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Biochemical reaction networks often involve reactions that take place on different

time-scales, giving rise to ‘slow’ and ‘fast’ system variables. This property is widely

used in the analysis of systems to obtain dynamical models with reduced dimensions.

In this paper, we consider stochastic dynamics of biochemical reaction networks mod-

eled using the Linear Noise Approximation (LNA). Under time-scale separation con-

ditions, we obtain a reduced-order LNA that approximates both the slow and fast

variables in the system. We mathematically prove that the first and second moments

of this reduced-order model converge to those of the full system as the time-scale sep-

aration becomes large. These mathematical results, in particular, provide a rigorous

justification to the accuracy of LNA models derived using the stochastic total quasi-

steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA,

our reduced-order model also provides approximations for the fast variable stochastic

properties, we term our method the ‘stochastic tQSSA+’. Finally, we demonstrate

the application of our approach on two biochemical network motifs found in gene-

regulatory and signal transduction networks.
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I. INTRODUCTION

Many biochemical processes involve reactions that occur on different time-scales. For

example, in bacterial cells, the binding of transcription factor to DNA takes place on the

time-scale of seconds, while protein production and dilution are on the order of hours1.

Such a separation in time-scales allows the system variables to be separated into slow and

fast groups, and this property can be exploited to reduce the complexity of dynamical

models. In particular, for deterministic systems, the quasi-steady state approximation gives

a reduced-order model for the slow variables, assuming that the fast variables rapidly reach

a steady state2,3. In the mathematical literature, a system of ordinary differential equations

(ODEs) with multiple time-scales is represented as slow and fast subsystems by using a

small parameter ε to capture the separation in time-scales. The mathematical treatment of

such systems is given by two main methods: singular perturbation and averaging4,5. The

singular perturbation approach, formalized by Tikhonov’s theorem, involves setting ε = 0 in

the system dynamics to obtain an algebraic equation that approximates the fast variables,

which is in turn used to derive an approximation for the slow variable dynamics4,6,7. In

the averaging method, a reduced-order model for the slow variables is obtained by the

elimination of the fast dynamics via integration of the system functions5.

As opposed to deterministic models, employing time-scale separation for model order re-

duction remains an ongoing area of research for stochastic models of biological systems. Yet,

obtaining reduced descriptions of stochastic dynamics is even more critical than for determin-

istic dynamics in order to increase the speed of simulation and aid analytical studies. Fur-

thermore, accurate reduced-order models are important for precise parameter estimations8.

The most prominent model used to capture the stochasticity in biological systems is the

Chemical Master Equation (CME), which considers the species counts as a set of discrete

random variables and describes the time evolution of their probability distributions using a

set of ordinary differential equations9,10. There have been several works that obtain reduced-

order representations of the CME under time-scale separation conditions11–25. Among these,

a common approach used to reduce the complexity in the simulations of the CME is to ap-

proximate the fast variables by their deterministic quasi-steady state expressions19. However,

validity of this method still remains under investigation20,22,25–27.

The theoretical analysis of the CME is challenging due to the large system size and the
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lack of appropriate analytical tools. Therefore, several approximations to the Chemical

Master Equation have been developed under the assumptions that the system’s volume and

the molecular counts are sufficiently large. One such approximation is the Fokker-Planck

equation (FPE) where partial differential equations are used to describe the evolution of the

probability distribution of the species counts9. Another approximation, equivalent to the

FPE, is the chemical Langevin equation (CLE) where the dynamics of species counts are

described by stochastic differential equations28.

There have been several recent works that consider the problem of model order reduction

for biochemical reaction networks modeled by the CLE. The work by Contou-Carrere et al.

obtains a reduced-order system for the slow variables of the CLE by adiabatic elimination

of the fast variable dynamics29. They provide a numerical analysis on the error between the

full and reduced-order systems; however, an analytical error quantification is not provided.

Furthermore, their work does not provide an approximation for the fast variables of the

full system. In our previous work30–32, we considered CLE models of biochemical reaction

networks with linear reaction rates and obtained a reduced-order system for both slow

and fast variables, following a similar approach to the deterministic singular perturbation

technique. It was mathematically demonstrated that the moments of the reduced system

are within an O(ε)-neighborhood of the moments of the full system.

In addition to the above methods, the mathematical literature also offers model order re-

duction techniques for multi-scale stochastic differential equations via averaging methods5,33.

Recently, these methods have been applied in the analysis of systems modeled by the chem-

ical Langevin equation34. However, averaging methods require integration of system func-

tions, which may be challenging for systems that are of high dimension or are nonlinear.

Moreover, the averaging methods also do not provide an approximation to the fast vari-

able dynamics. In the case of biochemical reaction networks, it is typically important to

approximate the fast variable dynamics, because many species are mixed - that is, their con-

centrations are given by the combination of slow and fast variable concentrations. Therefore,

we often require both slow and fast components in the reduced-order model to correctly ap-

proximate such species dynamics.

The Linear Noise Approximation (LNA) is another approximate model for the CME,

where stochasticity is represented as random fluctuations around a deterministic trajectory

using stochastic differential equations or partial differential equations10,35. Recently, model
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order reduction methods for the LNA have been developed using projection operators27,36

or singular perturbation analysis37. However, in these works, the error between the full and

reduced-order models are not analytically quantified. The work by Sootla and Anderson38

provides an error quantification for model order reduction of LNA developed by Thomal et

al.27,36, but to do so they assume Lipschitz continuity of system functions, which are not

Lipschitz-continuous for general systems. Furthermore, the above works only provide an

approximation for the slow variable dynamics and do not approximate the fast variables.

In this work, we consider biochemical reaction networks modeled using the LNA. We con-

sider systems with separation of time-scales where the dynamics can be represented in the

singular perturbation form with ε as the singular perturbation parameter. We then obtain

a reduced-order model that approximates both slow and fast variables. We mathematically

demonstrate that first and second moments of the reduced system variables are within an

O(ε)-neighborhood of the first and second moments of the full system variables. These

results, in turn, provide a rigorous justification for the accuracy of LNA models derived

using the stochastic tQSSA in comparison to the standard quasi-steady state approxima-

tion (QSSA). Furthermore, in contrast to the stochastic tQSSA, our reduced system also

provides approximations for the fast variables stochastic properties. Hence, we term our

method the stochastic tQSSA+. The application of our approach is then demonstrated on

two biochemical network motifs found in gene-regulatory networks and signal transduction

cascades. Through these examples, we illustrate the practical applications of the reduced-

order models and the necessity of both slow and fast variable approximations for analysis.

In particular, using the reduced-order model for the gene-regulatory network motif, we fur-

ther investigate the parameter conditions under which the standard QSSA provides accurate

results in the stochastic setting.

This paper is organized as follows. In Section II, we present the LNA model considered in

this paper. In Section III, we introduce the reduced-order system and present our results on

the error quantification between the full and reduced dynamics. In Section V, we illustrate

the application of the results with two examples of biochemical network motifs.

Notation: E[·] denotes the expected value of a random variable. ‖ · ‖ denotes the

Euclidean norm for vectors and ‖ · ‖F denotes the Frobenius norm for matrices.
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II. THE LINEAR NOISE APPROXIMATION WITH TIME-SCALE

SEPARATION

A. Linear Noise Approximation

Consider a biochemical reaction network with n species Y1, . . . , Yn, in a volume Ω, inter-

acting through m reactions of the form:

pi1Y1 + . . .+ pinYn
ki−→ ri1Y1 + . . .+ rinYn, i = 1, . . . ,m,

where ki denotes the rate constant of reaction i and pil − ril is the change in the number of

molecules of Yl due to the reaction i. Let y(t) = [y1, . . . , yn]T be the state of the system at

a given time t where each component yi represents the molecular count for each species as

a discrete random variable. Then, the Chemical Master Equation for this system is of the

form

∂P (y, t)

∂t
=

m∑

i=1

[ai(y − qi, t)P (y − qi, t)− ai(y, t)P (y, t)], (1)

where ai(y, t) is the microscopic reaction rate proportional to ki with ai(y, t)dt being the

probability that the reaction i will take place in an infinitesimal time step dt. The variable

qi = ri − pi is the stoichiometry vector where pi = [pi1, . . . , pin]T and ri = [ri1, . . . , ri1n]T for

i = 1, . . . ,m 39.

The Linear Noise Approximation (LNA) is an approximation to the CME, where the

molecular counts are represented by continuous variables under the assumption that the

system volume and the molecular counts are sufficiently large. As shown in the work of van

Kampen10, the LNA is derived by taking y = Ωv+
√

Ωξ in the CME, where Ω is the system

volume, v is a vector of deterministic variables and ξ is a vector of random variables that

represents the stochastic fluctuations. Then, performing a Taylor series expansion about the

deterministic variable Ωv and equating the terms of order Ω1/2 and Ω0, it is shown that v

gives the macroscopic concentrations and the elements of ξ are Gaussian random variables

with the dynamics

v̇ = f(v, t), (2)

ξ̇ = A(v, t)ξ + σ(v, t)Γ, (3)
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in which Γ is an m-dimensional white noise process, f(v, t) =
∑m

i=1 qiãi(v, t), A(v, t) =

∂f(v,t)
∂v

and σ(v, t) = [q1

√
ã1(v, t), . . . , qm

√
ãm(v, t)]. The function ãi(v, t) is the macroscopic

reaction rate which can be approximated by ãi(v, t) = 1
Ω
ai(Ωv, t) as Ω → ∞ and y → ∞

such that the concentration v = y/Ω remains constant40.

B. System model with time-scale separation

In this work, we consider biochemical reaction networks in which the chemical reactions

take place on two well-separated time-scales. For the system (2)–(3), let ms be the number

of slow reactions and mf be the number of fast reactions where ms + mf = m. Then, by

using a small parameter ε, the reaction rate vector can be arranged in the form ã(v, t) =

[âs(v, t), (1/ε)âf (v, t)]
T where âs(v, t) ∈ Rms represents the reaction rates of slow reactions

and (1/ε)âf (v, t) ∈ Rmf represents the reaction rates of fast reactions. The corresponding

stoichiometry vectors qi can be written in the form q = [q1, . . . , qms , qms+1, . . . , qms+mf
] where

qi for i = 1, . . . ,ms represent the change in the molecular counts given by the slow reactions,

and qi for i = ms + 1, . . . ,ms + mf represent the change in the molecular counts given by

the fast reactions. Because, chemical species often take part in both slow and fast reactions,

the above separation in reaction rates does not necessarily correspond to a partitioning of

the system’s species into fast and slow. Often, a coordinate change is necessary to identify

the slow and fast variables in the system and write it in the standard singular perturbation

form29,41. Therefore, here we consider systems in which the species can be partitioned into

ns slow variables and nf fast variables with ns + nf = n, according to the following claim:

Claim 1. Assume that there is an invertible matrix T = [T Tx , T
T
z ]T with Tx ∈ Rns×n and

Tz ∈ Rnf×n such that the change of variables x = Txv, z = Tzv, takes the system (2) into

the singular perturbation form

ẋ = fx(x, z, t), (4)

εż = fz(x, z, t, ε). (5)

Then, the change of variables ψx = Txξ, ψz = Tzξ transforms system (3), into the singular

perturbation form

ψ̇x = Sx(x, z, t)ψx + Sz(x, z, t)ψz + σx(x, z, t)Γx, (6)
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εψ̇z = Fx(x, z, t, ε)ψx + Fz(x, z, t, ε)ψz + σz(x, z, t, ε)Γz, (7)

where Γx is an ms-dimensional white noise process, Γz = [ΓTx ,Γ
T
f ]T , where Γf is an mf -

dimensional white noise process and

Sx(x, z, t) =
∂fx(x, z, t)

∂x
, Sz(x, z, t) =

∂fx(x, z, t)

∂z
,

Fx(x, z, t, ε) =
∂fz(x, z, t, ε)

∂x
, Fz(x, z, t, ε) =

∂fz(x, z, t, ε)

∂z
,

σx(x, z, t) = Tx

[
q1

√
âs1(T−1[xT , zT ]T , t), . . . , qms

√
âsms

(T−1[xT , zT ]T , t)

]
,

σz(x, z, t, ε) =



ε

[
q1

√
âs1(T−1[xT , zT ]T , t), . . . , qms

√
âsms

(T−1[xT , zT ]T , t)

]T
T Tz

[
qms+1

√
εâf 1(T−1[xT , zT ]T , t), . . . , qms+mf

√
εâfmf

(T−1[xT , zT ]T , t)

]T
T Tz




T

.

Proof. See Appendix A.

Note, that the noise Γx on the slow variables is ms-dimensional, while the noise Γz is

(ms +mf )-dimensional. This is due to the fact that the fast reactions do not affect the slow

variable dynamics in the above form, i.e., ε does not appear in the slow variable dynamics

(4), but the fast dynamics can be dependent on both slow and fast reactions (see Appendix

A for details).

There are several works in the literature that have investigated existence of such coordi-

nate transformations that allow the separation of slow and fast variables for deterministic

systems42 and also for chemical Langevin equation models29.

Following the results of Claim 1, we consider biochemical reaction networks where the

Linear Noise Approximation model can be written in the standard singular perturbation

form

ẋ = fx(x, z, t), x(0) = x0, (8)

εż = fz(x, z, t, ε), z(0) = z0, (9)

ψ̇x = Sx(x, z, t)ψx + Sz(x, z, t)ψz + σx(x, z, t)Γx, ψx(0) = ψx0, (10)

εψ̇z = Fx(x, z, t, ε)ψx + Fz(x, z, t, ε)ψz + σz(x, z, t, ε)Γz, ψz(0) = ψz0, (11)

where x ∈ Rns , ψx ∈ Rns are the slow variables and z ∈ Rnf , ψz ∈ Rnf are the fast vari-

ables. Γx is an ms-dimensional white noise process. Then, Γz = [ΓTx ,Γ
T
f ]T , where Γf is an
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mf -dimensional white noise process.

We refer to the system (8) - (11) as the full system and we first make the following

assumptions for x ∈ Rns and z ∈ Rnf .

Assumption 1. The functions fx(x, z, t), fz(x, z, t, ε) are twice continuously differentiable.

The Jacobian ∂fz(x,z,t,0)
∂z

has continuous first and second partial derivatives with respect to

its arguments.

Assumption 2. The matrix-valued functions σx(x, z, t)σx(x, z, t)
T , σz(x, z, t, ε)[σx(x, z, t) 0]T

and σz(x, z, t, ε)σz(x, z, t, ε)
T are continuously differentiable. Furthermore, let Λ(x, z, t, ε) =

σz(x,z,t,ε)σz(x,z,t,ε)T

ε
. We have that σz(x, z, t, 0) = 0 and Λ(x, z, t, 0) is bounded for given x, z, t.

Assumption 3. There exists an isolated real root z = γ1(x, t), for the equation fz(x, z, t, 0) =

0, for which, the matrix ∂fz(x,z,t,0)
∂z

∣∣
z=γ1(x,t)

is Hurwitz (i.e. eigenvalues of the matrix have

strictly negative real parts), uniformly in x and t. Furthermore, we have that the first

partial derivative of γ1(x, t) is continuous with respect to its arguments. Also, the initial

condition z0 is in the region of attraction of the equilibrium point z = γ1(x0, 0) for the

system dz
dτ

= fz(x0, z, 0, 0).

Assumption 4. The system ẋ = fx(x, γ1(x, t), t) has a unique bounded solution for t ∈
[0, t1].

In the next section, we present the reduced-order model that we define to approximate

the slow and fast variables when ε is small in the full system (8) - (11), and quantify the

error between the moment dynamics of the full and the reduced systems.

III. RESULTS

To define the reduced system we follow a similar approach to the singular perturbation

theory4 by setting ε = 0 in the full system (8) - (11). This yields

fz(x, z, t, 0) = 0, (12)

Fx(x, z, t, 0)ψx + Fz(x, z, t, 0)ψz = 0. (13)
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Let z = γ1(x, t) be an isolated root of equation (12). Then, it follows that the unique

solution to equation (13) is

ψz = −Fz(x, γ1(x, t), t, 0)−1Fx(x, γ1(x, t), t, 0)ψx.

Note that the invertibility of matrix Fz follows from Assumption 3 where it is assumed that

Fz(x, γ1(x, t), t, 0) = ∂fz(x,z,t,0)
∂z

∣∣
z=γ1(x,t)

is Hurwitz. Let γ2(x, t) =

−Fz(x, γ1(x, t), t, 0)−1Fx(x, γ1(x, t), t, 0). Substituting z = γ1(x, t) and ψz = γ2(x, t)ψx in

equations (8) and (10), we obtain the following candidate approximation for the slow variable

dynamics:

˙̄x = fx(x̄, γ1(x̄, t), t), x̄(0) = x0, (14)

˙̄ψx = S(x̄, t)ψ̄x + σx(x̄, γ1(x̄, t), t)Γx, ψ̄x(0) = ψx0, (15)

where S(x̄, t) = Sx(x̄, γ1(x̄, t), t) + Sz(x̄, γ1(x̄, t), t)γ2(x̄, t).

Next, to introduce a candidate approximation for the fast variable dynamics we define:

z̄ = γ1(x̄, t), (16)

ψ̄z = γ2(x̄, t)ψ̄x + g(x̄, t)N(0, 1), (17)

where N(0, 1) ∈ Rd is a vector of standard normal random variables and g(x, t) : Rns×R→
Rnf×d is a function that satisfies the Lyapunov equation

Fz(x, γ1(x, t), t, 0)g(x, t)g(x, t)T

+ g(x, t)g(x, t)TFz(x, γ1(x, t), t, 0)T

= −Λ(x, γ1(x, t), t, 0), (18)

where Λ(x, z, t, ε) is defined in Assumption 2.

We refer to the equations (14)–(17) as the reduced system. Next, we show that the reduced

system (14)–(17) is a good approximation of the full system (8)–(11) as ε tends to zero. In

particular, we demonstrate that the error in the first and second moments between the full

and the reduced system variables are O(ε). To this end, denote by E[·] the expected value

of a random variable. Then, we have the following theorem:

Theorem 1. Consider the full system (8)–(11) and the reduced system in (14)–(17). Then,

under Assumptions 1 - 4, there exist ε∗ ≥ 0 such that for 0 < ε < ε∗, t ∈ [0, t1] we have

‖x(t)− x̄(t)‖ = O(ε), (19)
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‖E[ψx(t)]− E[ψ̄x(t)]‖ = O(ε), (20)

‖E[ψx(t)ψx(t)
T ]− E[ψ̄x(t)ψ̄x(t)

T ]‖F = O(ε), (21)

and for any 0 < tb < t1 there exists ε∗∗ ≤ ε∗ such that for ε < ε∗∗ and t ∈ [tb, t1] we have

‖z(t)− z̄(t)‖ = O(ε), (22)

‖E[ψz(t)]− E[ψ̄z(t)]‖ = O(ε), (23)

‖E[ψz(t)ψx(t)
T ]− E[ψ̄z(t)ψ̄x(t)

T ]‖F = O(ε), (24)

‖E[ψz(t)ψz(t)
T ]− E[ψ̄z(t)ψ̄z(t)

T ]‖F = O(ε). (25)

The proof of this theorem is presented in Appendix B together with several intermediate

results that are used in the proof. We provide an outline of the proof here. First, we

derive the moment dynamics of the full system (8) - (11) and show that they are also in the

standard singular perturbation form (Lemma 1, Appendix B). Then, we derive the moment

dynamics of the reduced system (14)–(17) in Lemma 2. Next, we show that setting ε = 0 in

the moment dynamics of the full system yields the moment dynamics of the reduced system

(Lemma 3 and 4, Appendix B). As the moment dynamics are deterministic we then apply

the Tikhonov’s theorem4 using the stability conditions provided by Assumption 3 to prove

Theorem 1.

Theorem 1 shows that the reduced system (14)–(17) provides a good approximation to the

slow and fast variables of the full system (8) - (11) in terms of the first and second moments

of the stochastic fluctuations ψx and ψz. Thus, we have that, as ε tends to zero, the mean,

variance and the covariance of the stochastic fluctuations ψx and ψz are well approximated

by those of the reduced system variables ψ̄x and ψ̄z. Therefore, in the case where the full

system in the singular perturbation form is obtained via a coordinate change as in Claim

1, we have that the reduced system provides a good approximation for the variables v and

ξ that consists of both slow and fast dynamics (see Appendix B). This is illustrated in the

diagram of Figure 1. We also note that these results hold under the stability assumption

of the Tikhonov’s theorem required for the deterministic dynamics, given by Assumption 3,

and that there are no additional stability assumptions.

From the definition of the reduced system (14)–(15), we note that the slow variable

dynamics can be approximated by setting ε = 0, similar to singular perturbation in deter-

ministic systems4. However, the fast variable approximation ψ̄z requires an additional term
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Eq. (8) - (11)
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variables
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FIG. 1. Schematic diagram illustrating the model reduction approach given by Theorem 1. The

O(ε)-closeness of the moments of the original species concentrations and the moments obtained via

the reduced system is proved in Appendix C.

g(x̄, t). This additional term is required to capture the noise properties of the fast variable,

which are not captured by γ2(x̄, t) alone, since setting ε = 0 in equation (11) eliminates the

diffusion term σz(x, z, t, ε), which contributes to the second moment of the fast variable. To

illustrate this point, we provide a simple example. Consider the system

dψx
dt

= a1ψx + a2ψz, (26)

ε
dψz
dt

= a3ψz +
√
εv1Γ, (27)

in which referring to system (10)–(11) we have σx = 0 and σz = v1. Setting ε = 0 in this

system gives

dψ̄x
dt

= a1ψ̄x, ψ̄z = 0. (28)
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Computing the steady state second moments of system (26)–(27) and system (28) obtained

by setting ε = 0 we have

E[ψ2
x] =

a2
2v

2
1

2a1

ε

(1 + a1ε)
, E[ψ̄2

x] = 0,

E[ψ2
z ] =

v2
1

2a3

, E[ψ̄2
z ] = 0.

From here, it can be seen that as ε tends to zero the second moment of ψx tends to the mo-

ment of the approximation ψ̄x, however, the moment of ψz does not converge to the moment

of ψ̄z. Thus, the reduced system obtained by setting ε = 0 provides a good approximation

for the moments of the slow variable, but not for those of the fast variable.

As it can be seen from equations (27)–(28), the reason for the poor approximation of the

fast variable is due to the elimination of the noise term v1 when ε is set to zero in (26)–(27).

This can be further analyzed by representing the full system in the fast time-scale τ = t/ε:

dψx
dτ

= ε(a1ψx + a2ψz), (29)

dψz
dτ

= a3ψz + v1Γ̃, (30)

where Γ̃ =
√
ε Γ is a white noise process in the fast time-scale. Here, we observe that setting

ε = 0 does not eliminate the noise term of the fast variable dynamics, and thus, this noise

term should be taken into account in the fast variable approximation. The term g(x̄, t) in

the reduced fast system captures this fast variable noise. This can be seen by computing

the values of γ2(x̄, t) and g(x̄, t)2 for the system (26)-(27). From (27) and (13), we have that

γ2(x̄, t) = 0. Writing the Lyapunov equation (18) for the system (27), we have

a3g(x̄, t)2 + g(x̄, t)2a3 = v2
1,

which yields g(x̄, t)2 = v2
1/2a3. This gives the steady state moment E[ψ̄2

z ] = v2
1/2a3 for the

reduced fast system, which is the same as E[ψ2
z ]. The dynamics of the slow variable ψx vary

at a much slower rate than the dynamics of ψz, and therefore, the noise of the fast variable

ψz can be neglected in the slow variable approximation as it is essentially ‘filtered out’30,32.

Remark 1: The stochastic fluctuations ψx and ψz are multivariate Gaussian random

variables and thus their probability distributions are fully characterized by the mean and

the covariance10. From Theorem 1, we have that the first and second moments of ψx(t)
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converge to the moments of the vector ψ̄x(t), and the first and second moments of ψz(t)

converge to the moments of ψ̄z(t), as ε tends to zero. Thus, we further have that the vectors

ψx(t) and ψz(t) converge in distribution to the vectors ψ̄x(t) and ψ̄z(t), respectively.

Next, we investigate how the reduced system derived in this section relates to the com-

monly used total quasi-steady state approximation in stochastic analysis.

IV. VALIDITY OF LNA MODELS DERIVED USING STOCHASTIC

TQSSA

The quasi-steady state approximation is widely used in the deterministic setting to obtain

reduced-order models of biochemical reaction networks under time-scale separation condi-

tions. Recently, the QSSA has also been extended to stochastic systems, where the fast

variables are approximated by their deterministic quasi-steady state expressions in stochas-

tic simulations. This method is termed stochastic QSSA20,43.

Several studies in the deterministic setting have shown that the validity of the standard

QSSA is limited to certain parameter conditions. Thus, the total quasi-steady state ap-

proximation (tQSSA) has been introduced as an alternate approximation with increased

accuracy44,45. The tQSSA, first proposed for enzymatic reactions, considers a coordinate

change to identify the slow variables in the system. This has then been adapted in the

stochastic setting where stochastic simulations of the CME are performed using the deter-

ministic quasi-steady state expressions of the fast variables obtained using the tQSSA20,43,46.

There are several studies that investigate the validity of these stochastic quasi-steady state

approximations. Particularly, the work by J.K Kim et al. demonstrates, via two-dimensional

systems modeled by the CME and LNA, that the tQSSA provides a better approximation

to the original system in comparison to the standard QSSA20,22. Here, we use the results

derived in Theorem 1 to provide a rigorous mathematical justification for the accuracy of the

stochastic tQSSA for general reaction networks modeled through the LNA. The inaccuracy

of the standard QSSA in the deterministic setting results from treating the species that

consists of both slow and fast dynamics as purely slow variables. In contrast, the tQSSA

involves defining the slow variables of the system via a coordinate change, in which the slow

variable dynamics do not depend on the fast reactions. This corresponds to Claim 1, where

13



a coordinate transformation is used to identify the slow and fast variables in the system.

Thus, the deterministic counterpart of the reduced LNA given by equation (14) is equivalent

to the reduced system obtained by using the tQSSA. We next derive the dynamics of the

stochastic fluctuations under the stochastic tQSSA. To this end, let x̂ and ψ̂x represent the

variables in the LNA model obtained using the stochastic tQSSA. Then, we have that the

deterministic dynamics are given by

˙̂x = fx(x̂, γ1(x̂, t), t). (31)

Next, deriving the corresponding dynamics for the stochastic fluctuation using the definition

of the LNA in Section II we have

˙̂
ψx =

∂fx(x̂, γ1(x̂, t), t)

∂x̂
ψ̂x + σx(x̂, γ1(x̂, t), t).

Using the chain rule we can write this system as

˙̂
ψx =

(
∂fx(x̂, z, t)

∂x̂
+
∂fx(x̂, z, t)

∂z

∂γ1(x̂, t)

∂x̂

)∣∣∣∣
z=γ1(x̂,t)

ψ̂x

+ σx(x̂, γ1(x̂, t), t). (32)

Then, by the implicit function theorem47 we have that

∂γ1(x̂, t)

∂x̂
= −∂fz(x, z, t, 0)

∂z

∣∣∣∣
−1

z=γ1(x̂,t)

∂fz(x, z, t, 0)

∂x

∣∣∣∣
z=γ1(x̂,t)

,

= −Fz(x̂, γ1(x̂, t), t, 0)−1Fx(x̂, γ1(x̂, t), t, 0),

where we have from Section III that −Fz(x̂, γ1(x̂, t), t, 0)−1Fx(x̂, γ1(x̂, t), t, 0) = γ2(x̂, t).

Substituting ∂γ1(x̂, t)/∂x̂ = γ2(x̂, t) in (32), we obtain

˙̂
ψx =(Sx(x̂, γ1(x̂, t), t) + Sz(x̂, γ1(x̂, t), t)γ2(x̂, t))ψ̂x

+ σx(x̂, γ1(x̂, t), t), (33)

which is equivalent to the dynamics of ψ̄x in the reduced system (8) and (11) derived through

singular perturbation. Thus, we have that the LNA model obtained under stochastic

tQSSA is equivalent to the slow variable approximations (14)–(15) in our reduced system.

This is illustrated in the schematic in Figure 2. Then, from Theorem 1 we have that the

moments of the LNA model obtained using stochastic tQSSA provide a good approximation

14



FIG. 2. Schematic diagram illustrating the relationship between the singular perturbation approach

and tQSSA approach.

for the moments of slow variables (8) and (11) in the full system. This demonstrates that,

similar to the deterministic setting, the LNA model obtained using the tQSSA provides a

good approximation for the dynamics of the slow variables of the full LNA model, under

all parameter conditions. Furthermore, this indicates that when the molecular counts are

sufficiently large, the stochastic tQSSA yield a valid approximation for CME under time-

scale separation, similar to the observations in previous studies20,22.

Therefore, our results provide a rigorous justification for the validity of stochastic tQSSA

models, which has been absent in previous work. However, unlike the tQSSA, the reduced

model derived in (14)–(17) also provide approximations for the fast variable stochastic prop-

erties. Therefore, we term our method stochastic tQSSA+. These fast variables stochastic

properties can be used to analyze the reduced dynamics of the original species concentra-

tions. Similar considerations in the literature suggests using the prefactor QSSA48 method

to study the dynamics of the fast variables in the reduced setting20. The prefactor QSSA

method, first proposed for deterministic models of gene-regulatory networks, involves first

15



using the coordinate transformation to identify the slow and fast variables to perform the

model reduction and then transforming the reduced system variables back into the original

form48. This is equivalent to the singular perturbation approach in deterministic setting

and thus produces accurate results in deterministic models. However, J.K. Kim et al. has

shown that although this provides a good approximation in deterministic models, using

the reactions rates obtained through the prefactor QSSA in stochastic simulations does not

produce accurate results20,22. By contrast, our results provide a method to obtain accurate

approximations of the original system variables.

In the next section, we demonstrate how the results developed in this section can be

applied to biochemical reaction networks with two time-scales. Furthermore, we use an

application example to investigate the parameter conditions under which the standard

quasi-steady state provides a good approximation of the original system dynamics.

V. APPLICATION EXAMPLES

In this section, we illustrate the application of our results to two biochemical network

motifs that exhibit time-scale separation. First, we consider a gene-regulatory network

motif. We derive the reduced LNA and validate it through numerical simulations. We then

use the reduced system to investigate the validity of quasi-steady state approximations that

are often performed in the stochastic setting. As a second example, we consider a cellular

signaling motif.

A. Example I: Gene-regulatory network motif

We consider the gene-regulatory network motif shown in Figure 3, in which two genes are

regulating each other in a negative feedback loop. Gene-regulatory networks describe the

interactions between genes and the proteins that regulate the expressions of these genes. The

regulatory proteins, known as transcription factors, can activate or repress the expression of a

gene by binding to its promoter site and by either aiding or interfering with the transcription

process by RNAP49. Through these activation and repression processes, the cell regulates the

levels of proteins in the cell, which are responsible for a vast majority of cellular functions49.

In deterministic models of gene-regulatory networks, activation and repression processes
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are often modeled by Hill functions49. These are derived using the QSSA where it is assumed

that the binding reactions between the DNA promoter sites and transcription factors equi-

librate faster than transcription and translation. Similarly, it has become common practice

to use the deterministic quasi-steady state expressions (e.g. Michaelis-Menten/Hill func-

tions) in the simulation of stochastic biochemical reaction networks as a convenient way to

eliminate the fast dynamics and reduce simulation time19. However, the validity of such

approximations in the stochastic setting remains under investigation20,27. In the previous

section, we demonstrated that the reduced LNA model obtained using the stochastic tQSSA

is equivalent to the slow variable dynamics in the reduced system (14)-(17), and thus pro-

vides a good approximation for the full system variables under all parameter conditions. In

this example, we derive the reduced LNA for the system in Figure 3, and use it to investigate

the validity of reduced-order LNA models obtained through the stochastic standard QSSA.

Consider the gene-regulatory network motif in Figure 3. We have protein M activating the

production of protein G, which in turn represses the production of protein M. The chemical

6

that regulate the expressions of these genes. The regu-
latory proteins, knows as transcription factors, can acti-
vate or repress the expression of a gene by binding to its
promoter site. Through these activation and repression
processes, the cell regulates the levels of proteins in the
cell that are responsible for a vast majority of cellular
functions necessary to sustain life1.

In deterministic models of gene expression, activa-
tion and repression processes are often modeled by Hill
functions1, which are derived using the quasi-steady-
state assumption where it is assumed that the binding
reactions between the DNA promoter sites and tran-
scription factors equilibrate faster than transcription and
translational processes in gene expression. Similarly, it
has become common practice to use the deterministic
quasi-steady-state expressions (e.g. Hill functions) in the
simulation of stochastic biomolecular systems in order
to eliminate the fast dynamics and reduce the computa-
tional complexity of the simulations18. However, the va-
lidity of such approximations in the stochastic setting still
remains under investigation by di↵erent researchers19,20.

In this example, we consider stochastic dynamics of a
gene-regulatory motif shown in Figure 1. We first derive
the reduced-order LNA using Theorem 1 in this work and
verify the results through numerical simulations. Then,
we use the moment dynamics of the reduced system to
investigate the validity of the reduced-order LNA models
obtained using Hill functions.

Consider the gene-regulatory network in Figure 1. We
have protein X activating the production of protein G,
which in turn represses the production of protein X. The

FIG. 1. Protein X activates the production of protein G,
which in turn represses the production of protein X.

chemical reactions that describe the expression and decay
of protein X are given by

G + P1
kon1���*)���
koff1

C1, P1
�1�! P1 + X, X

�1�! �.

Protein G represses the production of X by binding to
the promoter P1, which produces an inactive complex
C1, where the binding and unbinding rates are kon1 and
ko↵1, respectively. The production of protein X is de-
noted by the second reaction where the production rate
is �1, which includes both transcription and translation
rates. Protein X decays at a rate of �1, which accounts
for the degradation of the species.

Similarly, the chemical reactions that describe the ex-

pression and decay of protein G can be written as

X + P2
kon2���*)���
koff2

C2, C2
�2�! C2 + G, G

�2�! �,

where the protein X activates the production of protein G
by first binding to the promoter P2 to produce the com-
plex C2, where the binding and unbinding rates are kon2

and ko↵2, respectively. Then, the production of protein G
is represented in the second reaction, where �2 is the pro-
duction rate constant, which includes both transcription
and translational processes. Protein G decays at a rate of
�2. We assume that the total concentration of promoters
are conserved, giving pT1 = p1 + c1, pT2 = p2 + c2 where
the lower-case letters represent macroscopic concentra-
tions. Then, the macroscopic reaction rate equations for
the proteins X and G and the complexes C1 and C2 can
be written as

dx

dt
= �1(pT1 � c1) � �1x � kon2x(pT2 � c2) + ko↵2c2,

(31)

dc1

dt
= kon1g(pT1 � c1) � ko↵1c1, (32)

dc2

dt
= kon2x(pT2 � c2) � ko↵2c2, (33)

dg

dt
= �2c2 � �2g � kon1g(pT1 � c1) + ko↵1c1. (34)

We have that binding and unbinding reactions are
much faster than the production and decay of pro-
teins, and thus, we can define the small parameter
✏ = �1/ko↵1 where ✏ ⌧ 1. Let kd1 = ko↵1/kon1 and
kd2 = ko↵2/kon2 with a = ko↵2/ko↵1. Then, consider-
ing the species vector v = [x, g, c1, c2], we can parti-
tion the reaction rate vector into slow and fast groups
as ã(v, t) = [âs(y, t), (1/✏)âf (v, t)] where âs(v, t) =

[�1(pT1 � c1), �1x,�2c2, �2g] and âf (y, t) = [ �1kd1
g(pT1 �

c1), �1c1,
a�1
kd2

x(pT2 � c2), a�1c2], and the corresponding
stoichiometry matrix is given by

s =

2
64

1 �1 0 0 0 0 �1 1
0 0 1 �1 �1 1 0 0
0 0 0 0 1 �1 0 0
0 0 0 0 0 0 1 �1

3
75.

Here, we note that this partitioning of reaction rates into
slow and fast groups alone does not guarantee that the
species x, g, c1, and c2, evolve on well-separated time-
scales. Thus, we consider the coordinate change w =
x + c2, u = g + c1, which takes the macroscopic reaction
rate equations into the singular perturbation form:

dw

dt
= �1(pT1 � c1) � �1(w � c2), (35)

du

dt
= �2c2 � �2(u � c1), (36)

✏
dc1

dt
=

�1
kd1

(u � c1)(pT1 � c1) � �1c1, (37)

FIG. 3. Protein M activates the production of protein G, which in turn represses the production

of protein M.

reactions are given by

G + P1
kon1−−⇀↽−−
koff1

C1, P1
β1−→ P1 + M, M

δ1−→ φ.

Protein G represses the production of M by binding to the promoter P1 leading to the

inactive complex C1. The production of protein M is given by the second reaction, in which

we have lumped together transcription and translation. Protein M decays at rate δ1, which

accounts for degradation and dilution.

Similarly, the chemical reactions that describe the expression and decay of protein G can

be written as

M + P2
kon2−−⇀↽−−
koff2

C2, C2
β2−→ C2 + G, G

δ2−→ φ,
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where M activates the production of protein G by first binding to promoter P2 to produce the

transcriptionally active complex C2. We assume that the total concentration of promoters

are conserved, giving pT1 = p1 + c1, pT2 = p2 + c2 where the lower-case letters represent

macroscopic concentrations. Then, the macroscopic reaction rate equations can be written

as

dm

dt
= β1(pT1 − c1)− δ1m− kon2m(pT2 − c2) + koff2c2,

dc1

dt
= kon1g(pT1 − c1)− koff1c1, (34)

dc2

dt
= kon2m(pT2 − c2)− koff2c2,

dg

dt
= β2c2 − δ2g − kon1g(pT1 − c1) + koff1c1.

Since binding and unbinding reactions are much faster than production and decay, we

can define the small parameter ε = δ1/koff1 where ε � 1. Let kd1 = koff1/kon1 and kd2 =

koff2/kon2 with a = koff2/koff1. Then, considering the species vector v = [m, g, c1, c2], we can

partition the reaction rate vector into slow and fast groups as ã(v, t) = [âs(y, t), (1/ε)âf (v, t)]

where âs(v, t) = [β1(pT1 − c1), δ1m,β2c2, δ2g] and âf (y, t) = [ δ1
kd1
g(pT1 − c1), δ1c1,

aδ1
kd2
m(pT2 −

c2), aδ1c2], and the corresponding stoichiometry matrix is given by

q =




1 −1 0 0 0 0 −1 1

0 0 1 −1 −1 1 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1



.

The variables m and g are not fast nor slow because M and G participate in both slow and

fast reactions. Thus, we consider the coordinate change w = m+ c2, u = g+ c1, which takes

the system (34) into singular perturbation form:

dw

dt
= β1(pT1 − c1)− δ1(w − c2),

du

dt
= β2c2 − δ2(u− c1),

ε
dc1

dt
=

δ1

kd1

(u− c1)(pT1 − c1)− δ1c1,

ε
dc2

dt
=
aδ1

kd2

(w − c2)(pT2 − c2)− aδ1c2,

(35)

where the slow variables are given by w and u, and the fast variables are given by c1 and

c2. Considering Claim 1, the change of coordinates w = m + c2, u = g + c1 corresponds to
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Tx = [1 0 0 1, 0 1 1 0]T , Tz = [0 0 1 0, 0 0 0 1]T , where x = [w, u]T and z = [c1, c2]T . Then,

as described in Section II, the dynamics of the stochastic fluctuations of the LNA can be

written using (35) as

dψw
dt

= −δ1ψw − β1ψc1 + δ1ψc2 +
√
β1(pT1 − c1)Γ1 −

√
δ1(w − c2)Γ2

dψu
dt

= −δ2ψu + δ2ψc1 + β2ψc2 +
√
β2c2Γ3 −

√
δ2(u− c1)Γ4,

ε
dψc1
dt

=
δ1

kd1

(pT1 − c1)ψu − (
δ1

kd1

(pT1 + u− 2c1) + δ1)ψc1 (36)

+

√
εδ1

kd1

(u− c1)(pT1 − c1)Γ5 −
√
εδ1c1Γ6,

ε
dψc2
dt

=
aδ1(pT2 − c2)

kd2

ψw − (
aδ1

kd2

(pT2 + w − 2c2) + aδ1)ψc2

+

√
εaδ1

kd2

(w − c2)(pT2 − c2)Γ7 −
√
εaδ1c2Γ8.

We note that the system functions are given by polynomials of the system variables, and

thus Assumptions 1 and 2 are satisfied. Considering Assumption 3, we have that ∂fz
∂z

where

fz(x, z, t, ε) = [ δ1
kd1

(u − c1)(pT1 − c1) − δ1c1,
aδ1
kd2

(w − c2)(pT2 − c2) − aδ1c2]T is Hurwitz for

all parameter values, and setting ε = 0 in the fast variable dynamics fz yields the unique

solution [c1, c2]T = [1
2
(u + pT1 + kd1) − 1

2

√
(u+ pT1 + kd1)2 − 4upT1,

1
2
(w + pT2 + kd2) −

1
2

√
(w + pT2 + kd2)2 − 4wpT2]T that is feasible under conditions 0 ≤ c1 ≤ pT1 and 0 ≤ c2 ≤

pT2. Next, in order to derive the reduced system, we set ε = 0 in the system (35)-(36), which

yields

c1 =
(u+ pT1 + kd1)

2
−
√

(u+ pT1 + kd1)2 − 4upT1

2
,

c2 =
(w + pT2 + kd2)

2
−
√

(w + pT2 + kd2)2 − 4wpT2

2
,

ψc1 =
(pT1 − c1)ψu

((pT1 + u− 2c1) + kd1)
,

ψc2 =
(pT2 − c̄2)ψw

((pT2 + w − 2c̄2) + kd2)
.

(37)

Next, in order to determine the additional terms in the fast variable approximations for

the stochastic variables ψc1 and ψc2 we write the Lyapunov equation (18) as

[ −( δ1
kd1

(pT1 + u− 2c1) + δ1) 0

0 −(aδ1
kd2

(pT2 + w − 2c2) + aδ1)

]
g(w)g(w)T
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+g(w)g(w)T
[ −( δ1

kd1
(pT1 + u− 2c1) + δ1) 0

0 −(aδ1
kd2

(pT2 + v − 2c2) + aδ1)

]

= −
[ δ1
kd1

(u− c1)(pT1 − c1) + δ1c1 0

0 aδ1
kd2

(w − c2)(pT2 − c2) + aδ1c2

]
,

which yields

g(w)

=




√
(ū−c̄1)(pT1−c̄1)+kd1c̄1

2
√

(ū+pT1+kd1)2−4ūpT1

0

0

√
(w̄−c̄2)(pT2−c̄2)+kd2c̄2

2
√

(w̄+pT2+kd2)2−4w̄pT2


.

Then, substituting the terms (37) in the system (35)-(36), and using g(w) and a vector

of normal random variables [N1(0, 1), N2(0, 1)]T according to (17) we obtain the reduced

system

dw̄

dt
= β1(pT1 − c̄1)− δ1(w̄ − c̄2),

dū

dt
= β2c̄2 − δ2(ū− c̄1),

dψ̄w
dt

= −δ1ψ̄w −
β1(pT1 − c̄1)ψ̄u

pT1 + ū− 2c̄1 + kd1

+ δ1
(pT2 − c̄2)ψ̄w

pT2 + w̄ − 2c̄2 + kd2

+
√
β1(pT1 − c̄1)Γ1 −

√
δ1(w̄ − c̄2)Γ2,

dψ̄u
dt

= −δ2ψ̄u +
δ2(pT1 − c̄1)ψ̄u

pT1 + ū− 2c̄1 + kd1

+
β2(pT2 − c̄2)ψ̄w

pT2 + w̄ − 2c̄2 + kd2

+
√
β2c̄2Γ3 −

√
δ2(ū− c̄1)Γ4, (38)

c̄1 =
(ū+ pT1 + kd1)

2
−
√

(ū+ pT1 + kd1)2 − 4ūpT1

2
,

c̄2 =
(w̄ + pT2 + kd2)

2
−
√

(w̄ + pT2 + kd2)2 − 4w̄pT2

2
,

ψ̄c1 =
(pT1 − c̄1)ψu

((pT1 + ū− 2c̄1) + kd1)
+

√
(ū− c̄1)(pT1 − c̄1) + kd1c̄1

2
√

(ū+ pT1 + kd1)2 − 4ūpT1

N1(0, 1),

ψ̄c2 =
(pT2 − c̄2)ψ̄w

((pT2 + w̄ − 2c̄2) + kd2)
+

√
(w̄ − c̄2)(pT2 − c̄2) + kd2c̄2

2
√

(w̄ + pT2 + kd2)2 − 4w̄pT2

N2(0, 1).

Figure 4 illustrates simulation results for the second moments of ψ̄w, ψ̄u, ψ̄c1 and ψ̄c2. As

ε tends to zero the moments of the full system become closer to the moments of the reduced

system. This confirms our results in Theorem 1.
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FIG. 4. Sample moments of the full and reduced systems obtained by numerically simulating the

systems (35)–(36) and (38). The simulations were performed using the Euler-Maruyama method for

the stochastic differential equations and the moments are computed using the average of 500,000

simulation runs. (a) Second moments of ψw and ψ̄w. (b) Second moments of ψu and ψ̄u. (c)

Second moments of ψc1 and ψ̄c1. (d) Second moments of ψc2 and ψ̄c2. The parameter values

are β1 = 1 hr−1, β2 = 2 hr−1, δ1 = 1 hr−1, δ2 = 3 hr−1, kd1 = 50 nM, kd2 = 100 nM, pT1 =

100 nM, pT1 = 100 nM, w(0) = 0, c1(0) = 0, c2(0) = 0, u(0) = 0, ψw(0) = 0, ψu(0) = 0,

ψc1(0) = 0, ψc2(0) = 0.

Next we use the reduced system (38) to analyze the validity of stochastic models conve-

niently obtained by using the quasi-steady state approximation.

1. Validity of LNA models based on the Michaelis-Menten function

In this section, we use the reduced system (38) to investigate the validity of the stochas-

tic models obtained using the standard QSSA. Using the deterministic QSSA to reduce the

deterministic system is a convenient way to obtain a reduced LNA. {However, the valid-

21



ity of this reduction remains elusive. Here, we first derive the LNA model based on the

Michaelis-Menten function obtained using the stochastic standard QSSA, similar to several

works in the literature20,27,50. Next, we present the corresponding moment dynamics of the

system. Then, we use the reduced system (38) proposed in our work and compute the cor-

responding moment dynamics. Comparing these two sets of moment dynamics we identify

conditions under which the LNA model based on the Michaelis-Menten function provides a

good approximation.

As performed in standard references49, we derive the Michaelis-Menten function based

model by setting the time derivatives dc1
dt

and dc2
dt

in (34) to zero obtaining

c1 =
gpT1

g + kd1

, c2 =
mpT2

m+ kd2

.

Then, substituting these in system (34) we obtain the reduced deterministic dynamics:

dm̃

dt
= β1

pT1kd1

g̃ + kd1

− δ1m̃, (39)

dg̃

dt
= β2

m̃pT2

m̃+ kd2

− δ2g̃. (40)

Next, we derive the dynamics for the corresponding stochastic fluctuations as explained

in Section II, which yields

dψ̃m
dt

= −δ1ψ̃m − β1
pT1kd1

(g̃ + kd1)2
ψ̃g +

√
β1
pT1kd1

g̃ + kd1

Γ1

+
√
δ1m̃Γ2, (41)

dψ̃g
dt

= −δ2ψ̃g + β2
pT2kd2

(m̃+ kd2)2
ψ̃m +

√
β2

m̃pT2

m̃+ kd2

Γ3

+
√
δ2g̃Γ4. (42)

Thus, the Michaelis-Menten function based LNA model is given by system (39)–(42).

The dynamics for the second moments of ψ̃m and ψ̃g are given by

dE
[
ψ̃2
m

]

dt
= −2δ1E

[
ψ̃2
m

]
− 2R1(g̃)β1E

[
ψ̃mψ̃g

]

+ β1
pT1kd1

g̃ + kd1

+ δ1m̃,

dE
[
ψ2
g

]

dt
= −2δ2E

[
ψ̃2
g

]
+ 2R2(m̃)β2E

[
ψ̃mψ̃g

]
(43)
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+ β2
m̃pT1

m̃+ kd2

+ δ2g̃,

dE
[
ψ̃mψ̃g

]

dt
= (−δ1 − δ2)E

[
ψ̃mψ̃g

]
−R1(g̃)β1E

[
ψ̃2
g

]

+R2(m̃)β2E
[
ψ̃2
m

]
,

where we have defined R1(g̃) = pT1/kd1

(g̃/kd1+1)2 and R2(m̃) = pT2/kd2

(m̃/kd2+1)2 .

Next, we use the reduced-order model developed in our work to precisely identify the

conditions under which the above Michaelis-Menten function based LNA model provides a

good approximation for the statistical properties of the original system. To this end, we use

the reduced system (38) to derive the moment dynamics (see Appendix D for details) as

dm̄

dt
=

1

1 + R2(m̄)

(
β1
pT1kd1

ḡ + kd1

− δ1m̄

)
, (44)

dḡ

dt
=

1

1 + R1(ḡ)

(
β2m̄

pT2

m̄+ kd2

− δ2g

)
, (45)

dE
[
ψ̄2
m

]

dt
=

1

1 + R2(m̄)

[
(−2δ1 + F2(m̄) )E

[
ψ̄2
m

]
+ 2R1(ḡ)β1E

[
ψ̄mψ̄g

]

+
(
−G2(m̄) + 1

)
β1
pT1kd1

ḡ + kd1

+
(
G2(m̄) + 1

)
δ1m̄

]
, (46)

dE
[
ψ̄2
g

]

dt
=

1

1 + R1(ḡ)

[(
−2δ2 + F1(ḡ)

)
E
[
ψ̄2
g

]
+ 2R2(m̄)β1E

[
ψ̄mψ̄g

]

+
(
−G1(ḡ) + 1

)
β2

pT1m̄

m̄+ kd2

+
(
G1(ḡ) + 1

)
δ2g

]
, (47)

dE
[
ψ̄mψ̄g

]

dt
=

(
− δ1

1 + R2(m̄)
− δ2

1 + R1(ḡ)
+ H2(m̄) + H1(ḡ)

)
E
[
ψ̄mψ̄g

]

− R1(ḡ)β1E
[
ψ̄2
g

]

1 + R2(m̄)
+
R2(m̄)β2E

[
ψ̄2
m

]

1 + R1(ḡ)
− I(m̄, ḡ) , (48)

where

Fi(y) = 4
Ri(y)

(y + kdi)

dy

dt
,

Gi(y) =
2yRi(y)(1 + 2Ri(y))

(y + kdi)(1 +Ri(y))2
,

Hi(y) =
2Ri(y)

(y + kdi)(1 +Ri(y))

dy

dt
,

I(m̄, ḡ) =
1

1 +R2(m̄)

1

1 +R1(ḡ)
(β1ḡR1(ḡ)2 + β2m̄R2(m̄)2).
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The boxed terms in (44)–(48) highlight the extra terms compared to the Michaelis-

Menten function based moment dynamics (39)–(40) and (43). From this, it follows that

the Michaelis-Menten function based model of (39)–(42) becomes a good approximation of

the full LNA model only when the boxed terms are sufficiently small. In order to analyze

the conditions under which the boxed terms become small, we first note from the equations

(44)–(45) that

m̄(t) ≤ max{m̄(0), β1pT1/δ1} := bm̄

and

ḡ(t) ≤ max{ḡ(0), β2pT2/δ2} := bḡ

for all t. Thus, we have that
∣∣∣∣
dm̄

dt

∣∣∣∣ ≤ β1pT1 + δ1 max{m̄(0), β1pT1/δ1} := bdm̄

and ∣∣∣∣
dḡ

dt

∣∣∣∣ ≤ β2pT2 + δ2 max{ḡ(0), β2pT2/δ2} := bdḡ.

Then, considering the terms F1(ḡ) and F2(m̄) we have that
∣∣∣∣F1(ḡ)

∣∣∣∣ ≤ 2

∣∣∣∣
dR1(ḡ)

dḡ

∣∣∣∣(β2pT2 + δ2 max{ḡ(0), β2pT2/δ2}),
∣∣∣∣F2(m̄)

∣∣∣∣ ≤ 2

∣∣∣∣
dR2(m̄)

dm̄

∣∣∣∣(β1pT1 + δ1 max{m̄(0), β1pT1/δ1}).

From this we have that for given bounds bdm̄ and bdḡ, |Fi(y)| terms become small when the

terms |dRi(y)
dy
| are sufficiently small. Similarly, from the expressions of Ri(y), Gi(y), Hi(y)

and I(m̄, ḡ), we have that for given bounds bm̄, bḡ, bdm̄ and bdḡ, the terms |Hi(y)| become

small when the terms |dRi(y)
dy
| are sufficiently small and the terms Gi(y), I(m̄, ḡ) become small

when Ri(y) terms are sufficiently small. Thus, in this case, we can conclude that when Ri(y)

and |dRi(y)
dy
| are sufficiently small, the Michaelis-Menten function based moment dynamics

(39)–(40) and (43) become close to the moment dynamics (44)–(48), which is in turn a good

approximation of the moments of the original system when ε is small. Thus, it follows that

the Michaelis-Menten function based models becomes a good approximation of the original

system when ε becomes small and when Ri(y) and |dRi(y)
dy
| are also small. We illustrate

this via simulations in Figure 4, which shows that the moments of the Michaelis-Menten

function based model become close to those of the singular perturbation-based model when

the dissociation constants kd1 and kd2 are large (making Ri(y) and |dRi(y)
dy
| small).
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FIG. 5. Moments of the Michaelis-Menten function based LNA model and the singular perturbation

based LNA model. The parameter values are β1 = 1 hr−1, β2 = 2 hr−1, δ1 = 1 hr−1, δ2 =

3 hr−1, pT1 = 10 nM, pT1 = 10 nM.

The terms R1(ḡ) and R2(m̄) in the deterministic dynamics (44)–(45) have been previously

studied in the context of modularity in gene-regulatory networks. In particular, Del Vecchio

et al.49,51,52 showed that the terms of the form R1(ḡ) and R2(m̄) physically arise due to the

“loading” that promoter binding sites apply to their transcription factor regulators. These

effects, termed retroactivity, cause a change in the dynamics of transcription factors upon

binding to the DNA promoter sites and are not captured by Michaelis-Menten function based

models alone. Thus, the results obtained in this section indicate that, similar to deterministic

systems, retroactivity effects also impact the stochastic dynamics of the system.

As previously described in Section III, the use of the deterministic QSSA in stochastic

models has been previously studied by several researchers in the context of CME and LNA.

In particular, the study by J.K. Kim et al. considers two dimensional systems (with one

slow variable and one fast variable) modeled by the CME, and points to two main sources of

inaccuracy for the stochastic models obtained through standard QSSA20. The first source of

inaccuracy arises from treating species that contain both slow and fast variables as purely

slow variables (such as the free proteins M and G in this example). This is also a source of

inaccuracy in the deterministic QSSA as noted by several studies48,51. The second source

of inaccuracy is disregarding the noise of the fast variable when taking the QSSA. In line

with this, J.K. Kim et al. analyzed the steady state distribution and the variance of the fast

variable and determine that the stochastic QSSA becomes accurate when the sensitivity of

the quasi-steady state expression to changes of the slow variable is small. This sensitivity

term is equivalent to the retroactivity terms R1(ḡ) and R2(m̄) in our model. Thus, our

results recapitulate the findings of Kim’s steady state analysis on systems with two species,
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but, being based on general and rigorous derivation of the moment dynamics, our results are

applicable to systems with more than two species and can also be used to study transient

dynamics, as we have shown in this example.

Additionally, a similar study has been performed by Thomas et al., where a reduced-order

approximation for LNA is proposed.27. They analyze several enzyme and gene network mo-

tifs and determine that the discrepancy between the quasi-steady state LNA models and

the reduced-order LNA models proposed in their work arises mainly due to disregarding the

noise of the fast variables. However, the reduced-order LNA developed in their work also

regards some species concentrations that are the combination of fast and slow variables as

purely slow variables. Therefore, their transient dynamics may not be accurately approxi-

mated by their reduction. In contrast to this, here, we identify conditions for which both

the transient dynamics and the steady state are accurate.

The analysis in this section, being based on mathematical derivations as opposed to simu-

lations, therefore provides a general criterion to determine when the quasi-steady state LNA

of gene-regulatory networks is close to the original system. The fast variable approximations

can also be used to analyze how the noise of the transcription factor-DNA complexes change

with retroactivity effects, which can give insights into the interplay between modularity and

noise in gene-regulatory networks.

B. Example II: Signal transduction network motif

As another example, we consider the dynamics of species involved in signal transmission

via phosphorylation cycles. Phosphorylation cycles are network motifs that form signal

transduction cascades in cells. They play a central role in cell physiology for transmitting

signals from outside the cell to initiate cellular responses by activating target gene expression.

Furthermore, engineered phosphorylation systems have also been used in synthetic biology

applications to transmit signals while buffering from loading effects that were discussed in

the previous example41,51,53,54. Here, we consider the system shown in Figure 6. Protein

M is phosphorylated by kinase Z and produces protein M∗, which is dephosphorylated by

phosphatase Y. The phosphorylated protein M∗ acts as a transcription factor that activates

protein G.

Phosphorylation and dephosphorylation processes can be modeled by the one-step
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FIG. 6. Protein M is phosphorylated by kinase Z and dephosphorylated by phosphatase Y. Phos-

phorylated protein M∗ binds to the downstream promoter P.

reactions49

M + Z
k1−→ M∗ + Z, M∗ + Y

k2−→ M + Y,

where k1 and k2 are the rate constants. The binding between protein M∗ and promoter P

produces a complex C, giving

M∗ + P
kon−−⇀↽−−
koff

C,

where kon and koff are the binding and unbinding rate constants. Then, the production and

decay of protein G is given by

C
β−→ C + G, G

δ−→ φ,

where β is the production rate constant, and δ is the decay rate constant. The total concen-

tration of protein M and promoter P are conserved, giving MT = m+m∗+c and pT = p+c,

where we use lower-case letters to denote the corresponding macroscopic concentrations.

Then, the macroscopic reaction rate equations for this system can be written as

dm∗

dt
= k1Z(t)(MT −m∗ − c)− k2Y m

∗ − konm
∗(pT − c) + koffc,

dc

dt
= konm

∗(pT − c)− koffc,

dg

dt
= βc− δg,

where we consider the concentration of the kinase given by Z(t) to be a deterministic input

to the system.

As binding and unbinding reactions are much faster than phosphorylation and dephos-

phorylation reactions, we have that koff � k2Y . Thus, we can define the small parame-

ter ε = k2Y/koff . Let kd = koff/kon be the dissociation constant for the binding reaction

between M∗ and P. Then, as described in Section II, we can consider the species vector

27



v = [m∗, g, c]T and partition the reaction rate vector into slow and fast groups in the form

ã(y, t) = [âs(v, t), (1/ε)âf (y, t)] where âs(v, t) = [k1Z(t)(MT −m∗− c), k2Y m
∗, βc, δg] and

âf (v, t) = [k2Y
kd
m∗(pT − c), k2Y c], with the corresponding stoichiometry matrix given by

q =




1 −1 0 0 −1 1

0 0 1 −1 0 0

0 0 0 0 1 −1


.

This yields the system dynamics

dm∗

dt
= k1Z(t)(MT −m∗ − c)− k2Y m

∗ − k2Y

εkd
m∗(ptot − c) +

k2Y

ε
c,

dg

dt
= βc− δg,

dc

dt
=
k2Y

εkd
m∗(ptot − c)−

k2Y

ε
c.

(49)

Although, the singular perturbation parameter appears in the system of equations (49),

we note that the slow and fast dynamics are not well separated and the system is not in

the standard singular perturbation form given in (8)–(9). Thus, we consider the change of

coordinates w = m∗ + c, which yields

dw

dt
= k1Z(t)(MT − w)− k2Y (w − c),

dg

dt
= βc− δg,

ε
dc

dt
=
k2Y

kd
(w − c)(pT − c)− k2Y c.

(50)

where we have that the slow variables are w and g, and the fast variable is given by c.

Referring to Claim 1, we have that the coordinate change w = m∗ + c corresponds to

Tx = [1 0 1, 0 1 0]T , Tz = [0 0 1], where we have that x = [w, g]T and z = c. Therefore, from

(50) we can write the following equations for the dynamics of the stochastic fluctuations as

explained in Section II:

dψw
dt

= (−k1Z(t)− k2Y )ψw + k2Y ψc

+
√
k1Z(t)(MT − w + c)Γ1 −

√
k2Y (w − c)Γ2,

dψg
dt

= βψc − δψg +
√
βcΓ3 −

√
δgΓ4,

ε
dψc
dt

=
k2Y (pT − c)

kd
ψw +

(
−k2Y pT

kd
− k2Y v

kd
+
k2Y

kd
2c− k2Y

)
ψc

+

√
ε
k2Y

kd
(w − c)(pT − c)Γ5 −

√
εk2Y cΓ6.

(51)
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Next, we derive the reduced-order dynamics of system (50)–(51) using Theorem 1. From

(50), it follows that the system functions are polynomials of the state variables. Therefore,

Assumptions 1 and 2 are satisfied. Solving fz = k2Y
kd

(w − z)(pT − z) − k2Y z = 0, yields

the unique solution γ1(w) = 1
2
(w + pT + kd)− 1

2

√
(w + pT + kd)2 − 4vpT , feasible under the

physical constraints 0 ≤ c ≤ pT . We note that ∂fz
∂z

is negative for all parameter values and

thus Assumption 3 is satisfied. Next, to determine the fast variable approximation for ψc in

the form of equation (17), we write
(
−k2Y pT

kd
− k2Y v

kd
+
k2Y

kd
2c− k2Y

)
g(w)g(w)T

+ g(w)g(w)T
(
−k2Y pT

kd
− k2Y v

kd
+
k2Y

kd
2c− k2Y

)

= −k2Y

kd
(w − c)(pT − c)− k2Y c,

which yields

g(w) =

√√√√
k2Y
kd

(w − c)(ptot − c) + k2Y c

2k2Y
kd

√
(w + ptot + kd)2 − 4wpT

.

Then, the reduced system is given by

dw̄

dt
= k1Z(t)(MT − w̄)− k2Y (w̄ − c),

dḡ

dt
= βc̄− δḡ,

dψ̄w
dt

= (−k1Z(t)− k2Y )ψ̄w +
k2Y (pT − c̄)

(pT + w̄ − 2c̄+ kd)
ψ̄w

+
√
k1Z(t)(MT − w̄ + c̄)Γ1 −

√
k2Y (w̄ − c̄)Γ2,

dψ̄g
dt

= β
(pT − c̄)

(pT + w̄ − 2c̄+ kd)
ψ̄w − δψ̄g +

√
βc̄Γ3 −

√
δḡΓ4,

c̄ =
1

2
(w̄ + pT + kd)−

1

2

√
(w̄ + pT + kd)2 − 4pT w̄,

ψ̄c =
(pT − c̄)

(pT + w̄ − 2c̄+ kd)
ψ̄w +

√√√√
k2Y
kd

(w̄ − c̄)(pT − c̄) + k2Y c̄

2k2Y
kd

√
(w̄ + pT + kd)2 − 4w̄pT

N(0, 1). (52)

Figure 7 illustrates simulation results for the second moments of ψw, ψg and ψc.

As ε tends to zero the moments of the full system tend to the moments of the reduced

system in accordance to Theorem 1.

The reduced system derived in this section can be used to mathematically analyze the

noise properties of signals transmitted through phosphorylation cycles. A common measure
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FIG. 7. Sample moments of the full and reduced systems obtained by numerically simulating

the systems (50)–(51) and (52). The simulations were performed using the Euler-Maruyama

method for the stochastic differential equations and the moments are computed using the av-

erage of 300,000 simulation runs. The parameter values are Z(t) = 10 + 8.5 sin (6t) nM, k1 =

0.06 nMhr−1, k2 = 0.6 nMhr−1, kd = 50 nM, MT = 100 nM, Y = 10 nM, pT = 50 nM, δ =

6 hr−1, β = 10 hr−1, w(0) = 0, c(0) = 0, g(0) = 0, ψw(0) = 0, ψg(0) = 0, ψc(0) = 0.

of noise is the coefficient of variation, which is defined as the ratio of standard deviation to

the mean of a random variable. The moment dynamics of the reduced system can therefore

be used in the computation of such noise measures. Finally, note that since the species that

carry the signal M∗ is a mixed (fast and slow) species, both fast and slow variable approxi-

mations are necessary to analyze noise propagation in these signal transduction systems.
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VI. CONCLUSION

In this work, we addressed the problem of model order reduction for biochemical reaction

networks with time-scale separation, where the system dynamics are modeled with the LNA.

After transforming the system into standard singular perturbation form, we developed a

reduced-order model that approximates the slow and fast dynamics of the full system when

the time-scale separation is large. In particular, we showed that the error between the

moment dynamics of the full system and the reduced systems is O(ε), where ε is the singular

perturbation parameter that captures the time-scale separation. This error quantification

only requires stability of the fast variables boundary layer dynamics, which is a simple

condition to check and the same condition required in deterministic singular perturbation.

Different from existing work, we have also presented an approximation of the fast variables.

Furthermore, we show that the slow variable dynamics in our reduced-order model are

equivalent to the reduced model obtained using the stochastic tQSSA approximation. Thus,

our results also provide a rigorous justification for the validity of the LNA models obtained

using the stochastic tQSSA. When the molecular counts are sufficiently large, this further

provides a justification for the validity of the stochastic tQSSA in the CME. Since our

reduction, differently from the stochastic tQSSA, also provides an approximation of the fast

variable stochastic properties, we have termed it the stochastic tQSSA+.

We have detailed the application of our work to two examples of biochemical reaction

networks: a gene-regulatory network motif and a signal transduction module. For these

examples, we derived the reduced-order LNA and verified the analytical results through nu-

merical simulations. Through these examples we highlighted the necessity of both slow and

fast variable approximations for practical application of the model reduction framework. Fi-

nally, for the gene-regulatory network motif, we identified conditions under which commonly

used stochastic quasi-steady state models provide a good approximation. Our results can be

used to substantially reduce the dimensionality of stochastic models of biochemical reaction

networks, thus aiding analytical quantification of noise and simulation time. Furthermore,

our results would also be useful in parameter estimations where accurate reduced-order

models are required to obtain accurate and precise parameter estimations8.
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Appendix A: Proof of Claim 1

Applying the coordinate transformation x = Txv, z = Tzv to equation (2), with ã(v, t) =

[âs(v, t), (1/ε)âf (v, t)]
T and q = [q1, . . . , qms , qms+1, . . . , qms+mf

], with v = T−1[xT , zT ]T we

have

ẋ = Txf(T−1[xT , zT ]T , t) = Tx

ms∑

i=1

qiâsi(T
−1[xT , zT ]T , t)

+ Tx

ms+mf∑

i=qms+1

qi(1/ε)âfi(T
−1[xT , zT ]T , t)

= fx(x, z, t), (A1)

ż = Tzf(T−1[xT , zT ]T , t) = Tz

ms∑

i=1

qiâsi(T
−1[xT , zT ]T , t)

+ Tz

ms+mf∑

i=qms+1

qi(1/ε)âfi(T
−1[xT , zT ]T , t)

=
1

ε
fz(x, z, t, ε). (A2)

Thus, from equation (A1), if follows that Txqi = 0 for i = ms + 1, . . . ,ms + mf . Thus, the

fast reactions do not appear in the slow dynamics, however, the slow reactions can appear

in the fast dynamics.

Applying the coordinate transformation ψx = Txξ, ψz = Tzξ, to equation (3), we have

that

ψ̇x = Tx[A(v, t)ξ] + Txσ(v, t)Γ,

ψ̇z = Tz[A(v, t)ξ] + Tzσ(v, t)Γ.

Since A(v, t) = ∂f(v,t)
∂v

and v = T−1[xT , zT ]T , using the chain rule we can write

ψ̇x = Tx

[
∂f(T−1[xT , zT ]T , t)

∂x

∂x

∂v
+
∂f(T−1[xT , zT ]T , t)

∂z

∂z

∂v

]
ξ

+ Tx

[
q1

√
ã1(T−1[xT , zT ]T , t), . . . , qm

√
ãm(T−1[xT , zT ]T , t)

]
Γ,

ψ̇z = Tz

[
∂f(T−1[xT , zT ]T , t)

∂x

∂x

∂v
+
∂f(T−1[xT , zT ]T , t)

∂z

∂z

∂v

]
ξ
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+ Tz

[
q1

√
ã1(T−1[xT , zT ]T , t), . . . , qm

√
ãm(T−1[xT , zT ]T , t)

]
Γ.

Using the linearity of the differentiation operator and the transformation x = Txv, z = Tzv,

we obtain

ψ̇x =

[
∂Txf(T−1[xT , zT ]T , t)

∂x
Tx +

∂Txf(T−1[xT , zT ]T , t)

∂z
Tz

]
ξ

+ Tx

[
q1

√
ã1(T−1[xT , zT ]T , t), . . . , qm

√
ãm(T−1[xT , zT ]T , t)

]
Γ,

ψ̇z =

[
∂Tzf(T−1[xT , zT ]T , t)

∂x
Tx +

∂Tzf(T−1[xT , zT ]T , t)

∂z
Tz

]
ξ

+ Tz

[
q1

√
ã1(T−1[xT , zT ]T , t), . . . , qm

√
ãm(T−1[xT , zT ]T , t)

]
Γ.

From (A1)–(A2), we have that Txf(T−1[xT , zT ]T , t) = fx(x, z, t) and Tzf(T−1[xT , zT ]T , t) =

1
ε
fz(x, z, t, ε). Furthermore, substituting for ã(T−1[xT , zT ]T , t) =

[âs(T
−1[xT , zT ]T , t), (1/ε)âf (T

−1[xT , zT ]T , t)]T , we have

ψ̇x =
∂fx(x, z, t)

∂x
ψx +

∂fx(x, z, t)

∂z
ψz+

Tx

[
q1

√
âs1(T−1[xT , zT ]T , t), . . . , qms

√
âsms

(T−1[xT , zT ]T , t)

]
Γx

+ Tx

[
qms+1

√
1

ε
âf1(T−1[xT , zT ]T , t), . . . , qms+mf

√
1

ε
âfmf

(T−1[xT , zT ]T , t)

]
Γf , (A3)

ψ̇z =
∂ 1
εfz(x, z, t, ε)

∂x
ψx +

∂ 1
εfz(x, z, t, ε)

∂z
ψz+

Tz

[
q1

√
âs1(T−1[xT , zT ]T , t), . . . , qms

√
âsms

(T−1[xT , zT ]T , t)

]
Γx

+ Tz

[
qms+1

√
1

ε
âf 1(T−1[xT , zT ]T , t), . . . , qms+mf

√
1

ε
âfmf

(T−1[xT , zT ]T , t)

]
Γf , (A4)

where Γ = [ΓTx ,Γ
T
f ]T . From (A1) we have that, Txqi = 0 for i = ms + 1, . . . ,ms +mf . Then,

multiplying (A4) by ε, and taking Γz = [ΓTx ,Γ
T
f ]T , we can write the system (A3)–(A4) in the

form of system (6)–(7).

Appendix B: Proof of Theorem 1

In this section, we present the proof of Theorem 1. We first derive a set of intermediate

results, given in Claim 2 - 4 and Lemma 1, that will be used in the proof. In Claim 2, we

derive the moment dynamics of the full system and show that these moment dynamics are

also in the singular perturbation form. In Claim 3, we derive the moment dynamics of the

reduced system. Next, in Claim 4, we show that setting ε = 0 in the moment dynamics of
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the full system, yields the moment dynamics of the reduced system. Then, these results are

summarized in Lemma 1, which is then used to prove Theorem 1.

Lemma 1. The first and second moment dynamics for the variables ψx and ψz of the full

system (8) - (11) can be expressed in the singular perturbation form

dE[ψx]

dt
= Sx(x, z, t)E[ψx] + Sz(x, z, t)E[ψz], (B1)

dE[ψxψ
T
x ]

dt
= Sx(x, z, t)E[ψxψ

T
x ] + Sz(x, z, t)E[ψzψ

T
x ]

+ E[ψxψ
T
x ]Sx(x, z, t)

T + (E[ψzψ
T
x ])TSz(x, z, t)

T

+ σx(x, z, t)σx(x, z, t)
T , (B2)

ε
dE[ψz]

dt
= Fx(x, z, t, ε)E[ψx] + Fz(x, z, t, ε)E[ψz], (B3)

ε
dE[ψzψ

T
x ]

dt
= εE[ψzψ

T
x ]Sx(x, z, t)

T + εE[ψzψ
T
z ]Sz(x, z, t)

T

+ Fx(x, z, t, ε)E[ψxψ
T
x ] + Fz(x, z, t, ε)E[ψzψ

T
x ]

+ σz(x, z, t, ε)[σx(x, z, t) 0]T , (B4)

ε
dE[ψzψ

T
z ]

dt
= Fx(x, z, t, ε)E[ψxψ

T
z ] + Fz(x, z, t, ε)E[ψzψ

T
z ]

+ E[ψzψ
T
x ]Fx(x, z, t, ε)

T + E[ψzψ
T
z ]Fz(x, z, t, ε)

T

+
1

ε
σz(x, z, t, ε)σz(x, z, t, ε)

T , (B5)

where x and z are the solutions of the equations (8) - (9), and the initial conditions are

given by E[ψx(0)] = ψx0, E[ψxψ
T
x (0)] = ψx0ψx

T
0 , E[ψz(0)] = ψz0, E[ψzψ

T
x (0)] = ψz0ψx

T
0 ,

E[ψzψ
T
z (0)] = ψz0ψz

T
0 .

Proof. We express the equations (10) - (11) in the form

ψ̇x = Sx(x, z, t)ψx + Sz(x, z, t)ψz + [σx(x, z, t) 0]Γz,

εψ̇z = Fx(x, z, t, ε)ψx + Fz(x, z, t, ε)ψz + σz(x, z, t, ε)Γz,

where [ σx(x, z, t) 0 ] ∈ Rn×(ms+mf ). Then, as the x and z are deterministic we use the

linearity of the expectation operator to derive the dynamics for the first moments as

dE[ψx]

dt
= Sx(x, z, t)E[ψx] + Sz(x, z, t)E[ψz], (B6)

dE[ψz]

dt
=

1

ε
Fx(x, z, t, ε)E[ψx] +

1

ε
Fz(x, z, t, ε)E[ψz]. (B7)
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Similarly, Proposition III.1 in Bence et al.55 can be used to write the second moment dy-

namics as

d

dt
E


 ψxψ

T
x ψxψ

T
z

ψzψ
T
x ψzψ

T
z


 =

[
ψx(Sx(x, z, t)ψx + Sz(x, z, t)ψz)

T

ψz(Sx(x, z, t)ψx + Sz(x, z, t)ψz)
T

1
ε
ψx(Fx(x, z, t, ε)ψx + Fz(x, z, t, ε)ψz)

T

1
ε
ψz(Fx(x, z, t, ε)ψx + Fz(x, z, t, ε)ψz)

T

]

+

[
(Sx(x, z, t)ψx + Sz(x, z, t)ψz)ψ

T
x

1
ε
(Fx(x, z, t, ε)ψx + Fz(x, z, t, ε)ψz)ψ

T
x

(Sx(x, z, t)ψx + Sz(x, z, t)ψz)ψ
T
z

1
ε
(Fx(x, z, t, ε)ψx + Fz(x, z, t, ε)ψz)ψ

T
z

]

+

[ σx(x, z, t)σx(x, z, t)
T

1
ε
σz(x, z, t, ε)[ σx(x, z, t) 0 ]T

1
ε
[ σx(x, z, t) 0 ]σz(x, z, t, ε)

T

1
ε2
σz(x, z, t, ε)σz(x, z, t, ε)

T

]
. (B8)

Then, summing the corresponding entries of the matrices in equation (B8) and using the

linearity of the expectation operator, the equations (B6)–(B8) can be written in the form

(B1)–(B5). We have that E[ψxψ
T
z ] = (E[ψzψ

T
x ])T , and thus, we do not consider the dynamics

of the variable E[ψxψ
T
z ] in the equations (B1)–(B5). Furthermore, the initial conditions ψx0

and ψz0 are deterministic, which yields E[ψx(0)] = ψx0, E[ψxψ
T
x (0)] = ψx0ψx

T
0 , E[ψz(0)] =

ψz0, E[ψzψ
T
x (0)] = ψz0ψx

T
0 , E[ψzψ

T
z (0)] = ψz0ψz

T
0 .

Next, we derive the moment dynamics of the reduced system (14)–(17).

Lemma 2. The first and second moment dynamics for the variable ψ̄x of the reduced system

(14)–(15) can be written in the form

dE[ψ̄x]

dt
= S(x̄, t)E[ψ̄x], E[ψ̄x(0)] = ψx0, (B9)

dE[ψ̄xψ̄
T
x ]

dt
= S(x̄, t)E[ψ̄xψ̄

T
x ] + E[ψ̄xψ̄

T
x ]S(x̄, t)T

+ σx(x̄, γ1(x̄, t), t), t)σx(x̄, γ1(x̄, t), t), t)T ,

E[ψ̄x(0)ψ̄x(0)T ] = ψx0ψx
T
0 , (B10)

and the first and second moments for the variable ψ̄z of the reduced system (14)–(15) can be

written in the form

E[ψ̄z] = γ2(x̄, t)E[ψ̄x] (B11)
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E[ψ̄zψ̄
T
z ] = γ2(x̄, t)E[ψ̄xψ̄

T
x ]γ2(x̄, t)T + g(x̄, t)g(x̄, t)T . (B12)

Proof. Using the Proposition III.1 in Bence et al.55, the first and second moment dynamics

of ψ̄x in (15) can be written in the form

dE[ψ̄x]

dt
= E[S(x̄, t)ψ̄x],

dE[ψ̄xψ̄
T
x ]

dt
= E[S(x̄, t)ψ̄xψ̄

T
x ] + E[ψ̄x(ψ̄

T
x S(x̄, t)T )]

+ σx(x̄, γ1(x̄, t), t), t)σx(x̄, γ1(x̄, t), t), t)T .

We have that the dynamics of x̄ in (14) are deterministic. Therefore, using the linearity of

the expectation operator, the moment dynamics of ψ̄x in (15) can be written in the form of

(B9)–(B10).

In order to derive the moments of the variable ψ̄z, we take the expected value of equation

(16), which yields E[ψ̄z] = E[γ2(x̄, t)ψ̄x] as the elements of the vector N(0, 1) are normal

random variable with zero mean. Since x̄ is deterministic, we have that E[ψ̄z] = γ2(x̄, t)E[ψ̄x].

Calculating the second moment of ψ̄z, we obtain

E[ψ̄zψ̄
T
z ] = E[(γ2(x̄, t)ψx + g(x̄, t)N(0, 1))(γ2(x̄, t)ψx + g(x̄, t)N(0, 1))T ].

Expanding further and using the fact that N(0, 1) is independent of ψ̄x, we have

E[ψ̄zψ̄
T
z ] = γ2(x̄, t)E[ψxψ

T
x ]γ2(x̄, t)T

+ g(x̄, t)E[N(0, 1)]ψTx γ2(x̄, t)T

+ γ2(x̄, t)ψxE[N(0, 1)T ]g(x̄, t)T

+ g(x̄, t)E[N(0, 1)N(0, 1)T ]g(x̄, t)T .

Since N(0, 1) is a vector of standard normal random variables, we have that E[N(0, 1)] = 0

and E[N(0, 1)N(0, 1)T ] = Id×d where Id×d is an d × d identity matrix. Thus, we have that

E[ψ̄zψ̄
T
z ] = γ2(x̄, t)E[ψ̄xψ̄

T
x ]γ2(x̄, t)T + g(x̄, t)g(x̄, t)T .

Next, we derive the set of reduced-order moments obtained by setting ε = 0 in the

moment dynamics of the full system (B1)–(B5).

Lemma 3. Setting ε = 0 in the system of moment dynamics (B1)–(B5) and the dynamics

of x and z given by (8)–(9), yields the moment dynamics of the reduced system (B9)–(B12)

where the dynamics of x̄ and z̄ are given by (14) and (16), respectively.

36



Proof. Setting ε = 0, we have

0 = fz(x, z, t, 0), (B13)

0 = Fx(x, z, t, 0)E[ψx] + Fz(x, z, t, 0)E[ψz], (B14)

0 = Fx(x, z, t, 0)E[ψxψ
T
x ] + Fz(x, z, t, 0)E[ψzψ

T
x ], (B15)

0 = Fx(x, z, t, 0)E[ψxψ
T
z ] + Fz(x, z, t, 0)E[ψzψ

T
z ]

+ E[ψzψ
T
x ]Fx(x, z, t, ε)

T + E[ψzψ
T
z ]Fz(x, z, t, 0)T

+ Λ(x, z, t, 0). (B16)

Under Assumption 3, there exists an isolated real root z = γ1(x, t) for equation (B13). Thus,

the corresponding unique solutions to equations (B14)–(B15) are given by

E[ψz] = −Fz(x, γ1(x, t), t, 0)−1(Fx(x, γ1(x, t), t, 0)E[ψx])

= γ2(x, t)E[ψx], (B17)

E[ψzψ
T
x ] = −Fz(x, γ1(x, t), t, 0)−1(Fx(x, γ1(x, t), t, 0)E[ψxψ

T
x ])

= γ2(x, t)E[ψxψ
T
x ]. (B18)

Substituting z = γ1(x, t) and equations (B17)–(B18) in (8) and the moment equations

(B1)–(B5), yields the dynamics of x̄ given by (14) and the moment dynamics of the variable

ψ̄x reduced system given by (B9)–(B10).

Furthermore, we have that the equation (B17) is equivalent to the first moment of the

variable ψ̄z of the reduced system given by (B11). Next, in order to solve equation (B16),

we substitute (B17)–(B18) in (B16), which yields

Fz(x, γ1(x, t), t, 0)E[ψzψ
T
z ] + E[ψzψ

T
z ]Fz(x, γ1(x, t), t, 0)T

= −Fx(x, γ1(x, t), t, 0)E[ψxψ
T
x ]γ2(x, t)T

− γ2(x, t)E[ψxψ
T
x ]Fx(x, γ1(x, t), t, ε)T

− Λ(x, γ1(x, t), t, 0), (B19)

which is in the form of a Lyapunov equation AP + PAT = −Q with

A = Fz(x, γ1(x, t), t, 0),

P = E[ψzψ
T
z ],

Q = Fx(x, γ1(x, t), t, 0)E[ψxψ
T
x ]γ2(x, t)T
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+ γ2(x, t)E[ψxψ
T
x ]Fx(x, γ1(x, t), t, ε)T + Λ(x, γ1(x, t), t, 0)

Under Assumption 3, the matrix Fz(x, γ1(x, t), t, 0) is Hurwitz for all x and t and thus, the

equation (B19) has a unique solution E[ψzψ
T
z ] = h(x,E[ψxψ

T
x ], t). In order to prove that

h(x,E[ψxψ
T
x ], t) = γ2(x, t)E[ψxψ

T
x ]γ2(x, t)T + g(x, t)g(x, t)T given by the second moment of

the ψ̄z of the reduced system in (B12), we substitute E[ψzψ
T
z ] = γ2(x, t)E[ψxψ

T
x ]γ2(x, t)T +

g(x, t)g(x, t)T , which yields

Fz(x, γ1(x, t), t, 0)γ2(x, t)E[ψxψ
T
x ]γ2(x, t)T + Fz(x, γ1(x, t), t, 0)g(x, t)g(x, t)T

+ γ2(x, t)E[ψxψ
T
x ]γ2(x, t)TFz(x, γ1(x, t), t, 0)T + g(x, t)g(x, t)TFz(x, γ1(x, t), t, 0)T

= −Fx(x, γ1(x, t), t, 0)E[ψxψ
T
x ]γ2(x, t)T − γ2(x, t)E[ψxψ

T
x ]Fx(x, γ1(x, t), t, ε)T

− Λ(x, γ1(x, t), t, 0)

Then, canceling the common terms on both sides we obtain

Fz(x, γ1(x, t), t, 0)g(x, t)g(x, t)T + g(x, t)g(x, t)TFz(x, γ1(x, t), t, 0)T = −Λ(x, γ1(x, t), t, 0)

which satisfies the equation (18) in the definition of the reduced fast system.

We then have the following result.

Lemma 4. Consider the full system in (8)–(11), the reduced system in (14)–(15), and the

moment dynamics for the full and reduced systems in (B1)–(B5), (B9)–(B12) respectively.

We have that, under Assumptions 1 - 3, the commutative diagram in Figure 8 holds.

Proof. Proof follows from Lemmas 1, 2 and 3.

Although, Lemma 1 shows that the setting ε = 0 in the moment dynamics of the full

system yields the moment dynamics of the reduced system, it does not guarantee that the

trajectories of the moments become close to each other as ε decreases. Therefore, we next

use the Tikhonov’s theorem to prove that the moments of the reduced system are within an

O(ε)-neighborhood of the moments of the full system.

Proof of Theorem 1:

It can be seen from the commutative diagram in Lemma 1 that setting ε = 0 in the

moment equations of the full system together with the dynamics of x and z yields the
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19

Original System

ẋ = fx(x, z, t),

✏ż = fz(x, z, t, ✏),

 ̇x = Sx(x, z, t) x + Sz(x, z, t) z + �x(x, z, t)�x,

✏ ̇z = Fx(x, z, t, ✏) x + Fz(x, z, t, ✏) z + �z(x, z, t, ✏)�z .

˙̄x = fx(x̄, �1(x̄, t), t),

z̄ = �1(x̄, t),

˙̄ x = [Sx(x̄, �1(x̄, t), t) + Sz(x̄, �1(x̄, t), t)�2(x̄, t)] ̄x

+ �x(x̄, �1(x̄, t), t)�x,

 ̄z = �2(x̄, t) x + g(x̄, t)N(0, 1).

˙̄x = fx(x̄, �1(x̄, t), t),

d

dt

✓
E[ ̄x]
E[ ̄x ̄T

x ]

◆
= . . . ,

z̄ = �1(x̄, t),
✓

E[ ̄z ]
E[ ̄z ̄T

z ]

◆
= . . . .

ẋ = fx(x, z, t),

✏ż = fz(x, z, t, ✏),

d

dt

0
BBBB@

E[ x]
E[ x T

x ]
✏E[ z ]
✏E[ z T

x ]
✏E[ z T

z ]

1
CCCCA

= . . . .

Moments of the Original System Moments of the Reduced System

Reduced System

✏! 0

FIG. 8. Setting ✏ = 0 in the moment dynamics of the full system yields the moment dynamics of the reduced system.

db4

d⌧
= Fx(x, z, t, ✏)E[ x 

T
z ] + Fz(x, z, t, ✏)E[ z 

T
z ]

+ E[ z 
T
x ]Fx(x, z, t, ✏)T + E[ z 

T
z ]Fz(x, z, t, ✏)T

+
1

✏
�z(x, z, t, ✏)�z(x, z, t, ✏)T � ✏

@�3(x, E[ x 
T
x ], t)

@t

� ✏
@�3(x, E[ x 

T
x ], t)

@x

dx

dt

� ✏
@�3(x, E[ x 

T
x ], t)

@E[ x T
x ]

dE[ x 
T
x ]

dt
. (B27)

where we take z = b1 + �1(x, t) and E[ z] = b2 +
�2(x, t)E[ x], E[ z 

T
x ] = b3 + �2(x, t)E[ x 

T
x ] and

E[ z 
T
z ] = b4 + �3(x, E[ x 

T
x ], t). From Assumptions

1 - 3 we have that the functions fx, fz, �1, �2, and �3 are
continuously di↵erentiable and thus is bounded for a fi-
nite time interval t 2 [0, t1]. Furthermore due to the
linearity of the moment equations we have that E[ x]
and E[ x 

T
x ] exist and are bounded for a finite time in-

terval t 2 [0, t1]. Thus, setting ✏ = 0 in the equations
(B24)–(B27), we obtain the boundary layer system given
by

db1

d⌧
= fz(x, b1 + �1(x, t), t, 0), (B28)

db2

d⌧
= Fx(x, b1 + �1(x, t), t, 0)E[ x] (B29)

+ Fz(x, b1 + �1(x, t), t, 0)(b2 + �2(x, t)E[ x]),

db3

d⌧
= Fx(x, b1 + �1(x, t), t, 0)E[ x 

T
x ]

+ Fz(x, b1 + �1(x, t), t, 0)(b3 + �2(x, t)E[ x 
T
x ]),
(B30)

db4

d⌧
= Fx(x, b1 + �1(x, t), t, 0)(b3 + �2(x, t)E[ x 

T
x ])T

+ Fz(x, b1 + �1(x, t), t, 0)(b4 + �3(x, E[ x 
T
x ], t))

+ (b3 + �2(x, t)E[ x 
T
x ])Fx(x, b1 + �1(x, t), t, 0)T

+ (b4 + �3(x, E[ x 
T
x ], t))Fz(x, b1 + �1(x, t), t, 0)T

+ ⇤(x, b1 + �1(x, t), t),

(B31)

Next, in order to prove that the origin is an exponentially
stable equilibrium point of the boundary layer system,
we linearize the system (B28)–(B31) about the origin.
Towards this end, we first represent the matrix variable
b3 and b4 in vector form. Let A be an m⇥ n matrix and
let vec(A) = [a11, . . . , am1, . . . , a1n, . . . , ann]T , where aij

are the elements of the matrix A. Then, considering the
dynamics of vec(b3) and vec(b4), we use the Kronecker
Product denoted by ⌦ to obtain

db1

d⌧
= fz(x, b1 + �1(x, t), t, 0),

db2

d⌧
= Fx(x, b1 + �1(x, t), t, 0)E[ x]

+ Fz(x, b1 + �1(x, t), t, 0)(b2 + �2(x, t)E[ x]),

dvec(b3)

d⌧
= (I ⌦ Fz(x, b1 + �1(x, t), t, 0))vec(b3)

+ vec(g2(b1, x, x, t)),

dvec(b4)

d⌧
= (I ⌦ Fz(x, b1 + �1(x, t), t, 0)

+ Fz(x, b1 + �1(x, t), t, 0) ⌦ I)vec(b4)

+ (I ⌦ Fx(x, b1 + �1(x, t), t, 0)

+ Fx(x, b1 + �1(x, t), t, 0) ⌦ I)vec(b3)

+ vec(g3(b1, x, x, t)),

FIG. 8. Setting ε = 0 in the moment dynamics of the full system yields the moment dynamics of

the reduced system.

moment equations of the reduced system. Thus, as the moment dynamics are deterministic,

we can apply the Tikhonov’s theorem to the moments of the full system together with the

dynamics of x and z to prove the results given in Theorem 1. Towards this end, we first

prove that the assumptions of the Tikhonov’s theorem are satisfied. We first consider the

boundary layer dynamics of the moment dynamics (B1)–(B5), where we define the boundary

layer variables as

b1 = z − γ1(x, t), (B20)

b2 = E[ψz]− γ2(x, t)E[ψx], (B21)

b3 = E[ψzψ
T
x ]− γ2(x, t)E[ψxψ

T
x ], (B22)

b4 = E[ψzψ
T
z ]− (γ2(x, t)E[ψxψ

T
x ]γ2(x, t)T + g(x, t)g(x, t)T ). (B23)

Define γ3(x,E[ψxψ
T
x ], t) = γ2(x, t)E[ψxψ

T
x ]γ2(x, t)T + g(x, t)g(x, t)T . Then, we have that the

dynamics of the boundary layer variables are given by

db1

dt
=
dz

dt
− dγ1(x, t)

dt
,

db2

dt
=
dE[ψz]

dt
− dγ2(x, t)E[ψx]

dt
,

db3

dt
=
dE[ψzψx]

dt
− dγ2(x, t)E[ψxψ

T
x ]

dt
,

db4

dt
=
dE[ψzψ

T
z ]

dt
− dγ3(x,E[ψxψ

T
x ], t)

dt
.
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Taking τ = t/ε to be the time variable in the fast time-scale we have that

db1

dτ
= ε

dz

dt
− ε∂γ1(x, t)

∂t
− ε∂γ1(x, t)

∂x

dx

dt
,

db2

dτ
= ε

dE[ψz]

dt
− εE[ψx]

∂γ2(x, t)

∂t
− εE[ψx]

∂γ2(x, t)

∂x

dx

dt

− εγ2(x, t)
dE[ψx]

dt
,

db3

dτ
= ε

dE[ψzψ
T
x ]

dt
− εE[ψxψ

T
x ]
∂γ2(x, t)

∂t

− εE[ψxψ
T
x ]
∂γ2(x, t)

∂x

dx

dt
− εγ2(x, t)

dE[ψxψ
T
x ]

dt
,

db4

dτ
= ε

dE[ψzψ
T
z ]

dt
− ε∂γ3(x,E[ψxψ

T
x ], t)

∂t

− ε∂γ3(x,E[ψxψ
T
x ], t)

∂x

dx

dt

− ε∂γ3(x,E[ψxψ
T
x ], t)

∂E[ψxψTx ]

dE[ψxψ
T
x ]

dt
.

Then, substituting for the moment dynamics from equations (9), (B3), (B4) and (B5) we

obtain

db1

dτ
= fz(x, z, t, ε)− ε

∂γ1(x, t)

∂t
− ε∂γ1(x, t)

∂x

dx

dt
, (B24)

db2

dτ
= Fx(x, z, t, ε)E[ψx] + Fz(x, z, t, ε)E[ψz]

− εE[ψx]
∂γ2(x, t)

∂t
− εE[ψx]

∂γ2(x, t)

∂x

dx

dt

− εγ2(x, t)
dE[ψx]

dt
, (B25)

db3

dτ
= εE[ψzψ

T
x ]Sx(x, z, t)

T + εE[ψzψ
T
z ]Sz(x, z, t)

T

+ Fx(x, z, t, ε)E[ψxψ
T
x ] + Fz(x, z, t, ε)E[ψzψ

T
x ]

+ σz(x, z, t, ε)[σx(x, z, t) 0]T − εE[ψxψ
T
x ]
∂γ2(x, t)

∂t

− εE[ψxψ
T
x ]
∂γ2(x, t)

∂x

dx

dt
− εγ2(x, t)

dE[ψxψ
T
x ]

dt
, (B26)

db4

dτ
= Fx(x, z, t, ε)E[ψxψ

T
z ] + Fz(x, z, t, ε)E[ψzψ

T
z ]

+ E[ψzψ
T
x ]Fx(x, z, t, ε)

T + E[ψzψ
T
z ]Fz(x, z, t, ε)

T

+
1

ε
σz(x, z, t, ε)σz(x, z, t, ε)

T − ε∂γ3(x,E[ψxψ
T
x ], t)

∂t

− ε∂γ3(x,E[ψxψ
T
x ], t)

∂x

dx

dt
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− ε∂γ3(x,E[ψxψ
T
x ], t)

∂E[ψxψTx ]

dE[ψxψ
T
x ]

dt
. (B27)

where we take z = b1 +γ1(x, t) and E[ψz] = b2 +γ2(x, t)E[ψx], E[ψzψ
T
x ] = b3 +γ2(x, t)E[ψxψ

T
x ]

and E[ψzψ
T
z ] = b4 + γ3(x,E[ψxψ

T
x ], t). From Assumptions 1 - 3 we have that the functions

fx, fz, γ1, γ2, and γ3 are continuously differentiable and thus is bounded for a finite time

interval t ∈ [0, t1]. Furthermore due to the linearity of the moment equations we have that

E[ψx] and E[ψxψ
T
x ] exist and are bounded for a finite time interval t ∈ [0, t1]. Thus, setting

ε = 0 in the equations (B24)–(B27), we obtain the boundary layer system given by

db1

dτ
= fz(x, b1 + γ1(x, t), t, 0), (B28)

db2

dτ
= Fx(x, b1 + γ1(x, t), t, 0)E[ψx] (B29)

+ Fz(x, b1 + γ1(x, t), t, 0)(b2 + γ2(x, t)E[ψx]),

db3

dτ
= Fx(x, b1 + γ1(x, t), t, 0)E[ψxψ

T
x ]

+ Fz(x, b1 + γ1(x, t), t, 0)(b3 + γ2(x, t)E[ψxψ
T
x ]), (B30)

db4

dτ
= Fx(x, b1 + γ1(x, t), t, 0)(b3 + γ2(x, t)E[ψxψ

T
x ])T

+ Fz(x, b1 + γ1(x, t), t, 0)(b4 + γ3(x,E[ψxψ
T
x ], t))

+ (b3 + γ2(x, t)E[ψxψ
T
x ])Fx(x, b1 + γ1(x, t), t, 0)T

+ (b4 + γ3(x,E[ψxψ
T
x ], t))Fz(x, b1 + γ1(x, t), t, 0)T

+ Λ(x, b1 + γ1(x, t), t),

(B31)

Next, in order to prove that the origin is an exponentially stable equilibrium point of the

boundary layer system, we linearize the system (B28)–(B31) about the origin. Towards this

end, we first represent the matrix variable b3 and b4 in vector form. Let A be an m × n

matrix and let vec(A) = [a11, . . . , am1, . . . , a1n, . . . , ann]T , where aij are the elements of the

matrix A. Then, considering the dynamics of vec(b3) and vec(b4), we use the Kronecker

Product denoted by ⊗ to obtain

db1

dτ
= fz(x, b1 + γ1(x, t), t, 0),

db2

dτ
= Fx(x, b1 + γ1(x, t), t, 0)E[ψx]

+ Fz(x, b1 + γ1(x, t), t, 0)(b2 + γ2(x, t)E[ψx]),
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dvec(b3)

dτ
= (I ⊗ Fz(x, b1 + γ1(x, t), t, 0))vec(b3)

+ vec(g2(b1, x, ψx, t)),

dvec(b4)

dτ
= (I ⊗ Fz(x, b1 + γ1(x, t), t, 0)

+ Fz(x, b1 + γ1(x, t), t, 0)⊗ I)vec(b4)

+ (I ⊗ Fx(x, b1 + γ1(x, t), t, 0)

+ Fx(x, b1 + γ1(x, t), t, 0)⊗ I)vec(b3)

+ vec(g3(b1, x, ψx, t)),

where

g2(b1, x, ψx, t) = Fx(x, b1 + γ1(x, t), t, 0)E[ψxψ
T
x ]

+ Fz(x, b1 + γ1(x, t), t, 0)γ2(x, t)E[ψxψ
T
x ],

g3(b1, x, ψx, t) = Fx(x, b1 + γ1(x, t), t, 0)E[ψxψ
T
x ]γ2(x, t)T

+ Fz(x, b1 + γ1(x, t), t, 0)γ3(x,E[ψxψ
T
x ], t)

+ γ2(x, t)E[ψxψ
T
x ]Fx(x, b1 + γ1(x, t), t, 0)T

+ γ3(x,E[ψxψ
T
x ], t)Fz(x, b1 + γ1(x, t), t, 0)T

+ Λ(x, b1 + γ1(x, t), t).

Then, considering the state vector e = [b1, b2, vec(b3), vec(b4)] and linearizing about ê = 0,

we obtain the dynamics of ẽ = e− ê in the form

dẽ

dτ
=




J11 0 0 0

J21 J22 0 0

J31 0 J33 0

J41 0 J43 J44



ẽ, (B32)

where the diagonal entries are given by J11 = ∂fz(x,b1+γ1(x,t),t,0)
∂b1

∣∣
b1=0

, J22 = Fz(x, b1 +

γ1(x, t), t, 0)
∣∣
b1=0

, J33 = (I⊗Fz(x, b1 +γ1(x, t), t, 0))
∣∣
b1=0

and J44 = (Fz(x, b1 +γ1(x, t), t, 0)⊕
Fz(x, b1 + γ1(x, t), t, 0))

∣∣
b1=0

where ⊕ denotes the Kronecker sum and the lower diagonal en-

tries J21, J31, J41, J43 are appropriate functions.

Since the eigenvalues of a block triangular matrix are given by the union of eigenvalues

of the diagonal blocks, we consider the eigenvalues of the diagonal entries. We have that

42



∂fz(x,b1+γ1(x,t),t,0)
∂b1

∣∣
b1=0

= ∂fz(x,z,t,0)
∂z

dz
db1

∣∣
z=γ1(x,t)

= ∂fz(x,z,t,0)
∂z

∣∣
z=γ1(x,t)

, which is Hurwitz from As-

sumption 3. Furthermore, we have that Fz(x, z, t, ε) = ∂fz(x,z,t,ε)
∂z

from the definition of the

full system (8)–(11), and thus, Fz(x, b1 + γ1(x, t), t, 0)
∣∣
b1=0

= ∂fz(x,z,t,0)
∂z

∣∣
z=γ1(x,t)

is Hurwitz

under Assumption 3. Thus, the diagonal term J22 is Hurwitz. Considering the eigenvalues

of J33, we have that any eigenvalue of a Kronecker product of two matrices are given by

the product of the eigenvalues of the individual matrices56. Thus, the eigenvalues of J33 are

given by the eigenvalues of Fz(x, b1 + γ1(x, t), t, 0)
∣∣
b1=0

, which is Hurwitz under Assumption

3. Next, we consider the diagonal term J44. From Theorem 13.16 in Laub56 we have that

any eigenvalue of J44 is given by the sum of two eigenvalues of Fz(x, b1 + γ1(x, t), t, 0). Since

the matrix Fz is Hurwitz under Assumption 3, we have that all eigenvalues of J44 have

negative real parts. Therefore, we have that the eigenvalues of the linearized system (B32)

have negative real parts and thus the origin is an exponentially stable equilibrium point

uniformly for x and t.

Next, we prove that the initial conditions of the system

db1

dτ
= fz(x0, b1 + γ1(x0, 0), 0, 0), (B33)

db2

dτ
= Fx(x0, b1 + γ1(x0, 0), 0, 0)ψx0

+ Fz(x0, b1 + γ1(x0, 0), 0, 0)(b2 + γ2(x0, 0)ψx0), (B34)

dvec(b3)

dτ
= (I ⊗ Fz(x0, b1 + γ1(x0, 0), 0, 0))vec(b3)

+ vec(g2(b1, x0, ψx0 , 0)), (B35)

dvec(b4)

dτ
= (I ⊗ Fz(x0, b1 + γ1(x0, 0), 0, 0)

+ Fz(x0, b1 + γ1(x0, 0), 0, 0)⊗ I)vec(b4)

+ vec(g3(b1, b3, x0, ψx0 , 0)), (B36)

are in the region of attraction of the equilibrium point at the origin. From Assumption 3

we have that the initial condition z0 is in the region of attraction of the equilibrium point

z = γ1(x0, 0) of system dz
dτ

= fz(x0, z, 0, 0). Thus, it follows that z0 − γ1(x0, 0) is in the

region of attraction of equilibrium point of b1 = 0 for system (B33). Furthermore, we have

that the trajectory b1(τ) that corresponds to the initial condition z0 − γ1(x0, 0) is bounded

and limτ→∞ b1(τ) = 0. Using this fact and the linearity of the system (B34)–(B36), we next

prove that any trajectory of the system, starting with any initial condition, converges to
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zero as τ → ∞. Towards this end, we first define the vector r = [b̂2, vec(b̂3), vec(b̂4)] and

write the system (B34)–(B36) in the form

dr

dτ
=




H11 0 0

0 H22 0

0 H32 H33


r

+




C11(τ) 0 0

0 C22(τ) 0

0 C32(τ) C33(τ)


r +




0

D2(τ)

D3(τ)


,

where

H11 = Fz(x0, γ1(x0, 0), 0, 0),

H22 = I ⊗ Fz(x0, γ1(x0, 0), 0, 0),

H32 = I ⊗ Fx(x0, γ1(x0, 0), 0, 0)) + Fx(x0, γ1(x0, 0), 0, 0)⊗ I,

H33 = I ⊗ Fz(x0, γ1(x0, 0), 0, 0)) + Fz(x0, γ1(x0, 0), 0, 0)⊗ I,

C11(τ) = Fz(x0, b1(τ)− γ1(x0, 0), 0, 0)− Fz(x0, γ1(x0, 0), 0, 0),

C22(τ) = I ⊗ Fz(x0, b1(τ) + γ1(x0, 0), 0, 0)− I ⊗ Fz(x0, γ1(x0, 0), 0, 0),

C32(τ) = I ⊗ Fx(x0, b1(τ) + γ1(x0, 0), 0, 0)) + Fx(x0, b1(τ) + γ1(x0, 0), 0, 0)⊗ I

− I ⊗ Fx(x0, γ1(x0, 0), 0, 0))− Fx(x0, γ1(x0, 0), 0, 0)⊗ I,

C33(τ) = I ⊗ Fz(x0, b1(τ) + γ1(x0, 0), 0, 0)) + Fz(x0, b1(τ) + γ1(x0, 0), 0, 0)⊗ I

− I ⊗ Fz(x0, γ1(x0, 0), 0, 0))− Fz(x0, γ1(x0, 0), 0, 0)⊗ I,

D2(τ) = vec(g2(b1(τ), x0, ψx0 , 0)),

D3(τ) = vec(g3(b1(τ), x0, ψx0 , 0)).

Then, we apply Lemmas 9.4–9.6 from Khalil4 to show that r tends to zero as τ → ∞ for

any initial condition r(0). From Assumption 3, we have that the matrix H is Hurwitz,

and thus the system dr
dτ

= Hr is globally exponentially stable. Therefore, there exists a

Lyapunov function V (r, τ) = rTP (τ)r that satisfies (9.3)–(9.5) in Khalil4. Furthermore, we

have that ‖C(τ)h+D(τ)‖ ≤ ‖C(τ)‖‖h‖+ ‖D(τ)‖. We note that ‖D(τ)‖ is bounded as the

functions g2(b1, x0, ψx0 , 0) and g3(b1, x0, ψx0 , 0) are continuous in b1(τ) from Assumptions 1

and 2, and b̂1(τ) is bounded due to the asymptotic stability of the equilibrium point b̂1 = 0.
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Furthermore, since limτ→∞ b̂1(τ) = 0, it follows from the definitions of the functions g2 and

g3 that ‖C(τ)‖ → 0 and ‖D(τ)‖ → 0. Therefore, from Lemma 9.5, 9.6 and Lemma 9.4 in

Khalil4, we have that limτ→∞ r(τ) = 0 for all r(0) ∈ R3. Thus, it follows that the region

of attraction for the system (B34)–(B36) is given by Rb1 × R3 where Rb1 is the region of

attraction of the equilibrium point z0 − γ1(x0, 0).

Next, we consider the remaining assumptions of the Tikhonov’s theorem. We have that

functions fx, fz, Sx, Sz, Fx, Fz, σxσ
T
x , σz[σx 0]T and σzσ

T
z and their first partial derivatives

are continuously differentiable from Assumptions 1 and 2. Under Assumption 1 we also have

that the ∂fz(x,z,t,0)
∂z

, ∂Fx(x,z,t,0)
∂z

, ∂Fz(x,z,t,0)
∂z

have continuous first partial derivatives with respect

to their arguments. From Assumptions 1 and 3 the first partial derivatives of γ1(x, t),

γ2(x, t)E[ψx], γ2(x, t)E[ψxψ
T
x ], γ3(x,E[ψxψ

T
x ], t) with respect to their arguments are also

continuous. Under Assumption 4 there exists a unique, bounded solution for the reduced

system (14) for t ∈ [0, t1]. Furthermore, as the moment dynamics (B9) - (B10) are linear

in the variables E[ψ̄x], E[ψ̄xψ̄
T
x ] there exists a unique, bounded solution to (B9) - (B10) for

t ∈ [0, t1]. Thus, the assumptions of the Tikhonov’s theorem are satisfied and applying

the theorem to the set of moment equations in (B1)–(B5) and (B9)–(B12) yields the result

(19)–(25).

Appendix C

Here, we prove that the moments of the reduced system (14)–(17) can provide a good

approximation for the moments of the original variables v and ξ in the system (2)–(3). We

only provide a complete proof for the variable v since the proof for E[ξ] and E[ξ2] can be

derived in a similar manner. From equation (2)–(3) we have that v and ξ represent the

original variables, and from Clam 1 we have that

v = T−1[xT , zT ]T and ξ = T−1[ψTx , ψ
T
z ]T .

Then, let v̄ and ξ̄ represent the species concentrations obtained using the reduced system

(14)–(17). Therefore, we have that

v̄ = T−1[x̄T , z̄T ]T and ξ̄ = T−1[ψ̄Tx , ψ̄
T
z ]T .

Then, computing the error between the moments of the original species concentrations and
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the moments obtained using the reduced system, we have

‖v − v̄‖ =

∥∥∥∥T−1


 x
z


− T−1


 x̄
z̄



∥∥∥∥,

=

∥∥∥∥T−1


 x− x̄
z − z̄



∥∥∥∥.

Using the Cauchy-Schwarz inequality, we have that

‖v − v̄‖ ≤ ‖T−1‖F
∥∥∥∥


 x− x̄
z − z̄



∥∥∥∥,

and using the definition of the Euclidean norm we obtain

‖v − v̄‖ ≤ ‖T−1‖
√
‖x− x̄‖2 + ‖z − z̄‖2. (C1)

From Theorem 1, we have that ‖x − x̄‖ ≤ c1ε and ‖z − z̄‖ ≤ c2ε for appropriate constants

c1 and c2. Thus, from (C1) it follows that

‖v − v̄‖ ≤ Cε,

for an appropriate constant C. Similar result holds for the variables E[ξ] and E[ξ2].

Appendix D

In this section, we present the derivation of the reduced-order moment dynamics of protein

M and protein G given in (44)–(48) using the reduced system (38). For ease of analysis, we

express the fast variable approximations in the reduced system (38) in terms of the variables

m̄ and ḡ using the coordinate transforms w̄ = m̄− c̄2 and ū = ḡ − c̄1. This yields

c̄1 =
ḡpT1

ḡ + kd1

, (D1)

c̄2 =
m̄pT2

m̄+ kd2

, (D2)

ψc̄1 =
R1(ḡ)

1 +R1(ḡ)
ψ̄u +

√
ḡR1(ḡ)

1 +R1(ḡ)
N1(0, 1), (D3)

ψc̄2 =
R2(m̄)

1 +R2(m̄)
ψ̄w +

√
m̄R2(m̄)

1 +R2(m̄)
N2(0, 1). (D4)

46



where R1(ḡ) = pT2/kd2

(m̄/kd2+1)2 and R2(m̄) = pT1/kd1

(ḡ/kd1+1)2 as defined in the main text.

First considering the deterministic dynamics for protein m̄, we have that m̄ = w̄ + c̄2,

which yields

dm̄

dt
=
dw̄

dt
+
dc̄2

dt
=
dw̄

dt
+
dc̄2

dm̄

dm̄

dt
.

Then simplifying further and using the equation (D1) and the reduced dynamics for w̄ given

in (38) we obtain

dm̄

dt
=

(
1

1 + dc̄2
dm̄

)
dw̄

dt

=

(
1

1 +R2(m̄)

)(
β1
pT1kd1

ḡ + kd1

− δ1m̄

)
,

in which, we have dc̄2
dm̄

= pT1kd1

(ḡ+kd1)2 = R2(m̄). Similarly, we have that

dḡ

dt
=

(
1

1 + dc̄1
dḡ

)
dū

dt

=

(
1

1 +R1(ḡ)

)(
β2

m̄pT2

m̄+ kd2

− δ2ḡ

)
.

Next, we compute the dynamics for the second moment of proteins M and G. Towards

this end we first derive the expressions for these seconds moments in terms of the total

protein concentrations ψ̄w and ψ̄u. Using the fast variable approximations (D3)–(D4) and

the fact the normal random variables N1(0, 1) and N2(0, 1) are independent of each other

and of ψ̄w and ψ̄u, we have

E
[
ψ̄2
m

]
= E

[
(ψ̄w − ψ̄c2)2

]

=

(
1

1 +R2(m̄)

)
2E
[
ψ̄2
w

]
+

m̄R2(m̄)

1 +R2(m̄)
(D5)

E
[
ψ̄2
g

]
= E

[
(ψ̄u − ψ̄c1)2

]

=

(
1

1 +R1(ḡ)

)
2E
[
ψ̄2
u

]
+

ḡR1(ḡ)

1 +R1(ḡ)
(D6)

E
[
ψ̄mψ̄g

]
= E

[
(ψ̄w − ψ̄c2)(ψ̄u − ψ̄c1)

]

=

(
1

1 +R2(m̄)

)(
1

1 +R1(ḡ)

)
E
[
ψ̄wψ̄u

]
(D7)

Next we consider the dynamics of E
[
ψ̄2
m

]
. Taking the time derivative of equation (D5)

we have

dE
[
ψ̄2
m

]

dt
= 2

(
1

1 +R2(m̄)

)d
(

1
1+R2(m̄)

)

dm̄

dm̄

dt
E
[
ψ̄2
w

]
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+

(
1

1 +R2(m̄)

)
2dE

[
ψ̄2
w

]

dt
+
d
(

R2(m̄)
1+R2(m̄)

)

dm̄

dm̄

dt
m̄

+
R2(m̄)

1 +R2(m̄)

dm̄

dt
,

which can be further simplified to

dE
[
ψ̄2
m

]

dt
= 2

(
1

1 +R2(m̄)

) dR2(m̄)
dm̄

(1 +R2(m̄))2

dm̄

dt
E
[
ψ̄2
w

]

+

(
1

1 +R2(m̄)

)
2dE

[
ψ̄2
w

]

dt
−

dR2(m̄)
dm̄

(1 +R2(m̄))2

dm̄

dt
m̄

+
R2(m̄)

1 +R2(m̄)

dm̄

dt
. (D8)

In a similar manner, we derive the dynamics for E
[
ψ̄2
m

]
and E

[
ψ̄2
m

]
, which yields

dE
[
ψ̄2
g

]

dt
= 2

(
1

1 +R1(ḡ)

) dR1(ḡ)
dḡ

(1 +R1(ḡ))2

dḡ

dt
E
[
ψ̄2
u

]

+

(
1

1 +R1(ḡ)

)
2
dE
[
ψ̄2
g

]

dt
−

dR1(ḡ)
dḡ

(1 +R1(ḡ))2

dḡ

dt
ḡ

+
R1(ḡ)

1 +R1(ḡ)

dḡ

dt
, (D9)

dE
[
ψ̄mψ̄g

]

dt
=
dE
[
ψ̄wψ̄u

]

dt

1

1 +R2(m̄)

1

1 +R1(ḡ)

+
1

1 +R2(m̄)

2R1(ḡ)

(ḡ + kd1)(1 +R1(ḡ))2
E
[
ψ̄wψ̄u

]dḡ
dt

(D10)

+
1

1 +R1(ḡ)

2R2(m̄)

(m̄+ kd2)(1 +R2(m̄))2
E
[
ψ̄wψ̄u

]dm̄
dt
. (D11)

Next, deriving the moment dynamics for the total protein concentrations w̄ and ū, we

obtain

dE
[
ψ̄2
w

]

dt
=

−2δ1

1 +R2(m̄)
E
[
ψ2
w

]
− 2β1R1(ḡ)

1 +R1(ḡ)
E
[
ψ̄wψu

]

+ β1
pT1kd1

ḡ + kd1

+ δ1m, (D12)

dE
[
ψ̄2
u

]

dt
=

−2δ2

1 +R1(ḡ)
E
[
ψ2
u

]
+

2β2R1(ḡ)

1 +R1(ḡ)
E
[
ψ̄wψu

]

+ β2(
m̄pT2

m̄+ kd2

) + δ2g, (D13)

dE
[
ψ̄wψ̄u

]

dt
= −

(
δ1

1 +R2(m̄)
+

δ2

1 +R1(ḡ)

)
E[ψwψu]
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− β1
R1(ḡ)

1 +R1(ḡ)
E
[
ψ2
u

]
+ β2

R2(m̄)

1 +R2(m̄)
E
[
ψ2
w

]
. (D14)

where the deterministic variables w̄ and ū are represented in terms of m̄ and ḡ using the

coordinate transforms w̄ = m̄− c̄2 and ū = ḡ − c̄1.

Then, substituting the moment dynamics (D12)–(D14) in the equations (D8)–(D11) and

simplifying further using the expressions (D5)–(D7), yields the reduced-order moment dy-

namics of protein M and protein G given in (44)–(48).
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