constant kij is a non-negative number. The case kij = 0 means that 247

when the promoter configuration is Di
j there is no protein production, and hence Di

j is 248

an inactive configuration. The promoter configuration can be ranked from the most 249

active to the least active by ranking the corresponding production kinetic rate constants. 250

Consequently, the character of a TF is manifested as follows: if the maximal protein 251

production occurs at a configuration with the TF being bound we say that the TF is 252

activating, and if the reverse holds it is repressing. And, if the production is maximal 253

with multiple configurations such that the TF is bound in some of them and unbound in 254

others then the TF is neither repressing nor activating. 255

We model decay and/or dilution as a single reaction: 256

Xi
k−i−−→ ∅.

The expressed proteins can act as TFs. They may combine to form dimers or higher 257

order multimers before acting as TFs. The numbers of copies of the TF needed to form 258

a multi-mer is called the the cooperativity index and we denote it by n. Hence, we 259

model the cooperativity reactions as given in Figure 2 as follows (called the 260

n-imerization reactions): 261

nXi

βi−−⇀↽−−
β−i

Xic.

If the cooperativity index of Xi is 1, then the species Xic := Xi, and the multimerization 262

reaction becomes empty. Higher order multi-merization processes can be modelled as 263

multi-step or sequential reactions [54]. We discuss how our theory includes this case in 264

SI-§4.3.3, by showing how an equivalent one-step model can be formulated. 265

Kinetics: In order to keep track of molecule counts, each species Zi ∈ S is associated 266

with a copy number zi ∈ Z≥0. To each reaction Rj one associates a propensity function 267

Rj . We use the well-known Mass-Action Kinetics, which are reviewed in SI-§1.1. 268

A gene regulatory network: Consider a set of N genes, binding sets {Bi}Ni=1, and 269

kinetic constants kj ’s. A gene expression block , as shown in Figure 2, is a set of gene 270

reactions and protein reactions as defined above. Each gene block has an output that is 271

either the protein or its n-mer, and it is designated by Xic. The input to each gene 272

expression block is a subset of the set of the outputs of all blocks. Then, a GRN is an 273

arbitrary interconnection of gene expression blocks (Figure 2). SI-§4 defines a more 274

general class of network that we can study. A directed graph can be associated with a 275

GRN as follows. Each vertex corresponds to a gene expression block. There is a directed 276

edge from vertex A to vertex B if the output of A is an input to B. For simplicity, we 277

assume the following: (A4) The graph of gene expression blocks is connected. Note that 278

if A4 is violated, our analysis can be applied to each connected component. 279

Time-Scale Separation: As mentioned in the introduction, we assume that the 280

gene reactions are considerably slower than the protein reactions. In order to model this 281

assumption, we write the kinetic rates of gene reactions in the form εkj , where 282

0 < ε� 1 and assume that all other kinetic rates (for protein production, decay and 283

multi-merization) are ε−1-times faster. 284
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Events in biological cells usually take place at different time-scales [1], and hence 285

singular perturbation techniques are widely used in deterministic settings in order to 286

reduce models for analysis. On the other hand, model-order reduction by time-scale 287

separation in stochastic processes has been mainly used in the literature for 288

computational purposes, for example to accelerate the stochastic simulation 289

algorithm [55,56], or to compute finite-space-projection solutions to the CME [57]. In 290

this work, we use a singular perturbation approach for the analytical purpose of 291

characterizing the form of the stationary PMF in the regimes of slow gene-TF 292

binding/unbinding. 293

In the case of a finite MC, the CME is a finite-dimensional linear ODE, and 294

reduction methods for linear systems can be used [41] and applied to MCs [58,59]. For 295

continuous-time MCs on a countable space, as needed when analyzing gene networks, 296

there are difficult and open technical issues. Exponential stochastic stability [60] needs 297

to be established for the stationary solution in order to guarantee the existence of the 298

asymptotic expansion in ε [61]. Although it has been shown for a class of networks [62], 299

the general problem needs further research. In this paper, we will not delve into 300

technical issues of stochastic stability ; we assume that these expansions exist and that 301

the solutions converge to a unique equilibrium solution. 302

Dynamics and the CME 303

The dynamics of the network refers to the manner in which the state evolves in time, 304

where the state Z(t) ∈ Z ⊂ Z|S |≥0 is the vector of copy numbers of the species of the 305

network at time t. The standard stochastic model for a CRN is that of a 306

continuous-time MC. Let the state be Z(t) = z ∈ Z, where Z is the state-space. The 307

relevant background is reviewed in SI-§1.1. 308

Let pz(t) = Pr[Z(t) = z|Z(0) = z0] be the stationary PMF for any given initial 309

condition z0. Its time evolution is given by the CME. 310

Since our species are either gene species or protein species, we split the stochastic 311

process Z(t) into two subprocesses: the gene process D(t) and the protein process X(t), 312

as explained below. 313

For each gene we define one process Di such that Di(t) ∈ Bi. Di(t) = j if and only 314

the promoter configuration is encoded by j ∈ Bi. Collecting these into a vector, define 315

the gene process D(t) := [D1(t), ..., DN (t)]T where D(t) ∈
∏N
i=1Bi. The ith gene can 316

be represented by |Bi| states, so L :=
∏N
i=1 |Bi| is the total number of promoter 317

configurations in the GRN. With abuse of notation, we write also D(t) ∈ {0, .., L− 1} in 318

the sense of the bijection between {0, .., L− 1} and
∏N
i=1Bi defined by interpreting 319

D1...DN as a binary representation of an integer. Hence, d ∈ {0, .., L− 1} corresponds 320

to (d1, ..., dN ) ∈ B1 × ..×BN and we write d = (d1, .., dN ). 321

Since each gene expresses a corresponding protein, we define 322

Xi1(t) ∈ Z≥0, i = 1, .., N protein processes. If the multimerized version of the ith 323

protein participates in the network as an activator or repressor then we define Xic(t) as 324

the corresponding multimerized protein process, and we denote 325

Xi(t) := [Xi1(t), Xic(t)]
T . If there is no multimerization reaction then we define 326

Xi(t) := Xi1(t). Since not all proteins are necessarily multimerized, the total number of 327

protein processes is N ≤M ≤ 2N . Hence, the protein process is 328

X(t) = [XT
1 (t), .., XT

N (t)]T ∈ ZM≥0 and Z = ZM≥0 ×
∏N
i=1Bi. 329
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Results 330

Decomposition of the CME 331

It is crucial to our analysis to represent the linear system of differential equations given 332

by the CME as an interconnection of weakly coupled linear systems. To this end, we 333

present the appropriate notation in this subsection. 334

Consider the joint PMF: pd,x(t) = Pr[X(t) = x,D(t) = d], which represents the 335

probability at time t that the protein process X takes the value x ∈ ZM+ and the gene 336

process D takes the value d ∈ {0, .., L− 1}. Recall that x is a vector of copy numbers 337

for the protein processes while d encodes the configuration of each promoter in the 338

network. Then, we can define for each fixed d: pd(t) := [pdx0
(t), pdx1

(t), ....]T , 339

representing the vector enumerating the joint probabilities for all values of x and for a 340

fixed d, where x0, x1, .. is an indexing of ZM≥0. Note that pd(t) can be thought of as an 341

infinite vector with respect to the aforementioned indexing. Finally, let 342

p(t) := [p0(t)T , ..., pTL−1(t)]T , (1)

representing a concatenation of the vectors pd,x(t) for d = 0, .., L− 1. Note that p(t) is a 343

finite concatenation of infinite vectors. The joint stationary PMF π̄ is defined as the 344

following limit, which we assume to exist and is independent of the initial PMF: 345

π̄ = limt→∞ p(t). Note that π̄ depends on ε. 346

Consider a given GRN. The CME is defined over a countable state space Z. Hence, 347

the CME can be interpreted as an infinite system of differential equations with an 348

infinite infinitesimal generator matrix Λ which contains the reaction rates (see SI-§1.1). 349

Consider partitioning the PMF vector as in (1). Recall that reactions have been 350

divided into two sets: slow gene reactions and fast protein reactions. This allows us to 351

write Λ as a sum of a slow matrix εΛ̂ and a fast matrix Λ̃, which we call a fast-slow 352

decomposition. Furthermore, Λ̃ can be written as a block diagonal matrix with L 353

diagonal blocks which correspond to conditioning the MC on a specific gene state d. 354

This is stated in the following basic proposition (see SI-§2.1 for the proof): 355

Proposition 1. Given a GRN. Its CME can be written as

ṗ(t) = Λεp(t) =
(

Λ̃ + εΛ̂
)
p(t), (2)

where p(t) = [pT0 (t), .., pTL−1(t)]T , and

Λ̃ = diag[Λ0, ..,ΛL−1] (3)

where Λ̃ is the fast matrix, Λ̂ is the slow matrix, and Λ0, ..,ΛL−1 are stochastic 356

matrices. 357

Conditional MCs 358

For each d, consider modifying the MC Z(t) defined in the previous section by replacing 359

the stochastic process D(t) by a deterministic constant process D(t) = d. This means 360

that the resulting MC does not describe the gene process dynamics, it only describes 361

the protein process dynamics conditioned on d. Henceforth, we refer to the resulting 362

MC as the MC conditioned on d. The infinitesimal generator of a MC conditioned on d 363

is denoted by Λd, and is identical to the corresponding block on the diagonal of Λ̃ as 364

given in (3). In other words, fixing D(t) = d ∈ {0, .., L− 1}, the dynamics of the 365

network can be described by a CME: 366

ṗX|d = ΛdpX|d, (4)
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ṗX|d = ΛdpX|d, where pX|d is a vector that enumerates the conditional probabilities 367

px|d = Pr[X(t) = x|D(t) = d] for a given d. The conditional stationary PMF is 368

denoted by: π
(J)
X|d = limt→∞ pX|d(t), where (J) refers to the fact that it is joint in the 369

protein and multimerized protein processes. Note that π
(J)
X|d is independent of ε. This 370

notion of a conditional MC is useful since, at the SPK limit, D(t) stays constant. It can 371

be noted from (3) that when ε = 0 the dynamics of pd decouples and becomes 372

independent of pd̃, d̃ = 0, .., L− 1, d̃ 6= d. 373

We show below that each conditional MC has a simple structure. Fixing the 374

promoter configuration D(t) = d = (d1, .., dN ), the network consists of uncoupled 375

birth-death processes. So for each di, the protein reactions of production and 376

dimerization corresponding to the ith promoter can be written as follows without 377

multimerization: ∅
kidi−−⇀↽−−
k−i

Xi, where the subscript idi refers to the production kinetic 378

constant corresponding to the configuration species Di
di

, or, if there is a multimerization 379

reaction, it takes the form: ∅
kidi−−⇀↽−−
k−i

Xi, niXi

βi−−⇀↽−−
β−i

Xic. Note that the stochastic processes 380

Xi(t), i = 1, .., N conditioned on D(t) = d are independent of each other. Hence, the 381

conditional stationary PMF π
(J)
X|d can be written as a product of stationary PMFs and 382

the individual stationary PMFs have Poisson expressions. The following proposition 383

gives the analytic expression of the conditional stationary PMFs: (see SI-§2.2 for proof) 384

Proposition 2. Fix d ∈ {0, .., L− 1}. Consider (4), then there exists a conditional 385

stationary PMF π
(J)
X|d and it is given by 386

π
(J)
X|d(x) =

N∏
i=1

πX|di(xi), (5)

where 387

π
(J)
X|di(xi) =

 P

(
xi1, xi2;

kidi
k−i

,
kni

idi
βi

ni!k
ni
−iβ−i

)
: ni > 1

P
(
xi;

kidi
k−i

)
: ni = 1,

(6)

where (J) refers to the joint PMF in multimerized and non-multimerized processes, xi1 388

refers to the copy number of Xi, while xi2 refers to the copy number of Xic, 389

P(x; a) := ax

x! e
−a,P(x1, x2; a1, a2) :=

a
x1
1

x1!
a
x2
2

x2! e
−a1−a2 . 390

Remark 1. The conditional PMF in (5) is a joint PMF in the protein and 391

multimerized protein processes. If we want to compute a marginal stationary PMF for 392

the protein process only, then we average over the multimerized protein processes 393

Xic, i = 1, .., N to get a joint Poisson in N variables. Hence, the formulae (5)-(6) can 394

be replaced by: 395

πX|d(x) :=

M−N∑
i=1

∞∑
xi2=0

π
(J)
X|d(x) =

N∏
i=1

P

(
xi;

kidi
k−i

)
, (7)

where M −N is the number of n-merized protein processes, and πX|d is the marginal 396

stationary PMF for the protein process. 397

Decomposition of The Stationary Distribution 398

Recall the slow-fast decomposition of the CME in (2) and the joint stationary PMF π̄ . 399

In order to emphasize the dependence on ε we denote π̄ε := π̄(ε). Hence, π̄ε is the 400
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unique stationary PMF that satisfies Λεπ̄
ε = 0, πε > 0, and

∑
z π

ε
z = 1, where the 401

subscript denotes the value of the stationary PMF at z. 402

Our aim is to characterize the stationary PMF as ε→ 0. Writing π̄ε as an 403

asymptotic expansion to first order in terms of ε, we have 404

π̄ε = π̄(0) + π̄(1)ε+ o(ε). (8)

Our aim is to find π̄(0). We use singular perturbations techniques to derive the 405

following theorem (see SI-§2.3): 406

Theorem 3. Consider a given GRN with L promoter states with the CME (2). 407

Writing (8), then the joint stationary PMF π̄ := limε→0+ π̄ε can be written as: 408

π̄(x, d) =
∑L−1
d=0 λdπ̄X|d(x, d), where λ = [λ0, .., λL−1]T is the principal normalized 409

eigenvector of: 410

Λr := diag[1T , ..,1T ]Λ̂ [π̄X|0 π̄X|1 ... π̄X|L−1], (9)

where π̄X|0, .., π̄X|L−1 are the extended conditional stationary PMFs defined as: 411

π̄X|d(x, d) = πX|d(x), π̄X|d(x, d
′) = 0 when d′ 6= d. 412

The result characterizes the stationary solution of (2) which is a joint PMF in X 413

and D. However, we are particularly interested in the marginal stationary PMF of the 414

protein process X and the marginal stationary PMF of the non-multimerized protein 415

process, since these PMFs are typically experimentally observable. Therefore, we can 416

use Remark 1 to write the stationary PMF as mixture of L Poisson distributions with 417

weights {λd}L−1
d=0 : 418

Corollary 4. Consider a given GRN with L genes with the CME (2). Writing (8), let 419

πX|0, ..., πX|L−1 be the conditional stationary PMFs of Λ0, ...,ΛL−1, where explicit 420

expressions are given in (5). Then, we can write the following 421

π(J)(x) := limε→0+ limt→∞ Pr[X(t) = x] =
∑L−1
d=0 λdπ

(J)
X|d(x), where λ = [λ0, .., λL−1]T 422

is as given Theorem 3. Furthermore, the marginal stationary PMF of the 423

non-multimerized protein process can be written as: 424

π(x):=

L−1∑
d=0

λdπX|d(x)=

L−1∑
d=0

λd

N∏
i=1

P
(
xi;

kidi
k−i

)
. (10)

Remark 2. In the remainder of the Results section, when we refer to the “stationary 425

PMF” we mean the marginal stationary PMF of the non-multimerized protein process 426

given in (10). 427

Remark 3. If a mode is defined as a local maximum of a stationary PMF, then this 428

does not necessarily imply that the stationary PMF has L modes since the peak values of 429

two Poisson distributions can be very close to each other. In the remainder of the paper 430

we will call each Poisson distribution in the mixture as a “mode“ in the sense that it 431

represents a component in the mixture PMF. The number of local maxima of a PMF can 432

be found easily given the expression (10). 433

The Reduced-Order Finite MC 434

The computation of the weighting vector λ in Theorem 3 requires computing the L× L 435

matrix Λr in (9) which can be interpreted as the infinitesimal generator of an 436

L-dimensional MC. The expression in (9) involves evaluating the product of infinite 437

dimensional matrices. Since the structure of the GRN and the form of the conditional 438

PMF in (5) are known, an easier algorithm to compute Λr for our GRNs is given in 439
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Proposition SI-2. The algorithm provides an intuitive way to interpret Theorem 3 and 440

can be informally described as follows. 441

Let D(t) = d, the algorithm implies that each binding reaction of the form: 442

TF + Di
di

α−→ Di
di′

, gives the rate αE[TF |D = d], where E denotes mathematical 443

expectation. Hence it corresponds to a reaction of the following form in the 444

reduced-order MC: 445

Di
di

αE[TF|D=d]−−−−−−−−→ Di
di′
. (11)

Using Proposition 2, we can write: (See SI-§2.4) 446

E[TF|D = d] =
α

ni!

βi
β−i

(
kidi
k−i

)ni

. (12)

447

Generalization 448

Theorem 3 and Corollary 4 have been stated for GRNs that have gene expression blocks 449

of the form given in Figure 2. Nevertheless, the same results can also be stated for a 450

larger class of networks. The generalized class consists of GRNs with weakly reversible 451

deficiency zero conditional Markov chains. The stationary PMF for networks in this 452

class can also be expressed as a mixture of Poisson PMFs. This enables us to include 453

networks with hetero-dimerization, diffusion and multi-step multi-merization in our 454

study. The full details are in SI-§4, and a diffusion-based interconnection of toggle 455

switches will be studied as an example. 456

The Gene Bursting Model 457

The simplest network is the unregulated gene which is used for transcriptional
bursting [17] and studied using time-scale separation in [32,63]. Consider:

D0
εα−−−⇀↽−−−
εα−

D1

D1
k→X + D1, (13)

X
k−→ 0.

Referring to Figure 2, we identify a single gene block with two states. Using (5), the 458

conditional stationary PMFs are two Poissons at 0 and k/k−, and the stationary PMF 459

is a bimodal mixture of them with weights α−/(α+ α−), α/(α+ α−), respectively (See 460

SI-§3.1). In the case of fast promoter kinetics, the resulting stationary PMF is a Poisson 461

with mean α
α+α−

k
k−

which coincides with the deterministic equilibrium. Although both 462

stochastic models share the mean, the stationary PMFs and their variances differ 463

drastically. 464

Figure 3 shows the transition from fast to slow promoter kinetics using the exact 465

solution [64] and compares it to the predicted mixture of two Poissons. 466

The Role of Cooperativity 467

A TF is said to be cooperative if it acts only after it forms a dimer or a higher-order 468

n-mer that binds to the gene’s promoter [54]. In standard deterministic modelling, a 469

cooperative activation changes the form of the quasi-steady state activation rate from a 470

Michaelis-Menten function into a Hill function. Cooperativity is often necessary for a 471

network to have multiple equilibria in some kinetic parameter ranges. For example, a 472
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Fig 3. The stationary probability distribution for different ε which shows the transition
from fast promoter kinetics, i.e., ε→∞, to slow promoter kinetics, i.e., ε→ 0, in a
single unregulated gene. The stationary distribution is bimodal for small ε, i.e. ε ≤ 1,
and unimodal for large ε. The deterministic equilibrium coincides with the fast kinetics
mode at α

α+α−
k
k−

. The slow kinetic limit is calculated via Corollary 4, the fast kinetics

limit is a Poisson centered at the deterministic equilibrium, while the remaining curves
are computed by evaluating the exact solution given in [64] . The parameters are
α− = 0.1, α = 1, k− = 2, k = 20.

non-cooperative self-activating gene can only be mono-stable, while its cooperative 473

counterpart can be multi-stable for some parameters. 474

Corollary 4 and (12) show that cooperativity plays in the context of SPK a role that 475

is very different from the deterministic setting. This is since the stationary PMF is a 476

mixture of L Poisson processes (7) which are independent of the TFs’ cooperativity 477

indices and ratios. In the non-cooperative case, a certain mode can be made more 478

probable only by changing either the location of the mode or the dissociation ratio (the 479

ratio of the binding to unbinding kinetic constants). On the other hand, a multimerized 480

TF gives extra tuning parameters, namely the multimerization ratio and the 481

cooperativity index. Hence, a certain mode can be made more or less probable by 482

modifying either of them without changing the location of the peaks or the dissociation 483

ratio. In order to illustrate the above idea, we analyze a self-regulating gene with SPK 484

with and without cooperativity. 485

A Self-Regulating Gene 486

Consider a non-cooperative self-regulating gene. The unbound and bound gene states 487

are D0, D1 with k0, k1 production rates, respectively. The network is activating if 488

k1 > k0, and repressing otherwise. 489

Similar to the previous example, the stationary PMF is a mixture of two Poissons 490

centered at k0/k−, k1/k− with weights α−/(αρ+ α−), αρ/(αρ+ α−), respectively, 491

where ρ = E[X|D = 0] = k0/k−. (Refer to (12) and SI-§3.2) 492

Next, consider the cooperative counterpart with dimerization rates β, β−. The 493

stationary PMF stays the same except for ρ = E[X2|D = 0] = k2
0β/(2k

2
−β−). Hence, in 494

both cases, the PMF has modes at k1/k−, k0/k−, where the weight of the first mode is 495

proportional to ρ which can be used in order to tune the weights freely while keeping 496
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Fig 4. More modes emerge due to SPK in cooperative self-activating gene
(a) A self-activating gene. (b) The stationary PMF for different ε which shows the
transition from fast promoter kinetics to SPK in a leaky cooperative self-activation of a
gene with cooperativity index 2. The slow kinetic limit is calculated via (10), while the
remaining curves are computed by a finite projection solution [57] of the CME. . The
parameters are α = α− = ε, k0 = 20, k1 = 100, k− = 10, β = 10, β− = 50.]

Non-Cooperative Cooperative
Leaky Non-Leaky Leaky Non-Leaky

Stochastic 2 1 2 1
(Slow Promoter Kinetics) (at 0) (at 0)

Deterministic 1 1 1-2 1-2

Table 1. Comparing the number of stable equilibria/modes for a self-activating gene
between stochastic with SPK and deterministic modelling frameworks. Details are given
in SI-§6.3, where leakiness means that the unbound state has a non-zero expression rate.

the modes and the dissociation ratio unchanged. For instance, the PMF can be made 497

effectively unimodal with a sufficiently high ρ. 498

Comparison with the deterministic model: Table 1 compares the number of 499

stable equilibria in the deterministic model with the number of modes in the stochastic 500

model in the case of a single gene copy. There is no apparent correlation between the 501

numbers of deterministic equilibria and stochastic modes. Figure 4 depicts the 502

transition from a unique mode with fast promoter kinetics to multiple modes with SPK 503

with a cooperative leaky self-activating gene. 504

The Toggle Switch 505

A toggle switch is a basic GRN that exhibits deterministic multi-stability. It has two 506

stable steady states and can switch between them with an external input or via noise. 507

The basic design is a pair of two mutually repressing genes as in Figure 5-a. The ideal 508

behavior is that only one gene is “on” at any moment in time. The network consists of 509

two identical genes whose expressed proteins X,Y act as TFs for each other (The 510

general toggle switch is discussed in SI-§3.3). Each gene has dissociation ratio α/α−, 511

production ratio k0/k− for the unbound state only, multimerization ratio β/β−, and 512
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cooperativity index n. Using the algorithm of Proposition SI-2, the reduced-order 513

Markov chain infinitesimal generator is: 514

Λr =


−αρ− αρ α− α− 0

αρ −α− 0 α−
αρ2 0 −α− α−
0 0 0 −α− − α−

 , (14)

where ρ =
kn0
kn−

β
n!β−

. Notice immediately that the transition rates towards the

configuration (1,1) are zero, which implies that the weight of the mode corresponding to
(1, 1) is zero. Hence, we have three modes only. The weights corresponding to the
modes can be found as the principal eigenvector of Λr as given in Corollary 4. Hence,
the stationary distribution for X,Y is:

π(x, y) =
1

2 α
α−
ρ+ 1

(
P(y; k0k− )P(x; k0k− ) +

α

α−
ρP(y; k0k− )δ(x) +

α

α−
ρP(x; k0k− )δ(y)

)
.

Hence, we get that the PMF has three modes only at (0, k0k− ),( k0k− , 0), k0
k−
, ( k0k− ) with 515

relative weights α
α−
ρ, αα− ρ, 1, respectively. Since the stationary PMF has three modes, it 516

deviates from the ideal behavior of a switch where at most two stable steady states, 517

under appropriate parameter conditions, are possible. Nevertheless, a bimodal PMF 518

can be achieved by minimizing the weight of the first mode at ( k0k− ,
k0
k−

). If we fix α/α−, 519

then this can be satisfied by tuning n, β/β− to maximize ρ. Choosing higher 520

cooperativity indices, subject to n < k0/k−, achieves this also. For instance, a standard 521

asymmetric design [65] uses cooperativity indices 2, 3. Figure 5 depicts the effect of 522

cooperativity on achieving the desired behavior with the same dissociation constant and 523

production ratios. Notice that cooperativity allows us to minimize or maximize the 524

weight of the (high,high) mode by tuning the dimerization ratio. 525

The toggle switch has three modes regardless of the cooperativity index. This is 526

unlike the deterministic model where only one positive stable state is realizable with 527

non-cooperative binding, and two stable steady states are realizable with cooperative 528

binding. SI-§3.3 contains further Monte-Carlo simulations that show that the predicted 529

third mode appears with a two-to-one time scale separation between the slow gene 530

reactions and the fast protein reactions. Experimentally, a recent study has reported 531

that the CRI-Cro toggle switch exhibits the third (high,high) mode and the authors 532

proposed SPK as a contributing mechanism [66], a behavior predicted by our results. 533

Interconnected toggle switches 534

Consider N copies of the toggle switch defined in the previous section (we consider 535

switches with identical genes for simplicity). They express proteins Xi,Yi, i = 1, .., N . 536

Let us assume that the switches are interconnected via the diffusion of the proteins 537

among cells, modeled with a diffusion coefficient Ω as: 538

Xi
Ω−⇀↽−
Ω

Xj , Yi
Ω−⇀↽−
Ω

Yj , i 6= j, i, j = 1, .., N. We view this model as a simplification of 539

a more complex quorum sensing communication mechanism, in which orthogonal AHL 540

molecules are produced by cells and act as activators of TFs in receiving cells, as 541

analyzed for example in [46]. Figure 6a depicts a block diagram of such a network. 542

For a deterministic model, there exists a parameter range for which all toggle 543

switches synchronize into bistability for sufficiently high diffusion coefficient [46]. This 544

implies each switch in the network behaves as a bistable switch, and it converges with 545

all the other switches to the same steady-states. 546

Our aim is to analyze the stochastic model at the limit of SPK and compare it to 547

the deterministic model. This network is not in the form of the class of networks in 548
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(a) Diagram of the toggle
switch.

0
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0.005
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20 20
0 0

(b) Non-cooperative, n = 1.
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0 0

(c) Cooperative, β/β− = 1.
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10-3

40

3
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0 0

(d) Cooperative, β/β− = 0.01.

Fig 5. Cooperativity enables tuning of modes’ weights. Comparison of the
stationary PMF between non-cooperative and cooperative binding. For all cases:
α/α− = 1/200, k0/k− = 40. (a) Diagram of the toggle switch. (b) The stationary PMF
for the non-cooperative case. (c) The stationary PMF for the cooperative case with
n = 2, β/β− = 1. (d) The stationary PMF for the cooperative case β/β− = 0.01. All
surfaces are plotted using (10).

Figure 1. Nevertheless, we show in SI-§4 that our results can be generalized to networks 549

with weakly reversible deficiency zero conditional MCs. There are 4N conditional MCs, 550

and using Theorem 3, the stationary PMF is a mixture of 4N − 1 Poissons. 551

Consider now the case of a high diffusion coefficient. We show (see SI-§3.5) that as 552

Ω→∞, X1, .., XN synchronize in the sense that the joint PMF of X1, .., XN is 553

symmetric with respect to all permutations of the random variables. This implies that 554

the marginal stationary PMFs pXi
, i = 1, .., N are identical. Hence, for sufficiently large 555

Ω, the probability mass is concentrated around the region for which X1, .., XN are close 556

to each other. Consequently, for large Ω we can replace the population of toggle 557

switches with a single toggle switch with the synchronized protein processes X(t), Y (t), 558

which are defined, for the sake of convenience, as X(t) := X1(t), Y (t) := Y1(t). Next, we 559

describe the stationary PMF of X(t), Y (t). 560

The state of synchronized toggle switches does not depend on individual promoter 561

configurations, and it depends only on the total number of unbound promoter sites in 562

the network. Hence, the number of modes will drop from 4N − 1 to (N + 1)2 − 1. Note 563

that similar to the single toggle switch, there are modes which have both X,Y with 564

non-zero copy number. On the other hand, there are many additional modes. Recall 565

that in the case of a single toggle switch, we have tuned the cooperativity ratios such 566

that the modes in which both genes are ON are suppressed. Similarly, the undesired 567

modes can be suppressed by tuning the cooperativity ratio which can be achieved by 568

choosing ρXdi , ρ
Y
di
, d = 0, .., 4N − 1 sufficiently large. In particular, letting the 569

multi-merization ratio β/β− →∞, the weights of modes in the interior of the positive 570

orthant R2
+ approach zero. In conclusion, for sufficiently high Ω and sufficiently high 571

β/β− the population behaves as a multimodal switch, which means that the whole 572

network can have either the gene X ON, or the gene Y ON. And every gene can take 573
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(a) Communicating toggle
switches

Fig 6. SPK lead to the emergence of a multi- modal toggle switch (a) A
diagram of population of toggle switches. Arrows between blocks represent reversible
diffusion reactions. Each block contains a toggle switch. The remaining subfigures show
stationary PMFs for a population of three identical cooperative toggle switches. Due to
the symmetries we plot joint PMFs of X1, Y1 and X1, X2 only. Subplots (b),(c) depict
the uncoupled toggle switches. Note that X1 and X2 are not synchronized. Subplots
(d), (e) depict a high diffusion case. The toggle switches synchronize into a multi-modal
toggle switch. More details are given SI-§6.4

2N modes which are: {(ik0/(Nk−), 0) , (0, ik0/(Nk−)) : i = 1, .., N}. Comparing to the 574

low diffusion case, the network will have up to 2N − 1 modes with sufficiently high 575

multimerization ratio. 576

In order to illustrate the previous results, consider a population of three toggle 577

switches (N = 3) and cooperativity n = 2. For large Ω, the deterministic system 578

bifurcates into bistability This means that all toggle switches converge to the same 579

exact equilibria if Ω is greater than a threshold. In contrast, the modes in the stochastic 580

model of the toggle switches converge asymptotically to each other. Hence, we need to 581

choose a threshold for Ω that constitutes “sufficient” synchronization. We define this as 582

the protein processes synchronizing within one copy number. In other words, we require 583

the maximum distance between the modes to be less than 1. It can be shown (see 584

SI-§3.5) that Ω has to satisfy: Ω ≥ 1
N (k − k−). In this example, the minimal Ω is 75. 585

The stationary PMF is depicted in Figure 6d. The network has 15 modes, nine of which 586

are in the interior and are suppressed due to cooperativity. In contrast, the 587

deterministic model bifurcates into synchronization for Ω > 0.5. The stable 588

synchronized equilibria are (149.98, 0.02), (0.02, 149.98). 589

The stochastic model with SPK adds four additional modes at 590

(0, 100), (100, 0), (50, 0), (0, 50). To interpret this, note that the protein processes 591

synchronize while the promoter configurations do not. The high states (150, 0), (0, 150) 592

correspond to the case when all the binding sites are empty. In the case when one 593

binding site is empty, the first gene is active while the second and the third are not. 594

Due to diffusion, the first gene “shares” its expressed protein with the other two genes, 595

which implies that each gene will receive a third of the total protein copy numbers 596

produced in the network. A similar situation arises when two binding sites are empty. 597
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The Repressilator 598

A very different example is provided by a well-studied synthetic oscillator, the 599

repressilator. The repressilator is a synthetic biological circuit that implements a ring 600

oscillator [67], and it has been simulated with slow-promoter kinetics [21]. It is a 601

canonical example of a GRN that exhibits a limit cycle, i.e. sustained oscillation. For 602

simplicity, we study a network consisting of three identical genes whose expressed 603

proteins are X,Y,Z. The protein X represses Y, Y represses Z, and Z represses X as 604

shown in Figure 7. Each gene has dissociation ratio α/α−, production ratio k/k− for 605

the unbound state only, multimerization ratio β/β−, and cooperativity index n. 606

Deterministic analysis of the repressilator [3] reveals that it does not oscillate with 607

non-cooperative binding. Applying our techniques for the stochastic case with slow 608

promoter kinetics, we are able to find the values of the parameters so that the 609

probability is concentrated in three modes (K, 0, 0), (0,K, 0), (0, 0,K) if 610

w := 2(α/α−)(k/k−)n(β/(n!β−))� 1, where K = k/k− (see SI-§3.4). The obtained 611

tri-modal stationary distribution is consistent with the classical oscillations of the 612

repressilator, and this is independent of the cooperativity index. Note that this 613

condition is analogous to the oscillation condition in the deterministic model [3] (but 614

with cooperativity only) which also requires “large” production ratios. 615

In order to study whether the network oscillates, we need to define a notion of limit 616

cycle for a stochastic system. Due to randomness, the time-series can not be periodic. 617

Nevertheless, since the stationary distribution is tri-modal, we say that the network 618

oscillates if sample paths (time histories of trajectories) typically jump between the 619

modes in the same order. 620

Assume w � 1. Let dx, dy, dz be the three dominant modes. We show that if the 621

reduced-order Markov chain is at mode dx then it is much more likely to transition to 622

dy rather than to dz. Similar arguments apply if we start from dy, dz. In particular, let 623

Q(t) = etΛr be the probability transition matrix. We are interested in comparing the 624

probabilities of transiting from rx to ry, rz. Hence we study small t� 1. We give 625

expressions for Qdxdx(t), Qdydx(t), Qdzdx(t) in SI-§3.4 which show that if the Markov 626

chain is at dx then it is most likely to stay there. The transition is much more likely to 627

happen to dy rather than dz. Hence, we expect to see “long” periods of protein X being 628

expressed, and then it jumps to express protein Y , and then protein Z. Since the finite 629

Markov chain is ergodic, the pattern repeats. 630

Note that the analysis above predicts that both the cooperative and the 631

noncooperative repressilator are capable of oscillation with slow-promoter kinetics when 632

w � 1. The average “period” increases with the production ratio and the transient 633

behavior of the network follows the analysis in SI-§5. 634

We performed Monte-Carlo simulations via the Gillespie algorithm for both fast and 635

slow kinetics. The results are shown in Figure 8. We observe that the network always 636

oscillates with cooperative binding. With non-cooperative binding, only the network 637

with slow kinetics oscillates, as predicted. The network with fast kinetics does not 638

oscillate. Recall that the deterministic model with non-cooperative binding does not 639

oscillate [3]. 640

Trans-Differentiation Network 641

We consider two networks for TF cross-antagonism in cell fate decision in this section. 642

Both networks consist of two self-activating genes repressing each other as depicted in 643

Figure 9-a [5]. The first network [39] has independent cooperative binding of the TFs to 644

the promoters. The genes states are DX
00,D

X
01,D

X
10,D

X
11 for gene X, and vice versa for 645

gene Y. In order for the genes to be cross-inhibiting and self-activating we let: DX
01,D

Y
10 646

have zero production rates. Also, the maximal production rates for genes X,Y occur at 647
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Fig 7. A diagram of the repressilator.
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Fig 8. The noncooperative repressilator oscillates. (a) A time-series for the
cooperative repressilator with cooperativity index 2, and slow promoter kinetics. (b) A
time-series for the cooperative repressilator with cooperativity index 2, and fast
promoter kinetics. (c) A time-series for the noncooperative repressilator, and slow
promoter kinetics. (d) A time-series for the noncooperative repressilator, and fast
promoter kinetics. The plots were generated by stochastic simulation via the Gillespie
algorithm. For all the figures, the parameters are:
α = 5ε, α− = 1ε, k = 2000, k− = 20, β± = 1, where ε = 0.1 for slow kinetics, and
ε = 1000 for fast kinetics.

gene states DX
10,D

Y
01, respectively. (See SI-§6.5) The network can be analyzed with the 648

proposed framework, as it consists of two genes each with two binding sites. Hence it 649

can theoretically admit up to 16 modes according to (10). The PMF is depicted in 650

Figure 9-b for an example parameter set. Note that despite the fact that we have 16 651

modes, only eight of them contribute to most of the stationary PMF. This is to be 652

contrasted with a deterministic model, which cannot produce more than 4 stable 653

equilibria [52]. 654

The second network that we study is a model of the PU.1/GATA.1 network, which is 655

a lineage determinant in hematopoietic stem cells [68]. Diagrammatically, it can also be 656

presented by Figure 9-a. However, it differs from the first network presented above in 657

several ways. First, PU.1 needs GATA.1 to bind to the promoter of GATA.1 [69], and 658

vice versa [70]. In our modelling framework this means that the promoter configurations 659

DX
01,D

Y
10 do not exist, where X stands for PU.1 and Y stands for GATA.1. Hence, the 660

network has 9 gene states. Second, there is no evidence that PU.1 and GATA.1 form 661

dimers to activate their own promoters cooperatively. In fact, it has been shown that 662

self-activation for GATA-1 occurs primarily through monomeric binding [71]. Further 663

discussion of the model is included in SI-§6.5, and is further discussed in [72]. 664
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(a) (b) The PMF of the first cell-fate circuit (c) The PMF of the PU.1/GATA.1 network

Fig 9. The cell-fate decision network with SPK has more modes than what
a deterministic model predicts. (a) A diagram of a generic cell-fate circuit that can
describe the networks considered, (b) The PMF of the first cell-fate circuit computed
using Theorem 3. (c) The PMF of the PU.1/GATA.1 circuit , where X denotes PU.1
and Y denotes GATA.1. Three modes can be seen. Details are given in SI-§6.5.

With lack of cooperativity, the deterministic model is only monostable and cannot 665

explain the emergence of bistability for the above network. However, using our 666

framework, up to nine modes can be realized. In order to simplify the landscape, we 667

group the nine into four modes. This is possible since the states DX
11, D

X
00, DY

11, D
Y
00 668

have very low production rates. This gives a total of four modes which are 669

(low,low),(high,low),(low,high),(high,high). Using our model, we choose the parameters 670

to realize bistability and tristability. Figure 9-c depicts the stationary PMF for a set of 671

parameters that satisfies the assumptions and give rise to a tristable PMF. 672

Methods 673

Numerical Simulation Software Calculations were performed using MATLAB 9. 674

Bertini 1.5 was used for the computation of deterministic solutions of the “quorum 675

sensing” numerical example. 676

Discussion 677

Phenotypical variability in the absence of genetic variation is a phenomenon of great 678

interest in current biological and translational research, as it plays an important role in 679

processes as diverse as embryonic development [73], hematopoietic cell 680

differentiation [74], and cancer heterogeneity [75]. A conceptual, and often proposed, 681

unifying framework to explain non-genetic variability is to think of distinct phenotypes 682

as multiple “metastable states” or “modes” in the complex energetic landscape 683

associated to an underlying GRN. Following this point of view, we studied a general but 684

simplified mathematical model of gene regulation. Our focus has been on stochastic 685

SPK, the time scale relevant when transcription factor binding and unbinding are 686

affected by epigenetic processes such as DNA methylation and chromatin remodeling. 687

In that regime, adiabatic approximations of promoter kinetics are not appropriate. In 688

contrast to the existing literature, which largely confines itself to numerical simulations, 689

in this work we provided a rigorous analytic characterization of multiple modes. 690

The general formal approach that we developed provides insight into the relative 691

influence of model parameters on system behavior. It also allows making theoretical 692
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predictions of how changes in wiring of a GRN, be it through natural mutations or 693

through artificial interventions, impact the possible number, location, and likelihood, of 694

alternative states. We were able to tease out the role of cooperative binding in 695

stochastic models in comparison to deterministic models, which is a question of great 696

interest in both the analysis of natural systems and in synthetic biology engineering. 697

Specifically, we found that, unlike deterministic systems, the number of modes is 698

independent of whether the TF-promoter binding is cooperative or not; on the other 699

hand, cooperative binding gives extra degrees of freedom for assigning weights to the 700

different modes. Emergence of bimodality in noncooperative single gene networks in 701

different contexts has been reported in [76], which studies exogenous TF and fast 702

promoter kinetics, and [77], which studies the effect of temperature fluctuations. The 703

intermediate promoter kinetic domain has been studied in [78]. Switching behavior in a 704

single gene driven by a bursty exogenous input has been studied in [79]. More generally, 705

we characterized the stationary PMFs of CMEs for our GRNs as mixtures of Poisson 706

PMFs, which enabled us to obtain explicit formulas for the locations and probabilities 707

of metastable states as a function of the parameters describing the system. 708

Although we formulate our study in terms of stationary PMFs, one may equally well 709

view our results as describing the typical dynamic behavior of realizations of the 710

stochastic process. These recapitulate the form of the stationary PMFs: modes are 711

reflected in metastable states along sample paths, states in which the system will stay 712

for prolonged periods until switching to other states corresponding to alternative modes. 713

In the SI, we provide Monte-Carlo simulations showing such metastable behavior along 714

sample paths. We do so for the toggle switch as well as for a version of a well-studied 715

genetic circuit [67] which exhibits oscillatory behavior along sample paths even though 716

the corresponding deterministic model cannot admit oscillations. One application of our 717

mathematical results was to models of single or communicating “toggle switches” in 718

bacteria, where we showed that, for suitable parameters, there are a very large number 719

of metastable attractors. 720

This work was in fact motivated by our interest in hematopoietic cell differentiation, 721

and in this paper we discussed two possible models of trans-differentiation networks in 722

mammalian cells. In a first model, based on previous publications, we uncovered more 723

modes than had been predicted with different analyses of the same model. This implies 724

that in practice there could be unknown “intermediate” phenotypes that result from the 725

network’s dynamics, which may be acquired by cells during the natural differentiation 726

process or which one might be able to induce through artificial stimulation. The second 727

model included only binding reactions that have been experimentally documented, and 728

as such might be more biologically realistic than the first model. For this second model, 729

a deterministic analysis predicts monostability, which is inconsistent with the fact that 730

the network should control a switch between two stable phenotypes (erythroid and 731

myeloid). This suggests that stochasticity, likely due to low copy numbers and/or SPK, 732

might be responsible for the multiple attractors (phenotypes) that are possible in cell 733

differentiation GRNs. Our mathematical results, being quite generic, should also be 734

useful in the analysis of networks that have been proposed for understanding aspects of 735

cancer biology. For example, non-genetic heterogeneity has been recently recognized as 736

an important factor in cancer development and resistance to therapy, with stochastic 737

multistability in gene expression dynamics acting as a generator of phenotype 738

heterogeneity, setting a balance between mesenchymal, epithelial, and cancer 739

stem-cell-like states [80] [81] [82] [83], and nongenetic variability due to multistability 740

arising from mutually repressing gene networks has been proposed to explain metastatic 741

progression [84]. 742

Application of the results to practical problems entails deciding whether ε is small 743

enough. Since singular perturbations rely on a first-order approximation of the 744
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stationary PMF (8), the exact determination of the range of ε requires determining 745

coefficients of higher-order terms, which can be estimated by computing the asymptotic 746

expansion for a finite state projection of the specific problem at hand. Nevertheless, we 747

provide a simple intuitive rule. The predicted behavior is expected to emerge when the 748

largest rate in the reduced matrix εΛr is slower than the decay rate of proteins. Recall 749

that the elements of Λr depend on the association and dissociation constants and the 750

conditional expectation of protein copy numbers given in (12) as seen in (11). Our 751

numerical examples depicted in Figures 1, 3, 4, SI1 examine how the approximation 752

fares with multiple levels of time scale separation and agree with the rule. In particular, 753

the latter figure provides Monte-Carlo simulations depicting the third mode of the 754

toggle switch with a two-to-one scale separation per the definition above. Furthermore, 755

since (12) can be tuned by the multimerization ratio, we note that the ratio can make 756

the network more “robust” or vulnerable with respect to the emergence of modes 757

predicted in the SPK regime. In practice, it may be difficult to estimate 758

experimentally the average time that a TF of interest takes to find its binding targets. 759

Hence, we suggest that our results should be considered if there is a very low number of 760

gene copies (i.e., 1-5) and it is suspected that TF-gene binding kinetics are slower than 761

protein kinetics, which may happen particularly in Eukaryotic cells as discussed in the 762

introduction. Our approach can be seen as an addition to the toolbox for analysis of the 763

spectrum of possible behaviors in GRNs, and it can explain apparent multi-modality 764

when the deterministic model can’t. As an example, the recent experimental work on 765

the toggle switch [66] which validated the observation of a third mode and proposed 766

slow promoter kinetics as a mechanism, is consistent with our results. 767
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