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Abstract. The past several years have witnessed an increased presence of control theoretic concepts in syn-
thetic biology. This review article presents an organized summary of how these control design concepts have
been employed to tackle a variety of problems faced when building synthetic biomolecular circuits in living
cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design
methods can be employed to make the behavior of synthetic genetic circuits within a single cell or across a
cell population more reliable, predictable, and robust to perturbations. The description especially highlights
technical challenges that uniquely arise from the need to implement control designs within a new hardware
setting, along with implemented or proposed solutions. Some engineering solutions employing complex feed-
back control schemes are also described, which, however, still require a deeper theoretical analysis of stability,
performance and robustness properties. Overall, this paper should help synthetic biologists familiarize with
feedback control concepts as they can be used in their application area. At the same time, it should provide
some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biol-
ogy.
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1 Introduction

Figure 1: Feedback control setups in synthetic biology. (a) General feedback control architecture where a controller
measures an output y of interest of a process, compares it to a desired value u, and applies as an input to the process. (b)
In-cell feedback control implementation: the process and the controller are both “running” in the cell and, as such, are
implemented by biomolecular reactions. (c) In-silico feedback control implementation: the process is the cell itself with
all its molecular circuitry while the controller is implemented in a computer. Microscopy image courtesy of Cell Image
Library [51].

Control theory has arisen from the conceptualization and generalization of design strategies aimed at im-
proving the stability, robustness, and performance of physical systems in a number of applications including
mechanical devices, electrical/power networks, space and air systems, and chemical processes [18]. As shown
in Figure 1(a), a closed loop feedback system involves a physical process to be controlled and a controller. In
a classical negative feedback setup, the controller measures the process output of interest y, compares it to a
desired value u, and based on the error between these two, it computes the input to be applied to the process
to ultimately decrease the discrepancy between y and u. Indeed, when the performance, reliability, and ro-
bustness of certain hardware components cannot be improved further by better characterization or hardware
design, negative feedback control is especially useful.

A simple engineering example of negative feedback is the automatic cruise control of a vehicle, in which
the process to be controlled is the vehicle, u is its desired speed (set by the driver) and y is its actual speed
measured by a speedometer. An on-board controller computes the error u − y, and if this error is positive
(y < u), throttle is applied to increase the propelling force applied to the vehicle by the engine so that the speed
y increases toward u. If the error is negative (y > u), throttle (and/or brake) is used to decrease the propelling
force so that the speed y decreases toward u. As described, this feedback adjustment of the input (throttle or
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brake) requires minimal information about the process beyond the fact that more throttle increases the speed
while less throttle and/or brake decrease the speed, and hence it tends to be robust to process uncertainty
and disturbances, such as wind gusts. Realization of this negative feedback control system relies on the
interconnection of highly modular, robust and accurate sensing, computing and actuating components (e.g.
speedometer, on-board computer, and engine, respectively). However, components that behave modularly, are
robust and accurate are especially hard to find in the field of synthetic biology, which we introduce next.

Synthetic biology is a nascent research area, in which biomolecular circuits are assembled in living cells
with the final goal of controlling cellular behavior for a variety of uses, from energy, to environment, to
medicine [21]. However, partly due to the nonlinearity, stochasticity, variability and lack of modularity in
biomolecular processes, as reviewed in more detail in Sections 2, 4 and 5, realization of synthetic biomolec-
ular circuits is often a lengthy and ad hoc process [24]. The past several years have witnessed an increased
presence of control theoretic techniques and concepts in synthetic biology for tackling several of these prob-
lems, leading to promising results. However, the nature of biomolecular interactions has also posed unavoid-
able challenges to the implementation of negative feedback itself. Therefore, solving problems in synthetic
biology using control theory requires much more than simply transplanting existing theories developed for
engineering systems directly to a biomolecular setting.

Implementations of negative feedback design in synthetic biology fall into two different categories: in-
cell feedback control and in-silico feedback control as illustrated in Figure 1(b)-(c). In-cell feedback control
has both the process and the controller realized within the cell through biomolecular processes. It is more
suitable for applications where cells need to function as autonomous programmed “machines”, such as in
bioremediation where engineered bacteria can detect harmful compounds in the environment and target them
for degradation, or in medical applications where engineered cells are injected in ill patients to target specific
diseases. By contrast, in-silico feedback control has the entire cell as the process to be controlled while
the controller is implemented in a computer. This may be suitable for applications where the cells to be
controlled should be only minimally genetically modified, such as when controlling cell differentiation and
de-differentiation (reprogramming). This paper reviews both setups, with more emphasis on in-cell feedback
owing to the more extensive work that has been done in this setting.

Before delving into the review, we provide a short summary of synthetic biology in Section 2 and of the
essence of feedback control in Section 3 to set the basis for the rest of the review. In-cell feedback control is
reviewed in Section 4, Section 5, and Section 6. In Section 4 we focus on control designs created to improve
the robustness of genetic circuits to a number of perturbations, including noise, and fluctuations in the genetic
context. In Section 5, we illustrate how feedback control designs and implementations have been used to
defeat loading problems appearing when connecting genetic modules to create larger systems. In Section 6,
we discuss current implementations of cooperative feedback control to engineer multi-cell coordination for a
number of applications. In-silico feedback control is reviewed in Section 7, with a description of the main
achievements and of the technical challenges that need to be overcome to make in-silico feedback control
practical.

2 Brief overview of synthetic biology and the role of control theory

Synthetic biology aims to engineer new living functionalities by creating, characterizing, and assembling
biological parts, devices, and systems in living cells [44]. The ability to re-engineer living organisms has
tremendous potential to address societal needs with a number of applications, ranging from energy, to en-
vironment, to medicine. Microbes can be engineered to convert biomass or light into biofuels [96] and the
design of genetic control circuits provides a promising way to optimize microbial hosts to boost production
[89]. Beyond typical energy usage on Earth, there is also a need for sustainable life support in space ex-
ploration missions, in which genetic circuitry that optimizes production is of paramount importance [75].
Bioremediation and biodegradation of harmful molecules in our water, soil, or industrial facilities can also
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Figure 2: Condensed timeline of synthetic biology. (a) The development of synthetic biology is grounded on molec-
ular biology, genetic engineering, and genomics. (b) The early phases of synthetic biology were focusing mostly on
forward engineering simple modules, such as switches and oscillators. (c) After the “era” of modules, synthetic biol-
ogy is heading toward the era of systems, in which modules will serve as functional units to create more complex and
sophisticated systems with potential applications to energy, environment, and medicine.

leverage synthetic biology technology by programming bacteria that seek out and degrade herbicides [104],
or that sense environmental hazards such as heavy metals and signal them through visible output [14].

The potential to interface with human health in a way that traditional drugs cannot, puts synthetic biology in
a position to impact cancer treatment, microbiome engineering, and regenerative medicine [95]. Engineered
bacteria can be used to invade cancer cells or colonize tumors and, as a result, express a reporter for detec-
tion [3, 33]. Similarly, engineered T-cells (a type of the body’s immune cells) can express special receptors
that recognize molecules typical of cancer cells. With synthetic sensors, dynamic feedback control can be
implemented through genetic circuits that eradicate cancer cells by regulating the secretion of killing agents
[26]. The human microbiome, the vast community of microorganisms that reside on and in humans, maintains
proper health by an actively regulated balance among the activities and amounts of its constituent microbes.
The ability to engineer microbes to steer this balance back to a health state in microbiome-related diseases
provides a powerful control mechanism that surpasses traditional antibiotic treatments, which are non-specific
and can promote resistance [39]. Finally, synthetic biology could prove remarkably effective in regenerative
medicine where some damaged tissues and organs are traditionally replaced by biomaterials to restore proper
function. These and many more tissues could instead be replaced by patient-derived cells that have been re-
programmed through appropriate temporal and spatial control, avoiding innate immune responses [95, 56].

From parts to modules. The roots of this emerging field may be traced back to two key Nobel Prize
winning discoveries: the discovery of the lac operon’s regulation in 1961 [58], shortly followed by the dis-
covery of DNA restriction enzymes in 1969 [7] (Figure 2(a)). The discovery that the rate of gene expression
can be controlled by suitable proteins (transcription factors), allows to view genes as (nonlinear) dynamical
systems with inputs and outputs, where inputs and outputs are proteins. These parts can thus be assembled to
form functional modules and larger systems. Technologically, restriction enzymes provided a way to assemble
these circuits on DNA since specific DNA sequences could be cut and then ligated into a new DNA sequence
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to create recombinant DNA [57]. A groundbreaking application of this technology was insulin production in
engineered bacteria E. coli [46]. Further advances in genetics, including PCR in 1985 [83] and automated
DNA sequencing in 1986 [106], provided additional enabling technology to effectively engineer synthetic
gene networks from a high-level functional specification to the corresponding coding DNA sequence in living
cells. Although viewing genes as input/output systems that can be connected through transcription factors is a
convenient abstraction for design, the reality is that the properties of these components are often altered by the
DNA sequences of the genetic parts surrounding them. Dissecting this lack of modularity of basic parts and
finding ways to mitigate it is a major research thrust in synthetic biology and remarkable progress has been
made. This review is not concerned with modularity of basic parts and a more detailed description of recent
progress can be found elsewhere [35]. The first two forward engineered genetic modules appeared in early
2000: the toggle switch and the “repressilator” (Figure 2(b)). The toggle switch uses two mutually repressing
genes, effectively forming a positive feedback circuit, which leads to a bistable system that can switch between
two possible states under suitable stimulation [45]. The toggle switch has been employed in several applica-
tions, such as in microbial kill switches for bacterial containment [27] and in detection/recording devices for
living diagnostics [71]. The repressilator, instead, uses three genes mutually repressing each other in a loop,
effectively forming a negative feedback system with substantial phase lag along the loop, leading to a genetic
oscillator [42]. This circuit demonstrates that negative feedback systems with substantial phase lag may be
used by nature as mechanisms for time keeping. Other early works identified feedback and feedforward motifs
that can provide functions such as robustness to noise, improved temporal response, and robustness to genetic
context, as we detail in Section 4 [13, 97, 79, 74]. For an extensive review of the early stages of synthetic
biology and the many circuits that were built in the past several years, the reader is referred to [90, 21].

From modules to systems. As more parts and functional modules become available, larger systems can be
assembled that accomplish sophisticated tasks such as those required to impact bioenergy, environment, and
medicine applications [90, 64]. While initial results demonstrate the potential of assembling larger systems
that perform non-trivial logic computations [82, 32, 105, 116], substantial challenges need to be overcome
to turn synthetic biology into a bottom-up engineering discipline where circuit modules are characterized in
isolation and then assembled to create larger systems [24]. In particular, in a bottom-up design approach, a
functional module, such as the repressilator or the toggle switch, should maintain its input/output behavior as
characterized in isolation unchanged upon connection with other modules. This modularity property is rarely
satisfied by biomolecular systems [35]. Failure of modularity leads to a long and iterative design process where
subsystems are re-characterized from scratch any time a new module is added, thus presenting a challenging
obstacle to scaling up circuits’ size. Control theory has especially played a key role in the design of insulation
devices that “buffer” modules from loading effects [81], as reviewed in detail in Section 5. Control theory will
likely play a central role also in “robustifying” circuits behavior to unwanted interactions with the cellular
“chassis”, which range from the bacterium E. coli, to yeast S. cerevisiae, to mammalian cells [72], to other
bacteria like the gut bacterium Bacteroides thetaiotaomicron [80]. The host cell provides all the resources
required for gene expression and protein modification, including RNA polymerase, ribosomes, aminoacids,
tRNA, proteases, and ATP, which are all found in limited amounts. While for small circuits, the added load by
synthetic circuits on these resources may be sufficiently small and thus negligible, as the circuit size increases,
these loads cannot be neglected any longer. These can cause harmful effects to cell physiology (toxicity)
and may result in counter-intuitive couplings among otherwise independent circuits [48, 23, 25, 92]. Suitable
engineering solutions to make a circuit’s behavior more robust to fluctuations in available resources and more
generally to changes in the cellular context are highly desirable and subject of intense research.

3 The essence of negative feedback

In this section, we review the benefits and trade-offs of negative feedback control, capitalizing on strategies
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Figure 3: Essence of negative feedback. (a) Negative feedback extends the linear regime of an amplifier and provides
robustness to uncertainty. The upper diagram shows the amplifier within a negative feedback loop. The lower diagram
shows the equivalent input/output mapping corresponding to the closed loop feedback system. The graph in the box
shows the mapping (i.e., the dose response curve) between the input (signal on incoming arrow) and the output (signal
on outgoing arrow). (b) High-gain negative feedback attenuates disturbances and speeds up the temporal response.
The purple block(s) represent the ordinary differential equation (ODE) that links the input (incoming arrow) to the
output (outgoing arrow). For a desired constant value u, the open loop system’s response is obtained by setting z = u and
simulating the open loop system. The closed loop system response is obtained by simulating the closed loop system with
K = 1 and G large. In this case, the steady state error between y and the desired value u can be decreased by increasing
G, that is, |u − y| = O(1/G). (c) High-gain negative feedback can lead to oscillations and amplifies high frequency
disturbances. The open loop system is simulated as before by setting z = u. The closed loop system is simulated with
G large and K = 1. The left-side plot shows the time response of the system. The right-side plot shows the frequency
response of y to disturbance d. The horizontal axis represents the frequency ω of a periodic disturbance d(t) = sin(ωt)
and the vertical axis shows the amplitude of the resulting y(t) signal. (d) Negative integral feedback completely rejects
disturbances. The open loop system is as in panel (b) and simulated similarly. The closed loop system is simulated
for two different values of G (as shown) and for K = 1. In all diagrams, the circle represents a summing junction: the
outgoing arrow is a signal given by the weighted sum with the indicated signs of the signals on the incoming arrows.
Also, we have used the shortened notation ẏ =

dy
dt .

5



that have been implemented in synthetic biology to address problems of relevance to the field.

Advantages of high-gain negative feedback systems. One of the early and highly celebrated applications
of negative feedback addressed problems in the long-distance telephone line that in the early 1900s aimed
to connect the west coast with the east coast in the United States. In particular, a pressing problem was the
poor performance of the amplifiers that were connected in tandem along the telephone line to prevent signal
attenuation. For example, a simplified representation of an amplifier in negative feedback setup is illustrated
in Figure 3(a). Within this representation, the output of the amplifier y represents a voltage signal whose
value depends on an input voltage z to the amplifier. Due to physical limitations, the input/output relationship
of this amplifier is nonlinear. The linear regime is when −1 ≤ z ≤ 1, while the output saturates beyond
this interval. Within the linear regime, the amplifier’s input/output relationship is linear with slope G > 0
(y = Gz), which we will call here the amplifier’s gain. The gain G is further subject to uncertainty ∆, due
for example to temperature changes and aging. Therefore, even in the linear regime, the output will not be
completely predictable. In the case of a genetic circuit, the input and output signals (z and y) are typically
molecular counts/concentrations. For instance, z can be the concentration of a transcription factor regulating
the production of a protein whose concentration is represented by y. The nonlinear input/output mapping of
the amplifier may correspond to the dose response curve of gene regulation, mathematically captured by the
Hill function [36]. Gain G may represent the local slope of the Hill function, which is determined by the
strength of the regulating transcription factors and cooperativity (see Section 4), and ∆ may arise for example
from uncertainties in biomolecular interactions when the circuit is placed in different host cells.

Interestingly, once the amplifier is placed within a negative feedback setup with feedback gain K > 0,
which for a genetic circuit will represent, for example, the binding strength of a regulator with DNA operator
sites, these two limitations practically disappear. Specifically, the linear regime of the input/output mapping of
the closed loop system extends from [−1, 1] for the “open loop” amplifier to [−1−G(1 + ∆)K, 1 + G(1 + ∆)K]
for the closed loop system, which becomes larger with increased G. Further, the input/output relationship for
the closed loop system in the linear regime becomes

y =
G(1 + ∆)

1 + G(1 + ∆)K
u⇒ y ≈

u
K
, as G → ∞.

This shows that the u-to-y amplification factor is decreased in the closed loop system, but it is approximately
equal to 1/K for G sufficiently large, which is independent of the amplifier’s uncertainty ∆. The net result is
that negative feedback has turned a nonlinear, uncertain, high-gain device into an essentially linear system,
whose input/output gain is robust to uncertainty. This discovery, due to H. Black, enabled Bell labs to over-
come a major bottleneck affecting the transcontinental telephone line in the 1920s, and illustrates the pivotal
role of negative feedback in overcoming limitations and shortcomings of available hardware components [68].

In the context of dynamical systems, negative feedback with high-gain can often be used to attenuate
the contribution of unknown disturbances d on the output of interest y (Figure 3(b)). For synthetic biology
applications, the output of interest can be, for example, the concentration of a fluorescence protein or any
other molecule with physiological relevance. The disturbance can represent environmental perturbations,
fluctuations in the system’s parameters, or noise. Within a high-gain negative feedback strategy we set the
input to the system z = G(u − Ky), which is proportional through a large amplification factor G to the error
between the desired value of the output u and the measured output Ky. The system with this input is in a
closed loop form (see diagram in Figure 3(b)) and hence we will refer to it as the closed loop system. This
is in contrast to the open loop system in which the input is pre-set as z = u and it is not adjusted based
on the effect it has on y. As we will see in Section 4 and Section 5, the amplification factor depends on the
biomolecular mechanism chosen for the feedback. When transcriptional regulation is chosen for the feedback,
G depends on the promoter and transcriptional regulator strengths, and it is not easily tunable (Section 4.1).
When protein-protein interaction is chosen for the feedback, such as a phosphorylation cycle, the gain G can
be easily increased by increasing the concentrations of suitable substrates and enzymes (Section 5).

6



Consider the first order open loop process ẏ = −y + z + d, which may describe, for example, the process of
transcription with y the concentration of mRNA, z the concentration of a regulator, and d a constant unknown
disturbance, capturing, for example additional unknown production rates. The result of applying high-gain
negative feedback is two-fold. First, while the open loop system has steady state value given by y = u + d, the
closed loop system has steady state value given by y = (Gu + d)/(GK + 1). This value approaches u/K for
large G; it is therefore independent of the disturbance d, and can be made equal to y by setting K = 1. Second,
the time to reach steady state (typically measured by the earliest time the output y(t) is within 90% of the
steady state) decreases as G increases, and thus the closed loop system is also faster. These results continue to
hold if the disturbance and the desired output value are time-varying, facts that can be shown using a variety
of general tools, such as singular perturbation techniques [70, 120].

Downsides of high-gain negative feedback systems. High-gain negative feedback relies on a sufficiently
large amplification of the error between the system’s output and the desired output to reduce the steady state
error due to disturbances. However, this desirable property does not extend as easily to physical systems de-
scribed by higher-order ordinary differential equations (ODEs), such as the second order system depicted in
Figure 3(c). This system may describe the sequential process of transcription and translation, in which x1 may
represent the concentration of mRNA and x2 the concentration of protein [36], as we describe in greater detail
in Section 4.1. In this case, increased amplification gain G may still result in a decreased steady state error
between the output y and its desired value u, thus attenuating the effect of disturbance d, however, the transient
response can become oscillatory with increasing amplitude of oscillation as G increases. The frequency re-
sponse of the system to disturbance d shown in Figure 3(c) further shows that the closed loop system has less
sensitivity than the open loop system to disturbance inputs at low frequency, but it has increased sensitivity to
disturbances at high frequency when compared to the open loop system. This shows a fundamental tradeoff

in the design of any closed loop control system, also called the “water-bed” effect [19], according to which
a high-gain feedback control design that attenuates the effects of slow perturbations will result in potential
amplification of high-frequency perturbations. Another potential concern in the implementation of high-gain
feedback designs is the energetic requirement for the realization of such high gains. While in electronics this
may not be a significant bottleneck, in the context of a biomolecular system, it may translate into large protein
amounts, with potential consequences on cell physiology (see Section 5).

Properties of integral negative feedback systems. More sophisticated control strategies can make a
system robust to uncertainty without necessarily requiring large gains. These strategies thus avoid some of
the shortcomings described above. The simplest such control strategy, which we describe here, is integral
feedback control [19]. Referring to Figure 3(d), the control input z of the physical process is set to be the
integral of the error G(u − Ky). For the simple block diagram of this figure, the closed loop system equations
are given by

dz
dt

= G(u − Ky),
dy
dt

= −y + z + d, (1)

which is a stable system for all positive G and K and admits y = u/K at steady state. Therefore, the out-
put value at steady state is completely independent of the disturbance input d and this disturbance rejection
property is independent of the amplification gain G. This gain can therefore be picked to be small if the only
interest is disturbance rejection. Lower gain G, however, will lead to a slower system while increased gain
G will lead to a faster system but also to oscillations (Figure 3(d)). If both disturbance rejection and speed
of response are desirable, a combination of proportional and integral feedback (PI control) is usually more
appropriate. Other designs may incorporate a derivative action for enhanced stability, which however may
have as undesirable downside the amplification of high-frequency noise [19].

Feedforward and positive feedback systems. Even though in this review the description of control strate-
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gies focuses on negative feedback systems, there are other types of control architectures that are possible
depending on the design objective and on the problem definition. These include feedforward controllers and
positive feedback systems [19]. A feedforward control system can be used to “cancel” the effect of unwanted
disturbances on an output of interest. Different from a feedback system, however, the control input is not ad-
justed based on the error between the output and its desired value, but it is pre-set based on perfect knowledge
on how the disturbance affects the process. This control strategy is therefore viable only if the system’s model
is perfectly known and is not subject to perturbations. Combinations of feedforward and negative feedback
architectures are often used to obtain improved performance and robustness and are present in several modern
engineering applications [19]. In Section 4, we review an application of feedforward control in synthetic bi-
ology to enable circuits’ robustness to DNA plasmid variability. Positive feedback systems have been widely
used in digital electronics to engineer oscillators, switches and hysteresis where the system output can take
either of two stable values and these are each kept unless a sufficiently large input stimulus is applied [1].
A detailed discussion of positive feedback is beyond the scope of this review and can be found elsewhere
[6, 8, 115, 28, 36].

4 In-cell feedback and feedforward control: Modules

In-cell control mechanisms are well suited to enhance the performance and robustness of synthetic genetic
circuits to a number of perturbations, including noise, parameter uncertainty, loading, and fluctuations in
available resources. Here, we review how control system designs improve robustness of protein levels to
noise and to variability in the number of copies of plasmid on which a circuit is coded. We then discuss some
of the major implementation challenges involved in the realization of high-gain negative feedback and integral
feedback. We adopt the notation where for a species x, we represent by x (italics) its concentration.

Figure 4: Enhancing robustness through feedback and feedforward control. (a) Decreased variability of gene ex-
pression through negative autoregulation. (b) Negative autoregulation shifts noise to higher frequency. (c) Feedforward
circuits decrease the sensitivity of the output to input disturbances.

4.1 Negative feedback: Robustness to noise, performance and tradeoffs

Stochasticity can substantially limit the precision at which the function of a circuit is executed [43] but can
also be exploited [62]. Substantial work is required to develop a design-oriented quantitative understanding
of stochastic effects in order to attenuate them or leverage them, depending on the circuit’s requirements.
Since negative feedback tends to increase the robustness of a system’s output to perturbations (Figure 3(b)),
a number of researchers have examined synthetic genetic implementation of negative feedback in order to
assess its ability to reduce the stochastic variation of a protein concentration’s about its mean [13, 9].
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The simplest implementation of negative feedback on a protein of interest y is through negative transcrip-
tional autoregulation as shown in Figure 4(a), in which y represses its production by binding to its own
promoter to sequester it from RNA polymerase. A two-variable model of this circuit that captures the mRNA
(m) and protein y dynamics is given by

dm
dt

= H(y) − δm + d1,
dy
dt

= βm − γy + d2, H(y) =
α

1 + (y/kd)n ,

in which H(y) is the Hill function, which models the effect of transcriptional repression by y, with n the
cooperativity of y and kd the dissociation constant of the binding. Smaller dissociation constant corresponds
to stronger binding and thus to stronger repression. The larger the cooperativity n the more switch-like is
the Hill function. Parameters δ and γ are decay constants, and βm models the fact that protein production
is proportional to the concentration of mRNA [36]. Here, d1 and d2 are additive perturbations capturing, for
example, the effect of noise on the mRNA and protein dynamics. A simplified analysis of the effect of the
negative feedback can be carried by performing a linearization of H(y) near the steady state ys, leading to
H(ys + y) ≈ b − ay with a, b > 0, and analyzing the robustness of this system to noise when compared to the
open loop system where we have H(y) = u. Referring to the diagram in Figure 3(b), we can set the parameters
b = uG and a = KG, such that K = (a/b)u and the system with negative feedback will have amplification gain
G. Inspecting the expression of G, we can determine how physically G can be increased. In particular, G can
be increased by having both a and b sufficiently large. Since b = H(ys), it can be increased by increasing α,
that is, the promoter’s strength; since −a is the slope of H(y) at the equilibrium point ys, it can be increased (up
to some limit) by decreasing kd, that is, having a stronger repression, or by increasing the cooperativity n and
suitably tuning kd such that ys falls exactly at the maximal slope of H(y). Therefore, physically increasing the
gain G for a negative autoregulation implementation is non-trivial and severely limited. Nevertheless, there
are measurable benefits of the closed loop system as compared to the open loop one.

For a sensible comparison between the open loop and closed loop systems, it is important to set the param-
eters of the controller such that the steady state of the closed loop system is the same as that of the open loop
system when the perturbations are not present and when the feedback gain G is sufficiently large. This can be
obtained by setting K = δγ/β, leading to ys = βu/(δγ). A standard measure of the noisiness of a signal is the
coefficient of variation (CV), which is defined as the ration between the standard deviation and the mean. For
the above system, in which we use the linear approximation of H(y), the fact that G is large, and we assume
for simplicity that d1 and d2 are white noise processes, we can calculate the moments and hence also the CV
leveraging the fact that the system is linear [36]. This leads to the two following expressions

CVopen loop =
1
ys

√(
1

2γ
+

β2

2(δ + γ)δγ

)
, CV f eedback =

1

ys
√

2(γ + δ)
,

which show that the system with high-gain feedback has a smaller coefficient of variation than the open
loop system, suggesting that under appropriate conditions the closed loop system is more robust to noise, as
detailed by a number of theoretical works [100, 103, 102, 87]. These theoretical predictions were confirmed
experimentally by a genetic circuit implementation in E. coli of the negatively autoregulated gene [13]. In
particular, in this paper the authors computed the empirical probability distribution for both the closed loop
and the open loop systems, resulting in the qualitative behavior depicted in Figure 4(a), which shows reduced
variability of protein level in the system with negative feedback.

Further, as illustrated in Figure 3(c), adding negative feedback around a system whose ODE model has
order higher than one can give rise to oscillations and can lead to amplify the response of the system to distur-
bances that have high frequency content. The process of protein production involves a cascade of dynamical
processes, including transcription, translation, and protein folding [36]. It is expected that, just as shown in
Figure 3(c), the water-bed effect may be observed wherein the noise spectrum of the output y shifts to high
frequency in the closed loop system. This prediction was experimentally validated on a genetic autoregulation
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circuit in E. coli, in which the authors computed the experimental frequency response of both open loop and
closed loop systems and led to the qualitative plot shown in Figure 4(b) [9].

Finally, Figure 3(b) shows that the closed loop system is also sped up compared to the open loop system.
Experiments performed on a negative autoregulation circuit in E. coli confirmed this finding, illustrating that
negative feedback can be effectively used also as a mechanism to tune the temporal performance of genetic
circuits [94].

4.2 Incoherent feedforward control: Robustness to genetic context

Synthetic genetic circuits are commonly coded on plasmids as this simplifies the assembly process com-
pared to chromosomal integration, and allows higher expression levels leading to easier detection of the pro-
teins of interest. A major problem when implementing a synthetic genetic circuit on a plasmid is the variability
in the copy number of the plasmid [12], which makes the levels of the expressed proteins also variable and
thus poorly predictable. From a control systems point of view, the plasmid copy number is a “disturbance”
input d and the concentration of the protein of interest y is the output that ideally should be robust to changes
in d. As such, it can be addressed by a number of potential designs, including negative feedback, integral
feedback, and feedforward control. Negative feedback and feedforward control were each implemented in
[15] to tackle this problem. Here, we focus the description on the implemented feedforward control and on its
relationship with integral feedback.

The diagram of the incoherent feedforward control scheme is shown in Figure 4(c). The plasmid copy
number d directly “activates” the protein it is expressing since higher copy number leads to higher protein
concentration. The control circuitry is implemented by expressing from the same plasmid an intermediate
protein x (hence the positive arrow from d to x), which in turn represses the protein of interest (the negative
arrow from x to y). This type of circuit topology is called an incoherent feedforward loop and has been widely
studied in the systems biology literature [2]. If the two forward branches are perfectly balanced, they cancel
each other’s action and the net contribution from d to y is zero, leading to perfect disturbance rejection. In
one of the genetic implementations proposed, protein x is a transcriptional repressor of protein y, leading to a
simple model and steady state of the circuit given by

dx
dt

= αd − δx,
dy
dt

=
βd

k + x
− γy ⇒ y =

βδ

γα

d
d + (δk/α)

in which k incorporates the dissociation constant of the binding of x to the promoter site controlling y. Hence,
y will depend on d unless δk/α is negligible compared to d as illustrated in the plot of Figure 4(c). This
shows that the two branches need to exactly compensate each other in order for the disturbance to be perfectly
rejected. Feedforward architectures may thus be desirable in general to decrease the effect of a disturbance
but not necessarily for perfectly rejecting it, for which integral feedback, when implementable, is better suited.

Relationship with integral feedback. Although a realistically implementable incoherent feedforward
control circuit such as this one does not reach perfect disturbance rejection, an ideal incoherent feedforward
control circuit in which k = 0, that is, the two branches are exactly compensating each other, reaches distur-
bance rejection since y = (βδ)/(γα) is independent of d. In this case, it can be shown that the system contains
an hidden feedback integral action, that is, there is a variable z such that z(t) = G

∫ t
0 (u − y)dτ or equivalently

ż = G(u − y) with u = (βδ)/(γα) [99]. Therefore, the ideal feedforward control circuit is mathematically
equivalent to an integral feedback controller. This fact is a consequence of a much more general principle
from control theory called the internal model principle [19], which implies that if a system perfectly rejects
(adapts to) a constant disturbance, then it must have a feedback integral action within it. From a practical
implementation point of view, having k = 0 requires that the binding of protein x to promoter sites controlling
y is irreversible, which is difficult to reach in practice since even the strongest binding always has some non-
zero probability of un-binding. This example illustrates some of the practical difficulties encountered when
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trying to reach perfect disturbance rejection with a feedforward control circuit. It is not surprising that similar
implementation challenges are encountered when seeking to implement an explicit feedback integral control
as we detail in Section 4.3.

4.3 Implementations of negative feedback and their challenges

Figure 5: Negative feedback implementations. (a) Transcriptional negative feedback by inhibition of protein tran-
scription [36]. (b) Translational negative feedback by inhibition of protein translation [107]. (c) Translational negative
feedback by increased mRNA degradation enabled by a microRNA (z) [16]. (d) Transcriptional negative feedback im-
plemented through competitive binding with a scaffold protein s [55]. (e) Transcriptional negative feedback implemented
by de-activation of transcriptional activator K* [10].

We review molecular mechanisms available for the implementation of negative feedback and discuss their
physical constraints that make realization of feedback, especially integral, challenging.

Negative feedback implementations. In general, there are two different philosophies to implement neg-
ative feedback: inhibit the rate at which a protein is produced or enhance the rate at which it is degraded.
Transcriptional regulation is of the first type (Figure 5(a)): the output protein (y) binds with its own promoter
(p) to inhibit transcription. This type of regulation has been widely used in the field of dynamic metabolic
engineering to promote and/or “robustify” biofuel production under changing environments [121, 50, 40, 54].
In [88], Oyarzún et al. provided detailed guidance on the selection of promoters and ribosome binding sites
that reflects the trade-offs and constraints of transcriptional feedback for metabolic pathways. More broadly,
feedback control has been extensively used in metabolic engineering, which is not the focus of this paper and
an in-depth review can be found elsewhere [52].

Recently, in addition to transcriptional regulation, the biological toolbox has significantly expanded. Nega-
tive feedback at the translation level (translational feedback), where the output protein inhibits its own transla-
tion without interfering with transcription, was theoretically found to be potentially superior to transcriptional
repression at reducing stochasticity [108, 101] in some scenarios, and at rejecting translational level distur-
bances, such as fluctuations in ribosomes [49]. Translational feedback has been experimentally implemented
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in mammalian (HeLa) cells by using a ribosomal protein that tightly binds mRNA to block translation (Figure
5(b)). Within a feedback architecture, this mechanism leads to a reduced level of the output protein y, which
can be tuned by adjusting the binding strength [107]. A different approach to obtain translational feedback is
through increased mRNA degradation as experimentally tested in mammalian (HEK293) cells [16]. This neg-
ative feedback design (Figure 5(c)) is realized by a non-coding microRNA (z) that binds and then degrades the
protein y’s own mRNA (m), and by a ribozyme (r) that cleaves the microRNA. The ribozyme is designed such
that its cleavage rate decreases in the presence of the output protein y. Therefore, as y increases, z increases
due to reduced ribozyme cleavage rate, thus reducing m and down-regulating y, as a consequence.

Synthetic genetic negative feedback systems have been implemented also by sequestration of scaffold pro-
teins (Figure 5(d)). Scaffold proteins have specific interaction domains to assist the assembly of protein
complexes or colocalization of signaling molecules [47]. In [55], the authors constructed a novel negative
feedback loop in bacteria E. coli that enables input signal tracking using a synthetic scaffold protein s and a
two-component signaling system with scaffold-dependent phosphorylation (Figure 5(d)). The two-component
signaling system consists of a histidine kinase (HK) donating a phosphate to the response regulator (RR),
transforming the RR into active RR*, which can activate transcription of output protein y. This two-component
system is designed such that phosphotransfer only occurs when HK and RR are brought into close proximity
by the scaffold protein s. The output protein y is a fusion of a fluorescence reporter and an anti-scaffold that
sequesters free scaffold protein, leading overall to a negative feedback. Using the total amount of scaffold
protein s as a reference input, Hsiao et al. demonstrate that y can track the reference input concentration s
(scaffold) over a range of input concentrations. The feedback gain can be tuned by relevant physical parame-
ters, such as concentration of response regulator (RR) and phosphatase.

In [10], the authors created a new recruitment site on the Ste5 scaffold protein s with a leucine zipper Figure
5(e)). The new recruitment site recruits negative pathway modulator Msg5 (y), which is a phosphatase that
dephosphorylates the pathway output K*. The negative feedback is created by having the modulator y be
expressed under the transcriptional control of K*. The strength of the negative feedback can be modulated
by tuning the affinity of the matching leucine zipper, or the promoter strength of Msg5. The dynamics of
the system with negative feedback displayed overshoot in the temporal response under continued stimulation.
A similar feedback architecture finds application in modifying the T-cell receptor (TCR) signaling pathway
in Jurkat T-cells to precisely regulate the amplitude of T-cell activation [114]. This is practically important
because a challenge in adoptive T-cell therapy is to limit the over-activation of T-cells that could lead to killing
host cells or to life-threatening immune responses. The synthetic genetic negative feedback system of [114]
addressed this challenge.

Less work is available on experimentally implementing a negative feedback where mRNA “inhibits” its
own transcription without interfering with translation. This type of mechanism has been discovered in nature
[121], where intron-based microRNAs in human endothelial nitric oxide synthase (eNOS) gene can directly
inhibit their own transcription. In synthetic biology, a potential implementation is through the use of the
CRISPR/Cas transcriptional repression system [65], where guide RNA recruits the Cas9 protein to block tran-
scription.

Implementation challenges. The molecular mechanisms described so far can effectively be used to imple-
ment negative feedback control systems. However, it is unclear the extent to which the gain G of the feedback
controller can be increased and what consequences this may have on host cell physiology if increasing it re-
quires increasing the concentrations of specific proteins. More work is required to investigate the potential
tradeoffs.

By contrast, the molecular mechanisms, if any, that may be used to implement an in-cell integral feedback
controller are still subject of intense investigation [4, 20, 86, 117]. A major difficulty of implementing an
explicit integral action is due to the unavoidable presence of dilution caused by cell growth [5]. In fact, for the
concentration of a species z to be the pure integral of a signal s, we must have dz

dt = s(t), but since z is subject

12



to dilution within a growing and dividing cell, we will always have an added rate −δz, leading to dz
dt = s(t)−δz.

Therefore, z(t) will not be the pure integral of s(t). Physically, if s were a constant production rate, a pure
integrator would want the concentration of z to grow to infinity according to z(t) = st. However, the presence
of dilution always forces z(t) to saturate to a constant value given by s/δ. One may be tempted to think that
if s is large enough and z is kept at sufficiently low values, this issue may be overcome. Unfortunately, this is
a misleading argument because within an integral control architecture, the objective is to make s(t) approach
zero, at which point the integral variable z may be large to compensate for steady state error and disturbances
(refer to equation (1), where at steady state y = u/K and z = u/K − d). Even assuming that this is a non-issue,
another significant difficulty is stability of the closed loop system as we illustrate next.

Briat et al. [20] proposed a novel feedback structure for biochemical reactions that can achieve perfect
set-point regulation named “antithetic integral feedback”. Although, the authors consider a stochastic model,
the basic idea can be explained with the simplified deterministic model:

dx
dt

= kz1 − x,
dz1

dt
= u − z1z2,

dz2

dt
= x − z1z2, (2)

in which x represents the concentration of the output protein to be regulated, z1 and z2 are “controller species”,
and u is a reference input (e.g. the desired x concentration). A change of variable z = z1 − z2 results in
dz/dt = u − x, and therefore, as long as system (2) is stable, as t → ∞, we have dz/dt = u − x = 0, and the
output tracking error x − u tends to 0 exactly. However, this system may be unstable. This technical problem
is circumvented by the authors in [20] by studying its stochastic counterpart, and by mathematically showing
that the mean of the stochastic output converges to the reference input for a large class of biomolecular systems
with such structure. Most importantly, the stochastic model guarantees robust adaptation even in the presence
of noise and at low molecule counts. Further experimental and theoretical studies are required to determine
the performance and tradeoffs of these types of integral controllers and how the issue of dilution may be
overcome.

A component that is ubiquitous in any control system (proportional or integral) but difficult to realize
biologically is a signal subtractor, used to find the error between the output y and reference input u in the
standard feedback setup (Figure 3(b-d)). A recent study by Cosentino et al. [31] provides a set of biochemical
reactions whose output can be approximated by the difference of the two inputs, given that a time-scale
separation condition holds. In particular, the authors show that the negative feedback implemented using
scaffold protein in [55] functions as an effective signal subtractor, leading to the observed tracking property
under negative feedback. Finally, cell-free systems, where circuits are studied in cell extracts in vitro, provide
appealing testing platforms to accelerate synthetic circuits prototyping, and to deepen our understanding of
natural systems [53, 84] by removing issues such as cellular context dependence, noise and cell heterogeneity,
and cell growth. Synthetic negative feedback loops, together with many other synthetic biology parts, such
as the toggle switch, and the repressilator, have been successfully reconstructed in cell-free systems [98, 63].
Since experimental results have suggested that circuit performance in a cell-free system highly resembles its
in-cell counterpart [84], cell-free systems can potentially serve as a rapid controller prototyping platform,
similar to a wind tunnel for fluid dynamics, to investigate more sophisticated in vivo control strategies.

5 In-cell feedback control: From modules to systems

We recall that a fundamental property a circuit component is expected to have when we perform bottom-
up design is modularity, that is, the input/output behavior of the component should stay unchanged upon
connection with other components. Failure of modularity forces a designer to re-engineer the entire system
from scratch any time a new component is added, leading to an endless and combinatorial design process. In
this section, we review engineering solutions that leverage high-gain negative feedback to enhance modularity.
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Figure 6: Improving modularity through feedback control. (a) Failure of modularity in genetic circuits. A synthetic
genetic clock in isolation displays sustained oscillation (black, solid line), but once it is connected to a downstream
system, oscillations disappear (red, dashed line). Loading on the upstream system’s transcription factor is formally
modeled as a signal s called retroactivity, which affects as a disturbance the dynamics of the upstream system. (b)
Insulation devices buffer from retroactivity. Insulation devices attenuate retroactivity to the output s and have small
retroactivity to the input r; they can be placed as buffering elements between an upstream and a downstream system.
(c) High-gain negative feedback to design insulation devices. High-gain negative feedback can be used to attenuate the
effect of retroactivity s on the system’s dynamics. A phosphorylation cycle where the output y results from u-mediated
activation of inactive yin and is converted back to yin by a phosphatase P can implement the high-gain negative feedback
design to attenuate s. Gain G can be increased by increased concentrations yin and P. (d) Two-stage insulation device.
Allows to decouple the requirements of attenuating s from that of having small r. While the second stage is a high-gain
feedback device as in (c), the first stage has low protein amounts (“low-gain”) to have low retroactivity to the input r. It
attenuates any load-induced slow down due to large yin by cycling at a fast rate compared to the speed of gene expression
(timescale of input u).
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The limits of modularity in genetic circuits. Although highly desirable, modularity is not a natural
property of biomolecular systems since the connection of an upstream system to a downstream one alters the
state of the upstream component [37]. This fact is due to the physical process by which two components are
connected: a connection implies that a communicating species of the upstream system binds to species of
the downstream system, leading to new reaction rates that were not present when the upstream system was
in isolation. These additional rates “load” the communicating species and make it (temporarily) unavailable
to the reactions of the upstream system, leading therefore to substantial changes in the upstream system’s
behavior. This can be appreciated by considering as an illustration the connection of a genetic clock, such as
that of [8], to downstream genetic targets that regulate, for example, the production of a fluorescent reporter
used for characterization (Figure 6(a)). While the isolated clock displays sustained oscillations, connection
to the downstream reporter system quenches the oscillations. This phenomenon not only creates difficulties
in measuring the clock’s species for module characterization, but more broadly prevents sending the clock’s
signal to downstream systems as desired, for example, in applications where downstream processes need
to be synchronized [78]. A number of experimental studies on reconstituted protein systems, on genetic
circuits in E. coli and in yeast, and on in vivo natural systems have characterized the effects of retroactivity
[112, 61, 60, 81, 66, 67]. Notable effects of retroactivity include the slow-down of the temporal response of
the upstream system’s communicating species and changes in the upstream system’s steady state input-output
characteristics. These effects become more prominent as the concentration and/or affinity of downstream
targets or substrates to which the communicating species binds increase.

In order to make the loading problem amenable of a solution that can leverage control systems tools, it was
proposed to capture the additional reaction fluxes that appear any time a connection is performed as a signal
s called retroactivity to the output (Figure 6(a)). This signal can be viewed as a disturbance that alters the
output of the upstream system once it is connected to a downstream one. For example, if y is a transcription
factor expressed in the upstream system with rate H(u), and y binds downstream target sites p to form complex

C according to y + p
kon
−−−⇀↽−−−

koff

C, we will have

dy
dt

= H(u) − δy + s with s = −konyp + koffC,

in which s = 0 if the upstream system is in isolation (not connected to the downstream system). Accordingly,
the problem of retroactivity mitigation can be viewed as the problem of engineering the system upstream of
the load such that the effect of s on y is mitigated. This is a standard disturbance attenuation problem in the
control theory sense as illustrated in Section 3. A system that is able to mitigate the effect of s on y and also
applies a small retroactivity (r), called retroactivity to the input, to its upstream system is called an insula-
tion device. Hence, an insulation device could be placed between any upstream system (i.e., the clock) and a
downstream load (i.e., the fluorescence reporter) such that the load is transferred to the insulation device and
hence the upstream system signal is reliably transmitted to the downstream load (Figure 6(b)).

Explicit high-gain negative feedback to design insulation devices. As described in Section 3, disturbance
attenuation can be solved by the implementation of a high-gain negative feedback mechanism as shown in a
simplified block diagram in Figure 6(c). Basic block diagram algebra leads to

y =
G

1 + KG
u +

s
1 + KG

⇒ y ≈
u
K

as G → ∞,

illustrating that as the gain G increases the contribution of s to y becomes negligible when compared to the
contribution of u to y. The challenge is the implementation of this high-gain negative feedback mechanism
through a biomolecular process that can realize sufficiently high gains. To address this question, it is useful to
re-arrange the block diagram as illustrated in Figure 6(c). This indicates that we should realize a large input
amplification G along with a similarly large negative feedback gain KG on the output where retroactivity acts.
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A number of ways have been proposed to implement such a mechanism within an insulation device [37]. One
implementation that was experimentally realized and validated uses a covalent modification cycle as shown in
Figure 6(c) [85]. Here, the input amplification G is realized by having a sufficiently large reservoir of inactive
protein yin, which upon presentation of the input u is turned into the active output y. This output, in turn,
is actively degraded with a rate proportional to the amount of phosphatase P, which converts y back to yin.
Therefore, we have G ∝ yin and KG ∝ P. It is worth highlighting that since yin and P are both large, the output
y may be very small, yet it stays insensitive to large loads imparted by downstream targets. This high-gain
futile cycle can effectively attenuate the retroactivity to the output in the presence of time varying inputs u as
illustrated in various modeling studies [37], in experiments on reconstituted systems [61], and in experiments
on genetic circuits in E. coli [85].

Implicit high-gain negative feedback through time scale separation. While the futile cycle of Figure
6(c) provides a powerful and highly tunable way of attenuating the retroactivity to the output, it is subject to a
stringent design tradeoff. Attenuating retroactivity to the output s requires high gains as implemented through
large substrate yin and phosphatase P amounts. However, a large amount of substrate yin imparts a significant
load to the input kinase u that binds to it. Therefore, in this system, attenuating retroactivity to the output s
potentially leads to increased retroactivity to the input r, which results in a load-induced slow down of the
input u. This tradeoff has been mathematically characterized in [93] and experimentally demonstrated in [85].

To overcome this limitation and hence obtain an insulation device that could attenuate retroactivity to the
output s while keeping a low retroactivity to the input r, a two stage device was proposed as illustrated in
Figure 6(d). The output cycle of the device is designed to be a high-gain negative feedback system just like
the futile cycle described above, in which high-gains are realized through large substrate and phosphatase
amounts. The input cycle, by contrast, is designed to have lower amounts of substrate zin and phosphatase P*
such that the loading applied to the input u is small (small retroactivity to the input r). We can view it as a “low
gain” stage in the sense that it is using low amounts of cycle proteins. Despite low amount of cycle proteins,
this cycle still effectively mitigates the load-induced slow down due to large amounts of yin binding to z if
the input u evolves on the time scale of gene expression. In fact, load-induced delays occur at the faster time
scale of the z-cycle (seconds) and are therefore negligible in the time scale of the input u (minutes to hours).
This time-scale separation based mechanism for insulation allows to effectively buffer genetic circuits from
retroactivity by connecting them through fast signaling systems. This mechanism for retroactivity attenuation
was implemented in yeast through a two-stage system in which the first stage is a phoshporylation cycle and
the second stage is a phosphotransfer system, resulting in almost complete retroactivity attenuation [81].

Mathematically, and under suitable stability conditions, this mechanism for disturbance attenuation is
equivalent to high-gain negative feedback, wherein “high gains” are implicitly realized through fast time-
scales [59, 38]. This can be intuitively explained by considering the differential equation describing the rate
of change of u and the faster rate of change of y:

du
dt

= fu(u, t),
dy
dt

= G′ fy(u, y),

in which G′ � 1 quantifies that the time scale of y is much faster than that of u. If the y-subsystem is
stable and for illustration purposes we assume that u(t) is a small amplitude signal, we can use the linear
approximation fy(u, y) ≈ bu − ay, with b, a > 0, so that dy/dt ≈ G(u − Ky) with G = G′b and K = a/b.
This is in the standard high-gain negative feedback form, but no explicit negative feedback was engineered.
Since no explicit negative feedback needs to be engineered, these devices are substantially easier to implement
through biomolecular core processes, where there are plenty of different time-scales at which reactions occur.
However, identifying the structures of signaling systems that qualify as insulation devices still requires more
research.
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6 In-cell feedback control: Multi-cellular coordination

Figure 7: Coordinated population control system [119]. LuxI and LuxR are produced constitutively in each cell.
LuxI catalyzes the synthesis of small molecule AHL, which can diffuse freely across the membrane. As cell number
grows, AHL concentration increases, binding with LuxR to activate a “killer gene” to reduce cell count. Blue arrows
indicate biochemical reactions, black arrows show the diffusion of AHL across the membrane, and dashed red arrows
show the population control feedback loop.

Our discussion of in-cell feedback control so far has focused solely on intracellular control, where feedback
is implemented in each cell and cells function independent of each other. Many applications, however, require
programming functions over space and these are only enabled by multi-cellular coordination. The ability to
program spatial patterns of cells could potentially impact applications such as regenerative medicine that need
coordinated self-organization of cells as, for example, in engineered stem cell organoids [118]. A number
of works have demonstrated that in principle programmed cell coordination is possible, such as in dark-light
edge detectors [29, 109], spatial patterning [11, 22, 41], density-based gene activation [69], and microbial
consortia [17], where multiple microbial populations interacts to improve a product’s yield.

In a multi-cellular coordination problem, although control action still takes place in individual cells through
activation or repression of suitable genes, cells have access to the ensemble state of the entire population as
obtained through diffusible signaling molecules. From a control theoretic perspective, this could be viewed as
an example of cooperative control, where a large population of autonomous agents (cell) are interconnected
through (cell-cell) communication, and decision of each agent contributes to the collective behavior of the
population. Synthetic genetic cooperative feedback control systems have been built for a number of purposes.
In the work by You et al., a population control circuit autonomously maintains the density of E. coli at a
desired level [119] (Figure 7). The rationale of this control system is as follows. Within each individual
cell, LuxI is constitutively expressed to catalyze the synthesis of signaling molecule AHL, which can diffuse
freely across the membrane. As the number of cells N increases, AHL concentration (A) increases, activating
expression of a killer gene (E) in the circuit. The negative feedback system thus consists of N → A→ E a N
(see red dashed line in Fig.7). Experimental validation of the system shows robust regulation of cell density
under various growth conditions. Furthermore, steady-state population size can be tuned through the AHL
degradation rate constant, which plays a major role in the “cell-cell communication strength”. Multi-cellular
feedback control has recently found its application to generate scale invariant patterns in a bacterial population
[22], where a core-ring fluorescence pattern is formed whose size preserves a constant ratio with the size of
the population.

In part due to the mathematical difficulties of analyzing large scale, nonlinear multi-agent systems, the the-
oretical study of multi-cellular feedback control is challenging, and only limited results have been published.
For example, Vignoni et al. [113] developed a mathematical model for a multi-cellular feedback control cir-
cuit, where AHL is involved in both negative autoregulation and cell-cell communication. The authors found,
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by analyzing the model, that such a feedback system is stable, and can reduce variability of gene expres-
sion in the population. Were this theoretical result validated experimentally, multi-cellular control could be a
powerful tool to complement existing in-cell control mechanisms, such as negative autoregulation, to reduce
heterogeneity in gene expression and improve robustness to environmental perturbations. Additional theoret-
ical and experimental research is required to understand the robustness, stability, and performance of these
systems.

7 In-silico feedback control

Although the advances in implementing in-cell control systems to regulate cellular processes are remark-
able, our ability to control processes tightly and robustly is often hindered by the genetic nature of living cells.
Specifically, as discussed in Section 4.3, all control “algorithms” must be implemented through biochemical
core processes, which pose significant constraints to the level of sophistication that controllers can take. Fur-
thermore, in-cell feedback controllers have to cope with noisy and variable cellular environment, and thus the
control signals themselves are corrupted by noise and uncertainty. Finally, there are some applications, such
as for example the control of cell differentiation or de-differentiation (reprogramming), in which it may be
desirable not to genetically and permanently modify the cells being controlled.

In-silico control is an application of feedback control to synthetic biology, with the intention to comple-
ment in-cell control mechanisms to compensate for the aforementioned difficulties. An in-silico feedback
control system can be decomposed into four basic modules: measurement, control, actuation and the cel-
lular processes to be controlled, that is, the plant (Figure 1(c)). Using microscopy [76, 110, 111] or flow
cytometry [77], a measurement module measures the reporter fluorescence intensity of either a cell population
[77, 76, 110, 111] or a single cell [110, 111]. Measured data is then sent to a computer, where it is processed to
infer the state of the cell (filtered), and sent as an input to the control algorithm to compute a desirable control
input in-silico. The control input is then actuated by applying external stimuli to the target cellular processes
to be controlled. Major actuation methods include exposing the cell to light of a specific wavelength (optoge-
netics techniques) [77, 110], changing osmotic pressure [111], or inducer concentration [76]. The feedback
loop is closed when the cell responds to these stimuli through in-cell biomolecular reactions, which bring a
change to the reporter fluorescence captured by the measurement module.

Existing studies [77, 76, 110, 111] in this field differ most significantly in the control algorithm in-silico, and
in the cellular process to be controlled. For example, Toettcher et al. [110] and Menolascina et al. [76] applied
a proportional-integral (PI) control algorithm. A PI controller requires minimal knowledge of the controlled
process, and can eliminate any steady state mismatch between measured and desired output (Section 3). In
[110], protein-protein interaction processes form the plant to be controlled and since these interactions have
a characteristic time scale of seconds a fast set-point tracking performance was observed. On the contrary, in
[76], the process controlled is (cascaded) gene expression, which has a significant input/output lag resulting in
a more difficult plant to control (see Section 3). However, constant and time-varying reference signal tracking
were still successfully accomplished for a complicated synthetic network in yeast, which has 5 genes and
feedback loops.

More sophisticated feedback control algorithms were implemented in [77] and [111]. In particular, the
fluorescence measurements are sent through a Kalman filter to a model predictive controller (MPC) [19]. As a
consequence, an accurate model of the cellular process to be controlled is required. The Kalman filter provides
an optimal estimate of the state of the cell, which is then used by the predictive controller to compute an opti-
mal control input that minimizes deviations between a desired and the future model-predicted output. In [77],
fluorescence expression from an optogenetically controlled promoter is robustly regulated. The controlled cel-
lular process in [111] includes a high osmolarity glycerol (HOG) signal cascade, which itself has an internal
negative feedback loop that ensures adaptation. A system that can achieve adaptation is minimally responsive
to control inputs, and is notoriously hard to control dynamically, especially using standard controllers such as
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the PI controller. With MPC, however, the authors in [111] were able to demonstrate robust and tight control
of gene expressions to track both constant and time-varying references on both the population and the single
cell level.

A current obstacle to the practical application of in-silico control lies in the output measurement process.
Most of the test circuits studied [77, 76, 111] involve control and measurement of the same protein, a fluores-
cence reporter. When the species to be controlled is not the fluorescent reporter itself, which is the case in most
practical applications, an indirect measurement approach is required. For example, a gene-expression step can
be added where a fluorescence reporter responds to changes in concentration of the species to be controlled.
This type of strategy, however, will lead to delayed and noisy measurements, which are a major challenge
for any feedback controller. While a simple PI controller may be unsuitable in this case, an advanced model-
based controller, such as MPC, combined with estimators may be more promising. However, this requires a
trustworthy model of the cellular processes to be controlled, which are typically subject to substantial noise
and uncertainty. More research is required to understand how to overcome these challenges.

8 Summary

In this review, we have described some of the main achievements of feedback control designs in synthetic
biology. Classical control designs have been extended or directly applied to make synthetic genetic circuits
more reliable in the presence of noise, less sensitive to variability in the genetic context, more robust to load-
ing, and coordinate across many cells. We have also highlighted many open problems especially related to
the stringent physical constraints that biomolecular hardware poses on in-cell feedback control implementa-
tions. These include resource limitations that restrict the extent by which gains can be increased in high-gain
feedback designs; cell growth effects that, among others, make the implementation of exact integral feedback
very challenging; and cell-cell heterogeneity that asks for coordinated control techniques, for which appli-
cable theory is needed. In-silico feedback control bypasses some of these difficulties since the controller is
implemented in a computer, but some challenges remain to make it a practical solution. Therefore, while the
many successes of control design in synthetic biology show great promise for complementing and leveraging
on-going efforts of parts characterization, discovery/invention, and tuning, many unique challenges need to be
overcome, which will likely require new methods and theories.
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