
A Partial Order Approach for Low Complexity Control of Block Triangular

Hybrid Automata

Domitilla Del Vecchio

University of Michigan, USA

Abstract— This paper addresses the safety control problem
for a class of block triangular order preserving hybrid au-
tomata. In particular, the partial order structure of the system is
exploited to obtain two main contributions. First, conditions are
provided for the termination of the proposed algorithm. Second,
the control algorithm has linear complexity in the number of
variables.

I. INTRODUCTION

The problem addressed in this paper is the control of the

parallel composition of a class of hybrid automata (triangular

order preserving hybrid automata) under safety specifica-

tions. Motivating applications both for the model and for

the problem considered include multi-agent hybrid systems

such as intelligent transportation systems and railway control

systems. In these systems, each agent (a vehicle) can be

modeled as a hybrid automaton, in which the continuous state

dynamics has triangular structure and models the physical

motion of the agent. The discrete state can model a control

mode in which the agent can be (turning, accelerating,

run-out, etc.) or it can model input and state constraints.

The entire system is given as the parallel composition of

the component systems modeling the agents. In particular,

one problem for which automated solutions are sought (

[1], [2]) is the collision prediction and avoidance at traffic

intersections and at railway mergings.

The control problem under safety specifications can be

addressed by computing the set of states that lead to an

unsafe configuration independently of an input choice (called

the backward reachable set [3], [4] or the uncontrollable pre-

decessor [5] of an unsafe set). Then, a feedback is computed

that guarantees that the state never enters such a set [6], [7].

As it appears from these previous works, there are two main

difficulties in solving this problem: Complexity and lack of

termination guarantees. There is a large body of literature

about safety control design and the list here provided is

not exhaustive. The reachability and backward reachability

problem is undecidable even for simple subclasses of hybrid

automata [8]. For classes of hybrid automata for which

the continuous dynamics reachable set can be computed,

computational constraints usually limit the system to four or

five continuous variables and to two or three discrete states.

Furthermore, the proposed algorithms are not guaranteed

to terminate [3], [6]. To reduce the computational load,

approximate algorithms have been proposed to compute an

over-approximation of the backward reachable set of the

This work was in part supported by the Crosby Award at University of
Michigan and by the NSF CAREER award number CNS-0642719.

unsafe set [9]–[11]. However, the obtained algorithms only

provide semi-decision procedures as they are not guaranteed

to terminate.

In this paper, we propose a solution to the safety con-

trol problem, which exploits the triangular order preserving

structure of the system dynamics to address complexity and

termination issues. In particular, our solution also relies on

the approximated computation of the set of states that lead

to a bad state independently of the input, here called “the

escape set”. In contrast to previous work, however, our

algorithm is guaranteed to terminate while being provably

correct. Furthermore its complexity is linear in the number

of continuous and discrete variables as opposed to being

exponential as it occurs with algorithms that consider general

classes of hybrid systems [4]. An explicit expression of

the resulting feedback controller is provided. Two simple

application examples involving conflict avoidance at a traffic

intersection and at a railway merging are proposed. These

examples serve two main purposes. On the one hand, they

illustrate that practically relevant situations may be treated

with this approach. On the other hand, they show that the

control law is not conservative, even if it has been computed

on the basis of an over-approximation of the escape set.

This paper is organized as follows. In Section II, we

introduce basic notions. In section III, we introduce the block

triangular order preserving hybrid automaton model. For this

class of systems, we compute in Section IV the escape set

approximation and the resulting control algorithm. Finally,

we show two application examples in Section V.

II. TRANSITION SYSTEMS, PARTIAL ORDERS, AND

ESCAPE SETS

A partial order [12] is a set P with a partial order relation

“≤”, and we denote it by the pair (P,≤). For all x,w ∈ P,

the sup{x,w}, denoted x g w, is the smallest element that

is larger than both x and w. The inf{x,w}, denoted x f w,

is the largest element that is smaller than both x and w. If

S ⊆ P,
∨

S := sup S and
∧

S := inf S . If x f w ∈ X

and x g w ∈ X for all x,w ∈ X, then (X,≤) is a lattice. Any

interval sublattice of (P,≤) is given by [L,U] = {w ∈ P | L ≤

w ≤ U} for L,U ∈ P. That is, this special sublattice can

be represented by only two elements. Let (P,≤) and (Q,≤)

be partially ordered sets. A map f : P → Q is (i) an order

preserving map (order reversing map) if x ≤ w =⇒ f (x) ≤

f (w) (x ≤ w =⇒ f (x) ≥ f (w)); (ii) an order isomorphism

if x ≤ w⇐⇒ f (x) ≤ f (w) and it maps P onto Q; (iii) order

continuous if f (
∨

S) =
∨

f (S) and f (
∧

S) =
∧

f (S) for

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

ThPI27.2

1-4244-1498-9/07/$25.00 ©2007 IEEE. 3157

S ⊆ P. An order isomorphism is always order continuous. A

particular partial order that we will consider in the sequel,

is the power set of a set S , that is, the set of all subsets of

S , denoted 2S , ordered according to inclusion relation. This

partial order will be denoted by (2S ,⊆). In this partial order,

the supremum operators (g and
∨

) are given by set union

∪ and the infimum operators (f and
∧

) are given by set

intersection ∩. For a map f : P → P with (P,≤) a partial

order, we call fix-point an element x ∈ P such that f (x) = x.

The least fix-point of f is denoted by lfp(f) and the greatest

fix-point is denoted by gfp(f).

We introduce the escape set for the general modeling

formalism of transition systems (see [5], for example) as the

notion of escape set is independent on whether the system

has continuous or discrete variables. We denote a transition

system by the tuple Σ = (S ,I, τ), in which S is a (possibly

infinite) set of states, I is a set of inputs, and τ : S×I → S is

a transition map. We denote a state by s ∈ S and an input by

u ∈ I. An execution of Σ is an infinite sequence {sk}k∈N such

that sk+1 = τ(sk, uk) for uk ∈ I. An infinite input sequence is

denoted by {uk}k∈N. Let B ⊆ S be a set of bad states and let

us assume that once a state is in B, it cannot recover from B,

that is, s ∈ B⇒ τ(s, u) = s, ∀u ∈ I. For all n ≥ 0 we define

τn(s, {uk}k≤n) by the following relations τ0(s, u0) := s ∀ u0 ∈

I, τn(s, {uk}k≤n) := τ(τn−1(s, {uk}k≤n−1), un).

Definition 1: We call escape set the set of states for

which all possible input sequences will lead to a bad set

B ⊆ S in finite time. It is characterized by E = {s ∈

S | ∀ {uk}k∈N ∃ N such that τN (s, {uk}k≤N) ∈ B}.

Problem 1: The safety control problem for system Σ =

(S ,I, τ) with bad set B, is the one of designing a feedback

law u = g(s) such that for all executions {sk}k∈N starting with

s0
< E, we have that sk

< E for all k.

Let us denote the set valued map τ̄ : S → 2S by

τ̄(s) := τ(s,I) =
⋃

u∈I τ(s, u) and by τ̄n(s) := τn(s,I) =

τ(τn−1(s,I),I) with τ̄0(s) := s for all s ∈ S . Since once

a state is in B it cannot recover from B, it is the case that

s ∈ E if and only if there is a finite N such that τ̄N(s) ⊆ B (if

such N did not exist, we would have had one infinite input

sequence {uk}k∈N such that τn(s, {uk}k≤n) < B for all n, which

means by Definition 1 that s cannot be in E). We can thus

re-define the set E as

E = {s ∈ S | ∃ N < such that τ̄N(s) ⊆ B}, (1)

and we introduce the notation

pre(τ̄n)(B) := {s ∈ S | τ̄n(s) ⊆ B} (2)

to denote the set of states s that reach the bad set B in at

most n steps. The following theorem provides a mathematical

characterization of the escape set and a tool to compute it.

Theorem 1: The map pre(τ̄) that attaches to the bad set

B ⊆ S the set pre(τ̄)(B) ⊆ S as defined in equation (2) with

n = 1 is order preserving with respect to partial order (2S ,⊆).

Furthermore, the set E of equation (1) is characterized by

E =
∨

n≥0

pre(τ̄n)(B) = lfp(F), (3)

in which F(a) := B g pre(τ̄)(a) for a ⊆ S .

This theorem can be proved similarly to Theorem 10-7 in

[13]. One can also verify that

E =

∞
⋃

k=0

Ek, with Ek = pre(τ̄)(

k−1
⋃

i=0

Ei), and E0 = B. (4)

There are two major difficulties in the computation of the

set E for infinite state systems: (a) the representation of Ek

(if computable) may grow in complexity even exponentially

with k; (b) iteration (4) even if converging by virtue of

Theorem 1, might not converge in a finite number of steps.

If the sets Ek are not computable, the problem is said to be

undecidable. If instead the sets Ek can be algorithmically

computed, but the above iteration is not guaranteed to

terminate, the problem is said to be semi-decidable.

In this paper, we provide a solution to Problem 1 for a

class of block triangular hybrid automata, which also uses an

over-approximation Ē in place of the escape set E. In contrast

to previous work, our algorithm is guaranteed to terminate

while being provably correct. The computational complexity

of the proposed decision procedure is linear in the number

of variables. The main structural conditions on the system

are: (1) it is the parallel composition of hybrid automata

with upper triangular structure and with order preserving

dynamics; (2) the continuous input and the mode of each

composing system enters only the last one of the continuous

state variable updates; (3) the discrete mode update map has

no memory of the previous mode.

III. HYBRID AUTOMATON MODEL

We start by defining the discrete time hybrid automaton

in a way analogous to the continuous time counterpart [3].

Definition 2: A discrete time hybrid automaton is a tuple

H = (Q, X,I, ι, f ,Dom,R), in which Q = {q1, ..., qm} is a set

of discrete states (or modes); X = Rp is the set of continuous

states; I = ID × IC , is the set of discrete and continuous

inputs, respectively; ι : Q → 2I is a function that attached to

each discrete state the set of enabled inputs; f : Q×X×IC →

X is the continuous state update function; Dom : Q→ 2X is a

map that for each mode establishes the domain in X in which

such mode holds; R : Q × X × ID → Q is the discrete state

update map, which for any current discrete state, continuous

state, and input determines the new discrete state.

We denote by q ∈ Q the mode, by x ∈ X the continuous

state, by u ∈ IC the continuous inputs, and by σ ∈ ID the

discrete input. We assume that R is static, that is, it does not

contain memory of previous discrete states. Thus, we have

that q = R(x, σ). We make an explicit distinction between

two types of modes: the modes q such that Dom(q) = Rp

and the modes q such that Dom(q) , Rp. In particular, we

assume that a transition to a mode with Dom(q) = Rp can

happen only by a suitable choice of discrete input σ ∈ ID,

while a transition to a mode with Dom(q) , Rp can happen

only autonomously and thus cannot be controlled. This is

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI27.2

3158

formalized by the following structure of R:

R(x, σ) :=















R(σ) if σ , ∅

R(x) if σ = ∅,
(5)

in which we define R(x) := q if x ∈ Dom(q). One can verify

that this update is deterministic if Dom(q1) ∩ Dom(q2) =

∅ whenever Dom(q1) , Rp and Dom(q2) , Rp. Also, we

assume that for any mode with Dom(q) = Rp, there exists a

discrete input σ ∈ ID such that q = R(σ). The non-blocking

condition can be guaranteed if
⋃

q | Dom(q),Rp Dom(q) = Rp. In

the sequel, we use the notation Q̄ := {q ∈ Q | Dom(q) , Rp}.

Hybrid automaton H corresponds to the transition system

ΣH = (S ,I, τ), in which S = X, I = ID × IC . An input

ū ∈ I is a pair ū = (u, σ), in which u ∈ IC and σ ∈ ID. The

transition map is given by τ(x, ū) := f (R(x, σ), x, u) with

q = R(x, σ) and u ∈ ι(q). Thus, given a set of bad states

B ⊆ X, the safety control problem (Problem 1) is the one

of establishing a pair of feedback maps u = gC(x, q) and

σ = gD(x) such that the state xk along any execution {xk}k∈N
of Σ is outside the escape set E in equation (4) if x0

< E.

From expression (4), it appears that we need to compute the

set pre(τ̄)(P) for a set P ⊆ X to obtain the escape set. We

thus explicitly write the form of pre(τ̄)(P) for the transition

system ΣH . For a set P ⊆ X the set pre(τ̄)(P) defined in (2)

with n = 1 takes the form pre(τ̄)(P) = {x ∈ Rp | f (q, x, u) ∈

P with q = R(x, σ),∀ σ ∈ ID, ∀ u ∈ ι(q)}, which is

equivalent to

pre(τ̄)(P) =
⋃

Q̄

({x | f (q, x, u) ∈ P, ∀ u ∈ ι(q)}

∩Dom(q)) ∩
⋂

q | Dom(q)=Rp

{x | f (q, x, u) ∈ P, ∀ u ∈ ι(q)}.
(6)

A guaranteed over-approximation of this set can be efficiently

computed if the function f is triangular and order preserving

as we show in the next section.

A. Block triangular order preserving hybrid automata

Definition 3: A triangular order preserving hybrid au-

tomaton is a hybrid automaton H = (Q, X,I, ι, f ,Dom,R), in

which

(i) The update map f (q, x, u) for every mode q and

x = (x1, ..., xn) ∈ Rn has the following triangular structure

f (q, x, u) = (f1(x1, ..., xn), ..., fi(xi, ..., xn), ..., fn(xn, q, u)), in

which fi : Rn−(i−1) → R for i ∈ {1, ..., n−1}, fn : R×Q×IC →

R with IC = R, and Dom(q) ⊆ Rn.

(ii) We consider the component-wise partial ordering on

R
n, and the usual order on R. We assume that the set of

discrete states with Dom(q) = Rn is a lattice with minimum

α and with maximum β, that is, {q ∈ Q | Dom(q) = Rn} =

[α, β]. For all q ∈ Q, we assume that ι(q) is an interval in

R, that is, ι(q) = [uL(q), uU(q)]. Also, the functions uL(·) and

uU(·) are order preserving for q with Dom(q) = Rn.

(iii) We assume that fi is order preserving in all its argu-

ments, that is if (xa
i
, ..., xa

n) ≤ (xb
i
, ..., xb

n) then fi(xa
i
, ..., xa

n) ≤

fi(xb
i
, ..., xb

n) for i < n, and fn(xa
n, q, u) ≤ fn(xb

n, q, u). Also,

fn : Q|{q∈Q | Dom(q)=Rn} × R × IC → R is order preserving in

all its arguments. Additionally, fi is one-one and onto in xi,

that is, fixed xi+1, .., xn, q, u, for any x′
i

there is one and only

one xi such that fi(xi, ..., xn) = x′
i

if i < n or fi(xi, q, u) = x′
i

if i = n. We denote the first one by f −1
i

(x′
i
, xi+1, ..., xn) and

the second one by f −1
i

(x′
i
, q, u).

(iv) The maps fi are non-decreasing: fi(xi, ..., xn) ≥ xi, for

i < n and fn(xn, q, uU(q)) > xn for all q.

A partial order preserving update map corresponds to a

monotone continuous time dynamical system [14]. The ex-

tensive studies on monotone systems have been in part

motivated by the fact that they can model competitive and

cooperative systems. The continuous input is allowed to

enter only the update map for xn as it occurs in feedback

linearized systems. The parallel composition of a number

of triangular order preserving hybrid automata generates a

block-triangular order preserving hybrid automaton. This is

made more precise by defining the parallel composition of

hybrid automata in a way similar to [15].

Definition 4: Let H1 = (Q1, X1,I1, ι1, f1,Dom1,R1) and

H2 = (Q2, X2,I2, ι2, f2,Dom2,R2) be two hybrid automata.

The parallel composition, denoted H = H1||H2, is given by

H = (Q, X,I, ι, f ,Dom,R), in which Q = Q1 ×Q2, X = X1 ×

X2, I = IC×ID with IC = IC,1×IC,2 and ID = ID,1×ID,2;

ι : Q → IC is given by ι = (ι1, ι2); f : Q × X × IC → X

is given by f = (f1, f2); Dom(q) = Dom1(q1) × Dom2(q2);

R(x, σ) = (R1(x1, σ1),R2(x2, σ2)).

Definition 5: A block triangular order preserving hybrid

automaton is the parallel composition of N triangular order

preserving hybrid automata H1, ...,HN .

Let xi = (x1,i, ..., xn,i) ∈ R
n, qi ∈ Qi, ui ∈ ι(qi), σi ∈

ID,i represent the continuous state, the discrete state, the

continuous input, and the discrete input of the triangular

hybrid automaton Hi, respectively. Then, in each mode q =

(q1, ..., qN) of the hybrid automaton H = H1||...||HN , the

continuous state update map has the following form

x′j,i = f j,i(x j,i, ..., xn,i), j < n i ∈ {1, ...,N}

x′n,i = fn,i(xn,i, qi, ui), i ∈ {1, ...,N}, (7)

in which primed variables denote updated variables.

For this system, we model the safety requirement by

requesting that the state x never enter the bad set

B = {(x1,1, ..., xn,1, ..., x1,N, ..., xn,N) | (x1,1, ..., x1,N) ∈ B̄},

B̄ = [L1,U1] × ... × [LN ,UN], with Li,Ui ∈ R. (8)

This choice of the bad set to involve only the variables

(x1,1, ..., x1,N) is motivated by the applications that we are

targeting (see Section V).

IV. CONTROL DESIGN

In this section, we construct the control map by

computing an approximation Ē of the escape set E.

We show that E ⊆ Ē by showing that if the state is

in Ē then a control input exists that maps the state

outside Ē. Let B be as given in equations (8). Denote

Fi(x2,i, ..., xn,i, qi, ui) := (f2,i(x2,i, ..., xn,i), ..., fn,i(xni
, qi, ui))

and Fk
i
(x̄i, qi, ui) := F(Fk−1(x̄i, qi, ui), qi, ui), with

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI27.2

3159

x̄i = (x2,i, ..., xn,i). Then we have that Ē =

{(x1,1, ..., xn,1, ..., x1,N , ..., xn,N) | (x1,1, ..., x1,N) ∈ Ē∗(x)},

in which Ē∗(x) is given by the following algorithm.

Algorithm 1.

Ē∗(x) =
⋃k=k∗

k=0 [L̄k, Ūk], L̄0 = L, Ū0 = U, L̄k =

(L̄k
1
, ..., L̄k

N
), Ūk = (Ūk

1
, ..., Ūk

N
) with

L̄1
i (x̄i) = f −1

1,i (L0
i , x̄i)

Ū1
i (x̄i) = f −1

1,i (U0
i , x̄i),

while for k > 1, we have

Lk
i (x̄i) = Lk,a

i
(x̄i) g Lk,b

i
(x̄i) (9)

L
k,a

i
(x̄i) =

∧

qi∈Q̄i

f −1
1,i (L̄k−1

i (Fi(x̄i, qi, uL(qi))), x̄i) (10)

L
k,b

i
(x̄i) = f −1

1,i (L̄k−1
i (Fi(x̄i, αi, uL(αi))), x̄i) (11)

Uk
i (x̄i) = U

k,a

i
(x̄i) f U

k,b

i
(x̄i) (12)

Uk,a

i
(x̄i) =

∨

qi∈Q̄i

f −1
1,i (Ūk−1

i (Fi(x̄i, qi, uU(qi))), x̄i) (13)

Uk,b

i
(x̄i) = f −1

1,i (Ūk−1
i (Fi(x̄i, βi, uU(βi))), x̄i) (14)

with (removing the dependence on x̄i for shortness of nota-

tion)

L̄k
i = inf(Lk

i , L̄
k−1
i) (15)

Ūk
i =















sup(Uk
i
, L̄k−1

i
), if ∃ j such that Uk

j
> L̄k−1

j
,

Uk
i
, if Uk

j
≤ L̄k−1

j
∀ j,

(16)

with k∗ the smallest k such that

Uk
i ≤ L̄k−1

i ∀ i and ∃ j such that Ūk+1
j < L̄k+1

j .

For a fixed x, the set Ē∗(x) is the union of k∗ rectangles

in RN . The expressions (9) and (12) of the extremes of such

rectangles depend on the values of the variables (x2,i, ..., xn,i).

For computation, one can off-line symbolically compute the

iterative expressions (9) and (12) and evaluate them only

when the value of (x2,i, ..., xn,i) becomes available on-line.

The set Ē is obtained by computing at each iteration (n−1)N

computations for computing f j,i for j > 1 and for i ∈ [2,N].

This procedure has thus linear complexity with the number

of continuous variables. To prove termination, we make

the following assumptions, which can be statically checked.

First, define the following notation for y ∈ R and z j ∈ R
n−1

for j ∈ N

φi(y, z0) := f −1
1,i (y, z0)

φk
i (y, zk−1, ..., z0) := f −1

1,i (φk−1
i (y, zk−1, ..., z1), z0). (17)

Assumption 1: Let y1, y2, y3, y4 ∈ R
n with y1 −

y2 < y3 − y4. Then, we have that f −1
1

(y1, x
A
2,i
, ..., xA

n,i
) −

f −1
1

(y2, x
B
2,i
, ..., xB

n,i
) < f −1

1
(y3, x

A
2,i
, ..., xA

n,i
)− f −1

1
(y4, x

B
2,i
, ..., xB

n,i
),

for all (xA
2,i
, ..., xA

n,i
), (xB

2,i
, ..., xB

n,i
) ∈ Rn−1

Assumption 2: Let y1, y2 ∈ R
n with y2 ≥ y1, and

let (xA
2,i
, ..., xA

n,i
) > (xB

2,i
, ..., xB

n,i
). Then f −1

1
(y2, x

A
2,i
, ..., xA

n,i
) −

f −1
1

(y1, x
B
2,i
, ..., xB

n,i
) < y2 − y1.

Assumption 3: For all i,
∧

qi∈Q̄i
fn,i(xn,i, qi, uU(qi)) >

∨

qi∈Q̄i
fn,i(xn,i, qi, uL(qi)).

Assumption 4: Let

zk+l1−1 = F
l1−1
i

(Fk
i (x̄i, βi, uU(βi)), αi, uL(αi))

zk+l1−2 = F
l1−2
i

(Fk
i (x̄i, βi, uU(βi)), αi, uL(αi))

...

zk−1 = Fk
i (x̄i, βi, uU(βi))

...

z2 = Fi(x̄i, βi, uU(βi))

z0 = x̄i,

wk+l2−1 = F
k+l2−1
i

(x̄i, αi, uL(αi))

wk+l2−2 = F
k+l2−2
i

(x̄i, αi, uL(αi))

...

w0 = x̄i,

then we assume that for all y ∈ R the sequence

{φk+l1 (y, zk+l1−1, ..., z0) − φk+l2 (y,wk+l2−1, ...,w0)}k>1 is strictly

decreasing for all l1, l2 > 0. Let now re-define the z j and

the w j by replacing βi by qA
i

and αi by qB
i
. Then, we as-

sume that the sequence {
∨

qA
i
∈Q̄i

∧

qB
i
∈Q̄i
φk+l1(y, zk+l1−1, ..., z0)−

∧

qB
i
∈Q̄i
φk+l2+1(y,wk+l2−1, ...,w0)}k>1 is also strictly decreasing

for all l1, l2 > 0.

The meaning of Assumption 3 and 4 is basically that the

difference between the maximum and minimum control

actions applicable is enough to shrink (through backward

iteration) an initial set in the state space. Since Algorithm 1

terminates when Uk
i
≤ L̄k−1

i
for all i and there is a j such

that Ūk+1
j
< L̄k+1

j
, we will show that Assumptions 1, 2, and 3

guarantee that for all i there is a k such that Uk
i
≤ L̄k−1

i
. Then,

Assumption 4 will be used to show that when Uk
i
≤ L̄k−1

i
for

all i, there is a step l at which Ū l+1
j
< L̄l+1

j
for some j.

Proposition 1: Under Assumptions 1, 2, 3, and assuming

Ūk
i
(x̄i) = Uk

i
(x̄i) for all k, then there is k̄ such that U k̄

i
(x̄i) <

L̄k̄
i
(x̄i) for all x̄i and all i.

Proof: If both controlled and autonomous switches are

present, we have that [L̄k
i
(x̄i),U

k
i
(x̄i)] ⊆ [L̄

k,a

i
(x̄i),U

k,a

i
(x̄i)] in

which Lk,a

i
and Uk,a

i
are computed by Algorithm 1 assuming

that only autonomous switches are present ({qi | Domi(qi) =

R
n} = ∅), that is, L

k,b

i
:= −∞ and U

k,b

i
:= ∞ for all k.

This is true because, the sets [L̄k
i
,Uk

i
] are computed by

intersecting [L̄k,a
i
,Uk,a

i
] with [L̄k,b

i
,Uk,b

i
] for all k. If only

controlled switches are present (Q̄i = ∅), then we have

that [L̄k
i
(x̄i),U

k
i
(x̄i)] = [L̄k,b

i
(x̄i),U

k,b

i
(x̄i)]. Hence, to show that

there is a k such that U k̄
i
(x̄i) < L̄k̄

i
(x̄i), it is enough to show that

Uk+1
i
− L̄k+1

i
< Uk

i
− L̄k

i
when either only autonomous switches

are present (setting L
k,b

i
:= −∞ and U

k,b

i
:= ∞ for all k in

Algorithm 1) or when only controlled switches are present

(setting Lk,b
i

:= −∞ and Uk,b
i

:= ∞ for all k in Algorithm 1).

We consider here the case in which L
k,b

i
:= −∞ and U

k,b

i
:= ∞

for all k in Algorithm 1, as the other case can be treated in

a similar way.

If L̄k+1
i

(x̄i) = L̄k
i
(x̄i) (see equation (15)), we immediately

have that Uk+1
i

(x̄i) − L̄k+1
i

(x̄i) < Uk
i
(x̄i) − L̄k

i
(x̄i) because

the sequence {Uk
i
}k>0 is strictly decreasing. This can be

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI27.2

3160

shown by showing that
∨

qi∈Q̄i
f −1
1,i

(Uk
i
(Fi(x̄i, qi, uU(qi)), x̄i) <

Uk
i
(x̄i). By the non-decreasing property of fn,i, we obtain

that fn,i(xn,i, qi, uU(qi)) > xn,i for all qi. As a consequence,

one can infer that Uk
i
(Fi(x̄i, qi, uU(qi)) < Uk

i
(x̄i) for all

qi (this derives from the fact that the functions Uk
i
(·)

are order reversing function of their arguments). By the

fact that f1,i(x1,i, ..., xn,i) ≥ x1,i and that f1,i is an order

isomorphism in the first argument, we have the follow-

ing set of inequalities:
∨

qi∈Q̄i
f −1
1,i

(Uk
i
(Fi(x̄i, qi, uU(qi)), x̄i) ≤

∨

qi∈Q̄i
Uk

i
(Fi(x̄i, qi, uU(qi)) ≤ Uk

i
(x̄i), which give the desired

result.

If L̄k+1
i

(x̄i) = Lk+1
i

(x̄i) (see equation (15)), it is enough

to show that Uk+1
i

(x̄i) − Lk+1
i

(x̄i) < Uk
i
(x̄i) − Lk

i
(x̄i) because

Uk
i
(x̄i) − Lk

i
(x̄i) ≤ Uk

i
(x̄i) − L̄k

i
(x̄i) by the fact that L̄k

i
(x̄i) ≤

Lk
i
(x̄i) (see equation (15)). We thus need to show that

∨

qi∈Q̄i

f −1
1,i (Ūk

i (Fi(x̄i, qi, uU(qi))), x̄i)−

∧

qi∈Q̄i

f −1
1,i (L̄k

i (Fi(x̄i, qi, uL(qi))), x̄i) <

∨

qi∈Q̄i

f −1
1,i (Ūk−1

i (Fi(x̄i, qi, uU(qi))), x̄i)−

∧

qi∈Q̄i

f −1
1,i (L̄k−1

i (F(x̄i, qi, uL(qi))), x̄i).

(18)

Since f −1
1,i

is an order isomorphism in its first argument,

then we also have that f −1
1,i

(
∨

S , x̄i) =
∨

f −1
1,i

(S , x̄i) and

f −1
1,i

(
∧

S , x̄i) =
∧

f −1
1,i

(S , x̄i) for all S ⊆ R. As a consequence,

we can use Assumption 1 to infer that relation (18) holds if
∨

qi∈Q̄i

Uk
i (Fi(x̄i, qi, uU(qi))) −

∧

qi∈Q̄i

L̄k
i (Fi(x̄i, qi, uL(qi))) <

∨

qi∈Q̄i

Uk−1
i (Fi(x̄i, qi, uU(qi))) −

∧

qi∈Q̄i

L̄k−1
i (Fi(x̄i, qi, uL(qi))).

(19)

Then, we have that relation (19) is holding if (proceeding

iteratively)

f −1
1,i (U0

i ,
∧

qi∈Q̄i

Fk
i (x̄i, qi, uU(qi))−

f −1
1,i (L0

i ,
∨

qi∈Q̄i

Fk(x̄i, qi, uL(qi)) < U0
i − L0

i .
(20)

By virtue of Assumption 3 and by virtue of the fact

that Fk
i

is continuous and a composition of order pre-

serving functions, we obtain that
∧

qi∈Q̄i
Fk

i
(x̄i, qi, uU(qi)) >

∨

qi∈Q̄i
Fk

i
(x̄i, qi, uL(qi)). As a consequence, relation (20) holds

by virtue of Assumption 2.

Theorem 2: (Termination) Under Assumptions 1, 2, 3,

and 4, Algorithm 1 terminates, that is, k∗ is finite.

Proof: We omit the dependencies on (x2,i, ..., xn,i) to

simplify notation. The proof is composed of two main steps:

(1) we show that there is a k̄ < ∞ such that U k̄
i
≤ L̄k̄−1

i
, Uk

i
≤

L̄k−1
i

for all k > k̄ and for all i (thus the update rule becomes

the second one of (16)); (2) we show that if Uk
i
≤ L̄k−1

i
for

all i and all k > k̄, then there is a finite k∗ > k̄ such that

Ūk∗

i
< L̄k∗

i
for some i.

(1) We show that there is a k̄ < ∞ such that U k̄
i
≤ L̄k̄−1

i

for some arbitrary i. Assume that Uk
i
> L̄k−1

i
, then Ūk

i
= Uk

i
.

By Proposition 1, we have that there must be a ki such that

Ū
ki

i
≤ L̄

ki−1

i
because this must be the case at least for that ki

such that U
ki

i
< L̄

ki

i
. If U

ki

i
< L̄

ki

i
, since L̄

ki

i
≤ L

ki−1

i
by virtue

of equation (9), we also have that U
ki

i
< L̄

ki−1
i

. Thus, we have

shown that for all i there is a ki such that U
ki

i
< L̄

ki−1

i
. Next,

we show that if it is the case that U
ki

i
≤ L̄

ki−1

i
, then it is also

the case that Uk
i
≤ L̄k−1

i
for all k > ki. This follows directly

from the order isomorphism property of f1,i and from the

fact that (by equations (16) we have Ūk
i
= L̄k−1

i
. Since this

is true for all i, we can say that there is a k̄ = maxi(ki) such

that for all k > k̄ we have that Uk
i
≤ L̄k−1

i
for all i.

(2) Let then k̄ be the smallest k for which Uk
i
≤ L̄k−1

i

for all i. Set k = k̄ + j, then we have L̄k
i
(x̄i) =

φk̄+ j−l1 (L0
1
, F

k−l1−1
i

(xi, αi, uL(αi)), ..., F(x̄i, αi, uL(αi)), x̄i),

in which l1 ≥ 0. We have that l1 can be larger than zero by

virtue of equations (15). Similarly, we have that

Uk
i (x̄i) = φ

k̄+ j−l−1(L0
1, F

k̄−l−2
i (F

j

i
(x̄i, βi, uU(βi)), αi, uL(αi)),

..., F(x̄i, βi, uU(βi)), x̄i)),

by virtue of the first of (16), in which l ≤ l1. If instead,

the first of (16) was never verified for k < k̄, we could use

again Proposition 1 for showing that after some k > k̄ we

have that Uk(x̄i) < Lk(x̄i). By virtue of Assumption 4, the

sequence {U
k̄+ j

i
− L̄

k̄+ j

i
} j>0 is strictly decreasing. Thus, for all

i there is a finite k∗
i

such that Ū
k∗

i

i
< L

k∗
i

i
. Let k∗ = mini(k

∗
i
).

We next show that Ē ⊇ E by showing that for all x < Ē,

there is always an input such that x is mapped outside Ē. We

show this in two parts. First, we demonstrate that whenever

x < Ē (and thus (x1,1, ..., x1,N) < Ē∗(x) ⊆ RN) there is a two-

dimensional projection of Ē∗(x) ⊆ RN and of (x1,1, ..., x1,N)

along coordinate axis (i, j) in RN , such that (x1,i, x1, j), is not

contained in
⋃k∗

k=0[L̄k
i
(x̄i), Ū

k
i
(x̄i)]×[L̄k

j
(x̄ j), Ū

k
j
(x̄ j)]. Secondly,

we consider the two-dimensional projection of Ē∗(x) and

of (x1,1, ..., x1,N) to compute an input that maps the two-

dimensional projection of (x1,1, ..., x1,N) outside the two-

dimensional projection of Ē∗(x).

Proposition 2: If (x1,1, ..., x1,N) < Ē∗(x), then there

is a pair of coordinates (i, j) such that (x1,i, x1, j) <

[L̄k
i
(x̄i), Ū

k
i
(x̄i)] × [L̄k

j
(x̄ j), Ū

k
j
(x̄ j)] for all k.

Proof: We omit here the dependence of Ē∗, of L̄k,

and of Ūk on x. If (x1,1, ..., x1,N) < Ē∗, then it means that

(x1,1, ..., x1,N) is not in any of the component rectangles of

Ē∗, that is, (x1,1, ..., x1,N) < [L̄k
1
, Ūk

1
] × ... × [L̄k

N
, Ūk

N
] for all

k. Thus, for all k there is at least one ik such that either (a)

x1,ik < L̄k
ik

or (b) x1,ik > Ūk
ik

. Let k be the smallest integer

less or equal to k∗ such that there is a ik with x1,ik > Ūk
ik

.

If it does not exist, it means that there is ik∗ such that

x1,ik∗ < L̄k∗

ik∗
. Therefore, independently of the component i

we will have that (x1,i, x1,ik∗) < [L̄k
i
, Ūk

i
] × [L̄k

ik∗
, Ūk

ik∗
] for all

k because L̄k∗

ik∗
< L̄k

ik∗
for all k < k∗ by construction. If it

exists, it means that x1,ik > Ūk
ik

and that there is a ik−1

such that x1,ik−1
< L̄k−1

ik−1
. As a consequence, we have that

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI27.2

3161

x1,ik > Ūk
ik
≥ Ūk+1

ik
≥ ... ≥ Ūk∗

ik
and therefore x1,ik < [L̄

j

ik
, Ū

j

ik
]

for all j ∈ {k, ..., k∗}. Also, we have that x1,ik−1
< L̄k−1

ik−1
≤

L̄k−2
ik−1
≤ ... ≤ L̄0

ik−1
and therefore x1,ik−1

< [L̄
j

ik−1
, Ū

j

ik−1
] for all

j ∈ {0, ..., k − 1}. Thus, one can conclude that the pair of

coordinates (x1,ik , x1,ik−1
) < [L̄

j

ik
, Ū

j

ik
]× [L̄

j

ik−1
, Ū

j

ik−1
] for all j.

Proposition 3: Let L̄k
i
(x̄i) and Ūk

i
(x̄i) be as in Algorithm

1. If x1,i < L̄k
i
(x̄i), (x1,i > Ūk

i
(x̄i)) then there exists a contin-

uous/discrete control law (σi, ui) such that x′
1,i
< L̄k−1

i
(x̄′

i
)

(x′
1,i
> Ūk−1

i
(x̄′

i
)). In particular, such control laws are as

follows:

if x1,i < L̄k
i (x̄i), then















Ri(σi) = αi, ui = uL(αi) if Lk,a

i
(x̄i) < Lk,b

i
(x̄i)

Ri(xi) = qi, ui = uL(qi) if Lk,a
i

(x̄i) ≥ Lk,b
i

(x̄i)
(21)

if x1,i > Ūk
i (x̄i),















Ri(σi) = βi, ui = uU(βi) if Uk,a
i

(x̄i) > Uk,b
i

(x̄i)

Ri(xi) = qi, ui = uU(qi) if U
k,a

i
(x̄i) ≤ U

k,b

i
(x̄i).

(22)

Proof: In the case in which x1,i < L̄k
i
(x̄i) and

Lk,a

i
(x̄i) > Lk,b

i
(x̄i), we will have that x1,i < Lk,a

i
(x̄i).

Applying f1,i both sides and taking into account that f1,i
preserves the ordering, we obtain that f1,i(x1,i, ..., xn,i) <

f1,i(L
k,a
i

(x̄i), x̄i). By equation (10) and by the order isomor-

phism property of f1,i in its first argument, we have that

f1,i(L
k,a

i
(x̄i), x̄i) =

∧

qi∈Q̄i
L̄k−1

i
(Fi(x̄i, qi, uL(qi))). Also, we have

that
∧

qi∈Q̄i
L̄k−1

i
(Fi(x̄i, qi, uL(qi))) ≤ L̄k−1

i
(Fi(x̄i, qi, uL(qi))). As

a consequence, if we choose the control action such that

qi = Ri(xi) and ui = uL(qi), we obtain that Fi(x̄i, qi, uL(qi)) =

(x′
2,i
, ..., x′

n,i
) = x̄′

i
and therefore that x′

1,i
= f1,i(x1,i, ..., xn,i) <

L̄k−1
i

(x̄′
i
). If Lk,a

i
(x̄i) ≤ Lk,b

i
(x̄i). We can proceed similarly

to obtain that x1,i < L
k,b

i
(x̄i) implies by the order preserv-

ing property of f1,i that f1,i(x1,i, ..., xn,i) < f1,i(L
k,b
i

(x̄i), x̄i).

By equation (11), we also have that f1,i(L
k,b

i
(x̄i), x̄i) =

L̄k−1
i

(Fi(x̄i, αi, uL(αi))), which by choosing Ri(σi) = αi and

ui = uL(αi) is equal to L̄k−1
i

(x′
2,i
, ..., x′

n,i
) = L̄k−1

i
(x̄′

i
). As a

consequence, we have again that x′
1,i
= f1,i(x1,i, ..., xn,i) <

L̄k−1
i

(x′
2,i
, ..., x′

n,i
) = L̄k−1

i
(x̄′

i
). If x1,i > Ūk

i
(x̄i), the proof

proceeds in a similar way.

When the measurement x becomes available, the extremes

L̄k
i
(x̄i) and Ūk

i
(x̄i) can be evaluated. Then, one checks whether

maintaining the current input will cause that (x′
1,1
,, x′

1,N
)

will enter any of the intervals [L̄k
1
(x̄′

1
), Ūk

1
(x̄′

1
)] × ... ×

[L̄k
N

(x̄′
N

), Ūk
N

(x̄′
N

)] for all k. If not, the input is maintained

constant. Otherwise, the input is changed according to the

following algorithm.

Algorithm 2.

(i) If there is a k ∈ [0, k∗] and a pair of coordinates (i, j)

such that x1,i > Ūk+1
i

and x1, j < L̄k
j

then set (Ri(xi, σi), ui)

as in equation (22) with k + 1 in place of k, and set

(R j(x j, σ j), u j) as in equation (21);

(ii) If instead (x1,1, ..., xN,1) < (Lk∗

1
(x̄1), ..., Lk∗

N
(x̄N)), select

(i, j) such that x1,i < L̄k∗

i
(x̄i) and x1, j < L̄k∗

j
(x̄ j) with

Uk∗+1
j

(x̄ j) < Lk∗+1
j

(x̄ j). If x1, j > Lk∗+1
j

(x̄ j) then (x1, j >

Uk∗+1
j

(x̄ j)) set (R j(x j, σ j), u j) as in equation (22) and

set (Ri(xi, σi), ui) as in equation (21). If x1, j ≤ Lk∗+1
1, j

, set

(R(x j, σ j), u j) as in equation (21) and set (Ri(xi, σi), ui)

arbitrarily (if Ri(xi, σi) = Ri(xi), then set ui ∈ ιi(qi)).

Theorem 3: (Correctness) There exists a continuous con-

trol law u = gC(x, q) and a switching law σ = gD(x)

with q = R(x, σ) such that if x < Ē with Ē =

{(x1,1, ..., xn,1, ..., x1,N , ..., xn,N) | (x1,1, ..., x1,N) ∈ Ē∗(x)} and

Ē∗(x) as computed by Algorithm 1, then x′ < Ē. In particular,

Algorithm 2 provides one such control law.

The proof of this theorem is a direct consequence of Propo-

sition 2 and of Proposition 3.

V. EXAMPLES

Example 1: Vehicles at a traffic intersection. Let us

consider two vehicles converging to a traffic intersection

(represented in Figure 1). The vehicle’s physical motion can

v1 C

d

d dy1

y2

v2

Fig. 1. Two vehicles converging at a traffic intersection. The bad
set is defined to be the set of all vehicle 1/vehicle 2 configurations
in which the vehicles are both closer than some distance d from
the intersection C of their paths.

be modeled by considering its longitudinal dynamics along

its geometric path (determined by the geometry of the lanes)

following a similar modeling framework as performed in [3].

Let then y1 and y2 denote the position of the two vehicles

along their path with respect to some fixed reference point.

Let v1 and v2 be the velocities of the two cars along their

paths. We assume that each vehicle dynamics along its path

can be modeled by a second order system, which in discrete

time takes the form:

y′i = yi + vi(∆T), v′i = vi + ui(∆T), i ∈ {1, 2}, (23)

in which ∆T is the time interval. The controller ui can

directly affect the acceleration by acting on the throttle pedal

or on the brake. When a vehicle is inside the intersection,

it cannot stop as it has to free the intersection as soon as

possible, while it can stop before entering the intersection. In

addition, a vehicle cannot move backwards in its lane. These

constraints can be modeled by requiring that (for a suitable

yA
i
) for yi ≤ yA

i
then vi ≥ 0, while for yi > yA

i
we must have

vi ≥ vm with vm > 0. Let um < 0 < uM. Thus, each vehicle

can be described by a hybrid automaton with two modes:

qi = q1,i if (yi ≤ yA
i

and vi ≤ 0) or (yi > yA
i

and vi ≤ vm);

qi = q2,i if (yi ≤ yA
i

and vi > 0) or (yi > yA
i

and vi > vm).

In each one of these modes, the update map f is given by

equations (23), in which ι(q1,i) = [0, uM], ι(q2,i) = [um, uM].

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI27.2

3162

50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

y
2 C

y
1

Sample trajectories for Example 2

Fig. 2. The rectangle represents the set B̄. The plot shows the y1, y2

trajectories of trains at a railway merging. Each trajectory corre-
sponds to a different choice of initial values for (y1, y2, v1, v2, u1, u2).

Since ID = ∅, the hybrid automaton admits only autonomous

mode transitions.

Example 2: Trains at a railway merging. Consider two

trains in the proximity of a railway merging. Assuming

a second order dynamics along their rail, each train can

be modeled again as in equations (23). However, now the

input sets will be different from the previous example. In

digital control mode [16], the input ui can take four values

corresponding to a “hard-brake” mode, a“run-out” mode,

a “constant-speed” mode, and an “acceleration” mode. Let

these 4 values be denoted by respectively α, γ, δ, β so that

α < γ < δ < β. Each vehicle dynamics can thus be modeled

by a hybrid automaton with four modes such that qi = q1,i

iff ui = α, qi = q2,i iff ui = γ, qi = q3,i iff u3 = δ, and qi = q4,i

iff ui = β. There are no autonomous switches in this system,

so that for each train Ri(yi, vi, σi) = Ri(σi) where σi is the

discrete input.

One can verify that the above models for each vehicle

are triangular order preserving hybrid automata. The safety

requirement is that the two vehicles never are in a ball of

radius d around the conflict point C at the same time. This

is encoded by a bad set B = {(y1, v1, y2, v2) | (y1, y2) ∈ B̄}, in

which B̄ = [L1,U1] × [L2,U2] for suitable L1,U1, L2,U2 ∈

R. Algorithms 1 and 2 were implemented for the examples

introduced for the case ∆T = 1. The results are shown in

Figure 2 and in Figure 3. The over-approximation of the

escape set is tight as the trajectories of the controlled system

are very close to the bad set B̄ (Figure 2). This means that

the control law is not conservative. An instance of escape

set for fixed values of the velocities is depicted in Figure 3.

VI. CONCLUSIONS

We have presented a linear complexity algorithm for the
computation of safety controllers for which a termination
condition is provided. This result is obtained by directly
exploiting the triangular structure of the system and the order
preserving property of the dynamics. Simulation results have
shown that the proposed control law is not conservative. In
our future work, we will relax the non-decreasing assumption
of the update functions, we will consider bad sets that are
the union of intervals as opposed to an interval itself and that

150 200 250 300

40

60

80

100

120

140

160

180

200

C

y
1

y
2

Escape set for fixed v
1
 and v

2
 for Example 1

Fig. 3. The escape set for a combination of speeds for Example 1.

incorporate all the state variables. We will consider discrete
state update maps with memory and we will use interval
abstraction techniques to embrace class of systems that are
not order preserving. Finally, the case of imperfect and partial
observation will be addressed and the extension to games
considered.

R

[1] O. of Safety Analysis, “Accidents/incidents counts,” Federal Railroad
Administration, http://safetydata.fra.dot.gov/officeofsafety, 2005.

[2] K. Laberteaux, L. Caminiti, D. Caveney, and H. Hada, “Pervasive
vehicular networks for safety,” IEEE Pervasive Computing, Spotlight,
pp. 60–62, 2006.

[3] C. J. Tomlin, J. Lygeros, and S. Sastry, “A game theoretic approach
to controller design for hybrid systems,” Proceedings of the IEEE,
vol. 88, no. 7, pp. 949–970, 2000.

[4] C. Tomlin, I. Mitchell, and R. Ghosh, “Safety verification of conflict
resolution maneuvers,” IEEE Trans. Intelligent Transportation, vol. 2,
pp. 110–120, 2001.

[5] T. A. Henzinger and P. W. Kopke, “Discrete-time control for rectan-
gular hybrid automata,” Theoretical Computer Science, vol. 221, pp.
369–392, 1999.

[6] O. Shakernia, G. J. Pappas, and S. Sastry, “Semi-decidable synthesis
for triangular hybrid systems,” in Lecture Notes in Computer Science,

volume 2034, 2001.
[7] E. Asarin, O. Maler, and A.Pnueli, “Symbolic controller synthesis for

discrete and timed systems,” in Lecture Notes in Computer Science,
volume 999, 1995, pp. 1–20.

[8] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s
decidable about hybrid automata,” Journal of Computer and System
Sciences, vol. 57, pp. 94–124, 1998.

[9] I. Mitchell and C. J. Tomlin, “Overapproximating reachable sets
by hamilton-jacobi projections,” Journal of Scientific Computation,
vol. 19, no. 1, pp. 323–346, 2003.

[10] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model
checker for hybrid systems,” Software Tools for Technology Transfer,
vol. 1, pp. 110–122, 1997.

[11] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi,
“Beyond hytech: Hybrid systems analysis using interval numerical
methods,” in Lecture Notes in Computer Science 1790, Springer-

Verlag, 2000, pp. 130–144.
[12] B. A. Davey and H. A. Priesteley, Introduction to Lattices and Order.

Cambridge University Press, 2002.
[13] P. Cousot, “Semantic foundations of program analysis: Theory and

applications,” In S. S. Muchnick and N. D. Jones (Eds.), Program
Flow Analysis: Theory and Applications. Prentice-Hall, pp. 303–345,
1981.

[14] H. L. Smith, Monotone Dynamical Systems. American Mathematical
Society, 1995.

[15] T. A. Henzinger, “The theory of hybrid automata,” in Proceedings of

the 11th Annual Symposium on Logic in Computer Science. IEEE
press, 1996, pp. 278–292.

[16] J. Pachl, Railway operation and control. VTD Rail Publishing, 2002.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI27.2

3163

